
Input-Dependence in Function-Learning

Sanjay Jain?1, Eric Martin??2 and Frank Stephan∗3

1 Department of Computer Science,
National University of Singapore,

Singapore 117590, Republic of Singapore.
sanjay@comp.nus.edu.sg

2 Department of Computer Science and Engineering,
The University of New South Wales,

Sydney 2052, NSW, Commonwealth of Australia.
emartin@cse.unsw.edu.au

3 Department of Mathematics,
National University of Singapore,

Singapore 117543, Republic of Singapore.
fstephan@comp.nus.edu.sg

Abstract. In the standard model of inductive inference, a learner gets as input the
graph of a function, and has to discover (in the limit) a program for the function.
In this paper, we consider besides the graph also other modes of input such as the
complement of the graph, the undergraph and the overgraph of the function. The
relationships between these models are studied and a complete picture is obtained.
Furthermore, these notions are also explored for learning with oracles, learning in
teams and learning in the presence of additional information.

Keywords. Inductive inference; recursion theory; various forms of input presenta-
tion; team learning; learning with additional information.

Mathematical Subject Classification. 68Q32 (Computational Learning Theory);
03D20 (Recursive Functions).

1 Introduction to the field of inductive inference

The main purpose of the field known as inductive inference is to investigate, in clear mathematical
terms, which classes of functions or classes of sets can be learnt, in an idealized sense, as a result
of applying an algorithmic procedure that converts data, that is, pieces of information about
some object taken from a class of possible objects, to hypotheses, that is, tentative descriptions
of the object to be learnt. This can be formalized in different ways, on the basis of notions from
recursion theory; therefore the objects to be learnt are — in most scenarios — either classes

? Supported in part by NUS grant numbers R252-000-212-112 and R252-000-308-112.
?? E. Martin is jointly appointed at the UNSW and National ICT Australia which is funded by the Australian Government’s

Department of Communications, Information Technology and the Arts and the Australian Research Council through
Backing Australia’s Ability and the ICT Centre of Excellence Program.

1

of recursive functions or classes of recursively enumerable sets. The first formalization has been
proposed by Gold [9], who introduced the notion of learning sets in the limit from positive
data: the learner (a recursive function) maps any finite string of data (that is, finite sequence of
members of an underlying set, that might be infinite) to a hypothesis (that is, a tentative exact
and complete description of the whole set). The set is assumed to be recursively enumerable and
the hypotheses are natural numbers, interpreted as indices with respect to some fixed acceptable
numbering W0, W1, . . . of all recursively enumerable sets. (This numbering corresponds to an
acceptable numbering ϕ0, ϕ1, . . . of the partial recursive functions, with We being the domain
of ϕe for all e’s.) More precisely, a set of the form We is selected, with e being unknown to the
learner, and an enumeration of its members, in some arbitrary order, possibly with repetitions,
possibly with the inclusion of a pause symbol, denoted #, with no member of We missing from
the enumeration, is unveiled to the learner. The enumeration, called a text for We, is unveiled
through a process that takes infinitely many steps, with successive steps revealing successive
members of the text, a new step revealing either # or a member of We. The learner M is said to
learn We from text T for We iff there is an n such that WM(T (0)T (1)...T (m)) = We for all m ≥ n. In
other words, the learner can issue only finitely many incorrect descriptions of We. As one cannot
check effectively whether We = Wd for arbitrary indices d and e, it is restrictive to require that
M(T (0)T (1) . . . T (n)) be equal to M(T (0)T (1) . . . T (m)) for all m ≥ n. So there are (at least)
two notions of convergence, that both turned out to be reasonable and fruitful in the formal
developments of the field of inductive inference. The more general notion is called behaviourally
correct learning [3] and the more restrictive notion is called explanatory learning [9]. This paper
deals exclusively with explanatory learning, but many questions could also be investigated in
the more general setting of behaviourally correct learning.

A learner that would be given the task of learning only one set We could of course output e in
response to any finite string of data; therefore, only the learnability of classes of sets (by the
same learner), as opposed to single sets, is of interest. Here are some well known examples.

– The class of finite sets is learnable: in order to be successful, a learner can just output at
every stage a hypothesis which covers precisely the elements seen so far; the hypothesis is
revised only if a new element appears.

– The class of all sets of the form N \ {x} (all natural numbers except x) is learnable: in order
to be successful, a learner can just output at every stage a fixed index of N \ {n} where n is
the least number not in the current input.

– The class of all cofinite sets, the class consisting of N and all finite subsets of N, the class of
all graphs of recursive functions, have all been shown by Gold [9] not to be learnable.

2 Learning total functions from different representations

Given a function f from N to N, denote by Ef the graph of f :

Ef = {(x, f(x)) : x ∈ N}.

2

Denote by REC the class of all recursive functions from N to N. The examples at the end of the
previous section suggest the definition of a notion of learnability of subsets of REC : say that
a subset S of REC is learnable iff {Ef : f ∈ S} is learnable in the sense previously defined.
This paper is innovative in that Ef is conceived of as just one possible description of f amongst
a number of other, equally legitimate, descriptions of f . What is at issue is how particular
representation schemes affect the learnability of a class of functions.

A data presentation scheme If may be considered legitimate if it is given by a parametrized
uniformly recursive family Ua,b such that the following conditions hold:

– Ua,b ⊆ {a} × N;
– one can determine b in the limit from a and any text for Ua,b;
– If =

⋃
a∈N Ua,f(a).

In this paper we consider the following types of data presentation schemes which satisfy the
above constraints. So the set If takes one of the following four forms:

– graph of f , that is, Ef = {(x, y) : x, y ∈ N, y = f(x)};
– complement of the graph of f , that is, Df = {(x, y) : x, y ∈ N, y 6= f(x)};
– undergraph of f , that is, Lf = {(x, y) : x, y ∈ N, y < f(x)};
– overgraph of f , that is, Gf = {(x, y) : x, y ∈ N, y > f(x)}.

We now present the notions that determine a learning paradigm in a more formal way. A learner
is a recursive function from the set of finite sequences of members of N× N into N. A learner’s
domain is viewed as a set that contains all finite initial segments of pairs taken from Ef , Df , Lf

or Gf where f is a member of the subset of REC to be learnt, depending on the kind of data
selected by the paradigm. Each of the learner’s output is viewed as an index for the function to
be learnt. The way functions are coded by indices can vary from paradigm to paradigm. Unless
specified otherwise, these indices are assumed to be from some implicit acceptable numbering of
all the partial recursive functions. We use E, D, L and G to refer to the notions of learnability
determined by Ef , Df , Lf and Gf , respectively: these notions are defined as above, with texts
for Ef being replaced by texts for Ef , Df , Lf and Gf , respectively.

Definition 1. Given a recursive function f , an D-text, E-text, L-text or G-text for f is a text
for Df , Ef , Lf or Gf , respectively. Here a text for a set If is a, not necessarily recursive, infinite
listing of If which can also possibly contain the pause symbol #.

The # symbol represents a pause in the presentation of the data. Note that E-, D- and G-texts
could be defined without the # symbol; the # symbol is necessary to define L-texts for the
function 0∞.

Definition 2. Given a recursive function f and a learner M , M is said to E-learn, D-learn,
L-learn or G-learn f iff for all E-texts, D-texts, L-texts or G-texts T for f , respectively, M
outputs a fixed index for f in response to all but finitely many initial segments of T .

3

We use D, E, G and L to represent the set of all classes S of recursive functions such that
some learner D-, E-, G- or L-learns all members of S, respectively. For consistency with other
papers, it would have been perhaps better to call these criteria DEx, EEx, GEx and LEx, but
we dropped the suffix Ex as it is redundant within the present work. The criterion E coincides
with explanatory function learning (Ex or Lim) [9] as the course of values of a function f can
be easily reconstructed from any E-text for f . Here are two examples that illustrate the notions
that have been introduced.

Example 3. Call a family (fi)i∈N of recursive functions recursively enumerable if the binary
function (n, x) 7→ fn(x) is recursive.

– Every recursively enumerable family (fi)i∈N of recursive functions is E-learnable and D-
learnable: in order to be successful, a learner just has to output a fixed index of the function
fn where n is the least natural number such that no pair of the form (x, y) with y 6= f(x) (for
E-learnability) or y = f(x) (for D-learnability) occurs in the data.

– The class {1n0∞ : n ∈ N} ∪ {1∞} is not L-learnable but it is E-learnable, D-learnable and
G-learnable. Gold [9] showed that the class {{0, 1, 2, . . . , n} : n ∈ N} ∪ {N} is not learnable
from text. This implies that {1n0∞ : n ∈ N} ∪ {1∞} is not L-learnable. A G-learner for
{1n0∞ : n ∈ N} ∪ {1∞} conjectures 1∞ until it has seen some pair (n, 1); from then onwards
it outputs 1n0∞ for the least n such that (n, 1) has shown up in the input. Since it is recursively
enumerable, the class {1n0∞ : n ∈ N} ∪ {1∞} is also D-learnable and E-learnable.

– Similarly, the class {0n1∞ : n ∈ N}∪{0∞} is not G-learnable but it is L-learnable, D-learnable
and E-learnable.

– The recursively enumerable class {f : ∃x ∀y > x (f(y) = f(x))} is neither L-learnable nor
G-learnable but it is both D-learnable and E-learnable.

Example 4. Let S denote the class of self-describing functions, that is, the set of all recursive
functions f such that ϕf(0) = f . Then S is E-, D-, L- and G-learnable, as one can discover f(0)
in the limit from any text for Ef , Df , Lf and Gf , respectively.

Recall the following standard notation:

– We denote by ϕe,s the partial recursive function such that for all x ∈ N, ϕe,s(x) takes the
value ϕe(x) if x < s and the computation of ϕe(x) converges within s steps; otherwise ϕe,s(x)
is undefined.

– We denote by We,s the domain of ϕe,s.

3 The Basic Relationships

The next theorem gives the complete relationship between the four basic notions E, D, L and
G considered in this paper.

4

Theorem 5. The inclusions L ⊆ D, D ⊆ E, L ⊆ E and G ⊆ E hold. No other inclusion
between two distinct criteria out of E, D, L and G holds.

Proof. The inclusion L ⊆ E is obtained by transitivity from L ⊆ D and D ⊆ E, thus only
the other three inclusions are shown. Observe that for all recursive functions f , the following
equalities hold:

Lf = {(x, y) : ∀z ≤ y ((x, z) ∈ Df)};
Df = {(x, y) : ∃z 6= y ((x, z) ∈ Ef)};
Gf = {(x, y) : ∃z < y ((x, z) ∈ Ef)}.

Given a recursive function f , these equalities allow one to effectively translate a D-text for f
into an L-text for f , an E-text for f into a D-text for f and an E-text for f into a G-text for
f . Hence a learner that L-, D- or G-learns a class S of recursive functions can be effectively
transformed into a learner that D-, E- or E-learns S, respectively. Hence the inclusions L ⊆ D,
D ⊆ E and G ⊆ E hold.

Example 3 shows the noninclusions D * L, D * G, E * L, E * G, L * G and G * L. The
noninclusion G 6⊆ D follows from Theorem 8 below. This noninclusion directly implies E 6⊆ D. �

4 Oracles

Given a set A of natural numbers, the notion of learner is generalized to the notion of an A-
recursive learner: the learner is permitted to use an oracle for A, that is, the learner can ask
membership questions about A. Given an oracle A, the notions of E-, D-, L- and G-learnability
are generalized to the notions of E[A]-, D[A]-, L[A]- and G[A]-learnability. In the following,
A, A1, A2, A3, A4 and B will denote sets of natural numbers which are used as oracles and
K will denote the set {x : ϕx(x)↓}. A′ denotes the set {x : ϕA

x (x)↓}, where ϕA
i is the partial

function computed by the i-th Turing machine using the oracle A. A set A is said to be high iff
K ′ ≤ A′ (see [16]). Adleman and Blum [1] established the following fundamental result, which
characterizes the oracles A such that the class of recursive functions is E[A]-learnable.

Theorem 6 (Adleman and Blum [1]). REC ∈ E[A] iff A is high.

This result also holds for D-learnability as we now show.

Theorem 7. REC ∈ D[A] iff A is high.

Proof. If A is high then there is an A-recursive procedure Tot(e, t) such that for every e,
limt→∞Tot(e, t) = 1 if ϕe is total, and limt→∞Tot(e, t) = 0 if ϕe is partial. Consider an A-
recursive learner M that proceeds as follows. Given a sequence σ of data of length s, output the

5

least e such that Tot(e, s) = 1 and for all x ≤ s, if ϕe,s(x) is defined then (x, ϕe(x)) does not
occur in σ. It is easily verified that M D[A]-learns REC .

The proof that D ⊆ E given in Theorem 5 is easily generalized to a proof that D[A] ⊆ E[A].
This together with Theorem 6 shows that if REC ∈ D[A] then A is high. �

Theorem 6 can be generalized neither to L- nor to G-learnability, as the separations in Example 3
also hold for learning with oracles.

We know from Theorem 5 that D-learnability is not as powerful as G-learnability. A natural
question is whether this limitation of D-learnability can be overcome with the use of oracles: in
other words, does there exist an oracle A such that D[A]-learnability is at least as powerful as
G-learnability? The next result provides a positive answer and characterizes the oracles A that
yield that positive answer.

Theorem 8. G ⊆ D[A] iff A is high.

Proof. If A is high then the inclusion G ⊆ D[A] follows immediately from Theorem 7.

Conversely, for all e ∈ N, let fe be the recursive function such that for all x ∈ N, fe(x) is equal
to the sum of e with the least natural number s such that We,s contains at least min{x, |We|}
elements (recall that We,s is included in {0, 1, . . . , s− 1}); in particular, fe(0) = e. Let S = {fe :
e ∈ N}.
In order to G-learn S, a learner on a G-text for f can proceed as follows. Let y be the least
number such that (0, y+1) has already appeared in the input; if no such y exists then the learner
outputs 0. Note that y = f(0) in the limit. Let s denote the length of the input data. Given
x ≤ s, say that x is good if the data contains no pair of the form (x, z) such that Wy,z contains
less than x elements. If all x ≤ s are good then output an index for the partial recursive function
that maps any x ∈ N to s+e for the least s with |We,s| ≥ x. Otherwise, let x be the least integer
that is not good. Then output a fixed index for a function g with the following properties.

– For x′ ≤ x, let y′ be the greatest number such that (x′, 0), (x′, 1), . . . , (x′, y′) do not appear
in the G-text for f . Then g(x′) is equal to this y′.

– For all x′ > x let g(x′) = g(x).

It is immediately verified that a learner that proceeds as described G-learns S. Suppose M is an
A-recursive learner which D-learns S. In order to complete the proof of the theorem, it suffices to
show that A is high. Note that the set of all (e, x, y) ∈ N3 with (x, y) ∈ Dfe is r.e., an immediate
consequence of the fact that for all e, x, y ∈ N, (x, y) ∈ Dfe iff at least one of the following four
conditions holds:

– y < e;
– y ≥ e and there exists s < y − e such that |We,s| ≥ x;
– y ≥ e and there exists s < y − e such that |We,s| = |We,y−e|;
– y ≥ e, |We,y−e| < x and there exists s ∈ N with |We,y−e| < |We,s|.

6

Thus one can construct a text Te for Dfe effectively from e. Let h(e) denote the index to which
MA converges on Te. Clearly, for all natural numbers e, ϕh(e) is total and We is finite iff there
exist x, s ∈ N such that e+s = ϕh(e)(x) and |We,s| < x. Thus, using oracle A, one can effectively
determine in the limit whether We is finite and thus the set {e : |We| < ∞} is A′-recursive. As
the set {e : |We| < ∞} is Σ0

2 -complete [17, Section IV.3] it holds that K ′ ≤T A′, completing the
verification that A is high. �

In the following let A1 ⊕ A2 ⊕ . . . ⊕ An be the set {nx + y : y < n ∧ x ∈ Ay+1}. The operation
⊕ is called the join-operation. Similarly one can define the join of n functions f1, f2, . . . , fn as
(f1⊕f2⊕ . . .⊕fn)(nx+y) = fy+1(x) for x ∈ N and y < n. The join S1⊕S2⊕ . . .⊕Sn of n classes
of functions is the class of all functions f1 ⊕ f2 ⊕ . . .⊕ fn with f1 ∈ S1, f2 ∈ S2, . . . , fn ∈ Sn.

Theorem 9. Given four recursively enumerable sets A1, A2, A3 and A4, there are four classes
SEA1, SDA2, SLA3 and SGA4 of recursive functions such that

SEA1 ∈ E[B] iff A′
1 ≤T B′;

SDA2 ∈ D[B] iff A′
2 ≤T B′;

SLA3 ∈ L[B] iff A′
3 ≤T B′;

SGA4 ∈ G[B] iff A′
4 ≤T B′.

Furthermore, if A1, A2, A3 and A4 are such that

(∗) A1 ≤T A2, A2 ≤T A3, A2 ≤T A4, K <T A′
1, A′

1 <T A′
2, A′

3 6≤T A′
4 and A′

4 6≤T A′
3

then the class S = SEA1 ⊕ SDA2 ⊕ SLA3 ⊕ SGA4 satisfies for every oracle B that

S ∈ E[B] iff A′
1 ≤T B′;

S ∈ D[B] iff A′
2 ≤T B′;

S ∈ L[B] iff A′
3 ≤T B′;

S ∈ G[B] iff A′
4 ≤T B′.

Finally, there are four r.e. sets A1, A2, A3 and A4 that satisfy (∗) above.

Proof. Kummer and Stephan [12] have exhibited a class TEA1 of total functions from N into
{0, 1} which is E[B]-learnable iff A′

1 ≤T B′. Define SEA1 as the set of all recursive functions g
such that

∃h ∈ TEA1 ∀n ∈ N [g(2n) = h(n) ∧ g(2n + 1) = 1− h(n)].

For all n ∈ N, g(2n) + g(2n + 1) = 1. Hence approximations of g(2n) and g(2n + 1) from below
or from above allow one to discover both values in the limit. This implies that A′

1 ≤T B′ is
equivalent to any of SEA1 ∈ E[B], SEA1 ∈ D[B], SEA1 ∈ L[B] and SEA1 ∈ G[B].

Since A′
2 is recursively enumerable relative to K, there is a total binary function Ψ(x, s) that

approximates A′
2, in the sense that for all x ∈ N, x ∈ A′

2 iff Ψ(x, s) = 1 for all but finitely many

7

s ∈ N. For all x ∈ N, let fx be defined as

fx(y) =

x if y = 0;
s for the first s > fx(y − 1) with Ψ(x, s) 6= 1

if y > 0 and such an s exists;
fx(y − 1) otherwise.

Note that the case-distinction is nonuniform in x. However, fx is recursive as either the second
case applies for all y > 0 or fx is eventually constant. Let SDA2 = {f0, f1, . . .}. Although given x,
one cannot effectively compute an index for fx, one can compute an index u(x) of the following
variant of fx:

ϕu(x)(y) =

x if y = 0;
s for the first s > ϕu(x)(y − 1) with Ψ(x, s) 6= 1

if y > 0 and such an s exists;
↑ otherwise.

For all n ∈ N, let Dfx and Lfx be the two r.e. sets defined as follows. First define Dfx as the set
of all (a, b) ∈ N2 for which one of the following conditions holds:

– ∃c ≤ a [ϕu(x)(c)↓> b] or
– ∃c ≥ a [ϕu(x)(c)↓< b] or
– b 6= x ∧ Ψ(x, b) = 1.

Second define Lfx as the set of all (a, b) ∈ N2 that satisfy the first condition in the definition in
Dfx , namely

∃c ≤ a [ϕu(x)(c)↓> b].

Note that both Dfx and Lfx are uniformly recursively enumerable in x. Hence, if SDA2 is L[B]-
learnable or D[B]-learnable then A′

2 ≤T B′ as one can, for any given x, simulate the learner
on Lfx or Dfx , respectively, find the final hypothesis e of the learner using B′ and determine
whether there is an y with ϕe(y) = ϕe(y + 1) using B′ again; the latter has the answer YES if
x ∈ A′

2 and the answer NO if x /∈ A′
2.

The class SDA2 is E-learnable and G-learnable, as the values fx(0) and x can be determined
from the data in the limit. It can also be determined in the limit whether there exists y ∈ N such
that ϕu(x)(y) is defined with the property that (y+1, ϕu(x)(y)) ∈ Efx , whether there exists y ∈ N
such that ϕu(x)(y) is defined with the property that (y + 1, ϕu(x)(y) + 1) ∈ Gfx , and whenever
the first or second property holds, a value y with that property can be found in the limit. In the
latter case, the learner knows that fx agrees with ϕu(x) on all natural numbers smaller than that
y, and maps all natural numbers at least equal to y to a constant value. If no such y is found in
the limit, then the learner will conjecture ϕu(x) from the time it has determined x.

Using a similar argument, the class SDA2 is seen to be both L[B]-learnable and D[B]-learnable
for all oracles B with A′

2 ≤T B′. Again, the learner can obtain from the data in the limit the
values fx(0) and x. Furthermore, it can use the oracle B to determine in the limit whether

8

x ∈ A′
2. If so, it finds in the limit the maximal y such that ϕu(x)(y) is defined and knows that

fx equals the function which is ϕu(x) below y and is constant from y onwards. If x /∈ A′
2 then

fx = ϕu(x) and the learner converges to the hypothesis u(x).

For the sets SLA3 and SGA4 , one considers functions fA3 and fA4 which are A3
′-recursive and

A4
′-recursive, respectively, such that one can solve A′

3 using any function dominating fA3 as an
oracle and one can solve A′

4 using any function dominating fA4 as an oracle. Let

SLA3 = {(2n + 1)∞ : n ∈ N} ∪ {(2n + 1)m(2n)∞ : n ∈ N, m ≤ fA3(n)};
SGA4 = {(2n)∞ : n ∈ N} ∪ {(2n)m(2n + 1)∞ : n ∈ N, m ≤ fA4(n)}.

The class SLA3 is in L[B] iff A3
′ ≤T B′. Consider the case of learning a function g ∈ SLA3 from

an L-text for g. If A3
′ ≤T B′ then one can find g(0) and the parameter n in the limit; one can

then find in the limit an upper bound k for fA3(n) relative to B; one can then determine g(0),
g(1), . . ., g(k) in the limit, at which point the learner can output a fixed index for the function
represented as g(0)g(1) . . . g(k)(g(k))∞. For the converse, recall that a stabilizing sequence [4, 8]
for M on Lf is a finite sequence σ such that σ contains only elements from Lf , and for all τ such
that τ contains elements only from Lf , M(σ) = M(στ). If a learner M infers SLA3 with oracle
B then for each function f of the form (2n + 1)∞, one can in the limit discover a stabilizing
sequence for M on Lf as well as the largest first coordinate h(n) of the pairs that occur in this
stabilizing sequence; then h ≤T B′ and h(n) ≥ fA3(n) for all n; hence A3

′ ≤T B′.

The argumentation for SGA4 ∈ G[B] iff A′
4 ≤T B′ is symmetric. Furthermore, one can easily see

that SLA3 belongs to G, D and E, and that SGA4 belongs to L, D and E.

For the second part of the theorem, recall that the class S defined as SEA1⊕SDA2⊕SLA3⊕SGA4

consists of all functions g for which there are g1 ∈ SEA1 , g2 ∈ SDA2 , g3 ∈ SLA3 and g4 ∈ SGA4

such that for all x ∈ N and for all y ∈ {1, 2, 3, 4}, g(4x + y − 1) = gy(x). The hardness result is
an immediate consequence of the hardness results about the 4 components. Consider a function
g ∈ S and an oracle B. If A′

1 ≤T B′ and a text for Eg is given, then one can learn the component
g1 using the oracle B and the components g2, g3, g4 without any oracle. If A′

1 ≤T B′, A′
2 ≤T B′

and a text for Dg is given, then the components g1 and g2 can be learnt using the oracle B and
the components g3 and g4 do not require an oracle. If A′

1 ≤T B′, A′
2 ≤T B′, A′

3 ≤T B′ and a text
for Lg is given, then g1, g2, g3 can be learnt using the oracle B and learning the component g4

does not need an oracle. If A′
1 ≤T B′, A′

2 ≤T B′, A′
4 ≤T B′ and a text for Gg is given, then the

components g1, g2 and g4 can be learnt using the oracle B and the component g3 does not need
an oracle. Since A′

1 ≤T A′
2 ≤T A′

3 and A′
1 ≤T A′

2 ≤T A′
4, one can conclude that S satisfies the

claim of the theorem. �

5 Degrees of Inference

The question for which oracles A and B the inclusion E[A] ⊆ E[B] holds has been investigated
exhaustively [1, 6, 12]. Adleman and Blum [1] established that exactly the high oracles B sat-
isfy that E[A] ⊆ E[B] for all oracles A. Kummer and Stephan [12] showed that for non-high

9

recursively enumerable sets A and B, E[A] ⊆ E[B] iff A ≤T B. Besides the criterion E —
which corresponds to explanatory function learning — many other convergence criteria have
been studied [6, 12]. The approach taken in the present work differs from these by the fact that
the mode of convergence (explanatory or learning in the limit) does not vary, but the mode of
presentation of the input varies. The criterion E coincides with explanatory learning (and hence
the results coincide with that of explanatory learning), but for the criteria L and G some results
differ from standard explanatory learning.

Remark 10. Assume that E[A] * E[B] for some oracles A and B. Then there is a class R of
{0, 1}-valued functions witnessing this [12]. Now one defines

S = {g : ∃h ∈ R ∀x (g(2x) = h(x) ∧ g(2x + 1) = 1− h(x))}.

The class S satisfies for every oracle C that

R ∈ E[C] ⇔ S ∈ E[C] ⇔ S ∈ L[C] ⇔ S ∈ G[C] ⇔ S ∈ D[C].

As a consequence, one has that L[A] * L[B], G[A] * G[B] and D[A] * D[B].

The inference-degrees of D and E might be quite similar, as previous results already establish
that the high oracles are also exactly those which are omniscient for D. It can even be conjectured
that they are the same. For L and G, things are a bit different.

Remark 11. Jain and Sharma [10] proved that there is no maximal inference-degree for learn-
ing recursively enumerable sets from positive data. Kummer and Stephan [12] strengthened this
result by showing the following: if every A-recursively learnable class of languages is also B-
recursively learnable then A′ ≤T B′. To show this, they constructed a class SA,B consisting of
recursive sets. The class of characteristic functions of these sets witnesses the following corre-
sponding result: if L[A] ⊆ L[B] then A′ ≤T B′; similarly, if G[A] ⊆ G[B] then A′ ≤T B′. In
particular, for each oracle there is still a strictly more powerful oracle and so the structure of
inference-degrees for L and G differs from that of E and D because for the latter two models,
all high oracles form the maximal inference degree.

For many criteria the trivial inference degree consisting of all oracles which do not help to learn
anything unlearnable has been determined. In particular for explanatory learning of functions
and explanatory learning of sets from positive data, this trivial inference degree coincides with
all sets A ≤T K such that either A is recursive or has 1-generic Turing degree. These results can
be generalized to E-learning, D-learning, L-learning and G-learning.

Proposition 12. For an oracle A, the following five conditions are equivalent:

1. E[A] = E, that is, A is trivial for E-learning;
2. D[A] = D, that is, A is trivial for D-learning;

10

3. L[A] = L, that is, A is trivial for L-learning;
4. G[A] = G, that is, A is trivial for G-learning;
5. A ≤T K and the Turing degree of A is either recursive or 1-generic.

Conjecture 13. The inference-degrees of E and D coincide.

Conjecture 14. The inference-degrees of L and G both coincide with the inference-degrees of
learning recursively enumerable sets from positive data.

6 Additional Information and Teams

An oracle supplies information independent of the concrete learning task, only nonrecursive
oracles are relevant. In contrast to this, models of additional information are usually linked
to the concrete learning task, although they might not provide any nonrecursive information.
Indeed additional information is even finite, mostly an index or a bound on an index for some
aspect of the learning task. Freivalds and Wiehagen [7] showed that one can learn the class of
all recursive functions if the additional information supplied is an upper bound on an index of
the function to be learnt. This result holds independently of the chosen data type.

Proposition 15. REC is D-learnable, L-learnable and G-learnable if one is given an upper
bound on an index of the function to be learnt as additional information.

Proof. The proof uses the following notation: given finite set Z, let eZ be an index such that
ϕeZ

(x) = ϕz(x) for the first z ∈ Z (found in some algorithmic search) such that ϕz(x) converges.

Let f and a bound b on an index for f be given. The learner converges in the limit to eZ for a
set Z defined as follows. Call an index i ≤ b bad if there is an x in the domain of ϕi such that
the corresponding following condition holds:

– in the case of D-learning: (x, ϕi(x)) is present in the input D-text;
– in the case of L-learning: (x, ϕi(x)) is present in the input L-text for f or ∃j ≤ b (x is the

least number with ϕi(x) > ϕj(x)↓ and (x, ϕj(x)) is not present in the input L-text for f);
– in the case of G-learning: (x, ϕi(x)) is present in the input G-text for f or ∃j ≤ b (x is the

least number with ϕi(x) < ϕj(x)↓ and (x, ϕj(x)) is not present in the input G-text for f).

It is easy to verify that the learner can determine the set of bad indices in the limit. We let Z
be the set of indices i ≤ b which are not bad.

For the verification, let j ≤ b be an index for f . Then j is not bad. Furthermore, if i ≤ b and ϕi

is inconsistent with f then i is bad, as witnessed using j in the above conditions with x being
the minimal value such that ϕi(x)↓ 6= ϕj(x)↓. Thus Z is the set of indices below b which are
consistent with the input function and eZ is an index of the input function. �

11

As the additional information about an upper bound on the index of the function being learnt
gives no new result, the following more general setting is investigated.

Given I, J, H ∈ {E, D, L, G}, a class S is IJ(H)-learnable iff there is a learner M learning every
function f ∈ S in the following setting.

– M receives text for If as input, as in the concept of I-learning in previous sections;
– M outputs hypotheses of type J , that is, the output sequence of M , on initial segments of

the text of If , converges to an r.e. index of the recursively enumerable set Jf ;
– The additional information provided is an r.e. index of a recursively enumerable set V such

that V = Hf .

Additionally, we also consider the criteria of IJ-learning, where the first two conditions above
hold, but no additional information is supplied.

The reader should note that in the definition above, r.e. indices instead of characteristic in-
dices of Ef , Df , Lf and Gf are considered. Note that r.e. indices for Ef and indices of f as a
recursive function can be translated into each other, hence the criteria IE and I coincide for
I ∈ {D, E, L, G}. However, r.e. indices of Df , Lf , Gf cannot be translated into characteristic
indices for these sets.

Clearly, REC ∈ IJ(J) as the additional information already solves the learning task. Similarly,
the inclusions from Section 3 carry over to corresponding values of I (but fixed J, H). Further-
more, REC belongs to both IL(D) and IJ(E) for I, J ∈ {D, L, G, E}: an r.e. index for Df given
as additional information can be converted to an r.e. index for Lf , and r.e. index for Ef given as
additional information can be converted to an r.e. index for Jf ; so one can simply translate the
additional information into the required form. In some cases, data and additional information
can complement each other: for example, EJ ⊆ LJ(G) as the additional information G plus the
data L allow one to generate the data E.

Example 16. There is a uniformly r.e. family Df0 , Df1 , Df2 , . . . of sets such that for each x, the
function fx is recursive, fx(0) = x and the x-th learner Mx does not learn fx from Efx. Then the
class {f0, f1, f2, . . .} is in ID for I ∈ {E, D, L, G}, because one can find x from the input text in
the limit, and then an r.e. index for Dfx from x. However, the above class is not in EE(D) as
it is not in EE and the additional information for D is redundant, since it can be found in the
limit from the input data.

Proof. The idea is to define each Dfx , diagonalizing against the x-th machine Mx as follows.
The enumeration keeps an approximation gs of fx from below and an increasing diagonalization
marker ms. The initialization is m0 = 1 and g0 = (x)∞. For s ≤ x, the approximation remains
unchanged and for s > x, the following update rule is applied:

if there is a y with ms < y < s such that Mx on (0, gs(0)) (1, gs(1)) . . . (y, gs(y)) outputs
an index e (within s steps) with ϕe,s(y + 1)↓ < s, then let gs+1(t) = s + 1 for t > y,
gs+1(t) = gs(t) for t ≤ y and ms+1 = y + 1; otherwise let gs+1 = gs and ms+1 = ms.

12

The resulting function is either almost everywhere constant or it receives for each y the final
value whenever ms becomes larger than y. Therefore fx is recursive. Furthermore, the set Dfx

is easily seen to be r.e. as (y, z) ∈ Dfx if gs(y) 6= z for some s > z. Furthermore, Mx does not
learn fx from Efx by the explicit diagonalization above. �

The next theorem characterizes that a criterion J is more powerful than a criterion I iff REC
can be HI(J)-learnt for H ∈ {E, D, L, G} iff one can effectively convert r.e. indices for Jf to
r.e. indices for If , uniformly in all f .

Theorem 17. For all members I and J of {E, D, L, G}, the following statements are equivalent.

1. One can effectively translate every r.e. index of Jf into an r.e. index of If (uniformly in all
f);

2. I ⊆ J , that is, without any additional information and using hypotheses of type E, every
class learnable from data of type I is also learnable from data of type J ;

3. EE(I) ⊆ EE(J), that is, for every class S, if S can be learnt with data E, with hypothesis
space E and with additional information I then S can also be learnt with data E, hypothesis
space E and additional information J ;

4. REC ∈ EI(J);
5. REC ∈ DI(J);
6. REC ∈ LI(J);
7. REC ∈ GI(J).

Proof. The claim of the theorem is trivial when I = J , so suppose otherwise. Let (I, J) be one
of (L, D), (D, E), (L, E) and (G, E). Then I ⊆ J by Theorem 5 and it is easy to verify that
every r.e. index for Jf can be translated into an r.e. index for If . Thus, 1–7 hold.

Note that item 4 implies item 3 because if REC ∈ EI(J) then one can convert J-indices
using E-text into I-indices in the limit and thus every EE(I)-learnable class can be EE(J)-
learnt by converting the index of the given J-additional information to an index for I-additional
information. Similarly, item 1 implies item 3. Furthermore, items 5-7 clearly imply item 4.

So assume now that (I, J) /∈ {(E, E), (D, D), (G, G), (L, L), (L, D), (D, E), (L, E), (G, E)}. By
the discussion in the previous paragraph, it suffices to prove that items 2 and 3 do not hold.

Theorem 5 implies that I * J and hence item 2 does not hold.

Item 3 is now disproven by considering each relevant case.

EE(G) 6⊆ EE(L) and EE(L) 6⊆ EE(G): these two non-inclusions follow from the observation of
Case and Lynes [5]. Their result [5, Theorem 1] implies the existence of a class S1 ∈ EL− EE
of recursive {0, 1}-valued functions (one can take S1 to be the set of characteristic functions of
the languages in the class of languages which witnesses that one can synthesize grammars in
the limit, but cannot synthesize decision procedures in the limit, from E-texts for characteristic
functions of languages as input). By symmetry, there is also a class S0 ∈ EG−EE of recursive
{0, 1}-valued functions (by letting S0 = {gf : f ∈ S1}, where gf (x) = 1− f(x)).

13

As S1 ∈ EL, it follows that S1 ∈ EE(G) because one can use the additional information for Gf

for translating an r.e. index for Lf into an r.e. index for Ef . On the other hand, S1 /∈ EE(L) as
an r.e. index for Lf can be found in the limit from input Ef (since S1 ∈ EL) and is therefore
useless as additional information for learning S1. Hence S1 ∈ EE(G) − EE(L). Similarly S0 ∈
EE(L) − EE(G). These examples also show that EE(D) 6⊆ EE(L) and EE(D) 6⊆ EE(G) as
for {0, 1}-valued functions, EE(D) and EE(E) coincide.

Example 16 gives a class which is in ED but not in EE(D). This class is in EE(G) too, as an
r.e. index for Gf along with an r.e. index for Df can be used to generate an r.e. index for Ef :

Ef = {(x, y) : ∃z > y [(x, z) ∈ Gf ∧ ∀u ∈ {0, 1, 2, . . . , z} − {y} ((x, u) ∈ Df)]}.

Hence this example witnesses EE(G) 6⊆ EE(D) and EE(E) 6⊆ EE(D). �

A further important topic is the question of team-learning where a class S is [m, n]IJ-learnable
iff there is a team of n learners such that on every text for a set If for a function f in S at least
m members of the team converge to an r.e. index for the language Jf . Here are some sample
results which could be extended with well-known techniques.

Proposition 18. [2, 3]IE = [1, 1]IE for all I ∈ {E, D, L, G}. That is, for all modes of input
presentation and as long as the hypotheses have to be of type E, any [2, 3]IE-learner can be
replaced by a [1, 1]IE-learner which is the same as an I-learner.

Proof. Let M1, M2, M3 be a given [2, 3]IE-team learning S. Without loss of generality, the
size of the hypotheses of the machines increases at every mind change. Then a new learner N
simulates M1, M2, M3 and considers at every stage s the current outputs of the learning machines;
in order of their size they are denoted as e1, e2, e3. In case ϕe1(x) = ϕe2(x) for all x ≤ s where
these two values are output within s steps of computation, the output of N does not depend
on e3 and is a value f(e1, e2) such that ϕf(e1,e2)(x) takes ϕe1(x) or ϕe2(x), whichever converges
first. Otherwise the learner outputs g(e1, e2, e3) such that ϕg(e1,e2,e3)(x) is y iff at least two of
the values ϕe1(x), ϕe2(x) and ϕe3(x) are y. For the verification, note that at least two machines
converge and their final hypotheses e1 and e2 are eventually below the hypothesis of the third
machine. If ϕe1 and ϕe2 are consistent then ϕf(e1,e2) equals f as one of these two functions must
be f . If they are inconsistent, the third machine must converge as well to some final value e3

and ϕg(e1,e2,e3) is equal to f . �

This proof technique can be generalized to obtain the following result which was for EE already
obtained by Pitt and Smith [15].

Theorem 19. For I ∈ {E, D, L, G}, [m, n]IE = [1, k]IE iff 1
k+1

< m
n
≤ 1

k
.

In the case of ED-learning where the data is of type E and the hypotheses are of type D, one
can assume that every inconsistent hypothesis, that is, every hypothesis e for a set De with
(x, f(x)) ∈ De, is eventually updated and replaced by another one. Then [2, 3]ED = [1, 1]ED
by simply taking the union of the two oldest hypotheses in each stage. Again one can generalize
the result.

14

Proposition 20. [m, n]ED = [1, k]ED iff 1
k+1

< m
n
≤ 1

k
.

The results can be very different if neither the data nor the hypotheses are of type E; then they
have some similarity to the case of language learning.

Remark 21. Translating results on language learning obtained by Jain and Sharma [11] yields
[1, 1]GG ⊂ [2, 3]GG ⊂ [1, 2]GG = [3, 6]GG ⊂ [2, 4]GG and [1, 1]LL ⊂ [2, 3]LL ⊂ [1, 2]LL =
[3, 6]LL ⊂ [2, 4]LL.

7 Conclusion

One of the key distinctions in the criteria that determine a learning paradigm is between “positive
data only” and “both positive and negative data”, or more generally, between implicit and
explicit information about the structure to identify. That distinction takes a simple form in
case the structure to identify is a set of objects taken from some universe, with the potential
properties of the set being expressed as: “is this object in the universe a member of the set?":
a positive datum is then a member of the set and a negative datum a nonmember of the set.
Moreover, the situation is symmetric. Not only do positive data fully determine negative data,
which allows them to leave them implicit; negative data also fully determine positive data, and if
the negative data were all provided to the learner then the positive data could all be left implicit.

Although the graph Ef of a function f is a set, the distinction between positive and full in-
formation does not carry over to this special type of sets as one can derive that (x, y) /∈ Ef

after discovering that there is some z 6= y with (x, z) ∈ Ef . Hence the idea behind the current
work is to take an alternative approach and look at the sets Df , Lf , Gf instead of Ef and to
present them by text, that is, in the form of positive data. It was shown that these four types
of information are all different and that the only inclusions to hold between two distinct criteria
are D ⊆ E, L ⊆ E, G ⊆ E and L ⊆ D, that is, every class of functions learnable from D-text
is also learnable from E-text and so on. Then it was investigated to which extent oracles can
support learning and bridge the gaps between various types of data presentation. This turned
out to be possible for E versus D as the class REC of all recursive functions is learnable from
D-texts using suitable oracles, but oracles cannot bridge the gaps found between learning from
L-texts and G-texts.

For inference degrees, there were parallels between the inference degrees of learning language-
classes from text and learning functions from L-text or G-text, respectively. It is an open problem
whether these three types of inference degrees are the same. Similarly, it is open whether the
inference degrees of learning from D-texts are the same as those for learning from E-texts.

Besides attacking these two open problems, further work could also study the impact of additional
information for learning from these novel types of data presentations in the future. Furthermore,
team hierarchies could be investigated in more detail.

Acknowledgments. We thank the anonymous referees for several useful comments.

15

References

1. Lenny Adleman and Manuel Blum. Inductive inference and unsolvability. Journal of Symbolic
Logic, 56:891–900, 1991.

2. Dana Angluin. Inductive inference of formal languages from positive data. Information and
Control, 45:117–135, 1980.

3. Janis Bārzdiņš. Two Theorems on the Limiting Synthesis of Functions. Theory of Algorithm
and Programs I:82–88. Latvian State University, 1974.

4. Lenore Blum and Manuel Blum. Toward a mathematical theory of inductive inference.
Information and Control, 28:125–155, 1975.

5. John Case and Christopher Lynes. Inductive inference and language identification. Proceed-
ings of the of the Ninth International Colloquium on Automata, Languages and Program-
ming — ICALP, edited by Mogens Nielsen and Erik Meineche Schmidt, LNCS 140, 107–115,
Springer-Verlag, Heidelberg, 1982.

6. Lance Fortnow, William Gasarch, Sanjay Jain, Efim Kinber, Martin Kummer, Steven Kurtz,
Mark Pleszkoch, Theodore Slaman, Robert Solovay and Frank Stephan. Extremes in the
degrees of inferability. Annals of Pure and Applied Logic, 66:231–276, 1994.

7. Rūsins Freivalds and Rolf Wiehagen. Inductive inference with additional information. Elec-
tronische Informationverarbeitung und Kybernetik, 15:179–195, 1979.

8. Mark Fulk. Prudence and other conditions on formal language learning. Information and
Computation, 85:1–11, 1990.

9. E. Mark Gold. Language identification in the limit. Information and Control, 10:447–474,
1967.

10. Sanjay Jain and Arun Sharma. On the non-existence of maximal inference degrees for
language identification. Information Processing Letters, 47:81–88, 1993.

11. Sanjay Jain and Arun Sharma. Computational limits on team identification of languages.
Information and Computation, 130(1):19–60, 1996.

12. Martin Kummer and Frank Stephan. On the structure of degrees of inferability. Journal of
Computer and System Sciences, Special Issue COLT 1993, 52:214–238, 1996.

13. Piergiorgio Odifreddi. Classical Recursion Theory. North-Holland, Amsterdam, 1989.
14. Daniel Osherson, Michael Stob and Scott Weinstein. Systems That Learn, An Introduction

to Learning Theory for Cognitive and Computer Scientists. Bradford — The MIT Press,
Cambridge, Massachusetts, 1986.

15. Leonard Pitt and Carl H. Smith. Probability and plurality for aggregations of learning
machines. Information and Computation, 77:77–92, 1988.

16. Hartley Rogers. Theory of Recursive Functions and Effective Computability. McGraw-Hill,
New York, 1967.

17. Robert Soare. Recursively Enumerable Sets and Degrees. A Study of Computable Functions
and Computably Generated Sets. Springer-Verlag, Heidelberg, 1987.

16

