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Abstract

Two learning situations are considered: machine identification of programs from graphs of recur-
sive functions (modeling inductive hypothesis formation) and machine identification of grammars
from texts of recursively enumerable languages (modeling first language acquisition). Both these
learning models are extended to account for situations in which a learning machine is provided
additional information in the form of knowledge about an upper-bound on the minimal size pro-
gram (grammar) for the function (language) being identified. For a number of such extensions, it is
shown that larger classes of functions (languages) can be algorithmically identified in the presence
of upper-bound information.

Numerous interesting relationships are shown between different models of learning, number of
anomalies allowed in the inferred program (grammar), and number of anomalies allowed in the
upper-bound information.

1 Introduction

Consider the following description of a typical learning situation involving a subject acquiring a
concept. At any given time, a finite piece of data about the concept is made available to the
subject. Based upon this finite information, the subject comes to have a certain belief about the
concept. The belief of the subject may become fixed over time as it sees more data about the
concept. The subject learns or explains the concept just in case the fixed belief, eventually held
by it, is a correct explanation of the concept. Computational learning theory provides a framework
for studying problems of this nature when the subject is a machine.

In the present paper, we formalize learning models in which the learner has some knowledge
about the “size” of an explanation for the concept being learned. In particular, we investigate
numerous learning models in which the learner is given, in addition to data about the concept,
an “upper-bound” on the “minimal size explanation” of the concept. Our treatment is recursion
theoretic.

We investigate two learning situations: inductive hypothesis formation modeled as machine
identification of programs for computable functions (described in Section 1.1) and first language
acquisition modeled as machine identification of grammars for recursively enumerable languages
(described in Section 1.2). In Section 1.3, we informally describe some of our notions for language
identification with additional information. Section 1.4 briefly mentions related work on learning
with additional information.

1.1 Ex-identification: A Model of Inductive Hypothesis Formation

Picture a scientist performing all possible experiments (in arbitrary order) associated with a phe-
nomenon, noting the result of each experiment, while simultaneously conjecturing a succession of
candidate explanations for predicting the results of any experiment about the phenomenon. A
criterion of success is for the scientist to eventually conjecture an explanation which he or she
never gives up and which explanation correctly predicts the results of every experiment about the
phenomenon. The set of all pairs of the form 〈experiment, corresponding result〉 associated with
the phenomenon can be coded by a function from N to N , where N is the set of natural numbers.
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Assuming a suitable mechanistic viewpoint, such a function associated with a phenomenon is com-
putable. Also, a predictive explanation of the phenomenon can naturally be modeled as a program
for the associated function. Thus, replacing the ever experimenting scientist in the above scenario
by a machine yields a plausible model for, at least, a part of the practice of science—algorithmic
identification in the limit of programs for computable functions from their graphs. We formalize
this notion in Definition 1 just below.

Definition 1 [Gol67, BB75, CS83] A learning machine M Ex-identifies a function f ⇔ M, fed
graph of f , converges in the limit to a program for f .

Definition 1 above introduces a criterion for a learning machine to successfully identify a func-
tion. To facilitate comparison between different criteria of learning, we define the inferring power of
a learning criterion which is a set theoretic summary of the capability of various learning machines
to learn according to that criteria. Definition 2, just below, describes the class Ex, the inferring
power of Ex-identification.

Definition 2 [Gol67, BB75, CS83] Ex denotes the class of all sets S of computable functions such
that some learning machine Ex-identifies each function in S.

The additional information to a function identifying machine is an upper-bound on the minimal
size program for the function. This approach to modeling additional information for function
identification is due to Freivalds and Wiehagen [FW79].

1.2 TxtEx-identification: A Model of Language Acquisition

Motivated by psycholinguistic studies which conclude that children are rarely, if ever, informed of
grammatical errors, Gold [Gol67] introduced the seminal notion of identification as a model for
first language acquisition. According to this paradigm, a child (modeled as a machine) receives (in
arbitrary order) all the well-defined sentences, a text , of a language, and simultaneously, conjectures
a succession of grammars. A criterion of success is for the child to eventually conjecture a correct
grammar for the language being received and never to change its conjecture thereafter. Languages
are sets of sentences and a sentence is a finite object; the set of all possible sentences can be coded
into N . Hence, languages may be construed as subsets of N . A grammar for a language is a set
of rules that generates (or equivalently, accepts [HU79]) the language; such grammars are, in some
cases, referred to as type 0 grammars. Languages for which a grammar exists are called recursively
enumerable. Henceforth, we work under the assumption that natural languages fall in the class
of recursively enumerable languages. Thus, replacing the child machine by an arbitrary machine
in the above language learning scenario, we have a plausible model for language acquisition—
algorithmic identification in the limit of grammars for recursively enumerable languages from their
texts. Definition 3, just below, formalizes this notion.

Definition 3 [Gol67, CL82, OW82a] A learning machine M TxtEx-identifies a language L ⇔ M,
fed any text for L, converges in the limit to a grammar for L.

The inferring power of TxtEx-identification criteria, introduced above, is described in Defini-
tion 4 below.
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Definition 4 [Gol67, CL82, OW82a] TxtEx denotes the class of all sets L of recursively enumer-
able languages such that some learning machine TxtEx-identifies each language in L.

The additional information to a language identifying machine is an upper-bound on the minimal
size grammar for the language being identified.

1.3 Language Identification with Additional Information

Gold’s model of TxtEx-identification assumes that a language learner is only exposed to strings in
the language. In practice, a learning machine may have more information about the language. One
such additional information could be an upper bound on the minimal size grammar for the language.
Seen in the perspective of child learning, this is, in some sense, plausible additional information, as
an upper bound on the size of a child’s head is also an upper bound on the minimal size grammar
for any language the child has an ability to learn. Modeling this additional information yields an
extension of Gold’s paradigm. We introduce this extension as a new criteria of language learning.
A learning machine M is said to TxtBex-identify a language L iff (by definition) M, fed an
upper-bound on the minimal grammar for L in addition to a text for L, converges to a correct
grammar for L. TxtBex, the inferring power of TxtBex-identification, is defined to be the class
of sets L of recursively enumerable languages such that some learning machine TxtBex-identifies
each language in L. As indicated by the following Result 1, TxtBex-identification is strictly
more powerful than TxtEx-identification in the sense that larger sets of languages can be learned
according to TxtBex-identification.

TxtEx ⊂ TxtBex (1)

An interesting restriction on TxtBex-identification is a further requirement that the learning
machine infer the same grammar for any upper-bound. We express this restriction as a new lan-
guage identification criterion. A learning machine M TxtResBex-identifies a language L iff (by
definition) there exists a grammar GL for L such that M, fed any upper-bound on the minimal
size grammar for L in addition to a text for L, converges to GL. TxtResBex, the inferring power
of TxtResBex-identification, can be defined in the usual manner. As shown by Result 2, even
the restricted additional information criterion, TxtResBex-identification is strictly more power-
ful than Gold’s TxtEx-identification. Result 3 shows that TxtResBex-identification is indeed a
restriction on TxtBex-identification.

TxtEx ⊂ TxtResBex (2)

TxtResBex ⊂ TxtBex (3)

Result 3 could be read as saying “if a child can learn a language in different ways, we are going
to restrict its learning power by requiring it to learn in some particular way.” In a metaphoric sense,
Result 3 seems to “corroborate” an observation about language learning in humans. Children tend
to learn a language effortlessly compared to adults in a class room setting. A possible explanation
may be that the learning criteria used by children allows them to converge to any grammar for the
language whereas adults are constrained to learn some unique grammar described by the teacher;
thus, it may be impossible to learn large sets of languages in a class-room setting because class-room
learning employs a more restricted language learning criteria!

We extend both TxtResBex-identification and TxtBex-identification in the following ways:
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• We allow the inferred grammars to have anomalies (in the style of Case and Lynes [CL82] and
Osherson and Weinstein [OW82a]). After all, it is all right not to learn a language perfectly.
We show that larger sets of languages can be learned if we allow anomalies in the language
generated by the inferred grammar.

• Instead of giving additional information about the minimal grammar of the language being
learned, we give an upper-bound on the minimal grammar for a finite variant of the language.
After all, information from our teachers could always be somewhat inaccurate. We show that
there is a decrease in the inferring power if we allow anomalous additional information.

We investigate similar extensions to other models of language learning: TxtFex-identification
[Cas88] and TxtBc-identification [CL82]. Analogous results in the context of function identification
are also presented. It should be noted that analogs of Results 1, 2, and 3 for function identification
were first observed by Freivalds and Wiehagen [FW79].

1.4 Related Research

In the present work, we are concerned with extending TxtEx-identification and Ex-identification
by providing additional information to the learning machine. We briefly note other attempts to
extending these fundamental learning paradigms. L. Blum and M. Blum [BB75] and Case and
Smith [CS83], in the context of function inference, consider the case where the program inferred
by the learning machine is allowed to make a finite number of mistakes. For language learning,
Case and Lynes [CL82] and Osherson and Weinstein [OW82a] consider learning criteria in which
the grammar inferred is allowed to be a grammar for a finite variant of the language being learned.
Smith [Smi82] considers the function inference criteria in which the learning machine is replaced by
a “team” of learning machines and successful learning takes place if any one member of the team
succeeds in learning the function. Osherson, Stob, and Weinstein [OSW86a] consider a generalized
notion of team learning. Pitt [Pit84] has shown that the power of probabilistic machines can
be neatly characterized in terms of teams [Smi82] of deterministic machines. Jain and Sharma
[JS90a] consider team inference in the context of language learning. Royer [Roy86] and Smith
and Velauthapillai [SV86] consider the case where the inferred program may have infinitely many
anomalies, but the “density” of these anomalies is bounded. Case [Cas88], based on Osherson and
Weinstein [OW82a], considers language learning criteria in which the learning agent is allowed to
converge in the limit to a finite set of grammars instead of one. Case, Jain and Sharma [CJS89]
consider grammar size restrictions in Case’s vacillating language learning criteria [Cas88]. Fulk
[Ful85, Ful90a] and Jain and Sharma [JS90b] consider other forms of additional information to
learning machines.

2 Preliminaries

2.1 Notation

Recursion-theoretic concepts not explained below are treated in [Rog67]. N denotes the set of
natural numbers, {0, 1, 2, 3, . . .}, and N+ denotes the set of positive integers, {1, 2, 3, . . .}. ∈, ⊆,
and ⊂ denote, respectively, membership, containment, and proper containment for sets (including
sets of ordered pairs).
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∗ denotes unbounded but finite; we let (∀n ∈ N)[n < ∗ < ∞]. Generally, e and lower
case letters near the beginning, middle, and end of the alphabet, with or without decorations,
a, b, c, . . . , i, j, k, l,m, n, . . . , x, y, z, range over N ; it will be explicitly specified if any of these vari-
ables locally range over N+, N ∪ {∗}, or N+ ∪ {∗}.

[m,n] denotes the set {x | m ≤ x ≤ n}. We let P, S, with or without decorations, range over
subsets of N and we let D, with or without decorations, range over finite subsets of N . ‖P‖ denotes
the cardinality of P . So then, ‘‖P‖ ≤ ∗’ means that ‖P‖ is finite. min(P ) and max(P ) respectively
denote the minimum and maximum element in P . We take min(∅) to be ∞ and max(∅) to be 0.

Let λx, y 〈x, y〉 denote a fixed pairing function (a recursive, bijective mapping: N × N → N)
[Rog67]. λx, y 〈x, y〉 and its inverses are useful to simulate the effect of having multiple argument
functions. π1 and π2 are corresponding projection functions, i.e., (∀x, y)[π1(〈x, y〉) = x∧π2(〈x, y〉) =
y].

L, with or without decorations, ranges over recursively enumerable (r.e.) subsets of N , which
subsets are usually construed as codings of formal languages. E denotes the class of all recursively
enumerable languages ⊆ N . We let L, with or without decorations, range over subsets of E . L14L2

denotes (L1−L2)∪ (L2−L1), the symmetric difference of L1 and L2. For a ∈ (N ∪ {∗}), L1 =a L2

means that ‖L1 4 L2‖ ≤ a.
η and ξ range over partial functions. For a ∈ (N ∪ {∗}), η1 =a η2 means that ‖{x | η1(x) 6=

η2(x)}‖ ≤ a. domain(η) and range(η) respectively denote the domain and range of partial function
η.

S ⊆ N is said to represent the set {(x, y) | 〈x, y〉 ∈ S}. S ⊆ N is called single-valued just in
case S represents a function. A single-valued set is said to be single valued total just in case the
function it represents is total.

R denotes the class of all recursive functions, i.e., total computable functions with arguments
and values from N . f, g, h, and p, with or without decorations, range over R. S ranges over subsets
of R.

We fix ϕ to be an acceptable programming system [Rog58, Rog67, MY78] for the partial recursive
functions: N → N . ϕi denotes the partial recursive function computed by ϕ-program i. Wi denotes
domain(ϕi). Wi is, then, the r.e. set/language (⊆ N) accepted (or equivalently, generated) by the
ϕ-program i. We let Φ be an arbitrary Blum complexity measure [Blu67] associated with acceptable
programming system ϕ; such measures exist for any acceptable programming system [Blu67]. Then,
Wi,s denotes the set {x | x < s ∧ Φi(x) ≤ s}. For a given total computable function f and an
r.e. language L, we define minprog(f) to denote min({i | ϕi = f}) and mingram(L) to denote
min({i | Wi = L}).

For any predicate Q, µn Q(n) denotes the minimum integer n such that Q(n) is true if such an
n exists; it is undefined otherwise. For any set A, 2A denotes the power set of A. The quantifiers
‘∀∞’ and ‘∃∞’ mean ‘for all but finitely many’ and ‘there exist infinitely many,’ respectively. The
quantifier ‘∃!’ means ‘there exists a unique.’

We concern ourselves with formally investigating learning of two kinds of objects: computable
functions and recursively enumerable languages. In most of the exposition to follow, we will discuss
a notion for function inference first, and then describe an analogous notion for language learning.
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2.2 Learning Machines

In Definition 5 below, we formally introduce what we mean by a machine that learns a function,
and in Definition 7, we do the same for a machine that learns a language.

For any recursive function f and any natural number n, we let f [n] denote the finite initial
segment {(x, f(x)) | x < n}. Clearly, f [0] denotes the empty segment. SEG denotes the set of
all finite initial segments. Note that f [n] ∪ {(n, x)} is a new finite initial segment of length n + 1
formed by extending f [n] suitably.

Definition 5 [Gol67] A function learning machine is an algorithmic device which computes a
mapping from SEG into N .

We now consider language learning machines. Definition 6 below introduces a notion that
facilitates discussion about elements of a language being fed to a learning machine.

Definition 6 A sequence σ is a mapping from an initial segment of N into (N ∪{#}). The content
of a sequence σ, denoted content(σ), is the set of natural numbers in the range of σ. The length of
σ, denoted by |σ|, is the number of elements in σ.

Intuitively, #’s represent pauses in the presentation of data. We let σ and τ , with or without
decorations, range over finite sequences. SEQ denotes the set of all finite sequences. σ1 � k denotes
the concatenation of k at the end of sequence σ1, where σ = σ1 � k is defined as follows:

σ(x) =

{

σ1(x) if x < |σ1|;
k if x = |σ1|.

Definition 7 A language-learning machine is an algorithmic device which computes a mapping
from SEQ into N .

The set of all finite initial segments, SEG, can be coded onto N . Also, the set of all finite
sequences of natural numbers and #’s, SEQ, can be coded onto N . Thus, in both Definitions 5 and
7, we can view these machines as taking natural numbers as input and emitting natural numbers
as output. Henceforth, we will refer to both function-learning machines and language-learning
machines as just learning machines. We let M, with or without decorations, range over learning
machines.

2.3 Fundamental Function Identification Paradigms

In Definition 8 below we spell out what it means for a learning machine on a function to converge
in the limit.

Definition 8 Suppose M is a learning machine and f is a computable function. M(f)↓ (read:
M(f) converges) ⇐⇒ (∃i)(∀∞n) [M(f [n]) = i]. If M(f)↓, then M(f) is defined = the unique i

such that (∀∞n)[M(f [n]) = i], otherwise we say that M(f) diverges (written: M(f)↑).

We now introduce two different criteria for a learning machine to successfully infer a function.
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2.3.1 Explanatory Function Identification

Definition 9 [Gol67, BB75, CS83] Let a ∈ N ∪ {∗}.
(i) M Exa-identifies f (written: f ∈ Exa(M)) ⇐⇒ (∃i | ϕi =a f)[M(f)↓ = i].
(ii) Exa = {S | (∃M)[S ⊆ Exa(M)]}.

Case and Smith [CS83] motivate anomalies (or, mistakes) in the final programs in Definition 9
from the fact that physicists sometimes do employ explanations with anomalies. The a = ∗ case
was introduced by L. Blum and M. Blum [BB75] and the other a > 0 cases were first considered
by Case and Smith [CS83].

2.3.2 Behaviorally Correct Function Identification

Case and Smith [CS83] introduced another infinite hierarchy of identification criteria which we
describe below. “Bc” stands for behaviorally correct . Barzdin [Bar74] independently introduced a
similar notion.

Definition 10 [CS83] Let a ∈ N ∪ {∗}.
(i) M Bca-identifies f (written: f ∈ Bca(M)) ⇐⇒ (∀∞n)[ϕM(f [n]) =a f ].
(ii) Bca = {S | (∃M)[S ⊆ Bca(M)]}.

We usually write Ex for Ex0 and Bc for Bc0. Theorem 1 below describes some of the basic
results about the two kinds of function identification criteria described above.

Theorem 1 For all a ∈ N ,
(a) Exa ⊂ Exa+1.
(b)

⋃

a∈N Exa ⊂ Ex∗.
(c) Ex∗ ⊂ Bc.
(d) Bca ⊂ Bca+1.
(e)

⋃

a∈N Bca ⊂ Bc∗.
(f) R ∈ Bc∗.

Parts (a), (b), (d), and (e) are due to Case and Smith [CS83]. Part (f) is due to Harrington
[CS83]. Blum and Blum [BB75] first showed that Ex ⊂ Ex∗. Barzdin [Bar74] independently
showed Ex ⊂ Bc.

2.4 Fundamental Language Identification Paradigms

Definition 11 A text T for a language L is a mapping from N into (N ∪ {#}) such that L is the
set of natural numbers in the range of T . The content of a text T , denoted content(T ), is the set
of natural numbers in the range of T .

Intuitively, a text for a language is an enumeration or sequential presentation of all the objects
in the language with the #’s representing pauses in the listing or presentation of such objects. For
example, the only text for the empty language is just an infinite sequence of #’s.

We let T , with or without superscripts, range over texts. T [n] denotes the finite initial sequence
of T with length n. Hence, domain(T [n]) = {x | x < n}.
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2.4.1 Explanatory Language Identification

In Definition 12 below we spell out what it means for a learning machine on a text to converge in
the limit.

Definition 12 Suppose M is a learning machine and T is a text. M(T )↓ (read: M(T ) con-
verges) ⇐⇒ (∃i)(∀∞n) [M(T [n]) = i]. If M(T )↓, then M(T ) is defined = the unique i such that
(∀∞n)[M(T [n]) = i], otherwise we say that M(T ) diverges (written: M(T )↑).

We now introduce criteria for a learning machine to be successful on a language. TxtEx0 from
Definition 13 just below is the same as TxtEx.

Definition 13 [Gol67, CL82, OW82a] Let a ∈ N ∪ {∗}.
(i) M TxtExa-identifies L (written: L ∈ TxtExa(M)) ⇐⇒ (∀ texts T for L)(∃i | Wi =a

L)[M(T )↓ = i].
(ii) TxtExa = {L | (∃M)[L ⊆ TxtExa(M)]}.

The generalization of Gold’s paradigm to the a > 0 case above was motivated by the observation
that humans rarely learn a language perfectly. The a > 0 case in Definition 13 is due to Case and
Lynes [CL82]. Osherson and Weinstein [OW82a], independently of Case and Lynes, introduced
the a = ∗ case. The influence of Gold’s paradigm to human language learning is discussed by
Pinker [Pin79], Wexler and Culicover [WC80], Wexler [Wex82], and Osherson, Stob, and Weinstein
[OSW82, OSW84, OSW86b].

Definition 14 [Ful85, Ful90b] σ is a TxtEx-stabilizing sequence for M on L ⇐⇒ content(σ) ⊆ L

and (∀σ′ | content(σ′) ⊆ L ∧ σ ⊆ σ′)[M(σ′) = M(σ)].

Definition 15 [BB75, OW82b] Let a ∈ N ∪ {∗}. σ is a TxtExa-locking sequence for M on L

⇐⇒ σ is a TxtEx-stabilizing sequence for M on L and WM(σ) =a L.

We now present a very important lemma in learning theory due to L. Blum and M. Blum
[BB75].

Lemma 1 [BB75, OW82b] If M TxtExa-identifies L, then there is a TxtExa-locking sequence
for M on L.

2.4.2 Vacillatory Language Identification

Case [Cas88], as a refinement of a result by Osherson and Weinstein [OW82a], considered the
question whether humans converge to more than one distinct, but equivalent, correct grammars.
He captured this notion through a new criterion of language learning, viz., TxtFex-identification—
a more general criteria than Gold’s TxtEx-identification. We also study the effect of additional
information on this criteria.

Before we describe TxtFex-identification, we first consider in Definition 16 just below what it
means for a learning machine to converge on a text to a finite set of grammars.
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Definition 16 [Cas88] Suppose M is a learning machine and T is a text. Then, M(T ) finitely-
converges (written: M(T )⇓) ⇐⇒ {M(σ) | σ ⊂ T} is finite. If M(T )⇓, then we say that
M(T )⇓ = D ⇐⇒ D = {i | (∃∞σ ⊂ T )[M(σ) = i]}, otherwise we say that M(T ) finitely-diverges
(written: M(T )⇑).

Definition 17 [Cas88] Let a ∈ N ∪ {∗} and b ∈ N+ ∪ {∗}.
(i) M TxtFexa

b -identifies L (written: L ∈ TxtFexa
b (M)) ⇐⇒ (∀ texts T for L)(∃D | ‖D‖ ≤

b ∧ (∀i ∈ D)[Wi =a L])[M(T )⇓ = D].
(ii) TxtFexa

b = {L | (∃M)[L ⊆ TxtFexa
b (M)]}.

In TxtFexa
b -identification, the b is a “bound” on the number of final grammars and the a is a

“bound” on the number of anomalies allowed in these final grammars. A “bound” of ∗ just means
unbounded, but finite. We sometimes refer to TxtFex0

b as TxtFexb. TxtFex∗-identification was
first studied by Osherson and Weinstein [OW82a].

2.4.3 Behaviorally Correct Language Identification

Definition 18 [CL82] Let a ∈ N ∪ {∗}.
(i) M TxtBca-identifies L (written: L ∈ TxtBca(M)) ⇐⇒ (∀ texts T for L)(∀∞n)[WM(T [n]) =a

L].
(ii) TxtBca = {L | (∃M)[L ⊆ TxtBca(M)]}.

We usually write TxtBc for TxtBc0.
The following definition is an analog of Definition 15 for TxtBc-identification.

Definition 19 (Based on [BB75, CL82]) Let a ∈ N ∪ {∗}. σ is a TxtBca-locking sequence for M

on L ⇐⇒ content(σ) ⊆ L and (∀σ′ | [σ ⊆ σ′] ∧ [content(σ′) ⊆ L])[WM(σ′) =a L].

There is an analog of Lemma 1 for TxtBc-identification [CL82].

Lemma 2 (Based on [BB75, CL82]) If M TxtBca-identifies L, then there is a TxtBca-locking
sequence for M on L.

Theorem 2 below states some of the basic results about the three kinds of language identification
criteria just described.

Theorem 2 For all a, b ∈ N ,
(a) TxtExa+1 − TxtFexa

∗ 6= ∅.
(b) TxtEx2a+1 − TxtBca 6= ∅.
(c) TxtEx2a ⊂ TxtBca.
(d) TxtFex0

b+1 − TxtFex∗
b 6= ∅.

(e)
⋃

a∈N TxtFexa
b ⊂ TxtFex∗

b .
(f)

⋃

a∈N TxtBca ⊂ TxtBc∗.

Parts (a), (d) and (e) are due to Case [Cas88]. Parts (b) and (c) are due to Case and Lynes
[CL82]. Part (f) follows from part (e) in Theorem 1. Osherson and Weinstein [OW82a] have
independently shown that TxtEx ⊂ TxtFex∗.
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3 Function Identification with Additional Information

3.1 Definitions

In the approach we take, a machine identifying a program for a recursive function from its graph, is
provided with an upper-bound on the minimal program for the function as additional information.
Hence, to simplify our exposition, learning machines with additional information can be viewed
as taking two arguments: upper-bound on the minimal program and initial segment of graph of a
function. In other words, learning machines identifying functions with additional information are
algorithmic devices that compute a mapping from N ×SEG into N . For c ∈ N ∪ {∗}, minprogc(f)
denotes the minimal program in ϕ-programming system that computes f with at most c errors,
i.e., minprogc(f) = µi ϕi =c f .

In Definition 20 just below, we describe what it means for a learning machine to converge on
additional information and graph of a function.

Definition 20 M(x, f)↓ (read: M on f with additional information x converges) ⇐⇒ (∃i)(∀∞n)
[M(x, f [n]) = i]. If M(x, f)↓, then M(x, f) is defined = the unique i such that (∀∞n)[M(x, f [n]) =
i]; otherwise M(x, f) is said to be undefined.

Definition 21 Let a, c ∈ N ∪ {∗}.
(i) M Bexa,c-identifies f (written: f ∈ Bexa,c(M)) ⇐⇒ (∀x ≥ minprogc(f)) (∃i | ϕi =a f)
[M(x, f)↓ = i].
(ii) Bexa,c = {S | (∃M)[S ⊆ Bexa,c(M)]}.

Intuitively, M Bexa,c-identifies f iff M, fed x, at least as large as the minimal program that
computes f with at most c errors, and graph of f , converges to a program that computes f with
at most a errors. The notion Bex0,0-identification was first studied by Freivalds and Wiehagen
[FW79].
Remark: We may modify the above definition to allow the additional information to converge
to a bound instead of giving the bound itself as an additional information. However, this does
not change the class of functions identifiable in the limit since the machine can assume the last
additional information received as the correct additional information. These remarks hold for all
the additional information learning criteria introduced in the present paper.

Proposition 1 Let a, a1, a2 ∈ N ∪ {∗} such that a1 ≤ a2. Let c, c1, c2 ∈ N ∪ {∗} such that c1 ≤ c2.
Then,

(i) Bexa1,c ⊆ Bexa2,c.
(ii) Bexa,c1 ⊇ Bexa,c2.

If, in Definition 21, we further require that the final program conjectured be the same for any
upper-bound, we get a new identification criterion described in Definition 22 below.

Definition 22 Let a, c ∈ N ∪ {∗}.
(i) M ResBexa,c-identifies f (written: f ∈ ResBexa,c(M)) ⇐⇒ (∃i | ϕi =a f) (∀x ≥
minprogc(f)) [M(x, f)↓ = i].
(ii) ResBexa,c = {S | (∃M)[S ⊆ ResBexa,c(M)]}.
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ResBex0,0-identification criterion was first introduced by Freivalds and Wiehagen.

Proposition 2 Let a, a1, a2 ∈ N ∪ {∗} such that a1 ≤ a2. Let c, c1, c2 ∈ N ∪ {∗} such that c1 ≤ c2.
Then,

(i) ResBexa1,c ⊆ ResBexa2,c.
(ii) ResBexa,c1 ⊇ ResBexa,c2 .

Proposition 3 Let a, c ∈ N ∪ {∗}. Then,
ResBexa,c ⊆ Bexa,c.

A plausible way to apply additional information for Bc-identification is introduced in Defini-
tion 23 below.

Definition 23 Let a, c ∈ N ∪ {∗}.
(i) M Bbca,c-identifies f (written: f ∈ Bbca,c(M)) ⇐⇒ (∀x ≥ minprogc(f)) (∀∞n)[ϕM(x,f [n]) =a

f ].
(ii) Bbca,c = {S | (∃M)[S ⊆ Bbca,c(M)]}.

Proposition 4 Let a, a1, a2 ∈ N ∪ {∗} such that a1 ≤ a2. Let c, c1, c2 ∈ N ∪ {∗} such that c1 ≤ c2.
Then,

(i) Bbca1,c ⊆ Bbca2,c.
(ii) Bbca,c1 ⊇ Bbca,c2 .

3.2 Results

In this section we compare the relative inferring powers of various learning criteria defined in the
previous section. In the discussion to follow, the information about the upper-bound on program
size given to a learning machine in ResBex-identification will be referred to as restricted additional
information. The term general additional information will be used to refer to the upper bound
information about the program size in Bex, Bbc.

Theorem 3 (∀a ∈ N)[Exa+1 − ResBexa,0 6= ∅].

Theorem 3 says that there are classes of recursive functions that can be algorithmically learned
in the Ex sense by allowing up to a + 1 anomalies in the final inferred program but cannot be
learned by allowing up to a anomalies in the final program even if the learning machine is given
the best possible restricted additional information. In other words, extra anomalies allowed in the
inferred program cannot , in general, be compensated by any restricted additional information.

Lemma 3 (Operator Recursion Theorem, Case [Cas74]). Suppose Θ is an effective operator
[Rog67]. Then one can effectively find a recursive one-to-one function p such that (∀i, x)[ϕp(i)(x) =
Θ(p)(〈i, x〉)].

We use Lemma 3 extensively to prove some of the theorems in this paper. Intuitively, Lemma 3
allows us to construct a repetition free r.e. sequence of programs p(0), p(1), . . . such that each
program p(i) on input x can construct copies of any subcollection (effectively computed from i

and x) of the entire collection of programs p(0), p(1), . . . , p(i), p(i + 1), . . .; p(i) can then use this
subcollection together with i and x as data in any further preassigned effective computation.
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Proof of Theorem 3: Consider the class of functions S = {f | ϕf(0) =a+1 f}. Clearly, S ∈ Exa+1.

Suppose learning machine M is given. It remains to exhibit a function f ∈ (S − ResBexa,0(M)).
By implicit use of the operator recursion theorem (Lemma 3), we obtain a repetition free r.e.
sequence of programs p(0), p(1), p(2), . . . such that either ϕp(0) or for some s > 0, ϕp(s) computes
such an f . We proceed to give an informal effective construction of the ϕp(i)’s in successive stages
s > 0. Let ns denote the least x such that ϕp(0)(x) has not been defined before stage s. Let
ϕp(0)(0) = p(0). Go to Stage 1.

Stage s

let ϕp(0)(ns) = 1;
for each x ≤ ns, let ϕp(s)(x) = ϕp(0)(x);
let j = M(p(0), ϕp(0)[ns + 1]);
if M(p(s), ϕp(s)[ns + 1]) = j, then go to Step 1, else go to Step 2;

Step 1: let n′
s be the least x such that ϕp(0)(x) has not been defined till now;

for 0 ≤ l ≤ a, let ϕp(s)(n
′
s + l) = 0;

let y = n′
s + a + 1;

repeat following steps

let ϕp(s)(y) = ϕp(0)(y) = 0;
let y = y + 1

until either Condition 1A or Condition 1B is true:

Condition 1A: M(p(s), ϕp(s)[y]) 6= j;
Condition 1B: (∃l)[0 ≤ l ≤ a and Φj(n

′
s + l) ≤ y];

Step 1a: if Condition 1A holds then go to Step 2;
Step 1b: if Condition 1B holds then

let l be the convergence point discovered in Condition 1B.
let ϕp(0)(n

′
s + l) = ϕj(n

′
s + l) + 1;

for each 0 ≤ r ≤ a and r 6= l, let ϕp(0)(n
′
s + r) = 0;

go to Stage s + 1.

Step 2: let n′′
s be the least x such that ϕp(s)(x) has not been defined till now;

for all x such that x < n′′
s and ϕp(0)(x) has not been defined, let ϕp(0)(x) = ϕp(s)(x);

repeat following steps
let ϕp(0)(n

′′
s) = ϕp(s)(n

′′
s) = 0;

let n′′
s = n′′

s + 1

until either Condition 2A or Condition 2B is true:

Condition 2A: M(p(0), ϕp(0)[n
′′
s ]) 6= j;

Condition 2B: M(p(s), ϕp(s)[n
′′
s ]) = j;
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Step 2a: if Condition 2A holds then go to Stage s + 1;
Step 2b: if Condition 2B holds then go to Step 1

End of Stage s.

Now consider the following cases:
Case 1: There are infinitely many stages. In this case, let additional information be p(0) and
f = ϕp(0). Clearly, ϕp(0) is total and is in S.

Case 1a: M(p(0), f) diverges. In this case, M does not ResBexa,0-identify f ∈ S.
Case 1b: M(p(0), f) converges to j at Stage s. In this case, the only way in which infinitely many
stages can exist is by the execution of Step 1b infinitely-often. But, then ϕM(p(0),f) is infinitely
different from f .
Case 2: Only finitely many stages halt. Let Stage s be the least stage that does not halt.
Case 2a: Steps 1 and 2 are both executed infinitely-often. In this case, let f = ϕp(0) = ϕp(s) ∈ S.
Now, M on f with additional information p(s) does not converge (the only way in which Steps 1
and 2 can be executed infinitely-often without leaving Stage s is by repeated execution of Step 1a

and Step 2b, and thus M infinitely-often outputs j without converging to j).
Case 2b: In Stage s, the algorithm never leaves Step 1. In this case, let f = ϕp(s) ∈ S (since
ϕp(0) =a+1 ϕp(s)). Now, M on f with additional information p(s) converges to j (otherwise Condi-
tion 1A would succeed) and ϕj does not converge on at least a + 1 values (otherwise Condition 1B

would succeed). Thus, M does not ResBexa,0-identify f .
Case 2c: In Stage s, the algorithm never leaves Step 2. In this case, let f = ϕp(0) = ϕp(s) ∈ S.
Now, M on f with additional information p(s) does not converge to j (otherwise Condition 2B

would succeed) and M on f with additional information p(0) converges to j (otherwise Condition
2A would succeed). Thus, M does not ResBexa,0-identify f .

From the above cases, we have that M does not ResBexa,0-identify S. 2

Theorem 3 yields an anomaly hierarchy for ResBex-identification criteria. If the number of
anomalies allowed in the additional information is fixed, then allowing extra anomalies in the
program inferred by the learning machine results in increased inferring power with respect to
ResBex-identification criteria.

Corollary 1 (∀c ∈ N ∪ {∗})
ResBex0,c ⊂ ResBex1,c ⊂ ResBex2,c · · · ⊂ ResBexi,c ⊂ ResBexi+1,c ⊂ · · · ⊂ ResBex∗,c.

We now turn our attention to the effects of general additional information to a function learn-
ing machine. However, Proposition 5 below limits us to a weaker form of Theorem 3 for Bex-
identification.

Proposition 5 (∀n ∈ N)[R ∈ Bexn,n].

Proof of Proposition 5: We need to show the existence of a learning machine that Bexn,n-
identifies any f ∈ R. We describe the behavior of such a machine on x, the given additional
information, and finite initial segment f [s]. Let S = {j | j ≤ x ∧ ‖{y | y ≤ s ∧ Φj(y) ≤ s ∧ ϕj(y) 6=
f(y)}‖ ≤ n}. Intuitively, S is a set of programs which appear correct for the given additional
information x and the finite initial segment f [s]. For each j ∈ S, let errors(j) = {y | y ≤
s∧Φj(y) ≤ s∧ϕj(y) 6= f(y)}. For each j ∈ S, let patch(j) be a program obtained from program j
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by patching the anomalies in errors(j). Thus, if j ≤ x is a program which computes f with atmost
n errors, then, for large enough s, program patch(j) will not make any convergent errors. M then
outputs a program i, which on input y outputs the value output by the first converging program
in the set {patch(j) | j ∈ S}. It is easy to verify that M Bexn,n-identifies f (since, the only errors
program i makes are divergent errors whose total count is bounded by n). 2

Proposition 5 says that if the number of anomalies tolerated in the additional information and
the number of anomalies tolerated in the final program are finite and equal, then there exists a single
learning machine that learns every recursive function with respect to the Bex-identification criteria.
However, if we allow an unbounded finite number of anomalies both in the additional information
and the final program inferred, there is a reduction in inferring power of Bex-identification criteria
as shown by Proposition 6 below.

Proposition 6 R 6∈ Bex∗,∗.

Proof of Proposition 6 : Consider the following classes of functions:
S1 = {f | ϕf(0) = f};
S2 = {f | ‖{x | f(x) 6= 0}‖ is finite }.
Let S = S1 ∪ S2. We show that S 6∈ Bex∗,∗. Suppose by way of contradiction, there exists

a learning machine M such that S ⊆ Bex∗,∗. Let i0 be a program for λx 0, the everywhere 0
function. We describe a machine M′ which works as follows. M′, upon being fed graph of f ,
feeds max(f(0), i0) along with the graph of f to machine M, and emits the output of M. Clearly,
max(f(0), i0) is an upper-bound on the minimal program for a finite variant of any function f ∈ S.
Hence, M′ Ex∗-identifies any f ∈ S. A contradiction, since it has been shown by Case and Smith
[CS83] that S 6∈ Ex∗. Therefore, S 6∈ Bex∗,∗. 2

Because of Proposition 5, we can only show the following weak form of Theorem 3 for Bex-
identification.

Theorem 4 (∀a ∈ N)[Exa+1 − Bexa,a+1 6= ∅].

Proof of Theorem 4: Consider the class of recursive functions S = {f | ϕf(0) =a+1 f}. Clearly,

S ∈ Exa+1. Suppose by way of contradiction, there exists a learning machine M such that S ⊆
Bexa,a+1(M). Then, consider a machine M′ which works as follows. M′, upon being fed graph
of f ∈ R, feeds f(0) along with the graph of f to machine M, and emits the program output by
M. Since, f(0) is an upper-bound on the minimal program computing f with at most a+1 errors,
M′ converges in the limit to a program that computes f with at most a errors. This implies that
M′ Exa-identifies S. A contradiction, since it has been shown by Case and Smith [CS83] that
S 6∈ Exa. 2

Theorem 4 and Propositions 5 and 6 give us Corollaries 2 and 3 below. According to Corollary 2,
if we fix the number of anomalies allowed in the additional information, then allowing extra anoma-
lies in the inferred program results in increased inferring power with respect to Bex-identification
criteria. However, when the number of anomalies allowed in the inferred program equals the num-
ber of anomalies allowed in the additional information, we don’t gain any extra inferring power by
allowing more anomalies in the inferred programs. This is because, when the number of anomalies
allowed in the additional information and the inferred program are equal, we can identify every
recursive function with respect to the Bex-identification criteria.
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Corollary 2 (∀c ∈ N)
Bex0,c ⊂ Bex1,c ⊂ · · · ⊂ Bexc,c = Bexc+1,c = · · · = 2R.

However, allowing a finite but unbounded number of anomalies in the additional information
decreases the learning power with respect to Bex-identification criteria, as we cannot identify all
the recursive functions even if we allow an unbounded finite number of anomalies in the inferred
program.

Corollary 3 Bex0,∗ ⊂ Bex1,∗ ⊂ Bex2,∗ ⊂ · · · ⊂ Bexn,∗ ⊂ Bexn+1,∗ ⊂ · · · ⊂ Bex∗,∗ ⊂ 2R.

Now we consider the effects of extra additional information on learning capability of machines.
The following theorems show that extra additional information can indeed help in certain cases.
They also give most of the hierarchy results except the ones noted.

Theorem 5 (∀c ∈ N)[ResBex0,c − ResBex∗,c+1 6= ∅].

Proof of Theorem 5: Consider the following classes of functions:
S1 = {f | ϕf(0) = f ∧ ‖{x | f(x) 6= 0}‖ is infinity };
S2 = {f | ‖{x | f(x) 6= 0}‖ ≤ µk [ϕk =c (f)]}.
Let S = S1

⋃
S2. We claim that S ∈ ResBex0,c. To see this, consider the behavior of learning

machine M0 on additional information x and finite initial segment f [n] described below.
Let F be a function with arguments from the set of all finite sets and values from N . For any

finite set D, F (D) is defined to be an index of a program for the function λy [min({z | 〈y, z〉 ∈ D})
if (∃z)[〈y, z〉 ∈ D]; 0 otherwise].

Definition of M0(x, f [n])
if ‖{y | f(y) 6= 0 ∧ y < n}‖ > x

then output f(0)
else output F ({〈y, z〉 | y < n ∧ z 6= 0 ∧ f(y) = z})

End of Definition of M0(x, f [n])
Consider any f ∈ S1. Clearly, the “if condition” in the definition of M0 will succeed for any

upper-bound x and sufficiently large n. Thus, M0 in the limit will output f(0) which by definition
of S1 is a program for f . For any f ∈ S2 and for any x ≥ µk [ϕk =c f ], the “if condition” of M0

will always fail. Thus, for sufficiently large n, M0(x, f [n]) will stabilize to a program for f . Hence,
S ∈ ResBex0,c.

Now, we show that S 6∈ ResBex∗,c+1. Suppose a learning machine M is given. It remains to
exhibit a function f ∈ (S − ResBex∗,i+1(M)). By implicit use of the operator recursion theorem
(Lemma 3), we obtain a repetition free r.e. sequence of programs p(0), p(1), p(2), . . . such that either
ϕp(0) or for some s > 0, a function derived from ϕp(s) computes such an f . We proceed to give an
informal effective construction of the ϕp(i)’s in successive stages s > 0. Let ns denote the least x

such that ϕp(0)(x) has not been defined before Stage s. Let ϕp(0)(0) = p(0). Go to stage 1.

Stage s

let ϕp(0)(ns) = 1;
for each x ≤ ns, let ϕp(s)(x) = ϕp(0)(x);
let j = M(p(0), ϕp(0)[ns + 1]);
if M(p(s), ϕp(s)[ns + 1]) = j, then go to Step 1, else go to Step 2;
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Step 1: let n′
s be the least x such that ϕp(0)(x) has not been defined till now;

for each k ∈ N , let fk denote the following recursive function:

fk(x) =







ϕp(s)(x) if x < n′
s;

k if n′
s ≤ x ≤ n′

s + c;
0 otherwise.

let y = n′
s + c + 1;

repeat following steps

let ϕp(s)(y) = 0; let y = y + 1
until either Condition 1A or Condition 1B is true:

Condition 1A: (∃k < y)[M(p(s), fk[y]) 6= j];
Condition 1B: (∃x)[(n′

s ≤ x) and Φj(x) ≤ y];

Step 1a: if Condition 1A holds then

for each x such that n′
s ≤ x ≤ n′

s + c, let ϕp(s)(x) = k, where k is as found in
Condition 1A;
go to Step 2;

Step 1b: if Condition 1B holds then
let x be the convergence point discovered in Condition 1B;
let ϕp(0)(x) = ϕj(x) + 1;
for all z such that n′

s ≤ z < x, let ϕp(0)(z) = 0; go to Stage s + 1;

Step 2: let n′′
s be the least x such that ϕp(s)(x) has not been defined till now;

for all x such that x < n′′
s and ϕp(0)(x) has not been defined, let ϕp(0)(x) = ϕp(s)(x);

repeat following steps
let ϕp(0)(n

′′
s) = ϕp(s)(n

′′
s) = 1;

let n′′
s = n′′

s + 1

until either Condition 2A or Condition 2B is true:

Condition 2A: M(p(0), ϕp(0)[n
′′
s ]) 6= j;

Condition 2B: M(p(s), ϕp(s)[n
′′
s ]) = j;

Step 2a: if Condition 2A holds then go to Stage s + 1;
Step 2b: if Condition 2B holds then go to Step 1

End of Stage s.

Now consider the following cases:
Case 1: There are infinitely many stages. In this case, let additional information be p(0) and
f = ϕp(0). Clearly, ϕp(0) is total and is in S.

Case 1a: M(p(0), f) diverges. In this case, M does not ResBex∗,c+1-identify f ∈ S.
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Case 1b: M(p(0), f) converges to j at Stage s.
In this case, the only way in which infinitely many stages can exist is by the execution of Step

1b infinitely-often. But, then ϕM(p(0),f) is infinitely different from f .
Case 2: Only finitely many stages halt. Let Stage s be the least stage that does not halt.
Case 2a: Steps 1 and 2 are both executed infinitely often. In this case, let f = ϕp(0) = ϕp(s) ∈ S.
Now, M on f with additional information p(s) does not converge (the only way in which Steps 1
and 2 can be executed infinitely-often without leaving Stage s is by repeated execution of Step 1a

and Step 2b, and thus M infinitely often outputs j without converging to j).
Case 2b: In stage s, the algorithm never leaves Step 1.

In this case, for all m ∈ N , let fm be as follows:

fm(y) =

{

ϕp(s)(y) if y ∈ domain(ϕp(s));

m otherwise.

Now, ϕp(s)(y) is defined for all y except n′
s ≤ x ≤ n′

s + c. Also, ϕp(s) is a c + 1 variant of each
fm, and for all but finitely many m, fm ∈ S2. But, for all m, ϕM(p(s),fm) does not converge on

infinitely many points. Thus, M does not ResBex∗,c+1-identify S.
Case 2c: In Stage s, the algorithm never leaves Step 2. In this case, let f = ϕp(0) = ϕp(s) ∈ S.
Now, M on f with additional information p(s) does not converge to j (otherwise Condition 2b

would succeed) and M on f with additional information p(0) converges to j (otherwise Condition
2a would succeed). Thus, M does not ResBex∗,c+1-identify f .

From the above cases, we have that M does not ResBex∗,c+1-identify S. 2

The following proposition follows from the techniques of [CS83].

Proposition 7 (∀c ∈ N ∪ {∗})[Bex∗,c ⊆ Bbc0,c].

Proof of Proposition 7: Let M Bex∗,c-identify S. It can easily be verified that learning machine
M′, whose behavior is described below, Bbc0,c-identifies S. M′, on additional information x and
finite initial segment f [s], computes j = M(x, f [s]) and outputs a program patch(j, f [s]), where
ϕpatch(j,f [s])(y) = f(y) if y < s, otherwise ϕpatch(j,f [s])(y) = ϕj(y). 2

Theorem 6 (∀a ∈ N)[ResBex0,∗ −Bca 6= ∅].

Proof of Theorem 6: Consider the following class of functions:

S = {f ∈ R |
[ϕf(0) = f ∧ ‖{y | f(y + 1) 6= f(y)}‖ is ∞] ∨
[‖{y | f(y + 1) 6= f(y)}‖ ≤ µk [ϕk =∗ f ]]}

It is easy to verify that S ∈ ResBex0,∗. Suppose by way of contradiction, there exists a learning
machine M that Bca-identifies S. Then, by the implicit use of Kleene’s recursion theorem [Rog67],
we construct a program e informally described below.

We construct ϕe in stages. Let ns denote the least x such that ϕe(x) has not been defined prior
to the execution of Stage s. Let ϕe(0) = e. Go to stage 0. Clearly, n0 = 1.

Stage s
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Step 1: search for k, n, and a + 1 numbers y1, y2, . . . , ya+1 such that

k > ϕe(ns − 1) ∧
ns ≤ n < y1 < y2 < · · · < ya+1 ∧
(∀l | 1 ≤ l ≤ a + 1)[ϕM(ϕe[ns]∪{(ns,k)}∪{(ns+1,k)}∪···∪{(n,k)})(yl)↓];

Step 2: if k, n, and a + 1 numbers y1, y2, . . . , ya+1 are found in Step 1, then

for each l, such that 1 ≤ l ≤ a+1, let ϕe(yl) = ϕM(ϕe[ns]∪{(ns,k)}∪{(ns+1,k)}∪···∪{(n,k)})(yl)+
1;
for each y such that ns ≤ y ≤ ya+1 ∧ y 6∈ {y1, y2, . . . , ya+1}, let ϕe(y) = k;
go to Stage s + 1

End Stage s

Now, consider the following cases:
Case 1: All stages halt. In this case, let f = ϕe. Clearly, f ∈ S. But, by construction of program
e, for infinitely many n, ϕM(f [n]) 6=

a f . Thus, M does not Bca-identify f ∈ S.
Case 2: Only finitely many stages halt. Let Stage s be the least stage that does not halt. In this
case, for all m ∈ N , let fm be as follows:

fm(y) =

{

ϕe(y) if x < ns;
m otherwise.

Now, for all but finitely many m, fm ∈ S. However, for all but finitely many m, for all n > ns,
ϕM(fm[n]) is defined on only finitely many inputs. Thus, M does not Bca-identify fm for some
fm ∈ S.

From the above two cases, we have that M does not Bca-identify S. 2

The following corollary to Theorem 5 and Theorem 6, says that even the worst quality additional
information (allowing an unbounded finite number of anomalies) increases the inferring power of
Ex-identification criteria. Also, if we fix the number of anomalies allowed in the inferred program,
we get a reduction in inferring power by allowing more anomalies in additional information.

Corollary 4 For all a ∈ N ∪ {∗}, ResBexa,0 ⊃ ResBexa,1 ⊃ · · · ⊃ ResBexa,i ⊃ ResBexa,i+1 ⊃
· · · ⊃ ResBexa,∗ ⊃ Exa.

Theorem 7 (∀c ∈ N)[ResBex0,c − Bexc,c+1 6= ∅].

The following Corollary 5 to Theorem 7 above says that with respect to Bex- identification
criteria, we can identify all the recursive functions if the number of anomalies allowed in the
additional information and the inferred program are equal. However, if we increase the number of
anomalies allowed in the additional information, we get a reduction in learning power, the greatest
reduction being for the case where we allow an unbounded finite number of anomalies in the inferred
program.

Corollary 5 For all c ∈ N , 2R = Bexc,c ⊃ Bexc,c+1 ⊃ · · · ⊃ Bexc,c+j ⊃ Bexc,c+j+1 ⊃ · · · ⊃
Bexc,∗.
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Proof of Theorem 7: Consider the following classes of functions:
S1 = {f | ϕf(0) = f ∧ ‖{y | f(y) 6= 0}‖ is ∞};
S2 = {f | ‖{y | f(y) 6= 0}‖ ≤ µk ϕk =c (f)}.
Let S = S1 ∪ S2.
It is easy to verify that S ∈ ResBex0,c. Suppose by way of contradiction, there exists a learning

machine M that Bexc,c+1-identifies S. Then, by the implicit use of Kleene’s recursion theorem
[Rog67], we construct a program e informally described below.

We define ϕe in stages. Let ns denote the least x such that ϕe(x) has not been defined prior to
the execution of Stage s. Let ϕe(0) = e. Go to stage 0. Clearly, n0 = 1.

Stage s

let ϕe(ns) = 1;
for each m ∈ N , let fm denote the following recursive function:

fm(y) =







ϕe(y) y ≤ ns;
m ns < y ≤ ns + c + 1;
0 otherwise.

let y = ns + c + 2;
repeat following steps

let ϕe(y) = 0;
let y = y + 1

until either Condition A or Condition B is true:

Condition A: (∃k ≤ y)[M(e, fk[y]) 6= M(e, ϕe[ns])];
Condition B: (∃l | ns + 1 ≤ l ≤ ns + c + 1)[ΦM(e,ϕe[ns])(l) ≤ y];

if Condition A holds then

for ns < z ≤ ns + c + 1, let ϕe(z) = k, where k is as found in Condition A;
go to Stage s + 1;

if Condition B holds then

let l be as found in Condition B;
let ϕe(l) = ϕM(e,ϕe[ns])(l) + 1;
for ns < z ≤ ns + c + 1 ∧ z 6= l, let ϕe(z) = 0;
go to Stage s + 1;

End of Stage s

Now consider the following cases:
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Case 1: There are infinitely many stages. In this case, let f = ϕe. Clearly, f ∈ S1.
Case 1a: M on f with additional information e diverges. In this case, M does not Bexc,c+1-identify
f .
Case 1b: M on f with additional information e converges to program i at Stage s. In this case, by
construction of program e, ϕi is infinitely different from f . Therefore, M does not Bexc,c+1-identify
f .
Case 2: Only finitely many stages halt. Let Stage s be the least stage that does not halt. In this
case, for all m, e is an upper-bound on c + 1 variant of fm. Also, for all but finitely many m,
fm ∈ S2. But, for all m, M on fm and additional information e converges to a program that does
not halt on at least c + 1 inputs. Hence, M does not Bexc,c+1-identify S2.

From the above cases, it is clear that M does not Bexc,c+1-identify S. 2.

Theorem 8 (∀c ∈ N)[ResBex0,c − Bex∗,∗ 6= ∅].

Proof of Theorem 8: Consider the following classes of functions:
S1 = {f | ϕf(0) = f ∧ ‖{y | f(y) 6= 0}‖ is ∞};
S2 = {f | ‖{y | f(y) 6= 0}‖ ≤ µk [ϕk =c (f)]}.
Let S = S1 ∪ S2.
It is easy to verify that S ∈ ResBex0,c. However, since max(f(0), i0), where i0 is a program

for λy 0, the everywhere 0 function, is a valid additional information for Bex∗,∗-identification for
any f ∈ S, S ∈ Bex∗,∗ ⇔ S ∈ Ex∗. But, S 6∈ Ex∗, as evidenced by Theorem 5. Thus, S 6∈ Bex∗,∗.
2

Theorem 9 Bc− Bex∗,∗ 6= ∅.

Proof of Theorem 9: Consider the following class of functions:

S = {f | 1, 2, and 3 are satisfied
1. ϕf(0) = f ∨ ‖{y | f(y) 6= 0}‖ is finite
2. (∀∞y)[f(y) 6= 0 ⇒ ϕf(y) = f ]
3. ‖{y | f(y) 6= 0}‖ is finite ⇒ ϕf(max({y|f(y)6=0}) = f }

It is easy to verify that S ∈ Bc. Clearly, max(f(0), i0), where i0 is a program for λy 0, the
everywhere 0 function, is an upper-bound on the minimal program for a finite variant for any f ∈ S.
Thus, S ∈ Bex∗,∗ ⇔ S ∈ Ex∗. We prove below that S 6∈ Ex∗. The rest of the proof given below
is similar to that used by Case and Smith [CS83] to prove that Bc − Ex∗ 6= ∅. Suppose by way
of contradiction, there exists a learning machine M that Ex∗-identifies S. We need to exhibit a
function f ∈ (S − Ex∗(M)). By implicit use of the operator recursion theorem (Lemma 3), we
obtain a repetition free r.e. sequence of programs p(0), p(1), p(2), . . . such that for all i, p(i) > 0 and
either ϕp(0) or for some s > 0, ϕp(s) computes such an f . We proceed to give an informal effective
construction of the ϕp(i)’s in successive stages s > 0. Let ns denote the least x such that ϕp(0)(x)
has not been defined before Stage s. Let ϕp(0)(0) = p(0). Go to Stage 1.

Stage s
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Step 1: for y < ns, let ϕp(s)(y) = ϕp(0)(y);
let ϕp(s)(ns) = p(s);
let u = ns + 1;
execute Steps 1a, 1b, and 1c in parallel until the search in either Step 1b or Step 1c is
successful:

Step 1a:
repeat

let ϕp(s)(u) = 0; let u = u + 1;
forever

Step 1b: search for n ≥ ns such that M(ϕp(0)[ns]) 6= M(ϕp(s)[ns + 1]∪ {(ns + 1, 0)} ∪
· · · ∪ {(n, 0)});

Step 1c: search for l ≥ ns such that ϕM(ϕp(0)[ns])(l)↓;

Step 2: if search in Step 1b succeeds then

let u be the least x such that ϕp(s)(x) has not been defined till now.
for ns ≤ y ≤ max(u − 1, n), let ϕp(0)(y) = ϕp(s)(y);
let ϕp(s) be same as ϕp(0) from now on;
go to Stage s + 1;

Step 3: if search in Step 1c succeeds then

for ns ≤ y ≤ l, let ϕp(0)(y) = 0 if ϕM(ϕp(0)[ns])(l) = p(0); otherwise let ϕp(0)(y) = p(0);
go to Stage s + 1

End of Stage s

Now consider the following cases:
Case 1: There are infinitely many stages. In this case, let f = ϕp(0) ∈ S.
Case 1a: M on f diverges. Then, M does not Ex∗-identify f .
Case 1b: M on f converges to program i at Stage s. In this case, the only way in which infinitely
many stages can occur is if the search in Step 1c succeeds infinitely-often. But, then by the above
construction, ϕi is infinitely different from f .
Case 2: Only finitely many stages halt. Let Stage s be the least stage that does not halt. In this
case, let f = ϕp(s) ∈ S. Also, M on f converges to M(ϕp(s)[ns]). But, ϕM(ϕp(s)[ns]) converges on
only finitely many inputs. Hence, M does not Ex∗-identify f .

From the above cases, it follows that M does not Ex∗-identify S. 2.

Theorem 10 (∀a ∈ N)[Bca+1 − Bbca,∗ 6= ∅].

Proof of Theorem 10: Consider the following class of functions:
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S = {f | 1, 2, and 3 are satisfied

1. ϕf(0) = f ∨ ‖{y | f(y) 6= 0}‖ is finite
2. (∀∞y)[f(y) 6= 0 ⇒ ϕf(y) =a+1 f ]
3. ‖{y | f(y) 6= 0}‖ is finite ⇒ ϕf(max({y|f(y)6=0}) =a+1 f }

It is easy to verify that S ∈ Bca+1. Clearly, max(f(0), i0), where i0 is a program for λy 0,
the everywhere 0 function, is an upper-bound on the minimal program for a finite variant for any
f ∈ S. Thus, S ∈ Bbca,∗ ⇔ S ∈ Bca. The rest of the proof is similar to that used by Case and
Smith [CS83] to prove that Bca+1 − Bca 6= ∅. We omit the details.

Theorem 11 (∀a, c ∈ N)[ResBex0,c − Bbca,∗ 6= ∅].

Proof of Theorem 11: Consider the following classes of functions:
S1 = {f | ϕf(0) = f ∧ ‖{y | f(y) 6= 0}‖ is ∞};
S2 = {f | ‖{y | f(y) 6= 0}‖ ≤ µk ϕk =c (f)]}.
Let S = S1 ∪ S2.
It is easy to verify that S ∈ ResBex0,c. Clearly, max(f(0), i0), where i0 is a program for λy 0,

the everywhere 0 function, is a bound on the minimal program for a finite variant for any f ∈ S.
Thus, S ∈ Bbca,∗ ⇔ S ∈ Bca. We prove below that S 6∈ Bca. Suppose by way of contradiction,
there exists a learning machine M that Bca-identifies S. Then, by the use of Kleene’s recursion
theorem [Rog67], there exists a program e described informally below in stages. Let ns denote the
least x such that ϕe(x) has not been defined before Stage s. Let ϕe(0) = e. Clearly, n0 = 1. Go to
stage 0.

Stage s

Step 1: search for k, n, and a + 1 numbers x1, x2, x3, . . . , xa+1 such that
ns + c < n < x1 < x2 < . . . < xa+1 and
(∀l | 1 ≤ l ≤ a + 1)[ϕM(ϕe[ns]∪{(ns,k)}∪···∪{(ns+c,k)}∪{(ns+c+1,0)}∪···∪{(n,0)})(xl)↓];

Step 2: if the search for k, n, x1, x2, . . . , xa+1 is successful in Step 1 then

for each l such that 1 ≤ l ≤ a + 1, let
ϕe(xl) = ϕM(ϕe[ns]∪{(ns,k)}∪···∪{(ns+c,k)}∪{(ns+c+1,0)}∪···∪{(n,0)})(xl) + 1;
for ns ≤ x ≤ ns + c, let ϕe(x) = k;
for ns + c < x < xa+1 and x 6∈ {x1, x2, . . . , xa+1}, let ϕe(x) = 0;
go to Stage s + 1

End of Stage s

Now consider the following cases:
Case 1: All stages halt. In this case, let f = ϕe. Clearly, f ∈ S. But, by the above construction,
for infinitely many n, ϕM(f [n]) 6=

a f .
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Case 2: Only finitely many stages halt. Let Stage s be the least stage that does not halt. For all
k, define fk as follows:

fk(y) =







ϕe(y) if y < ns;
k if ns ≤ x ≤ ns + c;
0 otherwise.

Now, for all but finitely many k, fk ∈ S. But, for all k and for all n > ns+c, ϕM(fk[n]) converges
on only finitely many inputs. Thus, for some k, M does not Bca-identify fk ∈ S.

From the above two cases, we have that M does not Bca-identify S. 2

Theorem 12 Bc1 − ResBex∗,0 6= ∅.

With respect to the ResBex-identification criteria, we can achieve increased learning power by
either increasing the number of anomalies in the inferred program, or by decreasing the number of
anomalies in the additional information. This means that allowing an unbounded finite number of
anomalies in the inferred program and allowing no anomalies in additional information (best pos-
sible additional information) would result in maximum inferring power for ResBex-identification.
Unfortunately, as the following corollary shows, even this most powerful ResBex-identification
criteria is not good enough to identify the entire class of recursive functions.

Corollary 6 R 6∈ ResBex∗,0.

Proof of Theorem 12: Consider the following class of functions:
S = {f | (∀∞n)[ϕf(n) =1 f ]}.

Clearly, S ∈ Bc1. Suppose by way of contradiction, there exists a learning machine M that
ResBex∗,0-identifies S. We need to exhibit a function f ∈ (S − ResBex∗,0(M)). By implicit use
of the operator recursion theorem (Lemma 3), we obtain a repetition free r.e. sequence of programs
p(0), p(1), p(2), . . . such that either ϕp(0) or for some s > 0, ϕp(s) computes such an f . We proceed
to give an informal effective construction of the ϕp(i)’s in successive stages s > 0. Let ns denote
the least x such that ϕp(0)(x) has not been defined before stage s. Let n1 = 0. Go to Stage 1.

Stage s

let ϕp(0)(ns) = p(0);
for each x ≤ ns, let ϕp(s)(x) = ϕp(0)(x);
let j = M(p(0), ϕp(0)[ns + 1]);
if M(p(s), ϕp(s)[ns + 1]) = j, then go to Step 1, else go to Step 2;

Step 1: let n′
s be the least x such that ϕp(0)(x) has not been defined till now;

let ϕp(s)(n
′
s) = p(s);

let y = n′
s + 1;

repeat following steps

let ϕp(s)(y) = p(s);
let y = y + 1;

until either Condition 1A or Condition 1B is true:
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Condition 1A: M(p(s), ϕp(s)[y]) 6= j;
Condition 1B: for some x ≥ n′

s, Φj(x) ≤ y;

Step 1a: if Condition 1A holds then go to Step 2;
Step 1b: if Condition 1B holds then

let x be the convergence point discovered in Condition 1B;
if ϕj(x) = p(s), then let ϕp(0)(x) = p(0), else let ϕp(0)(x) = p(s);
for each z such that n′

s ≤ z < y and z 6= x, let ϕp(0)(z) = p(s);
let ϕp(s) be the same as ϕp(0) from this point onwards;
go to Stage s + 1;

{Note that if p(s) is in range of ϕp(0) and ϕp(0) is total, then ϕp(0) =1 ϕp(s)}

Step 2: let n′′
s be the least x such that ϕp(s)(x) has not been defined till now;

for all x such that x < n′′
s and ϕp(0)(x) has not been defined, let ϕp(0)(x) = ϕp(s)(x);

repeat following steps
let ϕp(0)(n

′′
s) = ϕp(s)(n

′′
s) = p(0);

let n′′
s = n′′

s + 1

until either Condition 2A or Condition 2B is true:

Condition 2A: M(p(0), ϕp(0)[n
′′
s ]) 6= j;

Condition 2B: M(p(s), ϕp(s)[n
′′
s ]) = j;

Step 2a: if Condition 2A holds then go to Stage s + 1;
Step 2b: if Condition 2B holds then go to Step 1

End of Stage s.

Now consider the following cases:
Case 1: There are infinitely many stages. In this case, let additional information be p(0) and
f = ϕp(0) ∈ S.

Case 1a: M(p(0), f) diverges. In this case, M does not ResBex∗,0-identify f ∈ S.
Case 1b: M(p(0), f) converges to j at Stage s. In this case, the only way in which infinitely many
stages can exist is by the execution of Step 1b infinitely-often. But, then ϕM(p(0),f) is infinitely
different from f .
Case 2: Only finitely many stages halt. Let Stage s be the least stage that does not halt.
Case 2a: Steps 1 and 2 are both executed infinitely-often. In this case, let f = ϕp(0) = ϕp(s) ∈ S.
Now, M on f with additional information p(s) does not converge (the only way in which Steps 1
and 2 can be executed infinitely-often without leaving Stage s is by repeated execution of Step 1a

and Step 2b, and thus M infinitely-often outputs j without converging to j).
Case 2b: In stage s, the algorithm never leaves Step 1. In this case, let f = ϕp(s) ∈ S. Now, M

on f with additional information p(s) converges to j (otherwise Condition 1A would succeed) and
ϕj converges only on finitely many inputs (otherwise Condition 1B would succeed). Thus, M does
not ResBex∗,0-identify f .
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Case 2c: In stage s, the algorithm never leaves Step 2. In this case, let f = ϕp(0) = ϕp(s) ∈ S.
Now M on f with additional information p(s) does not converge to j (otherwise Condition 2B

would succeed) and M on f with additional information p(0) converges to j (otherwise Condition
2A would succeed). Thus, M does not ResBex∗,0-identify f .

From the above cases, we have that M does not ResBex∗,0-identify S. 2

A similar proof can be given for the following Theorem 13 below.

Theorem 13 Bc− ResBex∗,1 6= ∅.

It is open at present if the above theorems can be extended to Bc0 − ResBex∗,0 6= ∅.
The following theorem shows the advantage of allowing the learning machine to converge to

different programs on different bounds.

Theorem 14 (∀c ∈ N)[Bex0,c − ResBex∗,0 6= ∅].

Corollary 7 shows that if we fix the number of anomalies allowed in the additional information
and the inferred program then allowing a machine to converge to any program for the function, as
opposed to some unique program for any upper-bound, results in increased inferring power.

Corollary 7 (∀a ∈ N ∪ {∗})(∀c ∈ N)[ResBexa,c ⊂ Bexa,c].

Proof of Theorem 14: Consider the following class of functions:
S = {f | (∀y)(∀z)[f(〈y, 0〉) = f(〈y, z〉)]}.
Suppose x is an upper bound on the minimal program index for a function f ∈ S. Since

R ∈ Bexc,c, a program p, which computes f with at most c errors can be found in the limit. For all
y let wy be such that ‖{z | z < 2c + 1 ∧ ϕp(〈y, z〉) = wy}‖ ≥ c + 1. Note that there exists a unique
such wy by the definition of S and the fact that p computes f with atmost c errors. Let modify(p)
be a program obtained from p which behaves as follows: For all y, z, ϕmodify(p)(〈y, z〉) = wy, where

wy is as defined above. It follows immediately that modify(p) is a program for f . Thus S ∈ Bex0,c.
If M ResBex∗,0-identifies S then it is easy to modify M to ResBex∗,0-identify R. But this is

not true (Corollary 6). 2

It is open at present if the Theorem 14 above can be extended to Bex0,∗ − ResBex∗,0 6= ∅.

4 Language Identification with Additional Information

4.1 Definition

Analogous to the approach taken in Section 3, a learning machine identifying a language in the
presence of additional information can be viewed as taking two arguments: upper-bound on minimal
grammar and initial sequence of a text of a language. In other words, learning machines identifying
languages with additional information are algorithmic devices that compute a mapping from N ×
SEQ to N . For c ∈ N ∪ {∗}, mingramc(L) denotes the minimal grammar in the ϕ-system that
generates L with at most c errors, i.e., mingramc(L) = µi Wi =c L.

In Definition 24 just below, we describe what it means for a learning machine to converge on
additional information and a text for a language.
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Definition 24 M(x, T )↓ (read: M on text T with additional information x converges) ⇐⇒
(∃i)(∀∞n) [M(x, T [n]) = i]. If M(x, T )↓, then M(x, T ) is defined = the unique i such that
(∀∞n)[M(x, T [n]) = i]; otherwise M(x, T ) is said to be undefined.

Definition 25 Let a, c ∈ N ∪ {∗}.
(i) M TxtBexa,c-identifies L (written: L ∈ TxtBexa,c(M)) ⇐⇒ (∀x ≥ mingramc(L)) (∃i |
Wi =a L) (∀ texts T for L) (∀∞n)[M(x, T [n]) = i].
(ii) TxtBexa,c = {L | (∃M)[L ⊆ TxtBexa,c(M)]}.

Proposition 8 Let a, a1, a2 ∈ N ∪ {∗} such that a1 ≤ a2. Let c, c1, c2 ∈ N ∪ {∗} such that c1 ≤ c2.
Then,

(i) TxtBexa1,c ⊆ TxtBexa2,c.
(ii) TxtBexa,c1 ⊇ TxtBexa,c2 .

Definition 26 Let a, c ∈ N ∪ {∗}.
(i) M TxtResBexa,c-identifies L (written: L ∈ TxtResBexa,c(M)) ⇐⇒ (∃i | Wi =a L)
(∀x ≥ mingramc(L)) (∀ texts T for L) (∀∞n)[M(x, T [n]) = i].
(ii) TxtResBexa,c = {L | (∃M)[L ⊆ TxtResBexa,c(M)]}.

Proposition 9 Let a, a1, a2 ∈ N ∪ {∗} such that a1 ≤ a2. Let c, c1, c2 ∈ N ∪ {∗} such that c1 ≤ c2.
Then,

(i) TxtResBexa1,c ⊆ TxtResBexa2,c.
(ii) TxtResBexa,c1 ⊇ TxtResBexa,c2 .

Proposition 10 Let a, c ∈ N ∪ {∗}. Then,
TxtResBexa,c ⊆ TxtBexa,c.

Definition 27 Suppose M is a learning machine, x is some upper-bound information, and T is a
text. Then, M(x, T ) finitely-converges (written: M(x, T )⇓) ⇐⇒ {M(x, σ) | σ ⊂ T} is finite. If
M(x, T )⇓, then we say that M(x, T )⇓ = D ⇐⇒ D = {i | (∃∞σ ⊂ T )[M(x, σ) = i]}, otherwise we
say that M(x, T ) finitely-diverges (written: M(x, T )⇑).

Definition 28 Let a, c ∈ N ∪ {∗} and b ∈ N+ ∪ {∗}.
(i) M TxtBfex

a,c
b -identifies L (written: L ∈ TxtBfex

a,c
b (M)) ⇐⇒ (∀x ≥ mingramc(L)) (∃D |

‖D‖ ≤ b ∧ (∀i ∈ D)[Wi =a L]) (∀ texts T for L)[M(x, T )⇓ = D].
(ii) TxtBfex

a,c
b = {L | (∃M)[L ⊆ TxtBfex

a,c
b (M)]}.

Proposition 11 Let a, a1, a2 ∈ N ∪ {∗} such that a1 ≤ a2. Let c, c1, c2 ∈ N ∪ {∗} such that
c1 ≤ c2. Let b, b1, b2 ∈ N+ ∪ {∗} such that b1 ≤ b2. Then,

(i) TxtBfex
a1,c
b ⊆ TxtBfex

a2,c
b .

(ii) TxtBfex
a,c1
b ⊇ TxtBfex

a,c2
b .

(iii) TxtBfex
a,c
b1

⊆ TxtBfex
a,c
b2

.

Definition 29 Let a, c ∈ N ∪ {∗} and b ∈ N+ ∪ {∗}.
(i) M TxtResBfex

a,c
b -identifies L (written: L ∈ TxtResBfex

a,c
b (M)) ⇐⇒ (∃D | ‖D‖ ≤ b∧(∀i ∈

D)[Wi =a L]) (∀x ≥ mingramc(L)) (∀ texts T for L)[M(x, T )⇓ = D].
(ii) TxtResBfex

a,c
b = {L | (∃M)[L ⊆ TxtResBfex

a,c
b (M)]}.
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Proposition 12 Let a, a1, a2 ∈ N ∪ {∗} such that a1 ≤ a2. Let c, c1, c2 ∈ N ∪ {∗} such that
c1 ≤ c2. Let b, b1, b2 ∈ N+ ∪ {∗} such that b1 ≤ b2. Then,

(i) TxtResBfex
a1,c
b ⊆ TxtResBfex

a2,c
b .

(ii) TxtResBfex
a,c1
b ⊇ TxtResBfex

a,c2
b .

(iii) TxtResBfex
a,c
b1

⊆ TxtResBfex
a,c
b2

.

Proposition 13 Let a, c ∈ N ∪ {∗} and b ∈ N+ ∪ {∗}. Then,
TxtResBfex

a,c
b ⊆ TxtBfex

a,c
b .

Definition 30 Let a, c ∈ N ∪ {∗}.
(i) M TxtBbca,c-identifies L (written: L ∈ TxtBbca,c(M)) ⇐⇒ (∀x ≥ mingramc(L)) (∀ texts
T for L) (∀∞n)[WM(x,T [n]) =a L].
(ii) TxtBbca,c = {L | (∃M)[L ⊆ TxtBbca,c(M)]}.

Proposition 14 Let a, a1, a2 ∈ N ∪ {∗} such that a1 ≤ a2. Let c, c1, c2 ∈ N ∪ {∗} such that
c1 ≤ c2. Then,

(i) TxtBbca1,c ⊆ TxtBbca2,c.
(ii) TxtBbca,c1 ⊇ TxtBbca,c2 .

4.2 Results

The diagonalization results about function identification have a natural counterpart for language
identification. We now proceed to give results which are unique to language identification.

Theorem 15 (∀c ∈ N)[TxtResBex0,c − TxtBbc∗,∗ 6= ∅].

Proof of Theorem 15: Consider the following class of languages:
L = {L | L = N ∨ ‖L‖ < µk Wk =c L}.
Clearly, L ∈ TxtResBex0,c. Let GN be a grammar for N and G∅ be a grammar for ∅.

Since max(GN , G∅) is a upper-bound on the minimal grammar for a ∗-variant of any language
in L, L ∈ TxtBbc∗,∗ ⇔ L ∈ TxtBc∗. Now, suppose by way of contradiction, there exists a
machine M that TxtBc∗-identifies L. Let σ be a TxtBc∗ locking sequence for M on N . Thus,
M does not TxtBc∗ identify any finite language which is a superset of content(σ). For all j let
Lj = content(σ) ∪ [j, j + c]. Now, for all but finitely many j, µk [Wk =c Lj ] is greater than ‖Lj‖
and ‖Lj − content(σ)‖ = c + 1. Let L′ be one such language (clearly, there exists one). Thus, M

does not TxtBc∗-identify L′ ∈ L. 2.
The following proposition follows easily from the proof techniques used in [CL82].

Proposition 15 (∀a ∈ N)(∀c ∈ N ∪ {∗})[TxtBfex2a,c
∗ ⊆ TxtBbca,c].

Proof of Proposition 15 : Our proof uses a technique by Case and Lynes [CL82]. Let M

TxtBfex2a,c-identify L. M′ can TxtBbca,c-identify L as follows. On input x, σ, M′ behaves as
follows: Let s = |σ|. Let M(x, σ) = j. Let D = {x | x ∈ Wj,s − content(σ)}. Let S be the set of a

least elements of D (if ‖D‖ < a, then let S = D). Output p(j) where Wp(j) = (Wj∪content(σ))−S.
It is easy to see that M′ TxtBbca,c-identifies L. 2

Proposition 16 (∀a ∈ N)[E ∈ TxtBfexa,a
∗ ].
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Corollary 8 (∀a ∈ N)[E ∈ TxtBbca,2a].

Proof of Proposition 16 : Let cons(σ, j) = max({r < n | ‖{x ≤ r | [x ∈ (content(σ)4Wj,n)]} ≤
a‖}), where n is the length of σ.

A machine M can TxtBfexa,a
∗ -identify E by emitting, on input x and σ, the minimum k ≤ x

such that (∀j ≤ x)[cons(σ, j) ≤ cons(σ, k)].
2

Theorem 16 (∀b ∈ N+) [TxtFex0
b+1 − TxtBfex

∗,0
b 6= ∅].

Proof of Theorem 16: It was shown in [Cas88] that TxtFex0
b+1 − TxtFex∗

b 6= ∅. Let L be a

class of languages in TxtFex0
b+1 − TxtFex∗

b . We claim that L 6∈ TxtBfex
∗,0
b . Suppose by way

of contradiction, there exists a learning machine M that TxtBfex
∗,0
b -identifies L. Let M′ be a

machine which TxtFex0
b+1-identifies L. We construct a machine M′′ which TxtFex∗

b -identifies any
L ∈ L. M′′ on input σ gives machine M, σ with additional information x = max({M′(τ) | τ ⊆ σ}).
M′′ then outputs the output of M. Clearly, for large enough initial segment, σ, of any text for any
L ∈ L, max({M′(τ) | τ ⊆ σ}) converges to an upper bound on the minimal grammar for L (since
M′ TxtFex0

b+1-identifies L). Since M TxtBfex
∗,0
b -identifies L, M′′ TxtFex∗

b-identifies L. Since
this is not possible no such machine M can exist. 2.

As a contrast to Proposition 5, in the context of language identification it turns out that the
class of all r.e. languages, E , does not belong to TxtBex∗,0.

Corollary 9 E 6∈ TxtBex∗,0.

The following Corollary 10 to the Theorem 16 above says that if we fix the number of anomalies
allowed in the additional information and the converged grammars, inferring power of machines is
increased by allowing the machine to converge to more number of grammars.

Corollary 10 (∀a, b ∈ N ∪ {∗})

TxtBfex
a,b
1 ⊂ TxtBfex

a,b
2 ⊂ . . . ⊂ TxtBfexa,b

∗ .

Theorem 17 (∀a ∈ N)(∀b ∈ N+)[TxtFexa+1
1 − TxtBfex

a,0
b 6= ∅].

Proof of Theorem 17: Consider the following class of languages:
L = {L |

[L is infinite ] ∧
[[(∃r)[〈0, r〉 ∈ L]] ∧ [(∀r)[〈0, r〉 ∈ L ⇒ Wr =a+1 L]]] ∧
[(∀∞〈x + 1, y〉 ∈ L)[Wx = L]] ∧
[ ‖{x | 〈x + 1, y〉 ∈ L}

⋃
{x | 〈0, x〉 ∈ L}‖ < ∞] }

Clearly, L ∈ TxtFexa+1
1 . Also, L ∈ TxtBfex

a,0
b ⇔ L ∈ TxtFexa

b . Suppose by way of con-
tradiction, there exists a machine M that TxtFexa

b -identifies L. Then, by the implicit use of
(a + 1) ∗ b + 2-ary recursion theorem (based on Smullyan’s double recursion theorem [Smu61]),
there exist e0 < e1 < ... < e(a+1)∗b+1 such that We0 ,We1 , . . . ,We(a+1)∗b+1

are defined as follows.
Enumerate 〈0, e0〉 in We0 . Let W s

ei
denote Wei

enumerated before Stage s. Let σ0 = (〈0, e0〉). Go
to Stage 0.

Stage s
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enumerate W s
e0

∪ W s
e1

∪ · · · ∪ W s
e(a+1)∗b+1

in We0 ,We1 , . . . ,We(a+1)∗b+1
;

let D be the set of last b grammars output by M on σs;
let τ1 = σs;
for each l ∈ D, let dl = 0;
go to Substage 1;

Substage k

enumerate We0 enumerated until now in Wek
;

let m = max({l | 〈ek + 1, l〉 ∈ content(τk)});
enumerate 〈ek + 1,m + l〉, 1 ≤ l ≤ a + 1 in Wek

;
let n = m + a + 1;
repeat following steps

let n = n + 1;
enumerate 〈ek + 1, n〉 in We0 ,Wek

;

until either Condition A or Condition B is true;

Condition A: (∃σ ⊇ τk)[content(σ) ⊆ Wek

∧
M(σ) 6∈ D];

Condition B: (∃l ∈ D)[[Wl∩{〈ek+1,m+1〉, . . . , 〈ek+1,m+a+1〉} 6= ∅]∧[dl ≤ a]];

if Condition A holds then
enumerate content(σ) in We0 ;
let σs+1 be an extension of σ such that content(σs+1) = We0 enumerated till
now;
go to Stage s + 1;

if Condition B holds then
let dl = dl + 1;
let τk+1 ⊇ τk be such that content(τk) = We0 enumerated until now;
go to Substage k + 1;

End of Substage k

End of Stage s

Now consider the following cases:
Case 1: There are infinitely many stages. In this case, let L = We0 . Clearly, L ∈ L. But, M

on a text for L does not converge to a set of ≤ b grammars.
Case 2: Only finitely many stages halt. Let Stage s be the least stage that does not halt.

Clearly, at any stage at most (a + 1) ∗ b + 1 substages can be executed (since in each substage,
at least one of dl, (l ∈ D) increases and dl is bounded by a + 1). Let k be the substage which
never terminates. Let L = Wek

. Clearly, L ∈ L. Also, the last b grammars emitted by M on a
text for Wek

differ from L by at least a + 1 elements (since either Wl does not enumerate any of
〈ek + 1,m + 1〉, . . . , 〈ek + 1,m + a + 1〉 or dl = a + 1 (in which case ‖Wl − Wek

‖ ≥ dl = a + 1)).
From the above cases, it follows that M does not TxtFexa

b -identify L. 2
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The following corollary follows from Theorem 3.

Corollary 11 (∀a ∈ N)[TxtExa+1 − TxtResBfexa,0
∗ 6= ∅].

Proof of Corollary 11: Consider the class of languages L = {L | L is single valued total
∧[〈0, x〉 ∈ L ⇒ ϕx =a+1 [λy [z | 〈y, z〉 ∈ L]]]}. Clearly, L ∈ TxtExa+1. Suppose by way of
contradiction, there exists a learning machine M such that L ⊆ TxtResBfexa,0

∗ (M). It is easy
to see that a grammar for an a-variant of a single valued total r.e. language can be effectively
transformed into a program for an a-variant of the corresponding recursive function. Hence, M

can easily be modified to ResBexa,0-identify {f | ϕf(0) =a+1 f} (Since Fexa = Exa [CS83]).

This is a contradiction because according to Theorem 3 {f | ϕf(0) =a+1 f} 6∈ ResBexa,0. Hence,

L 6∈ TxtResBfexa,0
∗ . 2

Corollary 12 For all a, b ∈ N ∪ {∗},
TxtResBfex

0,a
b ⊂ · · · ⊂ TxtResBfex

i,a
b ⊂ · · · ⊂ TxtResBfex

∗,a
b .

Corollary 13 Suppose c ∈ N ∪ {∗}. Then,
TxtResBex0,c ⊂ · · · ⊂ TxtResBexi,c ⊂ TxtResBexi+1,c ⊂ · · · ⊂ TxtResBex∗,c.

Corollary 14 For a ∈ N ∪ {∗}, j ∈ N , TxtBfex
0,a
j ⊂ · · · ⊂ TxtBfex

i,a
j ⊂ · · · ⊂ TxtBfex

∗,a
j .

Corollary 15 For a ∈ N ∪ {∗}, TxtBex0,a ⊂ · · · ⊂ TxtBexi,a ⊂ · · · ⊂ TxtBex∗,a.

The above corollaries establish anomaly hierarchies for both TxtResBex-identification and
TxtBex-identification of languages. For both the language learning criteria, if we fix the number of
anomalies allowed in the language about which additional information is provided, we get increased
learning power by allowing more anomalies in the language generated by the inferred grammar.
The greatest increase in the learning power is achieved by allowing an unbounded finite number of
anomalies in the language generated by the inferred grammar.

The following corollary follows from theorem 4.

Corollary 16 (∀a ∈ N)[TxtExa+1 − TxtBfexa,a+1
∗ 6= ∅].

As a corollary to Proposition 16 and Corollary 16 we have

Corollary 17 For all c ∈ N , TxtBfex0,c
∗ ⊂ TxtBfex1,c

∗ ⊂ · · · ⊂ TxtBfexc,c
∗ = TxtBfexc+1,c

∗ =
· · · = 2E .

Theorem 18 (∀a ∈ N)[TxtEx2a+1 − TxtBbca,2a+1 6= ∅].

Corollary 18 (∀a ∈ N) [TxtBca+1 − TxtBbca,2a+1 6= ∅].

Proof of Theorem 18: Consider the class of languages:
L = {L | L =2a+1 N}.
Clearly, L ∈ TxtEx2a+1. Also, L ∈ TxtBbca,2a+1 ⇔ L ∈ TxtBca. In [CL82] it was shown

that L 6∈ TxtBca. This proves the theorem. 2

31



Theorem 19 (∀a ∈ N)
1. TxtResBex0,2a −TxtBbca,2a+1 6= ∅.
2. TxtResBex0,2a+1 −TxtBbca,2a+2 6= ∅.

Corollary 19 (∀a ∈ N)
1. TxtBbc0,2a − TxtBbca,2a+1 6= ∅.
2. TxtBbc0,2a+1 − TxtBbca,2a+2 6= ∅.

Proof of Theorem 19: We prove the first part of the theorem. Second part can be proved
similarly.

Consider the class of languages:

L = {L | L =2a+1 N
∧

max({x | x 6∈ L}) ≤ 1 + 2a + (4a + 2) ∗ (1 + µk.[Wk =2a L])
}

Clearly, L ∈ TxtResBex0,2a. Clearly, L ∈ TxtBbca,2a+1 ⇔ L ∈ TxtBca. Suppose by way
of contradiction that M TxtBca-identifies L. Let σ be a TxtBc∗ locking sequence for M on N .
Clearly, for any L ⊇ content(σ) such that ‖N − L‖ = 2a + 1, M does not TxtBca-identify L. We
will give a language L ∈ L such that ‖N − L‖ = 2a + 1, L ⊇ content(σ). This would prove the
theorem.

Let m = max(content(σ)). Consider the set S = {i | i ≤ m
∧
‖N − Wi‖ ≤ 4a + 1}. Let

X = {x | x 6∈ Wi for some i ∈ S}. Clearly ‖X‖ ≤ (m + 1) ∗ (4a + 1). Thus there exists a set D of
cardinality 2a+1 such that min(D) > m

∧
max(D) ≤ m+1+2a+1+(m+1)∗(4a+1)

∧
D

⋂
X = ∅.

Thus for L = N − D, µk.[Wk =2a L] > m. Thus L ∈ L. This proves the theorem. 2

Theorem 20 (∀b ∈ N+)(∀c ∈ N) [TxtResBex0,c −TxtBfex
∗,c+1
b 6= ∅].

Corollaries 20 and 21 establish TxtResBex and TxtBex hierarchies respectively for the
number of anomalies allowed in the language about which additional information is provided. For
both the language learning criteria, if we fix the number of anomalies allowed in the language
whose grammar is inferred, we get a decrease in learning power by allowing more anomalies in
the language about which additional information is provided to the language learning device. The
greatest decrease is seen when an unbounded finite number of anomalies is allowed in the language
about which additional information is provided.

Corollary 20 For all a ∈ N ∪ {∗},
TxtResBexa,0 ⊃ · · · ⊃ TxtResBexa,i ⊃ TxtResBexa,i+1 ⊃ · · · ⊃ TxtResBexa,∗.

Corollary 21 For all a ∈ N ∪ {∗},
TxtBexa,0 ⊃ · · · ⊃ TxtBexa,i ⊃ TxtBexa,i+1 ⊃ · · · ⊃ TxtBexa,∗.

Proof of Theorem 20 : Consider the class of languages Lc defined below.
Lc = {L |

[‖L‖ is ∞ ∧ L = Wmin(L)] ∨
‖L‖ < min({j | Wj =c L}) }
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It is easy to verify that Lc ∈ TxtResBex0,c. We give a proof to show that L0 6∈ TxtBex∗,1

(= TxtBfex
∗,1
1 ). This proof can easily be extended to show that Lc 6∈ TxtBfex

∗,c+1
b .

Suppose by way of contradiction, there exists a learning machine M that TxtBex∗,1-identifies
L0. Then, by the implicit use of double recursion theorem [Smu61], there exists e0 < e1 such that
We0 ,We1 are defined as follows.

Enumerate e0 in both We0 and We1 . Let σ0 = (e0).Go to stage 0.

Stage s

enumerate s + e0 in both We0 and We1 ;
let σ′′ = σ′ = σs � s + e0;
dovetail Step 1 and Step 2 below until a mind change is found in either:

Step 1: let m = s + e0;
repeat the following steps

let m = m + 1;
enumerate m in We0 ;
let σ′ = σ′ � m;

until M(e1, σ
′) 6= M(e1, σs);

Step 2: search for k, n > e0 such that

M(e1, σ
′′ � k � k � · · · � k

︸ ︷︷ ︸

n times

) 6= M(e1, σs);

let σ denote the sequence for which a mind change was found in either Step 1 or Step 2;
enumerate content(σ) in We0 ;
enumerate We0 enumerated till now in We1 ;
let σs+1 be an extension of σ such that content(σs+1) = We0 enumerated till now;
go to Stage s + 1;

End of Stage s

Now, consider the following cases:
Case 1: There are infinitely many stages. In this case, let L = We0 = We1 . Clearly, L ∈ L0. But,
M, on a text for L with e1 as the additional information, does not converge.
Case 2: Only finitely many stages halt. Let Stage s be the least such stage that does not halt.
Clearly, We0 ∈ L0. For all k, let Lk = content(σs) ∪ {k, e0 + s}. Now for all but finitely many k,
Lk ∈ L0. Let k1 be one such k. Note that e1 is a valid upper-bound for TxtBex∗,1-identification
of We0 because e1 > e0. Also, note that e1 is a valid upper-bound for TxtBex∗,1-identification of
Lk1 because We1 =1 Lk1 . Now, M on some text for We0 and additional information e1, and on
some text for Lk1 with additional information e1 converges to M(e1, σs). But, We0 is an infinite
language and Lk1 is a finite language. Hence, WM(e1,σs) cannot be a finite variant of both We0 and

Lk1 . Thus, M does not TxtBex∗,1-identify L0. 2

The following follows as corollary to theorem 7.

Corollary 22 (∀c ∈ N) [TxtResBex0,c −TxtBfexc,c+1
∗ 6= ∅].
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As a corollary to Theorem 14 we have,

Corollary 23 (∀c ∈ N)[TxtBex0,c −TxtResBfex∗,0
∗ 6= ∅].

Corollary 24 is the language learning counterpart of corollary 7 . If we fix the number of
anomalies allowed, both in the additional information and in inferred grammar, then allowing the
learning machine to converge to any grammar for the language is better than restricting it to
converge to some unique grammar.

Corollary 24 (∀a ∈ N ∪ {∗}) (∀b ∈ N+ ∪ {∗}) (∀c ∈ N) [TxtResBfex
a,c
b ⊂ TxtBfex

a,c
b ].

5 Conclusion

We present a pictorial summary of results obtained in the following six figures. Figure 1 describes
results pertaining to function inference. Figures 2-6 present results about language learning. While
interpreting the figure, it should be noted that classes of functions (languages) learnable by an
identification criteria A is contained in the classes of functions (languages) learnable by another
identification criteria B if and only if the containment follows from some inclusion path (except for
the open problem mentioned through broken arrows and the ones mentioned below). Solution to
the following open problems would complete the picture for the entire corpus of learning criteria
introduced in this paper. It is open if theorem 12 and 13 can be extended to Bc0−ResBex∗,0 6= ∅.
It is also open if theorem 14 can be extended to Bex0,∗−ResBex∗,0 6= ∅. Corresponding problems
in the context of language learning are also open.
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subset, proper if a = ∗ or 2b < a.
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