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Abstract

Smith, Wiehagen and Zeugmann (1997) showed an interesting connection between learn-
ing with bounded number of mind changes from informants and classification from infor-
mant. They showed that if an indexed family of languages L is learnable via informants,
using at most m mind changes, then one can partition 2N , the class of all languages, into
m+2 subclasses L1, . . . ,Lm+2 such that (1)

⋃
i∈{1,2,...,m+1} Li = L, and (2) (L1, . . . ,Lm+2)

can be classified from informants. However Smith, Wiehagen and Zeugmann (1997) left
open whether a similar result also holds for learning from texts. We show that such a result
does not hold for texts.

1 Introduction

Consider the identification of formal languages from positive data. A learner is fed all the
strings and no nonstrings of a language L (the so called text of L), in any order, one string at a
time. The learner, as it is receiving the data, outputs a sequence of grammars. The learner is
said to identify (learn, infer) L just in case the sequence of grammars converges to a grammar
for L. A class of languages is learnable if some machine learns each language in the class. This
is essentially the paradigm of identification in the limit (called TxtEx) introduced by Gold
(1967). One may also consider the situation in the above model where a learner receives both
positive and negative data, that is elements of the graph of the characteristic function of L

(called informant for L) as input. This leads to the identification criterion known as InfEx
(see Gold (1967)).

Note that in the above learning model, a learner is expected to eventually come up with
a grammar for the input language. Classification problem contrasts with the above model.
Suppose we are given classes L1,L2, . . . ,Ln. A classifier is given as input data about an arbitrary
language L ∈

⋃
i∈{1,2,...,n} Li. Based on the data, the classifier has to determine i such that

L ∈ Li. Thus, instead of eventually determining a grammar for L, the classifier just needs to
say which class L is from. Classification problem arises in several natural situations such as
medical diagnosis. We refer the reader toWiehagen and Smith (1995), andSmith, Wiehagen and
Zeugmann (1997) for detailed discussion on the classification problem. Classification problem
in different settings has also been studied by Duda and Hart (1973), Bylander, Allemang and
Tanner (1991), Ben-David (1992), Cho and Reggia (1993), and Freivalds and Hoffmann (1994).

It is interesting to explore connections between identification of formal languages and clas-
sification. On one hand, one can find disjoint classes of languages which are finitely (that is
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without any mind changes) classifiable, but none of these classes is TxtEx or InfEx-identifiable.
On the other hand, all infinite identifiable classes can be split into subclasses which are not clas-
sifiable, and into subclasses which are classifiable (where the classification machine is allowed
to output arbitrarily on inputs from outside the class).

Smith, Wiehagen and Zeugmann (1997) showed an interesting connection between learning
with bounded number of mind changes from informants and classification from informant. They
showed that if an indexed family of languages L is learnable via informants, using at most m

mind changes, then one can partition 2N , the class of all languages, into m + 2 subclasses
L1, . . . ,Lm+2 such that

(1)
⋃

i∈{1,2,...,m+1} Li = L.
(2) (L1, . . . ,Lm+2) can be classified from informants.
Note that the above result is also related to learning by refutation (see Mukouchi and

Arikawa (1993), Lange and Watson (1994), Jantke (1995), and Jain (1998)) where a machine
is supposed to refute languages which are outside the class: the input language is outside L iff
the classifier determines that the input language is in Lm+2.

However Smith, Wiehagen and Zeugmann (1997) left open whether a similar result also
holds for learning from texts. We show that such a result does not hold for texts. Thus, in
some sense, relationship between identification and classification is much more complex when
one considers learning from texts compared to when one considers learning from informant,
even if one is restricting attention to limited number of mind changes.

We now proceed formally.

2 Notations and identification criteria

The recursion theoretic notions not explained below are from Rogers (1967). N = {0, 1, 2, . . .}
is the set of all natural numbers, and this paper considers r.e. subsets L of N . ∅,∈,⊆,⊇,⊂,⊃
denote empty set, member of, subset, superset, proper subset, and proper superset respectively.
Cardinality of a set S is denoted by card(S). We use card(S) ≤ ∗ to denote that cardinality of
set S is finite. 2N denotes the power set of N , {L | L ⊆ N}.

R denotes the set of total recursive functions from N to N . E denotes the set of all
recursively enumerable sets. L ranges over E . L ranges over subsets of E . ϕ denotes a standard
acceptable programming system (acceptable numbering). ϕi denotes the function computed by
the i-th program in the programming system ϕ. We also call i a program or index for ϕi. For
a (partial) function η, domain(η) and range(η) respectively denote the domain and range of
partial function η. Wi denotes the domain of ϕi. Wi is considered as the language enumerated
by the i-th program in ϕ system, and we say that i is a grammar or index for Wi.

A text is a mapping from N to N ∪ {#}. We let T range over texts. Content of text T ,
content(T ), is defined to be the set of natural numbers in the range of T (i.e. content(T ) =
range(T ) − {#}). T is a text for L iff content(T ) = L. That means a text for L is an infinite
sequence whose range, except for a possible #, is just L.

An information sequence or informant is a mapping from N to (N × N) ∪ {#}. We let I

range over informants. Content of I, content(I), is defined to be the set of pairs in the range
of I (i.e. content(I) = range(I)−{#}). An informant for L is an infinite sequence I such that
content(I) = {(x, 1) | x ∈ L} ∪ {(x, 0) | x 6∈ L}.
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σ and τ range over finite initial segments of texts or information sequences, where the
context determines which is meant. Λ denotes the empty sequence. We denote the set of finite
initial segments of texts by SEG and set of finite initial segments of information sequences by
SEQ. We use σ � T (respectively, σ � I, σ � τ) to denote that σ is an initial segment of T

(respectively, I, τ). |σ| denotes the length of σ. T [n] denotes the initial segment of T of length
n. Similarly, I[n] denotes the initial segment of I of length n.

A learning machine M is a mapping from initial segments of texts (information sequences)
to (N ∪ {?}). The point of using ?’s is to avoid biasing the count of mind changes by requiring
a learning machine, on the empty sequence input, to output a program as its conjecture. For
criteria of inference discussed in this paper we assume without loss of generality that, for all
σ � τ , [M(σ) 6=? ⇒ M(τ) 6=?].

We say that M converges on T to i, (written: M(T )↓ = i) iff, for all but finitely many n,
M(T [n]) = i. Convergence on information sequences is defined similarly.

Definition 1 (Gold (1967), Case and Smith (1983)) Suppose a ∈ N ∪ {∗}.
(a) M TxtExa-identifies L (written: L ∈ TxtExa(M)) iff, for all texts T for L,

(i) M(T )↓ = j such that Wj = L.
(ii) card({n |? 6= M(T [n]) 6= M(T [n + 1])}) ≤ a.

(b) M TxtExa-identifies L iff M TxtExa-identifies each L ∈ L.
(c) TxtExa = {L | (∃M)[M TxtExa-identifies L]}.

TxtEx∗ is also referred to as TxtEx. We call each instance of ? 6= M(T [n]) 6= M(T [n+1])
as a mind change by M on T .

Definition 2 (Gold (1967), Case and Smith (1983)) Suppose a ∈ N ∪ {∗}.
(a) M InfExa-identifies L (written: L ∈ InfExa(M)) iff, for all information sequences I for L,

(i) M(I)↓ = j such that Wj = L.
(ii) card({n |? 6= M(I[n]) 6= M(I[n + 1])}) ≤ a.

(b) M InfExa-identifies L iff M InfExa-identifies each L ∈ L.
(c) InfExa = {L | (∃M)[M InfExa-identifies L]}.

A classifier is same as an inductive inference machine, except that its output is interpreted
differently.

Definition 3 (Wiehagen and Smith (1995), Smith, Wiehagen and Zeugmann (1997))
Suppose L1,L2 . . . ,Ln ⊆ 2N .
(a) M classifies L from texts with respect to (L1, . . . ,Ln) iff, for all texts T for L, M(T )↓ = j

such that L ∈ Lj .
(b) M classifies (L1,L2, . . . ,Ln) from texts iff M classifies each L ∈

⋃
i∈{1,2,...,n} Li from texts,

with respect to (L1,L2, . . . ,Ln).
(c) TxtCL = {(L1, . . . ,Ln) | (∃M)[M classifies (L1, . . . ,Ln) from texts ]}.

Definition 4 (Wiehagen and Smith (1995), Smith, Wiehagen and Zeugmann (1997))
Suppose L1,L2 . . . ,Ln ⊆ 2N .
(a) M classifies L from informants with respect to (L1, . . . ,Ln) iff, for all informants I for L,
M(I)↓ = j such that L ∈ Lj .
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(b) M classifies (L1,L2, . . . ,Ln) from informants iff M classifies each L ∈
⋃

i∈{1,2,...,n} Li from
informant, with respect to (L1,L2, . . . ,Ln).
(c) InfCL = {(L1, . . . ,Ln) | (∃M)[M classifies (L1, . . . ,Ln) from informants ]}.

A class L = {L0, L1, . . .} is said to be an indexed family iff there exists a recursive function
f such that, for all i and x, [x ∈ Li iff f(i, x) = 1].

Smith, Wiehagen and Zeugmann (1997) showed that for any indexed family L ∈ InfExm,
there exists a partition of 2N into m + 2 disjoint classes L1, . . . ,Lm+2 such that

(1)
⋃

i∈{1,2,...,m+1} Li = L.
(2) (L1, . . . ,Lm+2) ∈ InfCL.
They however left open whether a similar result holds for learning/classification from texts.

In this paper we show that this is not the case.

3 Results

We first show the following lemma, which is useful in proving our theorems. This lemma is
essentially based on locking sequence argument (see Blum and Blum (1975)).

Lemma 5 Suppose (L1,L2, . . . ,Ln) ∈ TxtCL, where Li’s are disjoint. Fix i such that 1 ≤
i ≤ n. Suppose L ∈ Li. Then there exists a finite S ⊆ L such that (∀L′ | S ⊆ L′ ⊆ L ∧ L′ ∈
⋃

j∈{1,2,...,n} Lj)[L
′ ∈ Li].

Proof. Suppose (L1,L2, . . . ,Ln) ∈ TxtCL as witnessed by M. Let L ∈ Li be given.

Claim 6 There exists a σ such that content(σ) ⊆ L, and

(∀τ | σ � τ ∧ content(τ) ⊆ L)[M(τ) = M(σ)]

Proof. Suppose by way of contradiction otherwise. Thus

(∀σ | content(σ) ⊆ L)(∃τ | σ � τ ∧ content(τ) ⊆ L)[M(σ) 6= M(τ)] (1)

We will construct σj , j ∈ N , such that (i) content(σj) ⊆ L, (ii) T =
⋃

j∈N σj is a text for
L, and (iii) M on T makes infinitely many mind changes. This would be a contradiction to M
witnessing that (L1,L2, . . . ,Ln) ∈ TxtCL.

Let σ0 = Λ. Suppose σj has been defined. Let τj be such that σj � τj , content(τj) ⊆ L,
and M(σj) 6= M(τj). Note that such a τj exists by (1). Let σj+1 be an extension of τj such
that content(σj+1) = content(τj) ∪ {x | x ∈ L ∧ x ≤ j}.

It is easy to verify that (i), (ii) and (iii) above are satisfied. Claim follows. 2

Now by above claim there exists a σ, with content(σ) ⊆ L, such that

(∀τ | σ � τ ∧ content(τ) ⊆ L)[M(τ) = M(σ)].

Lemma follows by taking S = content(σ).
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Theorem 7 There exists an indexed family L such that
(a) L ∈ TxtEx0,
(b) for all m ≥ 1, there does not exist a partition of 2N into classes L1,L2, . . . ,Lm+1 such

that

(b.1) L1 ∪ L2 ∪ · · · ∪ Lm = L. (Thus, Lm+1 = 2N − L).
(b.2) (L1,L2, . . . ,Lm+1) ∈ TxtCL.

Proof. Let L = {N} (i.e. L contains only one language, that is N). Clearly, L ∈ TxtEx0.
Now suppose by way of contradiction that, for some m, L1,L2, . . . ,Lm+1, (b.1) and (b.2) above
are satisfied. Without loss of generality, assume m = 1 (since only one of Li, 1 ≤ i ≤ m, is non-
empty). Thus, L1 = L, L2 = 2N − {N}. Let L = N . Let S be as given by Lemma 5. Thus, all
L′ ⊇ S must belong to L1 = L, a contradiction to L1 = L = {N}. Thus, (L1,L2) 6∈ TxtCL.

Theorem 7 can be extended as follows.

Theorem 8 For each n ∈ N , there exists an indexed family L of languages such that
(a) L ∈ TxtExn+1 − TxtExn,
(b) for all m, there does not exist a partition of 2N into classes L1,L2, . . . ,Lm+1 such that

(b.1) L1 ∪ L2 ∪ · · · ∪ Lm = L. (Thus, Lm+1 = 2N − L).
(b.2) (L1,L2, . . . ,Lm+1) ∈ TxtCL.

Proof. Let L1, L2, . . . , Ln+2 be infinite recursive languages such that L1 ⊂ L2 ⊂ · · · ⊂ Ln+2.
Let L = {Li | 1 ≤ i ≤ n + 2}.

Claim 9 L ∈ TxtExn+1 − TxtExn.

Proof. We first show that L ∈ TxtExn+1. Let gi denote a grammar for Li. Define M as
follows: M(σ) = gi, where i is least such that content(σ) ⊆ Li. It is easy to verify that M
TxtExn+1-identifies L.

Now suppose by way of contradiction that some M TxtExn-identifies L. Then define σi,
i ∈ {1, 2, . . . , n + 2}, as follows.

Let σ1 be such that content(σ1) ⊆ L1, and M(σ1) is a grammar for L1. Note that there
must exist such a σ1, since M TxtEx-identifies L1. Now suppose σi has been defined (here
1 ≤ i ≤ n+1). Then define σi+1 as follows: σi+1 is an extension of σi such that content(σi+1) ⊆
Li+1, and M(σi+1) is a grammar for Li+1. Note that there must exist such a σi+1, since M
TxtEx-identifies Li+1. Now let T be an extension of σn+2 such that T is a text for Ln+2. Now
M makes at least n + 1 mind changes on T . Thus M does not TxtExn-identify Ln+2. 2

Now suppose by way of contradiction that, for some m, L1,L2, . . . ,Lm+1, (b.1) and (b.2)
above are satisfied. Let L = L1. Without loss of generality suppose L ∈ L1, and let S be as
given by Lemma 5 for L. Thus, for all L′ such that S ⊆ L′ ⊆ L1, L′ ∈ L1. However, this is
impossible since there are infinitely many such L′, but L1 is finite (since L is finite). Thus,
(L1,L2, . . . ,Lm+1) 6∈ TxtCL.
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Corollary 10 For each m, there exists an indexed family L of languages such that
(a) L ∈ TxtExm,
(b) L 6∈ TxtExn, for n < m.
(c) there does not exist a partition of 2N into classes L1,L2, . . . ,Lm+2 such that

(c.1) L1 ∪ L2 ∪ · · · ∪ Lm+1 = L. (Thus, Lm+2 = 2N − L).
(c.2) (L1,L2, . . . ,Lm+2) ∈ TxtCL.

Note that the diagonalizing classes in above theorems and corollary can be easily made
infinite by changing L to L′ as follows. For L ∈ L, let L′

i = {〈i, x〉 | x ∈ L}. Let L′ = {L′
i | L ∈

L, i ∈ N}.
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