
Characterizing language identification in terms of computable

numberings

Sanjay Jain

Department of Information Systems and Computer Science

National University of Singapore

Singapore 0511

Republic of Singapore

sanjay@iscs.nus.sg

Arun Sharma

School of Computer Science and Engineering

The University of New South Wales

Sydney, NSW 2052

Australia

arun@cse.unsw.edu.au

March 11, 2007

Abstract

Identification of programs for computable functions from their graphs and identification

of grammars (r. e. indices) for recursively enumerable languages from positive data are two

extensively studied problems in the recursion theoretic framework of inductive inference.

In the context of function identification, Freivalds, Kinber, and Wiehagen have shown

that only those collections of functions, S, are identifiable in the limit for which there exists

1

a 1–1 computable numbering ψ and a discrimination function d such that (a) for each f ∈ S,

the number of indices i such that ψi = f is exactly one and (b) for each f ∈ S, there are

only finitely many indices i such that f and ψi agree on the first d(i) arguments.

A similar characterization for language identification in the limit has turned out to be

difficult. A partial answer is provided in this paper. Several new techniques are introduced

which have found use in other investigations on language identification.

1 Introduction

Recursive function theory provides a suitable framework for theoretical studies in machine

learning. Identification in the limit of programs for computable functions from their graphs

and identification in the limit of grammars (r. e. indices) for recursively enumerable languages

from positive data are two extensively studied problems in this framework. We informally

describe these problems.

A machine M is said to identify a computable function f in the limit just in case M, fed

a graph of f , one ordered pair at a time, conjectures a sequence of computer programs that

converges to a correct program for f . A collection of functions, S, is said to be identifiable just

in case there exists a machine that identifies each function in S.

A machine M is said to identify a grammar1 for a recursively enumerable language L just in

case M, fed all (and only) the elements of L in any order, conjectures a sequence of grammars

that converges to a correct grammar for L. A collection of languages, L, is said to be identifiable

just in case there exists a machine that identifies each language in L. Studies about language

identification turn out to be more complex than studies about function identification because

the learning machine is only told about what is in the language (positive information) and is

not told about what is not in the language (negative information). It should be noted that in

the context of function identification, a machine can eventually determine if an ordered pair

1By a grammar for an r.e. language, we mean an acceptor.

2

belongs or does not belong to the function.

Freivalds, Kinber, and Wiehagen [7] gave an interesting characterization of identifiable col-

lections of functions in terms of 1-1 computable numberings. We first present some notation

about computable numberings.

A computable numbering is a computable function of two arguments. Suppose ψ is a

computable numbering. Then λx.ψ(i, x) is often denoted by ψi. Intuitively, ψi denotes the

the partial function computed by ψ-program i or equivalently the i-th partial function in the

numbering ψ.

A computable numbering ψ is said to be 1-1 just in case (∀i, j | i 6= j)[ψi 6= ψj]. W
ψ
i denotes

the domain of ψi.

Freivalds, Kinber, and Wiehagen showed that only those collections of functions, S, are

identifiable in the limit for which there exists a 1-1 computable numbering ψ and a discrimina-

tion function d such that (a) for each f ∈ S, the number of indices i such that ψi = f is exactly

one and (b) for each f ∈ S, there are only finitely many indices i such that f and ψi agree on

the first d(i) arguments.

A similar characterization, for language identification in the limit, has turned out to be

difficult. In this paper a partial answer, informally described below, is provided.

A collection of r. e. languages, L, is identifiable in the limit just in case for some identifiable

L′ ⊇ L, there exists a computable numbering ψ and a discrimination function d such that ψ

satisfies the following requirements:

(a) for every infinite language L in L′, the number of indices i such that Wψ
i = L is exactly

one;

(b) for every infinite language L not in L′, the number of indices i such that Wψ
i = L is zero;

(c) for every finite language L in L′, the number of indices i such that Wψ
i = L is at least

one; and

3

(d) for every finite language L, the number of indices i such that W ψ
i = L is finite.

The definition of the discrimination function d turns out to be somewhat more complex. Using

similar techniques, we also give a characterization of language identification from additional

information.

An important contribution of this paper is that the techniques introduced have been found

to be useful in other investigations about language identification; for example, see [5, 15].

As already acknowledged, the characterizations of language identification presented here

were motivated by related results of Freivalds, Kinber, and Wiehagen [7] in the context of

function identification. The only other characterization of language identification from positive

data that we know appears in [14]. However, a number of characterizations have appeared in

the literature for identification from positive data of indexed families of recursive languages; in

particular we would like to direct the reader to the work of Angluin [1], Kapur [16], Lange and

Zeugmann [18, 19], Lange, Zeugmann, and Kapur [20], Mukouchi, [22, 21], and Mukouchi and

Arikawa [23].

We now proceed formally. In Section 2, we present some recursion theoretic notation and in

Section 3, we present notions from inductive inference literature. Section 4 contains the main

characterization result and Section 5 contains a characterization of language identification with

additional information.

2 Notation

Any unexplained recursion theoretic notation is from [26]. The symbol N denotes the set of

natural numbers, {0, 1, 2, 3, . . .}. The symbol N+ denotes the set of positive natural numbers,

{1, 2, 3, . . .}. Unless otherwise specified, a, b, i, j, k, l, m, n, r, s, t, x, y, z, with or without

decorations2, range over N . The symbol Nm denotes the set {x ∈ N | x ≤ m}. Symbols

2Decorations are subscripts, superscripts and the like.

4

∅, ⊆, ⊂, ⊇, and ⊃ denote empty set, subset, proper subset, superset, and proper superset,

respectively. The symbols B, C, D, S, X, with or without decorations, range over sets. We

denote by Dx the finite set whose canonical index is x [26]. According to this convention

D0 = ∅. The cardinality of a finite set S is denoted by card(S). The maximum and minimum

of a set are denoted by max(), min(), respectively. By convention max(∅) = 0 and min(∅) = ∞.

For any set A, 2A denotes the power set of A.

The symbols p, q range over partial recursive functions and the symbols c, d, f, g, range

over total recursive functions. The set of all total recursive functions of one variable is denoted

by R. For n ∈ N+, Rn denotes the set of total recursive functions of n variables. For a partial

recursive function p, domain(p) denotes the domain of p and range(p) denotes the range of p.

We write p(x)↓ just in case x ∈ domain(p), otherwise we write p(x)↑.

A language is a subset of N . L ranges over recursively enumerable (r.e.) languages. The

collection of all r.e. languages is denoted by E . L and C, with or without decorations, range

over subsets of E .

A programming system (also called computable numbering) is a partial computable function

from N2 to N . The symbol ψ ranges over computable numberings. In this paper, by numbering

we mean computable numbering. We denote by ψi, the partial function, λx.ψ(i, x). Thus ψi

denotes the partial function computed by the program with index i in the numbering ψ. Ψ

denotes an arbitrary Blum complexity measure for ψ. We say that numbering ψ is reducible to

numbering ψ′ (written ψ ≤ ψ′) iff there exists a recursive function h such that (∀i)[ψi = ψ′
h(i)].

In this case we say that h witnesses that ψ ≤ ψ′. An acceptable numbering (acceptable

programming system) is a computable numbering to which every computable numbering can

be reduced. The symbol ϕ denotes a standard acceptable programming system (also referred

to as standard acceptable numbering) [25, 26]. W
ψ
i denotes the recursively enumerable set

{x | x ∈ domain(ψi)}. We say that i is a ψ-grammar for Wψ
i . If i is a ϕ-grammar for L, then

we sometimes just say that i is a grammar for L. Wψ
i,s denotes the set {x | x ≤ s ∧ Ψ(x) ≤ s}.

5

Cψ = {Wψ
i | i ∈ N}. For ease of notation, we may omit ϕ, the standard acceptable programming

system, from W
ϕ
i . MinProgψ(f) = min({i | ψi = f}). MinProgψ(f), thus denotes the minimal

program for f , if any, in the ψ programming system. MinGramψ(L) = min({i | Wψ
i = L}),

denotes the minimal grammar for L in the ψ programming system.

〈·, ·〉 stands for an arbitrary, one to one, computable mapping from N 2 onto N . [26].

Corresponding projection functions are π1 and π2. (∀i, j ∈ N)[π1(〈i, j〉) = i and π2(〈i, j〉) = j

and 〈π1(x), π2(x)〉 = x]. Similarly, 〈i1, i2, . . . , in〉 denotes a computable one to one mapping

from Nn onto N . Remark: We sometimes abuse notation and write, 〈. . . , S, . . .〉 to mean

〈. . . , x, . . .〉, where Dx = S. This is for simplicity of presentation and it will be made clear when

we resort to such an interpretation.

∞
∀ and

∞
∃ respectively denote ‘for all but finitely many’ and ‘there exist infinitely many’.

3 Preliminaries

In this section, we briefly describe notions and results from formal language learning theory

literature. We first introduce a notion that facilitates discussion about elements of a language

being fed to a machine.

A sequence σ is a mapping from an initial segment of N into (N ∪ {#}). The content of a

sequence σ, denoted content(σ), is the set of natural numbers in the range of σ. The length of

σ, denoted by |σ|, is the number of elements in σ.

Intuitively, #’s represent pauses in the presentation of data. We let σ and τ , with or without

decorations, range over finite sequences. For n ≤ |σ|, σ[n] denotes the finite initial segment of σ

with length n. The result of concatenating τ onto the end of σ is denoted by σ � τ . We say that

σ ⊆ τ just in case σ is an initial segment of τ , that is, |σ| ≤ |τ | and σ = τ [|σ|]. SEQ denotes

the set of all finite sequences. The set of all finite sequences of natural numbers and #’s, SEQ,

can be coded onto N . This coding assigns a canonical index to each member of SEQ. We will

6

abuse the notation somewhat, as a reference to σ will mean both the sequence and its canonical

index.

Definition 1 A language learning machine computes a computable mapping from SEQ into

N .

We let M, with or without decorations, range over learning machines.

A text is a mapping from N into (N ∪ {#}). The content of a text T , denoted content(T),

is the set of natural numbers in the range of T . A text T is for L iff content(T) = L.

Intuitively, a text for a language is an enumeration or sequential presentation of all the

objects in the language with the #’s representing pauses in the listing or presentation of such

objects. For example, the only text for the empty language is just an infinite sequence of #’s.

We let T , with or without decorations, range over texts. T [n] denotes the finite initial

sequence of T with length n. The reader should note that T [n] does not contain T (n), the

(n+ 1)th element of T . Hence, domain(T [n]) = {x | x < n}. We say that σ ⊂ T just in case σ

is an initial segment of T , that is, σ = T [|σ|].

We next present Gold’s [11] criteria for successful identification of languages. First, we spell

out what it means for a learning machine on a text to converge in the limit.

Suppose M is a learning machine and T is a text. M(T)↓ (read: M(T) converges) ⇐⇒

(∃i)(
∞
∀ n) [M(T [n]) = i]. If M(T)↓, then M(T) is defined as the unique i such that (

∞
∀

n)[M(T [n]) = i]; otherwise, we say that M(T) diverges (written: M(T)↑).

Definition 2 [11]

(a) M TxtEx-identifies L (written: L ∈ TxtEx(M)) ⇐⇒ (∀ texts T for L)(∃i)[Wi =

L ∧ M(T)↓ ∧ M(T) = i].

(b) TxtEx = {L | (∃M)[L ⊆ TxtEx(M)]}.

7

In the above TxtEx stands for explanatory identification from texts. The notation in the

above definition is from [6]. For a survey of work on Gold’s paradigm of language identification,

the reader is referred to [2, 24, 17, 4].

Our results build on the notion of stabilizing and locking sequences for learning machines

on languages and also employ the notions of order independent and rearrangement independent

learning machines. We now present these notions.

We first define order independence (slightly differently from that in [3]) and rearrangement

independence.

Definition 3 (a) A learning machine M is order-independent just in case (∀ texts

T, T ′)[content(T) = content(T ′) ⇒ M(T) = M(T ′)].

(b) [9, 10] A learning machine M is rearrangement-independent just in case

(∀σ1, σ2)[[content(σ1) = content(σ2) ∧ |σ1| = |σ2|] ⇒ M(σ1) = M(σ2)].

We next describe the technical notions of stabilizing and locking sequences.

Definition 4 (a) [9, 10] σ is a TxtEx-stabilizing sequence for M on L just in case content(σ) ⊆

L and (∀σ′)[[σ ⊆ σ′ ∧ content(σ′) ⊆ L] ⇒ M(σ′) = M(σ)].

(b) [3, 24] σ is a TxtEx-locking sequence for M on L just in case σ is a TxtEx-stabilizing

sequence for M on L and WM(σ) = L.

We often refer to TxtEx-locking sequence by just locking sequence. The following lemma

due to L. Blum and M. Blum is a useful tool for our purposes.

Lemma 1 [3, 24] If M TxtEx-identifies L, then there is a TxtEx-locking sequence for M on

L.

The following lemma due to M. Fulk relates order independence, rearrangement indepen-

dence, and locking sequences.

8

Lemma 2 [9, 10] From any learning machine M one may effectively construct M
′ such that

all the following conditions hold.

(a) TxtEx(M) ⊆ TxtEx(M′).

(b) M
′ is order independent.

(c) M
′ is rearrangement independent.

(d) For every L ∈ E, if for some text T for L, M
′(T)↓ and WM′(T) = L, then M

′
TxtEx-

identifies L.

(e) If there is a TxtEx-locking sequence for M
′ on L, then L ∈ TxtEx(M′).

(f) If L ∈ TxtEx(M′), then all texts for L contain a TxtEx-locking sequence for M
′ on L.

If a collection of r.e. languages, L, is TxtEx-identified by a machine M, then using Lemma 2,

we can say without loss of generality that L is TxtEx-identified by a rearrangement independent

and order independent machine M
′. Thus we will usually be dealing with rearrangement

independent machines only, and often refer to a sequence σ by 〈x, l〉 (or, abusing notation

slightly, as 〈content(σ), l〉) where Dx = content(σ) and l = |σ|.

Lemma 1 states that if M TxtEx-identifies L, then there is a TxtEx-locking sequence

for M on L. For rearrangement independent machines, we can thus define the least locking

sequence as the least number 〈x, l〉, such that 〈Dx, l〉 is a locking sequence for M on L (note

that 〈Dx, l〉 represents the sequence σ such that Dx = content(σ) and l = |σ|).

4 A Characterization of TxtEx

In this section we characterize TxtEx in terms of computable numberings.

Definition 5 Let a ∈ N . A finite set D is said to be a-consistent with L ∈ E just in case

D ⊆ L and D ∩ Na = L ∩ Na.

9

Intuitively, D ⊆ L is a-consistent with L iff for each i ≤ a, i ∈ L ⇐⇒ i ∈ D.

Definition 6 A finite setD is a-partial consistent with L ∈ E just in caseD is min({max(D), a})-

consistent with L.

Definition 7 ψ is effectively subdiscrete for L just in case the following conditions are satisfied.

1. L ⊆ Cψ.

2. (∀L ∈ Cψ)[L is infinite ⇒ card({i |Wψ
i = L}) = 1].

3. (∀L 6∈ Cψ)[L is infinite ⇒ card({i |Wψ
i = L}) = 0].

4. (∀L ∈ E)[L is finite ⇒ card({i |Wψ
i = L}) <∞].

5. ∃d ∈ R such that both 5a and 5b below hold:

5a. (∀L ∈ (L − {∅}))(∃k)[(Wψ
k = L) ∧ (Dd(k) = L ∩ Nmax(Dd(k)))]

5b. (∀L ∈ (L − {∅}))(∃nL ∈ L)

[card({j | [(L ∩ NnL
) ⊆ W

ψ
j] ∧ [Dd(j) is nL-partial consistent with

L]}) <∞]

Note that for the numbering ψ to be effectively subdiscrete, ψ is nearly 1–1 (it may contain

more than one grammar for finite sets)3. The recursive function d acts as a discrimination

function. Consider any L ∈ L − {∅}. At most finitely many grammars, j, in the ψ numbering

satisfy

[(L ∩ NnL
) ⊆W

ψ
j] ∧ [Dd(j) is nL-partial consistent with L]

Note that grammar k from clause 5a, does satisfy this constraint. Intuitively, this means that

for some ψ grammar k for L, Dd(k) contains exactly the elements of L up to max(Dd(k)). Also,

for each L ∈ L, there is an nL ∈ L, such that, for all but finitely many i, if W ψ
i contains all the

elements of L up to nL, then Dd(i) is not nL-partial consistent with L. Thus, in some sense,

3In fact, Clause 3 in Definition 7 is included only to emphasize that the numbering is 1-1 for infinite languages.

10

Dd(i)’s act as discriminating sets. To search for a ψ grammar for L ∈ L, d can be used to narrow

down the search to finitely many grammars. We call the numbering effectively subdiscrete for

this reason.

Definition 8 (a) L is effectively subdiscrete ⇐⇒ (∃ψ)[ψ is effectively subdiscrete for L].

(b) Esd = {L ⊆ E | L is effectively subdiscrete}.

The following theorem shows that the classes TxtEx and Esd are exactly the same.

Theorem 1 TxtEx = Esd.

Proof. We first prove that L ∈ TxtEx ⇒ (∃ψ)[ψ is effectively subdiscrete for L]. For ease

of presentation, we give a numbering, ψ, which may contain infinitely many grammars for ∅.

This numbering, ψ, can easily be modified to give a numbering, ψ′, which contains only finitely

many grammars for ∅. To see this, assume without loss of generality that card(L) is infinite.

We then construct a numbering ψ′ from ψ as follows. Consider an enumeration of grammars for

the nonempty sets in Cψ, i0, i1, i2, i3, . . ., such that each ψ-grammar for a nonempty set appears

exactly once. Let ψ′
j = ψij . Similarly, the discrimination function d presented below can also

be suitably modified for the new numbering as d′(j) = d(ij). Now, clearly Cψ′ = Cψ − {∅}. A

grammar for ∅ can also be added if ∅ ∈ L.

Suppose L ⊆ TxtEx(M), where M is rearrangement independent and order independent.

We further assume that for all σ such that content(σ) = ∅, WM(σ) = ∅. Note that if M, does

not satisfy this property, then we can easily modify M to satisfy this property. In the sequel

whenever finite sets, S, Sm, S
′, . . . , appear in 〈·, ·, ·〉, we will interpret them as canonical indices

for S, Sm, S
′,

We now describe the idea behind the construction of ψ. To construct ψ, we try to construct

exactly one grammar for every language L ∈ TxtEx(M) (this is not fully successful). We

would also like to ensure some properties for this grammar so that the discrimination function

d can be constructed.

11

To associate one grammar with L ∈ TxtEx(M), we use the least locking sequence 〈S, l〉 for

M on L. Note that for 〈S, l〉 to be a locking sequence for M on L, WM(〈S,l〉) = L (this helps

us determine the language L with which a sequence might be associated). In other words, we

wish to associate 〈S, l〉 with WM(〈S,l〉), if 〈S, l〉 is the least locking sequence for M on WM(〈S,l〉).

Note however that it cannot be determined effectively if 〈S, l〉 is the least locking sequence

for M on WM(〈S,l〉). Hence, we need to constrain the languages enumerated by grammars

corresponding to 〈S, l〉, such that 〈S, l〉 is not the least locking sequence for M on WM(〈S,l〉).

We address this problem in two ways based on the two reasons due to which 〈S, l〉 may not be

the least locking sequence for M on WM(〈S,l〉).

First, there might be a smaller locking sequence for M on WM(〈S,l〉). For this reason we

attach with each 〈S, l〉 which is the least locking sequence for M on WM(〈S,l〉), an “evidence”

that smaller sequences are not locking sequences for M on WM(〈S,l〉). This is done by attaching

the set

Sm = WM(〈S,l〉) ∩ [
⋃

〈S′,l′〉≤〈S,l〉

S′]

with 〈S, l〉. Now, for any 〈S ′, l′〉 < 〈S, l〉, to prove that 〈S ′, l′〉 is not a locking sequence for M

on WM(〈S,l〉), we just need to check that either S ′ 6⊆ Sm, or there exists an extension 〈S ′′, l′′〉

of 〈S′, l′〉 such that S′′ ⊆ WM(〈S,l〉), and M(〈S′, l′〉) 6= M(〈S′′, l′′〉). This check is r.e. in nature

(and is done in Step (1c) in the construction of ψ below). This Sm also helps in defining the

discrimination function.

The other reason due to which 〈S, l〉 may not be the least locking sequence for M on

WM(〈S,l〉) is that 〈S, l〉 itself may not be a locking sequence for M on WM(〈S,l〉). Also, note that

the attaching of Sm with 〈S, l〉 additionally introduces the need for verifying that Sm is indeed

WM(〈S,l〉) ∩ [
⋃

〈S′,l′〉≤〈S,l〉 S
′]. These two issues are addressed in Step 2 of the construction of

ψ. If 〈S, l〉 is not a locking sequence for M on WM(〈S,l〉) or Sm 6= WM(〈S,l〉) ∩ [
⋃

〈S′,l′〉≤〈S,l〉 S
′],

then we make the grammar associated with 〈S, Sm, l〉, enumerate a finite language in Step 3.

In doing this we take care to satisfy clause 4 in the definition of effectively subdiscrete and also

12

maintain certain other properties useful in describing the discrimination function, d.

Based on the above description, we define the following technical notion that facilitates the

description of our proof. Suppose k = 〈S, Sm, l〉.

(a) We say that k is nice if

(i) 〈S, l〉 is the least locking sequence for M on WM(〈S,l〉), and

(ii) Sm = (WM(〈S,l〉) ∩ Nm0), where m0 = max({max(S′) | 〈S′, l′〉 ≤ 〈S, l〉}).

(b) We say that k is nice for L if k is nice and WM(〈S,l〉) = L.

We now define ψ as follows:

Definition of Wψ
i

Suppose i = 〈S, Sm, l〉. Let j = M(〈S, l〉), and m0 = max({max(S′) | 〈S′, l′〉 ≤ 〈S, l〉}).

(Remark: In Step 1 below we attempt to check if i satisfies certain properties of being nice.

In Step 2 we check for the remaining properties. If i is nice, then we enumerate Wϕ
j (i.e.,

W
ψ
i = W

ϕ
j). If i is not nice, then either Wψ

i is empty, or, in Step 3, we make Wψ
i equal

to a finite set which is different from each Wψ
i′ such that i′ is not nice.)

1. Check the following four conditions

(a) S ⊆ Sm ⊆W
ϕ
j .

(b) max(Sm) ≤ m0.

(c) (∀〈S′, l′〉 < 〈S, l〉)[(S′ 6⊆ Sm) ∨ (∃S′′, l′′)[(S′ ⊆ S′′ ⊆ W
ϕ
j) ∧ (l′ + card(S′′ − S′) ≤

l′′) ∧ (M(〈S′, l′〉) 6= M(〈S′′, l′′〉))]].

Remark: The above step checks that each 〈S′, l′〉 < 〈S, l〉 is not a locking sequence for

M on W
ϕ
j .

(d) (∀〈S′, l′〉)[[(S ⊆ S′ ⊆ Sm)∧ (l+card(S′−S) ≤ l′ ≤ l+i+card(Sm))] ⇒ [M(〈S′, l′〉) =

j]].

If any of the above conditions fails to hold, then let W ψ
j = ∅.

13

Remark: Note that if the above conditions hold then it can be verified. If it cannot be

verified whether the above conditions hold or not, then, by default, Wψ
j will be empty.

Also note that Condition (d), above partially check if 〈S, l〉 is a locking sequence for M

on WM(〈S,l〉), and is used to make the definition of the discrimination function d work

and it will be used in the proof of Claim 4.

2. Enumerate more and more elements of Wϕ
j − (Nm0 − Sm) until one of the following two

conditions hold

(a) W
ϕ
j ∩ (Nm0 − Sm) 6= ∅, or

(b) (∃〈S′, l′〉)[(S ⊆ S′ ⊆W
ϕ
j) ∧ (l + card(S′ − S) ≤ l′) ∧ (M(〈S′, l′〉) 6= M(〈S, l〉))].

in which case go to Step 3.

Remark: In this Step we have tried to check if 〈S, l〉 is indeed a locking sequence and if

Sm = L ∩ Nm0. Note that Wψ
i does not enumerate any x ∈ Nm0 − Sm.

3. Output {1 +m0} ∪ {1 + x | m0 < x ∧ (∃k < i)[x ∈ W
ψ
k ∧ the procedure for Wψ

k reaches

Step 3]}.

Note: This step ensures that all nonempty W
ψ
k , such that the procedure for Wψ

k reaches

Step 3 are finite and distinct.

End of definition of Wψ
i

Claim 1 (∀L ∈ TxtEx(M))(∃i)[Wψ
i = L ∧ i is nice for L].

Proof. Suppose L ∈ TxtEx(M). Suppose 〈S, l〉 is the least locking sequence for M on L and

Sm = L ∩ Nm0 , where m0 = max({max(S′) | 〈S′, l′〉 ≤ 〈S, l〉}). Let i = 〈S, Sm, l〉. Clearly

i is nice. Now, since all the conditions checked in Step 1 hold and the procedure never leaves

Step 2, Wψ
i = L. 2

Remark: Note that this claim implies property 1 in the definition of effective subdiscreteness.

Claim 2 Let X = {i | i is not nice and Wψ
i 6= ∅}. Then

14

(a) (∀i ∈ X)[card(Wψ
i) <∞], and

(b) (∀i, i′ ∈ X)[i = i′ ∨ W
ψ
i 6= W

ψ
i′].

Proof. Let i = 〈S, Sm, l〉. Let j = M(〈S, l〉). We will first show that if i is not nice, then

either Wψ
i is empty or the procedure of Wψ

i reaches Step 3.

So suppose i is not nice. Then one of the following holds:

(A) 〈S, l〉 is not the least locking sequence for M on W ϕ
i0

;

(B) Sm 6= W
ϕ
i0

∩ Nm0 , where m0 = max({max(S′) | 〈S′, l′〉 ≤ 〈S, l〉}).

(A) is equivalent to the conjunction of the following two conditions.

(A1) 〈S, l〉 is not a locking sequence for M on Wϕ
j ,

(A2) There exists 〈S′, l′〉 < 〈S, l〉, such that 〈S ′, l′〉 is a locking sequence for M on M(〈S, l〉).

If (B) does not hold, but (A2) does, then by Step 1c in the construction of W ψ
i , we have

W
ψ
i = ∅.

If max(Sm) > max({max(S′) | 〈S′, l′〉 ≤ 〈S, l〉}), then due to Step (1b) in the construction

of Wψ
i , we have Wψ

i = ∅.

If max(Sm) ≤ max({max(S′) | 〈S′, l′〉 ≤ 〈S, l〉}), and (A1) or (B) hold, then either W ψ
i is ∅

due to Step 1 of the construction or Step 2 would succeed in finding that i is not nice and thus

W
ψ
i would reach Step 3.

Now (a) and (b) follow easily using induction on all j, such that W ψ
j reaches Step 3. 2

Remark: Note that this claim implies clauses (2), (3) and (4) in the definition of effective

subdiscreteness since there is a unique nice i for each L ∈ TxtEx(M).

Claim 3 Let i = 〈S, Sm, l〉. Let m0 = max({max(S′) | 〈S′, l′〉 ≤ 〈S, l〉}). Then W
ψ
i ∩ (Nm0 −

Sm) = ∅.

Proof. Obvious by Steps 2 and 3 in the construction. 2

Note that the above claim says that all elements in W ψ
i , that are less than or equal to m0,

are in Sm.

15

We now define d which will satisfy clause (4) in the definition of effective subdiscreteness.

For i = 〈S, Sm, l〉, let d(i) = x, where Dx = Sm.

Claim 4 d satisfies clauses 5a and 5b in the definition of effective subdiscreteness.

Proof. For L ∈ L−{∅}, let i = 〈S, Sm, l〉 be such that i is nice and Wψ
i = L (such an i exists

by proof of Claim 1). Clearly Dd(i) = Sm = L ∩ Nmax(Sm). Hence clause 5a in the definition

of effective subdiscreteness is satisfied.

Let nL = max(Sm). Let m0 = max({max(S′) | 〈S′, l′〉 ≤ 〈S, l〉}). We now show that there

are only finitely many j such that j satisfies

[(L ∩ NnL
) ⊆W

ψ
j] ∧ [Dd(j) is nL-partial consistent with L]

This would prove the claim.

Let j = 〈S′, S′
m, l

′〉. Let m′
0 = max({max(S′′) | 〈S′′, l′′〉 ≤ 〈S′, l′〉}). Clearly j satisfies at

least one of the following:

(A) j ≤ l,

(B) m′
0 < m0,

(C) S′
m 6⊆ L,

(D) m′
0 ≥ m0 and Sm 6⊆ S′

m,

(E) (None of the above) j > l and m′
0 ≥ m0 and Sm ⊆ S′

m ⊆ L.

If j satisfies (C), then Dd(j) is not nL-partial consistent with L. If j satisfies (D), then the

following four conditions hold:

L ∩ Nm0 = Sm,

L ∩ NnL
= Sm (By definition of nL and Sm),

m′
0 ≥ m0 ≥ max(Sm) = nL,

W
ψ
j ∩ (Nm′

0
− S′

m) = ∅ (By Claim 3),

Hence there exists x ∈ Sm −W
ψ
j . Thus L ∩ NnL

6⊆W
ψ
j .

16

If j satisfies (E), then at least one of the checks in Steps 1c and 1d in the construction of

W
ψ
j will not succeed and, thus, Wψ

j = ∅.

Since there are only finitely many j satisfying cases (A) or (B) we have that there are only

finitely many j which satisfy

[(L ∩ NnL
) ⊆W

ψ
j] ∧ [Dd(j) is nL-partial consistent with L].

Thus d satisfies clause (5a) and (5b) in the definition of effective subdiscreteness. 2

Claim 1 implies clause (1), Claim 2 implies clauses (2)–(4), Claim 4 implies clause (5) in

the definition of effective subdiscreteness. This proves one direction of the theorem.

We now prove that (∃ψ)[ψ is effectively subdiscrete for L] ⇒ L ∈ TxtEx. Let d be as

claimed in the definition of effective subdiscreteness. We now describe a machine M that

TxtEx-identifies L − {∅} (clearly, this implies L ∈ TxtEx). Let c be a recursive function

reducing ψ to ϕ.

Definition of M(T [n])

1. (Here the machine tries to find the j’s which satisfy

[(L ∩ NnL
) ⊆W

ψ
j] ∧ [Dd(j) is nL-partial consistent with L]

However, since the machine does not know nL, this is not completely possible. So, for

each guess s for nL, M collects j ≤ s which satisfy the above. We will show later that

this suffices).

For s ≤ n, let Bs = {j | j ≤ s ∧ (content(T [n]) ∩ N s ⊆ W
ψ
j,n) ∧

∧Dd(j) is s-partial consistent with content(T [n])}.

Let B =
⋃
s≤nBs.

2. if (∃j ∈ B)[Wψ
j,n = content(T [n])],

then Output c(j) for minimum such j.

else

17

Let s0 = max({s | (∃j ∈ B)[Wψ
j,n ⊇ content(T [s]) ∧ W

ψ
j,s ⊆ content(T [n])]}).

Output c(j0), where j0 = min({j | j ∈ B ∧ W
ψ
j,n ⊇ content(T [s0]) ∧ W

ψ
j,s0

⊆

content(T [n])}).

endif

(Intuitively, M here outputs the seemingly best grammar in B, for the input language.)

End of definition of M

Claim 5 M TxtEx-identifies L − {∅}.

Proof. For any L ∈ L−{∅}, let nL be as in the definition of effective subdiscreteness. Suppose

T is a text for L. Let Candidates be the finite set of j’s which satisfy

[(L ∩ NnL
) ⊆W

ψ
j] ∧ [Dd(j) is nL-partial consistent with L].

Let Bn
s denote Bs constructed by M on input T [n], and Bn denote B constructed by M on

input T [n].

Let n1 ≥ nL be so large that L ∩ NnL
⊆ content(T [n1]).

Hence, for all n ≥ s ≥ n1, if j ∈ Bn
s , then L ∩ NnL

⊆W
ψ
j and Dd(j) is nL-partial consistent

with L (since s ≥ nL). Therefore, for all n ≥ s ≥ n1, B
n
s ⊆ Candidates. Thus, for all n ≥ n1,

Bn ⊆ Candidates ∪ Nn1 .

Let j0 denote the grammar k, as claimed in clause 5a in the definition of effective subdis-

creteness and let Dd(j0) ⊆ content(T [n2]), where n2 ≥ max({n1, j0}).

Let n3 be such that L ∩ Nn2 ⊆W
ψ
j0,n3

.

Therefore, we have that, for all n ≥ max({n3, n2}), j0 ∈ Bn
n2

. Hence for all n ≥ max({n3, n2}),

j0 ∈ Bn.

Let C = (Candidates ∪ Nn1) ∩ {j | (∃s ≥ j)[(L ∩ N s ⊆

W
ψ
j) and Dd(j) is s-partial consistent with L]}.

18

It is easy to see that

lim
n→∞

Bn = C

Let n4 be such that (∀n ≥ n4)[B
n = C].

We now consider the following two cases.

Case 1: L is infinite.

In this case j0 is the only element in C, such that Wψ
j0

= L (by clause (2) in the

definition of effective subdiscreteness).

Let n5 be so large that

¬[(∃j ∈ (C − {j0})) | [(Wψ
j,n5

⊆ L) ∧ (Wψ
j ⊇ content(T [n5]))]].

Let n6 be so large that, (Wψ
j0,n5+1 ⊆ content(T [n6])) ∧ (content(T [n5 + 1]) ⊆

W
ψ
j0,n6

).

Clearly, such n5, n6 exist. Now for n ≥ max({n2, n3, n4, n5, n6}) j0 will be output

at Step 2 of the procedure for M on input T [n]. Therefore, M TxtEx-identifies L.

Case 2: L is finite.

Let j′0 = min({j | j ∈ C ∧ W
ψ
j = L}). Now for sufficiently large n, M on input

T [n], will output j′0 at Step 2 of the procedure. Hence, M TxtEx-identifies L.

From the two cases it follows that M TxtEx-identifies L − {∅}. 2

This proves Theorem 1.

5 A Characterization of TxtEx with Additional Information

The result of the previous section presented a characterization of language identification from

positive data in terms of computable numberings. According to this characterization a collection

of r.e. languages is identifiable if and only if there exists a computable numbering that has

exactly one index for all the infinite languages in the class and finitely many indices for any

19

finite language in the class, with the additional requirement that a suitable discrimination

procedure exist. In this section we present a similar characterization for language identification

from positive data in the presence of additional information, a notion more general than TxtEx-

identification. In Section 5.1, we describe this general notion and in Section 5.2, we present the

characterization.

5.1 Identification with Additional Information

In TxtEx-identification, the only information provided to a learning agent is the positive data

about the language. Motivated by the work of Freivalds and Wiehagen [8] in the context of

function identification, Jain and Sharma [13] considered identification paradigms that allowed

the learner to have knowledge of an upper bound on the minimal index grammar for the language

being learned. See also [12] for another notion of additional information.

To formally consider this paradigm, it is technically expedient to treat learning machines as

computing recursive functions of two arguments, viz., additional information and finite initial

sequence of a text for the language being learned. From the context, it will be clear when we

are discussing learning with additional information as opposed to learning without additional

information.

M(b, σ) denotes the output of M on input σ with additional information b. M(b, T)↓= i

just in case (
∞
∀ n)[M(b, T [n]) = i]. We write M(b, T)↓ just in case (∃i)[M(b, T)↓= i].

Definition 9 [13]

(a) M TxtBex-identifies L ∈ E (written: L ∈ TxtBex(M)) just in case (∀T for L)(∀b ≥

MinGramϕ(L))(∃i)[Wϕ
i = L ∧ M(b, T)↓ = i].

(b) TxtBex = {L ⊆ E | (∃M)[L ⊆ TxtBex(M)]}.

Intuitively, machine M TxtBex-identifies a language L if M, fed b, an upper bound on the

minimal grammar for L, and a text for L, converges in the limit to a grammar for L. If we

20

further require that the grammar converged to in the limit be the same for any upper-bound,

we get a new language identification paradigm described below.

Definition 10 [13]

(a) M TxtUniBex-identifies L ∈ E (written: L ∈ TxtUniBex(M)) just in case (∃i | W ϕ
i =

L)(∀T for L)(∀b ≥ MinGramϕ(L))[M(b, T)↓ = i].

(b) TxtUniBex = {L ⊆ E | (∃M)[L ⊆ TxtUniBex(M)]}.

We refer the reader to Jain and Sharma [13] for an extensive discussion of the two paradigms

introduced above. Note that a counterpart of Lemmas 1 and 2 can easily be obtained for

TxtUniBex-identification.

The relationship between the paradigms introduced so far is summarized below (see [13]).

TxtEx ⊂ TxtUniBex ⊂ TxtBex ⊂ 2E

To illustrate the techniques presented in the previous section we next give a characterization

of TxtUniBex.

5.2 Characterization of TxtUniBex

We now introduce the notion of weak effectively subdiscrete numbering. This notion is used to

characterize TxtUniBex.

Definition 11 ψ is weak effectively subdiscrete for L iff the following four conditions are sat-

isfied.

1. L⊆ Cψ.

2. (∀L ∈ L)[L is infinite ⇒ card({i |Wψ
i = L}) = 1].

3. (∀L ∈ L)[L is finite ⇒ card({i |Wψ
i = L}) <∞].

21

4. (∃d ∈ R2)(∀L ∈ (L − {∅}))(∀b > MinGramϕ(L)) the following two conditions are

satisfied

4a. (∃k)[(Wψ
k = L) ∧ (∃〈m, s〉)[(〈m, s〉 ∈Wd(k,b)) ∧ (Ds = L ∩ Nm)]].

4b. (∃nL ∈ L)[card({j | (∃〈m, s〉 ∈Wd(j,b))[Ds is min({m,nL})-consistent with L

and (L ∩ NnL
⊆W

ψ
j)]}) <∞]

This definition is similar to the definition of effective subdiscreteness. Here d, does not

directly give a canonical index for a discriminating finite set. Intuitively, in this case, d gives

a gammar for a set of numbers, at least one of which codes the discriminating finite set. Also

note the restriction in clauses (2) and (3) to the languages in L. It should be noted that this

notion is weaker than the notion of effectively subdiscrete because Clauses 1–3 in the definition

hold only for the languages in the class and the discrimination function d does not directly give

the canonical index for discriminating set.

Definition 12

(a) L is weak effectively subdiscrete ⇐⇒ (∃ψ)[ψ is weak effectively subdiscrete for L].

(b) Wesd = {L ⊆ E | L is weak effectively subdiscrete }.

Theorem 2 TxtUniBex = Wesd.

Proof. The proof proceeds along similar lines as the proof of Theorem 1.

We first prove that L ∈ TxtUniBex⇒ (∃ψ)[ψ is weak effectively subdiscrete for L]. For

ease of presenting the proof we give a numbering which may contain infinitely many grammars

for ∅. This numbering can be modified to give a numbering which contains finite number of

grammars for ∅, as explained in the proof of Theorem 1.

Suppose L ⊆ TxtUniBex(M), where M is rearrangement independent and order indepen-

dent. We further assume that for all b, σ such that content(σ) = ∅, WM(b,σ) = ∅. Note that

this can easily be ensured.

22

The proof of this theorem is quite similar to the proof of Theorem 1. An analogous definition

of nice in this case needs introduction of the additional information. The construction of ψ is

similar, except for taking care of this additional information. The construction of d is different,

since not all the properties of ψ hold as before (since M only TxtUniBex-identifies L).

We now introduce a technical notion that facilitates the description of our proof. Suppose

k = 〈S, Sm, l, j〉.

(a) We say that k is nice iff

(i) Wϕ
j ∈ L,

(ii) M(j, 〈S, l〉) = j,

(iii) 〈S, l〉 is the least locking sequence for M on W ϕ
j with j as the additional information

and

(iv) Sm = (Wϕ
j ∩ Nm0), where m0 = max({max(S′) | 〈S′, l′〉 ≤ 〈S, l〉}).

(b) We say that k = 〈S, Sm, l, j〉 is nice for L if k is nice and WM(j,〈S,l〉) = L.

We define ψ as follows (this is very similar to the corresponding ψ in proof of Theorem 1).

Definition of Wψ
i

Let i = 〈S, Sm, l, j〉. Let m0 = max({max(S′) | 〈S′, l′〉 ≤ 〈S, l〉}).

In Step 1 we attempt to check if i satisfies certain properties of being nice. In Step 2 we

check for the remaining properties. If i is nice, then we enumerate Wϕ
j (i.e., Wψ

i = W
ϕ
j).

If i is not nice, then either Wψ
i is empty or Wψ

i 6∈ L or in Step 3 we make Wψ
i a finite

set different from all Wψ
j such that j is not nice.

1. Check the following five conditions

(a) M(j, 〈S, l〉) = j.

(b) S ⊆ Sm ⊆W
ϕ
j .

23

(c) max(Sm) ≤ m0.

(d) (∀〈S′, l′〉 < 〈S, l〉)[S′ 6⊆ Sm ∨ (∃S′′, l′′)[(S′ ⊆ S′′ ⊆ W
ϕ
j) ∧ (l′ + card(S′′ − S′) ≤

l′′) ∧ (M(j, 〈S′, l′〉) 6= M(j, 〈S′′, l′′〉))]]

Remark: The above step checks that 〈S′, l′〉 < 〈S, l〉 are not a locking sequence for M

on W
ϕ
j , with additional information j.

(e) (∀〈S′, l′〉)[[(S ⊆ S′ ⊆ Sm) ∧ (l + card(S′ − S) ≤ l′ ≤ (l + i + card(Sm)))] ⇒

M(j, 〈S′, l′〉) = j].

If any one of the above conditions fail to hold, then let W ψ
j = ∅.

Remark: Note that if the above conditions hold we can verify the fact. If we cannot verify

whether or not a condition holds, then by default Wψ
j will be empty. Step 1e partially

checks whether 〈S, l〉 is a locking sequence for M on W
ϕ
j , with additional information j

– this part is needed for proving that the discrimination function d works.

2. Enumerate elements ofWϕ
j −(Nm0−Sm) until it is found that one of the following conditions

hold:

W
ϕ
j ∩ (Nm0 − Sm) 6= ∅ or

(∃〈S′, l′〉)[(S ⊆ S′ ⊆W
ϕ
j) ∧ (l′ ≥ l + card(S′ − S)) ∧ (M(j, 〈S′, l′〉) 6= M(j, 〈S, l〉))]

in which case go to 3.

Remark: In this step we have tried to check if 〈S, l〉 is indeed a locking sequence with

additional information j and if Sm = L ∩ Nm0. Also note that Wψ
i does not output any

x ∈ Nm0 − Sm.

3. Output {1 +m0} ∪ {1 + x | m0 < x ∧ (∃k < i)[x ∈ W
ψ
k ∧ the procedure for Wψ

k reaches

Step 3]}.

Note: This step ensures that all Wψ
k , such that procedure for Wψ

k reaches Step 3, are finite

and distinct.

End of definition of Wψ
i

24

Proof of the fact that ψ satisfies clauses (1)–(3) of the definition of weak effective subdis-

creteness follows along the same lines as the corresponding proofs in Theorem 1. Verification

for clause (4) is different.

Claim 6 (∀L ∈ L)(∃i)[Wψ
i = L ∧ i is nice for L].

Proof. Consider any L ∈ L. Let aL be such that WaL
= L and is the grammar output by M in

the limit for any text for L and additional information b ≥ MinGramϕ(L). Let i = 〈S, Sm, l, aL〉

be such that 〈S, l〉 is the least locking sequence for M on L with additional information aL and

Sm = (L ∩ Nm0), where m0 = max({max(S′) | 〈S′, l′〉 ≤ 〈S, l〉}). Clearly i is nice and since all

the conditions checked in Step 1 hold and the procedure never leaves Step 2, W ψ
i = L. 2

Remark: Note that this claim implies clause (1) in the definition of weak effective subdis-

creteness.

Claim 7 Let X = {i | i is not nice ∧ W
ψ
i 6= ∅ ∧ W

ψ
i ∈ L} Then

(a) (∀i ∈ X)[card(Wψ
i) <∞], and

(b) (∀i, i′ ∈ X)[i = i′ ∨ W
ψ
i 6= W

ψ
i′].

Proof. Let i = 〈S, Sm, l, j〉. We will first show that if i is not nice, then either W ψ
i is empty

or Wψ
i 6∈ L or the procedure of Wψ

i reaches Step 3.

So suppose i is not nice. Then one of the following four conditions holds:

(A) Wϕ
j 6∈ L,

(B) M(j, 〈S, l〉) 6= j,

(C) 〈S, l〉 is not the least locking sequence for M on W ϕ
j with additional information j,

(D)Sm 6= (Wϕ
j ∩ Nm0), where m0 = max({max(S′) | 〈S′, l′〉 ≤ 〈S, l〉}).

(C) is equivalent to the conjunction of the following two conditions.

(C1) 〈S, l〉 is not a locking sequence for M on W ϕ
j with additional information j.

(C2) There is a 〈S′, l′〉 < 〈S, l〉 which is a locking sequence for M on W
ϕ
j with additional

information j.

25

Below let m0 = max({max(S′) | 〈S′, l′〉 ≤ 〈S, l〉}).

If (A) holds, then either Wψ
i = ∅ due to Step 1, or Wψ

i = W
ϕ
j 6∈ L due to Step 2, or Wψ

i

reaches Step 3.

If (D) does not hold but one of (B) or (C2) holds, then by Steps 1a and 1d in the construction

of Wψ
i , we have Wψ

i = ∅.

If max(Sm) > m0, then due to Step 1c in the construction W ψ
i , we have that Wψ

i = ∅.

If (D) or (C1) holds and max(Sm) ≤ m0, then eitherWψ
i is ∅ due to Step 1 of the construction

or the violation of (C1) and (D) would be detected in Step 2 and thus W ψ
i reaches Step 3.

Theorem now follows using induction on i, such that W ψ
i reaches Step 3. 2

Remark: Note that this claim implies clauses (2) and (3) in the definition of weak effective

subdiscreteness since there is a unique nice i for each L ∈ L.

We now give the construction of d and the proof that it satisfies clause 4 in the definition

of weak effectively subdiscrete.

Let d(i, b) be the index for the following program (note that this index can be effectively

found from i and b; we give the program as an enumerator). Let i = 〈S, Sm, l, j〉.

Definition of Wd(i,b)

1. Check whether Wψ
i 6= ∅ and Sm ⊆ W

ψ
i . If so, then let z0 = min({t | Wψ

i,t ⊇ Sm}) and

proceed to Step 2.

(Note that otherwise Wd(i,b) = ∅.)

2. Search for z1 > z0 such that Wψ
i,z1

⊇ Sm and M(b, 〈Wψ
i,z1
, len〉) = j, where len = 2 ∗ (i +

card(Wψ
i,z1

) + z1).

If and when such a z1 is found, let len = 2 ∗ (i+card(Wψ
i,z1

)+ z1), m = max({{i} ∪ W
ψ
i,z1

})

and s be such that Ds = W
ψ
i,z1

. Enumerate 〈m, s〉 in Wd(i,b) and proceed to Step 3.

3. Dovetail Steps 3.1 and 3.2 until the search in one of them succeeds. If Step 3.1 succeeds

before Step 3.2 does (if ever), then go to Step 3.3. If Step 3.2 succeeds before Step 3.1

26

does (if ever), then go to Step 3.4.

3.1. Search for x, z2 such that x ∈ ((Wψ
i,z2

∩ Nm) −Ds).

3.2. Search for 〈S′, l′〉 such that (S′ ⊇ W
ψ
i,z1

) and (l′ ≥ len + card(S′ − W
ψ
i,z1

)) and

[M(b, 〈S′, l′〉)] 6= j.

3.3. Let x, z2 be as found in Step 3.1.

if (∀D, l)[[(Wψ
i,z1

⊆ D ⊆ W
ψ
i,z2

) ∧ (len + card(D − W
ψ
i,z1

) ≤ l ≤ 2 ∗ (z2 + i +

card(Wψ
i,z2

)))] ⇒ [M(b, 〈D, l〉) = j]].

then

Enumerate 〈m, s′〉 in Wd(i,b), where Ds′ = Ds ∪ {x}.

Let s = s′ and Go to Step 3.

else Let z0 = z2 and Go to Step 2.

endif

3.4. Let z0 = z1 + 1. Go to Step 2.

End of definition of Wd(i,b)

Claim 8 d defined above satisfies clauses 4a and 4b in the definition of weak effective subdis-

creteness.

Proof. Let L ∈ L − {∅} and b ≥ MinGramϕ(L).

We first show that d satisfies clause 4a in the definition of weak effective subdiscreteness.

Let iL = 〈SL, SLm
, lL, jL〉 be such that iL is nice and W

ψ
iL

= L (there exists one as shown in

proof of Claim 6).

We claim that for b > MinGramϕ(L), Wd(iL,b) is finite. To see this, let 〈S, l〉 be a locking

sequence for M on L with additional information b. Let n > lL be so large that Wψ
iL,n

⊇ S.

Consider the execution of the enumerator for Wd(iL,b) described above.

(a) Each execution of Step 2 increases the value of z1 by at least 1.

27

(b) All executions of Step 2 are followed by execution of Step 3.

(c) Step 3 can be executed only finitely many times before Step 2 is executed again.

(d) Step 2 follows Step 3 only if it has been verified in Step 3 that 〈W ψ
iL,z1

, len〉, where

len = 2∗ (i+z1 +card(Wψ
i,z1

)) is not a locking sequence for M on L with additional information

b.

Thus for Wd(iL,b) to be infinite 〈Wψ
iL,z1

, len〉 must not be a locking sequence for M on L with

additional information b for infinitely many z1. But this is not true for z1 > n (since n > l and

W
ψ
i,n ⊇ S, which implies that 〈Wψ

iL,z1
, len〉 is a locking sequence for M on L with additional

information b). Thus Wd(iL, b) is finite.

Let the last element in the order of enumeration of Wd(iL,b) as described above be 〈mL, sL〉.

Now, clause (4a) in the definition of weak effective subdiscreteness is satisfied by taking k = iL,

since Wψ
iL

= L, and DsL
= L ∩ NmL

(otherwise search in Step 3.1. would succeed).

We now show that d satisfies clause (4b) in the definition of weak effective subdiscreteness.

Let nL = max(DsL
). Also, for some l (say lsL

), 〈DsL
, l〉 is a locking sequence for M on L with

additional information b, since otherwise Step 3.2 would succeed and 〈mL, sL〉 would not be the

last element enumerated in Wd(iL,b).

We now show that, only finitely many i can satisfy the following

(∃〈m, s〉 ∈Wd(i,b))[Ds is min({m,nL})-consistent with L ∧ (L ∩ NnL
⊆W

ψ
i)]

This would prove the claim

Consider any i = 〈S, Sm, l, j〉 ≥ max({nL, lsL
}) such that 〈S, l〉 > 〈SL, lL〉. This assumption

is fine, since there are only finitely many i = 〈S, Sm, l, jL〉 such that 〈S, l〉 ≤ 〈SL, lL〉 and

Sm ⊆
⋃

〈S′,l′〉≤〈S,l〉 S
′.

We will show that for such i, there does not exists a 〈m, s〉 ∈Wd(i,b) satisfying

[Ds is min({m,nL})-consistent with L ∧ (L ∩ NnL
⊆W

ψ
j)].

28

Suppose by way of contradiction that, 〈m, s〉 ∈Wd(i,b) satisfies [Ds is min({m,nL})-consistent

with L ∧ (L ∩ NnL
⊆W

ψ
j)].

We have m ≥ i ≥ nL (Step 2 of the procedure makes m ≥ i). Therefore Ds is nL-consistent

with L. Also, M(b, 〈Ds, 2 ∗ (card(Ds) + i + z′1)〉) = j, where z′1 is the value of z1 when 〈m, s〉

is enumerated in Wd(i,b) (since Wd(i,b) enumerates 〈m, s〉 only if this condition is satisfied.)

Therefore, since 〈L ∩ NnL
, lsL

〉 is a locking sequence for M on L with additional information

b, we have M(b, 〈Ds, 2 ∗ (card(Ds) + i+ z′1)〉) = jL. Thus j = jL.

Now if Sm ⊇ SL, then by the construction of ψ, Wψ
i = ∅ (check performed in Step 1d in the

definition of Wψ
i). But, if Sm 6⊇ SL, then SL 6⊆W

ψ
i (by the construction of ψ, see remark at the

end of Step 2 and the assumption that 〈S, l〉 ≥ 〈SL, lL〉); and hence SL 6⊆ Ds. This contradicts

the fact that Ds is nL-consistent with L (since nL ≥ max(SL) by Step 1 in the construction of

d). This proves the claim. 2

The above claims show that L ∈ TxtUniBex⇒ (∃ψ)[ψ is weak effectively subdiscrete for

L].

We now show that (∃ψ)[ψ is weak effectively subdiscrete for L] ⇒ L ∈ TxtUniBex.

Let c be the function reducing ψ to ϕ. Let d be as claimed in the definition of weak effective

subdiscreteness. Define M on additional information b as follows

Definition of M(b, T [n])

1. Here we are trying to find i’s such that some 〈m, s〉 ∈ Wd(i,b) satisfies

[Ds is min({m,nL})-consistent with L ∧ (L ∩ NnL
⊆ W

ψ
i)], where nL is as in clause

4b of the definition of weak effectively subdiscrete. However, since M does not know

nL, this is not completely possible. Thus M, for each guess r for nL, collects all i ≤ r,

satisfying the above. We will see later that this suffices.

For r ≤ n, let Br = {j | j ≤ r ∧ (∃〈m, s〉 ∈

Wd(j,b),n)[Ds is min({m, r})-consistent with content(T [n]) ∧ (T [n] ∩ N r ⊆W
ψ
j,n)]}.

29

Let B =
⋃
r≤nBr.

2. if (∃j ∈ B)[Wψ
j,n = content(T [n])]

then Output c(j) for minimum such j.

else

Let r0 = max({r | (∃j ∈ B)[(Wψ
j,n ⊇ content(T [r]))∧(Wψ

j,r ⊆ content(T [n]))]}).

Output c(j0), where j0 = min({j | [j ∈ B] ∧ [(Wψ
j,n ⊇ content(T [r0])]) ∧

[(Wψ
j,r0

⊆ content(T [n]))]}).

endif

(Intuitively, M here tries to output the seemingly best grammar in B, for the input lan-

guage.)

End of definition of M

Claim 9 M TxtUniBex-identifies L − {∅}. Thus L ∈ TxtUniBex.

Proof. Let L ∈ L, b ≥ MinGramϕ(L) and T be a text for L. Let nL be as in the definition

of weak effective subdiscreteness. Let Candidates be the finite set of i’s satisfying (∃〈m, s〉 ∈

Wd(i,b)) [Ds is min({m,nL})-consistent with L ∧ L ∩ NnL
⊆ W

ψ
j]. Let Bn

r denote Br as

computed by M on input T [n]. Let Bn denote B as computed by M on input T [n].

Let n1 ≥ nL be such that L ∩ NnL
⊆ content(T [n1]). Hence, for all n ≥ r ≥ n1, j ∈ Bn

r

implies that j ∈ Candidates. Therefore, for all n ≥ n1, B
n ⊆ Candidates ∪ Nn1 .

Let j0 be the grammar k as claimed in clause (4a) in the definition of weak effective subdis-

creteness and let n2 be so large that, for 〈m, s〉 claimed in clause (4a) in the definition of weak

effective subdiscreteness, Ds ⊆ content(T [n2]) and 〈m, s〉 ∈Wd(j0,b),n2
, where n2 ≥ j0. Also, let

n3 be so large that L ∩ Nn2 ⊆W
ψ
j0,n3

. Therefore, (∀n ≥ max({n3, n2}))[j0 ∈ Bn].

Let C = (Candidates ∪ Nn1) ∩ {i | (∃〈m, s〉 ∈ Wd(i,b))(∃r ≥

i)[Ds is min({m, r})-consistent with L ∧ (L ∩ N r ⊆W
ψ
i)]}.

30

Clearly,

lim
n→∞

Bn = C.

Let n4 be such that for all n > n4, B
n = C.

We now consider the following two cases.

Case 1: L is infinite.

In this case j0 is the only element in C such that Wψ
j0

= L (by clause 2 in the

definition of weak effective subdiscreteness).

Let n5 be so large that

¬[(∃j ∈ (C − {j0}))[(W
ψ
j,n5

⊆ L) ∧ (Wψ
j ⊇ content(T [n5]))]].

Let n6 be so large that [(Wψ
j0,n5+1 ⊆ content(T [n6])) ∧ (content(T [n5 + 1]) ⊆

W
ψ
j0,n6

)].

Clearly, such n5, n6 exist. Now for n ≥ max({n2, n3, n4, n5, n6}), M with ad-

ditional information b, on input T [n], will output j0. Therefore, M TxtUniBex-

identifies L.

Case 2: L is finite.

Let j′0 = min({j | j ∈ C ∧Wψ
j = L}). Now for n ≥ {n2, n3, n4}, M, with additional

information b, on input T [n], will output j ′0 at Step 2 of the procedure. Hence, M

TxtUniBex-identifies L.

From the above two cases it follows that (L − {∅}) ∈ TxtUniBex(M). 2

This proves Theorem 2.

6 Summary

We characterized TxtEx and TxtUniBex. We summarize our results below.

31

TxtEx = Esd ⊂ TxtUniBex = Wesd ⊂ TxtBex ⊂ 2E .

We feel that one of the main contributions of this paper are the techniques developed to deal with

language identification. As already noted, we have used these techniques in other investigations

of language learning [5, 15].

7 Acknowledgements

We are grateful to John Case and Mark Fulk for several suggestions. We would also like to

thank Zuzana Dobes, Lata Narayanan and Rajeev Raman for helpful discussions. Research was

partly supported by the National Science Foundation Grants CCR 832-0136, CCR 871-3846 and

by the Australian Research Council Grant Number A49530274.

References

[1] D. Angluin. Inductive inference of formal languages from positive data. Information and
Control, 45:117–135, 1980.

[2] D. Angluin and C. Smith. A survey of inductive inference: Theory and methods. Computing
Surveys, 15:237–289, 1983.

[3] L. Blum and M. Blum. Toward a mathematical theory of inductive inference. Information
and Control, 28:125–155, 1975.

[4] J. Case. Learning machines. In W. Demopoulos and A. Marras, editors, Language Learning
and Concept Acquisition. Ablex Publishing Company, 1986.

[5] J. Case, S. Jain, and A. Sharma. Vacillatory learning of nearly minimal size grammers.
Journal of Computer and System Sciences, 49(2):189–207, October 1994.

[6] J. Case and C. Lynes. Machine inductive inference and language identification. In
M. Nielsen and E. M. Schmidt, editors, Proceedings of the 9th International Colloquium on
Automata, Languages and Programming, pages 107–115. Springer-Verlag, 1982. Lecture
Notes in Computer Science 140.

[7] R. Freivalds, E. B. Kinber, and R. Wiehagen. Connections between identifying function-
als, standardizing operations, and computable numberings. Zeitschr. j. math. Logik und
Grundlagen d. Math. Bd., 30:145–164, 1984.

[8] R. Freivalds and R. Wiehagen. Inductive inference with additional information. Electron-
ische Informationverarbeitung und Kybernetik, 15:179–195, 1979.

[9] M. Fulk. A Study of Inductive Inference Machines. PhD thesis, SUNY at Buffalo, 1985.

[10] M. Fulk. Prudence and other conditions on formal language learning. Information and
Computation, 85:1–11, 1990.

32

[11] E. M. Gold. Language identification in the limit. Information and Control, 10:447–474,
1967.

[12] S. Jain and A. Sharma. Learning in the presence of partial explanations. Information and
Computation, 95-2:162–191, 1991.

[13] S. Jain and A. Sharma. Learning with the knowledge of an upper bound on program size.
Information and Computation, 102–1:118–166, 1993.

[14] S. Jain and A. Sharma. Characterizing language learning by standardizing operations.
Journal of Computer and System Sciences, 49–1:96–107, 1994.

[15] S. Jain and A. Sharma. Prudence in vacillatory language identification. Mathematical
Systems Theory, 1994. To Appear.

[16] S. Kapur. Uniform characterizations of various kinds of language learning. In Proceedings
of the Fourth International Workshop on Algorithmic Learning Theory, Lecture Notes in
Artificial Intelligence 744. Springer, 1993.

[17] R. Klette and R. Wiehagen. Research in the theory of inductive inference by GDR math-
ematicians – A survey. Information Sciences, 22:149–169, 1980.

[18] S. Lange and T. Zeugmann. Learning recursive languages with bounded mind changes.
Technical Report 16/92, GOSLER-Report, FB Mathematik und Informatik, TH Lepzig,
1992.

[19] S. Lange and T. Zeugmann. Types of monotonic language learning and their characteri-
zation. In Proceedings of the Fifth Annual Workshop on Computational Learning Theory,
Pittsburgh, Pennsylvania, pages 377–390. ACM Press, 1992.

[20] S. Lange, T. Zeugmann, and S. Kapur. Monotonic and dual monotonic language learning.
Theoretical Computer Science A, 1995. To appear.

[21] Y. Mukouchi. Characterization of pattern languages. In Proceedings of the 2nd Workshop
on Algorithmic Learning Theory, pages 93–104, 1991.

[22] Y. Mukouchi. Characterization of finite identification. In Proceedings of the Third Interna-
tional Workshop on Analogical and Inductive Inference, Dagstuhl Castle, Germany, pages
260–267, October 1992.

[23] Y. Mukouchi and S. Arikawa. Inductive inference machines that can refute hypothesis
spaces. Technical Report RIFIS-TRCS-67, RIFIS, Kyushu University, 1993.

[24] D. Osherson, M. Stob, and S. Weinstein. Systems that Learn, An Introduction to Learning
Theory for Cognitive and Computer Scientists. MIT Press, Cambridge, Mass., 1986.

[25] H. Rogers. Gödel numberings of partial recursive functions. Journal of Symbolic Logic,
23:331–341, 1958.

[26] H. Rogers. Theory of Recursive Functions and Effective Computability. McGraw Hill, New
York, 1967. Reprinted, MIT Press 1987.

33

