
Learning and Classifying

Sanjay Jain?1, Eric Martin2 and Frank Stephan??3

1 Department of Computer Science,
National University of Singapore, Singapore 117417, Republic of Singapore.

sanjay@comp.nus.edu.sg
2 School of Computer Science and Engineering,

The University of New South Wales, Sydney NSW 2052, Australia.
emartin@cse.unsw.edu.au

3 Department of Mathematics and Department of Computer Science,
National University of Singapore, Singapore 117543, Republic of Singapore.

fstephan@comp.nus.edu.sg

Abstract. We define and study a learning paradigm that sits between identification
in the limit and classification. More precisely, we expect a learner to determine in the
limit which members of a finite set D of possible data belong to a target language
L, where D is arbitrary. So as D becomes larger and larger, the task becomes closer
and closer to identifying L. But as D is always finite and L can be infinite, it can
still be expected that Ex- and BC-learning are often more difficult than performing
this classification task. The paper supports this intuition and makes it precise, taking
into account desirable constraints on how the learner behaves, such as bounding the
number of mind changes and being conservative. Special attention is given to various
forms of consistency. In particular, we might not only require consistency between the
members of D to classify, the current data σ and a language L, but also consistency
between larger sets of possible data to classify (supersets of D) and the same σ and
L: whereas in the classical paradigms of inductive inference or classification, only the
available data can grow, here both the available data and the set of possible data to
classify can grow. We provide a fairly comprehensive set of results, many of which
are optimal, that demonstrate the fruitfulness of the approach and the richness of the
paradigm.

Keywords. Classification of predicates; Multiclassification; Learning in the limit; Inductive
inference.

1 Introduction

A main purpose of the field of inductive inference is to study whether it is possible to identify
a device (usually a Turing machine or one of its equivalents) from an enumeration of the data

? Supported in part by NUS grants C252-000-087-001 and R252-000-420-112.
?? Supported in part by NUS grant R252-000-420-112.

1

it can produce. The identification is to be performed by a mechanical procedure, by analysing
growing finite sequences of data, where the mechanical procedure may be subjected to various
constraints in its computing abilities. (See [BB75,CS83,Gol67,JORS99,ZZ08] for example.) Two
of the important success criteria for learning are based on convergence to a correct answer from
some point onwards, when enough data has been seen. The first criterion is that a syntactical
description of the device has been correctly discovered and will be issued from the point of
convergence onwards (this success criterion is called explanatory or Ex-identification, [Gol67]).
The second criterion is that the behaviour of the device has been correctly identified and that
from the point of convergence onwards, a syntactical description of the device will be issued
but this syntactical description may vary in the face of new data (this success criterion is called
behaviourally correct or BC-identification, [Bār74b,CL82,CS83,OW82]).

Another line of research, which has received substantial though considerably less attention from
the community, consists in discovering in the limit some property of the device that generates the
data being analysed. This line of research is called classification. For an overview on classification,
see for example [FH94,WS95,SWZ97,CKSS04,GSPM98,Ste01,Jai01,JMS08]. Classification can
naturally be generalised to multiclassification, defined as the task of finding out whether the
device that generates the data to be observed has property P , for any P in a given set of
properties. Learning is, in some sense, the case of synchronous multiclassification for (usually
infinitely many) disjoint classification tasks: it amounts to discovering (the description of) a
device characterized as having or not the property of producing d, for any potential datum d.
Therefore, it has to be expected that learning is, in many cases, more difficult than classification.
This is still not as obvious as might first appear as we deal with full classification and not positive
only classification: the work of a classifier is to output either 1 or 0 to indicate whether, on the
basis of the sequence of data currently observed, the property holds or does not hold, respectively.

The simplest property one might conceive of is that of membership of some datum to the set
of data that the device can produce. The task is trivial with one mind change at most, as a
classifier just has to output 0 until the datum appears, if ever. Even if the focus is on the simple
properties expressed as data membership, more complex tasks naturally come to mind. In this
paper, we will investigate the task of multiclassification—but we will still talk about a “classifier”
rather than “multiclassifier”. For instance, the task to classify a device in one of the four classes
determined by whether or not it produces the datum 0 and whether or not it produces the datum
1 might require two mind changes sometimes, unless the presence of one number guarantees the
presence of the other in the set of data that can be generated by any of the target devices. A
natural generalisation of this idea then requires from the classifier that it deals with any finite
set of basic classification tasks, be they of the form of data membership or more complex ones.
For instance, one might want to consider Boolean combinations of data membership of a certain
kind as basic classification tasks.

We mentioned that learning is a kind of synchronous multiclassification, where each classification
task expresses the property of generating or not some set of data, for all possible such sets. More
precisely, learning can be seen as multiclassification of the basic property of data membership,

2

taking together the infinitely many possible data. So what we are describing is a framework where
learning is somehow the limit of multiclassification, where the number of basic classification
tasks taken together, and required to be finite, grows towards infinity: identifying a device is
the limiting case of discovering whether 0, 1, . . . , n belong to the set of data that can be
generated by that device when n becomes larger and larger. This is an appropriate setting,
as considering classification tasks individually is trivial, as we have observed already, whereas
considering infinitely many tasks together is too hard and too close to the limiting case of
considering all predicates. One of the aims of this paper is to make this precise and investigate
its consequences. In other words, we examine to which extent successful multiclassification makes
learning possible.

Besides just considering classification, we will also consider the effects of requiring the classifica-
tion process to be consistent or conservative. Formal definitions of these are given in Section 2.
Informally, consistent classification requires that after receiving data σ for some language in the
class, the classification done by the classifier should be consistent with at least one language L
in the class for which σ is a valid data. We also consider a variant called strong consistency,
in which we require that not only is the classification consistent, but for any input data σ, for
a large enough classification task, the classification is based on the same language L′ (which
may be different from the L mentioned above). This language L′ may or may not be in the
class under consideration, giving two versions of this stronger consistency requirement. Besides
consistency, we also consider conservativeness, where the classifier is not allowed to change its
classification unless it sees data which ensures that no language in the class is consistent with
the classification.

We proceed as follows. In Section 2, we introduce the background notation and notions, illus-
trated with a few examples. This covers the classical concepts of finite, Ex- and BC-learnability,
and the new concept of classification, possibly constrained by counterparts to the usual notions of
mind changes and conservativeness, and three different notions of consistency. Section 3 presents
negative results on BC-learnability, showing that it is harder than classification constrained in
various ways. In particular, Theorem 8 gives a class which is classifiable using no mind changes
but not BC-learnable. Theorems 9 to 11 show similar results for various versions of consistency
and conservativeness (where, the mind changes needed for classification is one or two, based on
the exact versions of consistency used). The number of mind changes in these results is opti-
mal, as for lower number of mind changes the separations no longer hold. In contrast, Section 4
shows how Ex-learnability can be obtained from various classification strategies. In particular,
Theorem 13 shows that the classes which can be strongly consistently and conservatively classi-
fied are explanatorily learnable. Section 5 investigates in more depth the relationships between
the various forms of classification. In particular, Theorem 16 shows the advantages of conserva-
tiveness over consistency, Theorem 17 shows the advantages of strong consistency over strong
consistency within class, and Theorem 18 shows the advantages of just using consistency over
strong consistency. Theorem 21 shows that in general, even for classes which have a consistent
classifier, the number of mind changes can be quite big, as a function of the number of predicates
to be classified.

3

2 Definitions and examples

2.1 General notation and learnability

We denote by N the set of natural numbers. The length of a finite sequence σ is denoted by
len(σ). Given a sequence σ, for i < len(σ), σ(i) represents the ith member of σ (starting with
the 0th element); for i ≤ len(σ), σ|i represents the initial segment of σ of length i. We use �
to denote concatenation between finite sequences, and identify a sequence of length 1 with its
unique member. Given x, i ∈ N, we denote by xi the unique member of {x}i. Given a set E, we
denote by E? the set of finite sequences of members of E. Given E ⊆ N, we denote by χE the
characteristic function of E.

We fix an acceptable enumeration (ϕe)e∈N of the partial computable functions over N, and for all
e ∈ N, denote by We the domain of ϕe (see for example [Rog67]). We fix a computable coding of
all finite sequences of members of N into N and denote by 〈n1, . . . , nk〉 the image of (n1, . . . , nk)
under this coding. The coding is chosen such that 〈n1, . . . , nk〉 ≤ 〈m1, . . . ,mh〉 whenever k ≤ h,
n1 ≤ m1, . . . , nk ≤ mk.

A language is a set of the form We. L ranges over classes of languages. Given a language L,
a text for L is an infinite enumeration of the members of L, possibly with repetitions of some
members of L and possibly with occurrences of #, the “pause” symbol [Gol67]. A text is a text
for some language. Given a text t, t|i represents the initial segment of t of length i. Given a
recursive function f , the canonical text for f is the infinite sequence whose ith term, i ∈ N, is
〈i, f(i)〉.
We denote (N∪ {#})? by SEQ. Given σ ∈ SEQ, cnt(σ) denotes the set of natural numbers that
occur in σ. A member σ of SEQ is said to be for a language L if cnt(σ) ⊆ L, and for L if σ is
for some member of L.

A learner is a partial computable function from SEQ into N ∪ {?} (where ? is a distinguished
symbol which allows the learner to express that it makes no hypothesis).

– Given a language L, a learner M Ex-learns L, see [Gol67], iff for all texts t for L, there exists
an e ∈ N such that (i) M(σ) is defined for all finite initial segments σ of t, (ii) We = L and
(iii) M(σ) = e for cofinitely many finite initial segments σ of t. A learner Ex-learns L iff it
Ex-learns all members of L.

– Given a language L, a learner M BC-learns L, see [Bār74b,CL82,OW82], iff for all texts t for
L, (i) M(σ) is defined for all finite initial segments σ of t and (ii) WM(σ) = L for cofinitely
many finite initial segments σ of t. A learner BC-learns L iff it BC-learns all members of L.

– Given a language L, a learner M finitely learns L, see [Gol67], iff M Ex-learns L and for
all texts t for L and for all finite initial segments σ1 and σ2 of t, if M(σ1) and M(σ2) are
both distinct from ? then they are equal. A learner finitely learns L iff it finitely learns all
members of L.

– Given c ∈ N, we say that a learner M that Ex-learns L makes at most c mind changes,
see [CS83], iff there is no infinite sequence t of members of N∪{#} and no strictly increasing

4

sequence (i0, . . . , ic) of c + 1 integers such that M(t|i0) 6= ? and M(t|ik) 6= M(t|ik+1) for all
k ≤ c; when c = 0 we rather say that M makes no mind change.

2.2 Classification

A predicate is a property that can be true or false for any given language (1 or 0 is then the
truth value of that predicate for that language, respectively). Given a sequence τ of predicates,
a language L and a sequence τ ′ of members of {0, 1}, we say that τ ′ is the sequence of truth
values of τ for L if τ ′ has the same length as τ and for all i < len(τ), τ ′(i) is the truth value
of τ(i) for L. For n ∈ N, let ∈n be the predicate that is true for languages that contain n, and
false for others. Let In denote the set of all predicates of the form ∈n, n ∈ N. Let Boole denote
the set of all predicates that are Boolean combinations of predicates in In.

Definition 1. Let P be a set of predicates.

A general P -classifier is a partial function C on SEQ × P ? such that for all σ ∈ SEQ, for all
n ∈ N and for all τ ∈ P n, C(σ, τ) is a member of {0, 1}n ∪ {?} or undefined.

A P -classifier is a partial computable general P -classifier.

When P is clear from the context, we simply write (general) classifier for (general) P -classifier.

Definition 2. Let P be a set of predicates and let C be a general P -classifier.

Given a language L, we say that C P -classifies L iff for all τ ∈ P ? and all σ for L, C(σ, τ) is
defined and the following holds. For any text t for L and any τ ∈ P ?, for cofinitely many finite
initial segments σ of t, C(σ, τ) is the sequence of truth values of τ for L.

We say that C P -classifies L iff C P -classifies all members of L.

When P is clear from the context, we simply write classifies for P -classifies.

Given a set P of predicates, it is useful to refer to any finite sequence of members of P as a
P -classification task. To say that a general P -classifier C is successful on a P -classification task
should be clear from Definition 2.4 Again, when P is clear from the context, we write more
simply classification task for P -classification task.

Classification, especially when requiring the classifier to decide whether the input language
belongs to one of several disjoint classes of languages, has been studied by several authors ear-
lier, see [FH94,WS95,SWZ97,CKSS04,GSPM98,Ste01,Jai01,JMS08] for example. The definitions
above are about multiclassification, in which the classifier has to simultaneously perform several
classification tasks.

4 Formally, it means that if τ denotes the classification task then C(σ, τ) is defined for all σ for L, and for all texts t for
a member L of L, for cofinitely many finite initial segments σ of t, C(σ, τ) is the sequence of truth values of τ for L
(so C P -classifies L iff C is successful on all P -classification tasks with respect to L).

5

We now consider the important constraint of consistency. In the context of this paper, and as op-
posed to the classical notion of consistency used for learnability (see [Ang80,Bār74a,JB81,WL76]),
it is natural to impose that the decisions on the predicates to be dealt with be consistent not only
with the available data (which can always be easily achieved when deciding a finite number of
predicates), but also with a language in the class under consideration. As classifiers have to deal
with arbitrarily large finite sets of predicates, one can further consider whether the classification,
on a particular input, is compatible with some fixed language L, provided that the predicate set
is large enough: otherwise, it may seem like the classifier is changing its classification when larger
and larger sets of questions from P are asked, even when the data provided is not changed. This
language L may or may not be required to be in the class of languages under consideration. The
difference is captured in the next definition by the notions of strong consistency within class and
strong consistency, respectively. In this definition, the only difference between C being strongly
consistent on L and C being strongly consistent within class on L is that the former refers to a
language L, whereas the latter refers to a language L ∈ L.

Notions of conservativeness [Ang80] and mind changes [CS83] will also play an important role
in this paper, but they are straightforward adaptations of the classical notions considered in
inductive inference. The definition below formalises both notions as well as the various concepts
of consistency previously discussed.

Definition 3. Let a class of languages L, a set of predicates P , and a general P -classifier C be
given.

We say that C is consistent on L iff for all σ ∈ SEQ and τ ∈ P ?, if σ is for L then there exists
L ∈ L such that σ is for L and C(σ, τ) is the sequence of truth values of τ for L.

We say that C is strongly consistent on L iff C is consistent on L and for all σ ∈ SEQ, if σ is
for L then there exists a language L and a τ ∈ P ? such that (i) σ is for L and (ii) for all τ ′ ∈ P ?

such that the set of predicates in τ is contained in the set of predicates in τ ′, C(σ, τ ′) is the
sequence of truth values of τ ′ for L.

We say that C is strongly consistent within class on L iff C is consistent on L and for all
σ ∈ SEQ, if σ is for L then there exists an L ∈ L and a τ ∈ P ? such that (i) σ is for L and
(ii) for all τ ′ ∈ P ? such that the set of predicates in τ is contained in the set of predicates in τ ′,
C(σ, τ ′) is the sequence of truth values of τ ′ for L.

(Based on [Ang80]) We say that C is conservative on L iff for all σ ∈ SEQ, x ∈ N ∪ {#} and
τ ∈ P ?, if there exists L ∈ L such that σ � x is for L and C(σ, τ) is the sequence of truth values
of τ for L then C(σ, τ) = C(σ � x, τ).

When L is clear from the context, we omit “on L” in the previous expressions.

Given a set P of predicates, a general P -classifier C that classifies L and c ∈ N, the notion C
makes at most c mind changes is defined by adapting in a straightforward manner the corre-
sponding definition for learners from [CS83] recalled at the end of Section 2.1.

6

2.3 Illustrative examples

The following first examples give an idea how classification works and show some straightforward
relations to learning theory.

Example 4. Assume that L is some superclass of the class of all finite sets. Then a con-
sistent and conservative In-classifier C for L works as follows: C

(
σ, (∈n0 ,∈n1 , . . . ,∈nk

)
)

=
(χS(n0), χS(n1), . . . , χS(nk)), where S = cnt(σ). Note that the class of all finite sets is Ex-
learnable; however, whenever L is a proper superset of the class of all finite sets, then L is
neither Ex-learnable nor BC-learnable [Gol67]. So classifiability does not imply learnability.

Assume that L consists of all sets with exactly 5 elements. Then L has an In-classifier C
which works as follows: If S = cnt(σ) has exactly 5 elements, then, C

(
σ, (∈n0 ,∈n1 , . . . ,∈nk

)
)

= (χS(n0), χS(n1), . . . , χS(nk)); otherwise C
(
σ, (∈n0 ,∈n1 , . . . ,∈nk

)
)

= ?. This In-classifier does
not make any mind change when the input text is for some language in L. However, no consis-
tent In-classifier can classify L with four mind changes or less, as consistent classifiers cannot
take the value ? when the input σ is for L. The same trade-off applies for Ex-learners versus
consistent Ex-learners (if it were the case that ? is forbidden for consistent Ex-learners as well).

The next example deals with nonrecursive sets. It shows that the lack of computability necessarily
leads to mind changes by the classifier. In subsequent results, we will mostly avoid such examples
and obtain separations of the notions via classes consisting of recursive sets only.

Example 5. Assume that L = {A} for some r.e. nonrecursive set A. While L is Ex-learnable
by the trivial learner which always outputs the same correct hypothesis for A and thus never
makes a mind change, no In-classifier can classify L with a bounded number of mind changes:
If L were In-classifiable with n mind changes then one could feed a recursive enumeration of
A as a text t into the classifier and, for every τ ∈ Inn+1, enumerate up to n + 1 sequences, at
least one of which is a sequence of truth values of τ for A. This contradicts Beigel’s Nonspeedup
Theorem and Kummer’s Cardinality Theorem [GM98].5 Hence L is not In-classifiable with n
mind changes, for any n.

The fact that a successful classifier of a learnable class does not immediately provide a learner of
that class is strengthened in the next example. It exhibits a class of languages L and a consistent
and conservative In-classifier that classifies L using at most one mind change, such that for all
finite initial segments of a text for some member of L, the classifier is incorrect on infinitely
many In-classification tasks.

Example 6. For all i ∈ N, let Li = {2j | j ≤ i} ∪ {2i + 1} and suppose that L is equal to
{2N} ∪ {Li | i ∈ N}. Let C be an In-classifier such that for all σ ∈ SEQ for L and members k,
n0, . . . , nk of N, the following holds.

5 Informally, Kummer’s cardinality theorem says that a set A is recursive if, for any m ≥ 1, there exists a Turing
machine which, for every x1, x2, . . . , xm, enumerates at most m elements, at least one of which is the cardinality of
{x1, x2, . . . , xm} ∩A.

7

– If there exists i ∈ N with 2i+ 1 ∈ cnt(σ) then C
(
σ, (∈n0 , . . . ,∈nk

)
)

= (χLi
(n0), . . . , χLi

(nk)).
– Otherwise, if the greatest number in {n0, . . . , nk}, say n, is both odd and greater than any

number in cnt(σ), then for all j ≤ k, C
(
σ, (∈n0 , . . . ,∈nk

)
)
(j) = 1 iff nj is even or nj = n.

– Otherwise, for all j ≤ k, C
(
σ, (∈n0 , . . . ,∈nk

)
)
(j) = 1 iff nj is even.

It is easy to see that C In-classifies L, is consistent and conservative, and makes at most one
mind change; also, for all σ ∈ SEQ, if σ is for 2N then there exist infinitely many sequences of
the form (∈n0 , . . . ,∈nk

) such that C
(
σ, (∈n0 , . . . ,∈nk

)
)
6= (χ2N(n0), . . . , χ2N(nk)).

3 Classification versus BC-learnability

We first provide a preliminary result on BC-learnability which will be useful to establish our
subsequent results on multiclassification.

Given a set L, the retraceable set RL determined from L is defined as follows. Write L as
{x0, x1, x2, . . .} where x0 < x1 < x2 . . .; then, RL = {〈x0, x1, . . . , xn〉 | n < cardinality of L}.

Proposition 7. Let e ∈ N be given. Let Le = {L | min(L) = e, L is recursive and infinite}.
Then L′e = {RL | L ∈ Le} is not BC-learnable.

Proof. BC-learnability of L′e implies BC-learnability of the class of infinite recursive languages
from informant, which is false [CL82]. ut

We start our investigations with three results on Boole-classification. Almost all other results
deal with In-classification.

Our first result shows that some class can be classified using no mind changes, even though
it cannot be BC-learnt. So as hypothesised in the abstract, identification can be harder than
multiclassification, even when the latter is highly restricted.

Theorem 8. There exists a class L of languages that some Boole-classifier classifies making
no mind change, but no learner BC-learns L.

Proof. Let L = {RL | L is an infinite recursive language}. Then L is not BC-learnable by
Proposition 7.

Let C be a Boole-classifier defined as follows. C((), τ) =?. For σ 6= () and τ ∈ Boole?, C first
computes the maximum n such that ∈n is used in one of τ ’s predicates. If σ is not for any member
of L or if cnt(σ) does not contain an element 〈x1, x2, . . . , xm〉 with m > n, then C(σ, τ) = ?;
otherwise, C(σ, τ) is the sequence of truth values of τ for RL, for any set L such that σ is for
RL (note that all such L give the same output for C(σ, τ)). It is easily verified that C classifies
L making no mind change. ut

8

Our next result shows that some class can be classified strongly consistently within class, using
a non-recursive classifier, by making at most one mind change, even though it cannot be BC-
learnt. Note that this is optimal as if it allows no mind change, then the output of a consistent
classifier on input ((), τ) must be correct. So the same lesson holds as for Theorem 8, this time
with classifiers whose classifications are better behaved, but which are not computable.

Theorem 9. There exists a class L of languages such that some strongly consistent within class
general Boole-classifier classifies L making at most one mind change, but no learner BC-learns
L.

Proof. Let M0,M1, . . . denote an effective enumeration of all partial computable learners. For all
e ∈ N, let Le be an infinite recursive set with min(L) = e such that RLe is not BC-learnt by Me.
Note that for all e ∈ N, there exists such an Le by Proposition 7. Let L = {∅} ∪ {RLe | e ∈ N}.
Then, clearly L is not BC-learnable as no learner Me BC-learns RLe ∈ L.

Define a general classifier C as follows. If σ is for ∅, then C(σ, τ) is the sequence of truth
values of τ for ∅; otherwise if, for some e, σ is for RLe , then C(σ, τ) is the sequence of truth
values of τ for RLe (note that unless cnt(σ) = ∅, σ can be for at most one RLe); otherwise,
C(σ, τ) = C(σ||σ|−1, τ). It is easy to verify that C classifies L, and makes at most one mind
change. ut

Our next result shows that some class can be classified strongly consistently within class, using
a partial-recursive classifier, by making at most two mind changes, even though it cannot be
BC-learnt. Note that this is optimal as if only one mind change is allowed, then Corollary 15
shows that such a result is not possible. So compared with Theorem 9, there is a cost of one
mind change for multiclassification to be computable.

Theorem 10. There exists a class L of languages such that some strongly consistent within
class Boole-classifier classifies L making at most two mind changes, but no learner BC-learns
L.

Proof. Let M0,M1, . . . denote an effective enumeration of all partial computable learners. Let
L = {N} ∪ {RL | L is infinite}. Then L is not BC-learnable by Proposition 7.

Define a classifier C as follows. If σ = () or if σ is not for any RL, then C(σ, τ) is the sequence
of truth values of τ in N. For σ 6= () and τ ∈ Boole?, C first computes the maximum n such
that ∈n is used in one of τ ’s predicates. If cnt(σ) does not contain an element 〈x1, x2, . . . , xm〉
with m > n, then C(σ, τ) is the sequence of truth values of τ in N; otherwise, C(σ, τ) is the
sequence of truth values of τ for RL, for any set L such that σ is for RL (note that all such L
give the same output for C(σ, τ)). It is easily verified that C classifies L making at most two
mind changes. ut

We now focus on In-classification. The last result of this section exhibits a case where BC-
learnability fails whereas consistent and conservative classification succeeds, even when the latter

9

is constrained to using very few mind changes. Note that the number of mind changes for
classification in the below theorem cannot be improved due to Theorem 13. So compared with
Theorem 10, the classifiers under consideration are not so well behaved in terms of consistency,
but enjoy an additional good behaviour, that of conservativeness.

Theorem 11. There exists a class L of languages such that some consistent and conservative
In-classifier classifies L making at most two mind changes, but no learner BC-learns L.

Proof. By the operator recursion theorem [Cas74], there exists a 1–1 recursive function p :
N2 → N that is increasing in both arguments and such that the following holds.

Let L = {Wp(i,j) | Wp(i,j) is infinite}.
Let M0,M1, . . . denote an effective enumeration of all partial computable learners. For each i ∈ N,
we construct Wp(i,·) as follows (the construction is run separately for each i, using variables that
are implicit functions of i). The procedure is very similar to the one used by Case and Smith
[CS83] to exhibit a class of functions that is not learnable by any BC-learner.

Initially, enumerate 〈0, p(i, 0)〉 in Wp(i,0). Let s ∈ N be given, and let W s
p(i,0) denote Wp(i,0) as

enumerated up to the start of stage s. Let x0 = 0. Let σ0 denote
(
〈0, ϕp(i,0)(0)〉). We now describe

stage s, for s = 0, 1, . . ., of the construction of Wp(i,·). An element is enumerated in Wp(i,·), only
if it is done via these stages (or the initialization above).

Stage s

1. Let js be such that (i) js > s, (ii) js is larger than any j such that 〈x, p(i, j)〉 is in W s
p(i,0),

and (iii) js > the number of computation steps that have taken place to define Wp(i,0) up to
now.

2. Enumerate 〈xs + 1, p(i, js)〉 into Wp(i,0). Let Wp(i,js) = W s
p(i,0) ∪ {〈x, p(i, js)〉 | x > xs}.

3. For all xs ≤ y, y ∈ N, let γys denote σs �
(
〈x, p(i, js)〉

)
xs<x≤y

.

4. Search for y > xs such that WMi(γ
y
s) contains 〈y + 1, p(i, js)〉.

If and when such a y is found, enumerate {〈x, p(i, js)〉 | xs < x ≤ y} into Wp(i,0), let xs+1 = y
and σs+1 = γys and go to stage s+ 1.

End stage s

We now show that for all i ∈ N, Mi does not BC-learn L. Let i ∈ N be given and consider the
construction above for Wp(i,·) for the corresponding i. We consider two cases.

– Case 1: There exists a (unique) stage s that starts but does not finish. Then for all y > xs,
〈y + 1, p(i, js)〉 6∈ WMi(γ

y
s). Thus Mi does not BC-learn Wp(i,js).

– Case 2: All stages finish. Then Wp(i,0) is infinite. Now for each s ∈ N and for y = xs+1,
〈y + 1, p(i, js)〉 ∈ WMi(γ

y
s) \Wp(i,0). Here note that γys = σs+1 for all s ∈ N, and

⋃
s∈N σs is a

text for Wp(i,0). Thus Mi does not BC-learn Wp(i,0).

10

This completes the proof that no learner BC-learns L. We now define a consistent and conser-
vative In-classifier C and show that it classifies L. Note that each language Wp(i,j), for j > 0 is
either ∅ or a recursive language (a decision procedure for which can be effective found from i, j,
in case we know that Wp(i,j) is not empty); Wp(i,0) is also recursive, though we may not be able
to effectively find a decision procedure for Wp(i,0) from i.

Let σ ∈ SEQ be for L, and let τ ∈ In? be given. Define C(σ, τ) as follows. Note that for
all i, j ∈ N, one can determine whether 〈x, p(i, j)〉 is in Wp(i,0) for some x, by running the
construction above for j steps (see step 1 in the construction above). If cnt(σ) = ∅, then C
outputs a sequence of nothing but 0’s. Otherwise, C determines the unique i such that cnt(σ) ⊆
{〈x, p(i, j)〉 | x, j ∈ N}. Let j be largest such that ∈〈x,p(i,j)〉 is in τ for some x. C first determines
the stage s which the construction of Wp(i,·) above reaches in time j. Then, C outputs the
sequence of truth values of τ in the language L defined as follows.

– If cnt(σ) ⊆ Wp(i,js), then L = Wp(i,js).
– If cnt(σ) * Wp(i,js) but there exists (a necessarily unique) j ∈ {j0, j1, . . . , js−1} such that

cnt(σ) ⊆ Wp(i,j), then L = Wp(i,j). Note that in this case, Wp(i,j) is the only language in L

which is consistent with σ.
– If cnt(σ) * Wp(i,j) for all j ∈ {j0, j1, . . . , js}, then js+1 must be defined. Then L = Wp(i,js+1).

Note that in this case, the sequence of truth values of τ for Wp(i,js+1) is the same as the
sequence of truth values of τ for Wp(i,0) (if it is infinite). Thus the sequence of truth values
of τ for Wp(i,js+1) is consistent with σ (irrespective of which Wp(i,·) is the input language, as
long as it is not Wp(i,j), j ∈ {j0, j1, . . . , js}).

It is easy to verify that the above classifier is conservative and makes at most two mind changes.
Note that if the input σ is not for Wp(i,j), for any j ∈ {j0, j1, . . . , js}, where i and s are as defined
above, then for σ to be for a language in the class, js+1 must be defined (otherwise, all Wp(i,j),
i, j ∈ N are either finite or not consistent with the input). Furthermore, for all x such that ∈x
is a predicate in τ , x ∈ Wp(i,0) iff x ∈ Wp(i,js+k) for any k ≥ 1 such that Wp(i,js+k) is not empty.
Thus, the above classifier classifies L and is consistent on L. ut

4 Classification versus finite and Ex-learnability

The first result of this section exhibits a class of languages that is easy to learn, as it is learnable
with no mind change, whereas classification requires sometimes to go through all possibilities of
making n predicates true or false before converging to the correct answer. So it is not always
true that learning is harder than multiclassification.

Theorem 12. There exists a class L of finite languages such that some learner finitely learns L

and some consistent and conservative In-classifier classifies L. Moreover, for all consistent In-
classifiers C and for all n ∈ N, there is τ ∈ Inn and a text t for L such that {C

(
t|i, τ

)
| i ∈ N}

has cardinality 2n.

11

Proof. Consider a 1–1 computable mapping from {(i, n) | 0 < n, i < n} into 2N and for
all n > 0 and i < n, denote by xi,n the image of (i, n) under this mapping. Consider a 1–1
computable mapping from {(I, n) | 0 < n, I ⊆ {0, . . . , n− 1}} into 2N + 1 and for all n > 0 and
I ⊆ {0, . . . , n− 1}, denote by yI,n the image of (I, n) under this mapping. Set

L =
{
{xi,n | i ∈ I} ∪ {yJ,n | J 6= I}

∣∣ n > 0, I ⊆ {0, . . . , n− 1}
}
.

Trivially, some learner finitely learns L by outputting ? until, for some n > 0 and I ⊆ {0, 1, . . . ,
n − 1}, all elements of the form yJ,n, J 6= I, appear in the input; at which point the learner
outputs an index for {xi,n | i ∈ I} ∪ {yJ,n | J 6= I}.
Let an In-classifier C be defined as follows. Let a member σ of SEQ be for L. If cnt(σ) = ∅ then
for all τ ∈ In?, C(σ, τ) is the sequence of len(τ) 0’s. Suppose that cnt(σ) 6= ∅, and let n be the
unique nonzero natural number such that all members of cnt(σ) are of the form xi,n or yJ,n. Let
I be the lexicographically first member of the powerset of {0, . . . , n−1} (identified with {0, 1}n)
such that σ is for L = {xi,n | i ∈ I} ∪ {yJ,n | J 6= I}. Note that L can be effectively determined
from σ. Then for all m ∈ N, τ ∈ Inm and j < m, let C(σ, τ)(j) be the truth value of τ(j) for L.
It is immediately verified that C is consistent and conservative and classifies L.

Now let C be a consistent In-classifier, and let n ∈ N \ {0} be given. Let τ denote (∈x0,n ,
. . . ,∈xn−1,n). By consistency of C, there exists a unique enumeration (Im)m<2n of the powerset
of {0, . . . , n − 1} such that for all m < 2n and for all j < n, C

(
(yI0,n, . . . , yIm−1,n), τ

)
(j) = 1 iff

xj,n ∈ Im. Then σ = (yI0,n, . . . , yI2n−2,n) is for {xi,n | i ∈ I2n−1} ∪ {yJ,n | J 6= I2n−1} and for all
j < n, C(σ, τ)(j) = 1 iff xj,n ∈ I2n−1; therefore, {C(σ|i, τ) | i < 2n} is of cardinality 2n. ut

The next results in this section show how to construct an Ex-learner from a classifier con-
strained in the maximum number of mind changes it is allowed to make, and by consistency and
conservativeness requirements. It is the first result which does not only compare the power of
multiclassification to the power of learning, but reveals a deeper relationship between both.

Theorem 13. Let L be a class of languages that some strongly consistent and conservative
In-classifier classifies making at most k mind changes for some k in N. Then some learner
Ex-learns L. Moreover, all members of L are recursive.

Proof. For all n ∈ N, set τn = (∈0, . . . ,∈n). Let C be a strongly consistent and conservative
In-classifier that classifies L making at most k mind changes. Define a learner M as follows. Let
σ ∈ SEQ be given. Then M(σ) is an integer e such that for all n ∈ N, n ∈ We iff either n ≤ len(σ)
and C(σ, τlen(σ))(n) = 1, or n > len(σ) and C(σ, τn)(n) = 1. Note that for all e ∈ N such that
M(σ) = e, We is recursive, a decision procedure for which can be effectively obtained from
σ. Furthermore, for learners outputting total decision procedures, BC-learning and Ex-learning
coincide. Thus, to complete the proof of the theorem, it suffices to verify that M BC-learns L.

Let a text t for L ∈ L be given. We determine a finite sequence (σi)i≤k of increasing finite initial
segments of t in such a way that we can then prove that for all finite initial segments σ of t which

12

extend σk, M(σ) is an index for L. Intuitively, we force a mind change by C for each transition
from σi to σi+1, for large enough τn.

The definition of (σi)i≤k is performed inductively together with the definition a sequence (ni)i≤k
of natural numbers such that for all i < k, len(σi) ≤ ni ≤ len(σi+1). Let σ0 be the empty
sequence, and let n0 ∈ N be such that for all n ≥ n0 and n′ ≥ n, C(σ0, τn) is an initial segment
of C(σ0, τn′) (such an n0 exists since C is strongly consistent). Let i < k be given and assume
that for all j ≤ i, σj and nj have been defined.

– If for all initial segments σ of t and all n such that n ≥ len(σ) ≥ ni, C(σ, τn) = C(σi, τn),
then clearly M(σ) is an index for L, for all initial segments σ of t with len(σ) ≥ ni.

– So suppose that there exists a finite initial segment σ of t and n such that n ≥ len(σ) ≥ ni
and C(σ, τn) 6= C(σi, τn). Since C is conservative, C(σi, τn) is not the sequence of truth values
of τn for L′, for any L′ ∈ L which contains cnt(σ). So since C is consistent, C(σi, τn) is not an
initial segment of C(σ, τn′) for any n′ ≥ n. We then set σi+1 = σ and let ni+1 ≥ n be such that
for all n′′ ≥ ni+1 and n′′′ ≥ n′′, C(σi+1, τn′′) is an initial segment of C(σi+1, τn′′′) (such an ni+1

exists since C is strongly consistent.) Note that for all m ≥ ni+1, C(σi+1, τm) 6= C(σi, τm): this
follows from the respective definitions of σi, σi+1, ni and ni+1, the fact that ni ≤ n ≤ ni+1,
and the fact that C(σi, τn) is an initial segment of C(σi, τm), but not of C(σi+1, τm).

Since C makes no more than k mind changes, we conclude that for all finite initial segments σ
of t that extend σk and are of length greater than nk, M(σ) is an index of the language L. ut

Now we examine whether the behaviour of a classifier can be improved “for free”. If at most
one mind change is allowed, then indeed a better form of consistency can be achieved from the
weakest one.

Theorem 14. Let L be a class of languages such that some consistent In-classifier classifies
L making at most one mind change. Then some strongly consistent In-classifier classifies L

making at most one mind change.

Proof. Let C be a consistent In-classifier that classifies L making at most one mind change on
any text, for any τ . Given i ∈ N, let τi denote (∈0, . . . ,∈i), and let Ai be the set of all j ≤ i
with C

(
(), τi

)
(j) = 1. Let B denote the set of all members of

⋃
L that do not belong to Ai for

infinitely many i ∈ N, and let E denote the set of members of
⋃
L that belong to Ai for all but

finitely many i ∈ N. We will first make an observation on the relationship between B and L,
then use it to show that E is r.e., and then prove that E is actually recursive. This together
with another observation, this time on the relationship between L and E, will allow us to define
a strongly-consistent In-classifier which classifies L making at most 1 mind change.

Given x ∈ N and i ≥ x, let Six denote C
(
(), τi

)
if x ∈ Ai, and C

(
(x), τi

)
otherwise. First note

that for all x ∈ B, there exists a unique language Lx in L such that x ∈ Lx, and for all i ≥ x,
Six is the sequence of truth values of τi for Lx. Indeed, for x ∈ B, since C makes at most one

13

mind change, C
(
(x), τi

)
is necessarily the sequence of truth values of τi for Lx for the infinitely

many i ∈ N such that x /∈ Ai; this uniquely determines Lx. Since C is consistent, C
(
(), τi

)
is

then necessarily the sequence of truth values of τi for Lx for all i ∈ N such that x ∈ Ai.
We first show that E is r.e. There is nothing to prove if E is recursive, so assume otherwise
for a contradiction. For another contradiction, suppose that there exists x ∈ E such that for all
i ≥ x, Six is an initial segment of Si+1

x . Since Six = C
(
(), τi

)
for cofinitely many i ∈ N, it follows

from the definition of Ai, i ∈ N, that for all y ≥ x, either y ∈ E and Syx(y) = 1, or y /∈ E and
Syx(y) = 0, which contradicts the hypothesis that E is not recursive. Thus, for all x ∈ E, there
exists an i ≥ x such that Six is not an initial segment of Si+1

x . Together with the observation, in
the previous paragraph, on the members of B, this implies that E is the set of all x ∈

⋃
i∈NAi

such that Six is not an initial segment of Si+1
x for some i ≥ x, hence E is r.e.

We now show that E is recursive. First, consider the case that there exists a sequence (xi)i∈N of
pairwise distinct members of E and a sequence (ni)i∈N of members of N such that for all i ∈ N,
ni ≥ xi and xi /∈ Ani

. One can assume without loss of generality that the sequences (xi)i∈N and
(ni)i∈N are recursive, where xi < xi+1. For all i ∈ N, set Si = C

(
(xi), τni

)
. Then for all i ∈ N, Si

is the sequence of truth values of τni
in every language in L that contains xi; moreover, since xi

belongs to Aj for cofinitely many j ∈ N, Si is an initial segment of C
(
(), τj

)
for cofinitely many

j ∈ N. Hence for all i, j ∈ N, one of Si and Sj is an initial segment of the other. Furthermore, (a)
for all x ∈ E, for all i ≥ x, Si(x) = 1, as otherwise, x does not belong to Aj for cofinitely many
j ∈ N and (b) for all y ∈ B with y ≤ ni, S

i(y) = 0, as otherwise, y belongs to Aj for cofinitely
many j ∈ N. Thus E is the language L such that for all i ∈ N, Si is the sequence of truth values
of τni

for L. Moreover, since the sequence (Si)i∈N is r.e., E is recursive. On the other hand, if
there exists no infinite sequence (xi)i∈N of pairwise distinct members of E and corresponding
sequence (ni)i∈N of members of N such that for all i ∈ N, ni ≥ xi and xi /∈ Ani

, then
⋃
iAi ∩ B

is r.e. (as
⋃
iAi ∩ B consist of all x ∈

⋃
iAi such that, for some j ≥ x, x 6∈ Aj and x 6∈ E; here

note that only finitely many members x of E satisfy that for some j ≥ x, x 6∈ Aj). Thus E is
recursive, as both E and {i : i ∈ Ai} \E = {i : i ∈ Ai}∩ (

⋃
iAi∩B) are recursively enumerable,

and the recursive set {i : i ∈ Ai} contains all but finitely many elements in E.

Now observe that no member L of L is strictly included in E. Otherwise, there would be a
member σ of SEQ with cnt(σ) ⊆ L and i ∈ N such that x ∈ E ∩ Ai \ L but C(σ, τi)(x) = 0.
But then there exists a σ′ ∈ SEQ extending σ such that cnt(σ′) ⊆ E and C(σ′, τi)(x) = 1.
Furthermore, since x ∈ Ai, we have C((), τi)(x) = 1. Thus, C((), τi) 6= C(σ, τi) 6= C(σ′, τi), a
contradiction to C making at most 1 mind change.

We can now define a strongly-consistent In-classifier C ′ as follows. Let σ ∈ SEQ be for L, and let
τ ∈ In? be given. If σ is for E then C ′(σ, τ) is the sequence of truth values of τ for E. Otherwise,
pick least x ∈ cnt(σ) that does not belong to E, and then C ′(σ, τ) is the sequence of truth values
of τ for Lx, the unique member of L that contains x. (By the definition of Lx, x ∈ B, C ′(σ, τ)
can be effectively determined using the sequences Six, i ≥ x.) Obviously, C ′ classifies L with at
most one mind change. ut

14

As a corollary to the previous theorem, we can obtain another result which, similarly to Theo-
rem 13, reveals a relationship between multiclassification and learning.

Corollary 15. Let L be a class of languages. If some consistent In-classifier classifies L making
at most one mind change then some learner Ex-learns L.

Proof. Note that every consistent In-classifier which makes at most one mind change is also
a conservative In-classifier which makes at most one mind change. Thus, the corollary follows
from Theorems 13 and 14. ut

5 Limitations of classification variously constrained

The results in this section have the flavour of the standard results in inductive inference that
compare how various constraints imposed on the learners affect their power to learn as op-
posed to other constraints. These matters are investigated here in the context of our notion of
classification.

The next four results consider classifiers which are conservative, perhaps consistent in some way
and possibly restricted in the maximal number of mind changes they can afford, and show that
they can sometimes classify classes which cannot be classified by classifiers not required to be
conservative, but subjected to more stringent conditions on consistency or on mind changes.

Theorem 16. There exists a class L of languages such that some conservative In-classifier
classifies L using at most one mind change, but no consistent In-classifier classifies L.

Proof. Let (Ce)e∈N denote an effective enumeration of all partial computable In-classifiers. For
all e ∈ N, let Le denote

{
〈e, 0〉

}
if Ce

(
(〈e, 0〉), (∈〈e,1〉)

)
is defined and equal to 1, and

{
〈e, 0〉, 〈e, 1〉

}
otherwise. Set L =

{
Le
∣∣ e ∈ N

}
. One can easily define a conservative In-classifier, which starts

with ?, and classifies L (using at most one mind change). On the other hand, for all e ∈ N, Ce
is not a consistent In-classifier for L. ut

Theorem 17. There exists a class L of languages such that some conservative and strongly
consistent In-classifier classifies L using at most one mind change, but no strongly consistent
within class In-classifier classifies L.

Proof. Let (Ce)e∈N denote an effective enumeration of all partial computable In-classifiers. For
all i ∈ N, let Si, σi and τi denote {2x | x ≤ i}, (0, 2, . . . , 2i) and (∈0,∈1, . . . ,∈2i−1,∈2i), respec-
tively. We inductively define for all e ∈ N an integer ne and a language Le; it will be the case
that ne < ne+1. L will then consist of all these Le. Intuitively, each language Le would be of the
form Si ∪ {2i+ 1}, for some i; we call this i, ne below.

15

Let e ∈ N be given, and assume that for all e′ < e, ne′ has been defined. Let k be the least integer
greater than ne′ for all e′ < e. If there exists i ≥ k and j ≥ i such that for all j′ ≥ j, Ce(σk, τj′)
is defined and is the sequence of truth values of τj′ for Si ∪ {2i+ 1} then we set ne = i+ 1 and
Le = Si+1∪{2i+ 3}; otherwise, we set ne = k and Le = Sne ∪{2ne + 1}. Let L consist of all sets
of the form Le, e ∈ N. It is immediately verified that for all e ∈ N, Ce is not strongly consistent
within class by the definitions of Le and ne.

Let C be an In-classifier defined as follows. Let σ ∈ SEQ be for L. If no odd number occurs in
cnt(σ) then for all τ ∈ In∗ and for all i < len(τ), C(σ, τ)(i) = 1 iff τ(i) is of the form ∈2j. If
some odd number n occurs in σ then for all τ ∈ In∗ and for all i < len(τ), C(σ, τ)(i) = 1 iff
either τ(i) =∈n or τ(i) =∈2j for 2j < n. It is easy to verify that C is conservative and strongly
consistent and classifies L using at most one mind change. ut

The above diagonalization is optimal, as any consistent classifier using no mind changes outputs
only correct classifications (for any language in the class) on empty σ. It is thus also strongly
consistent within class making no mind change. Note that by Theorem 14, the following is also
optimal.

The next theorem should be considered in parallel with Theorem 11 as both assess the existence
of a class L of languages which some consistent and conservative In-classifier classifies making
at most two mind changes. But we diagonalise against the class of BC-learns in one case and the
class of strongly consistent In-classifiers in the other case, which resulted in two totally different
choices of L to witness both results.

Theorem 18. There exists a class L of languages such that some consistent and conservative
In-classifier classifies L making at most two mind changes, but no strongly consistent In-classifier
classifies L.

Proof. Let (Ce)e∈N be an effective enumeration of all In-classifiers. For the sake of defining L, we
will define Fe =

⋃
s F

s
e , where Fe ⊆ {〈e, 4x〉 | x ∈ N}. F s

e would satisfy the following constraints:

(PA) F 0
e = {〈e, 0〉}

(PB) F s
e can be obtained effectively from e and s,

(PC) F s
e ⊆ F s+1

e ,
(PD) F s

e ⊆ {〈e, 4x〉 | x ≤ s},
(PE) Fe ∩ {〈e, 4x〉 | x ≤ s} \ F s

e has at most one element.

We will later define ie ∈ {1, 3} based on the behaviour of Ce((〈e, 0〉), τ) for larger and larger τ .
Let Sse = F s

e ∪ {〈e, 4s+ ie〉}.
Let L = {∅} ∪ {Sse | e, s ∈ N} ∪ {Fe | e ∈ N and Fe is finite}.
For classifying L, C(σ, τ) is defined as follows.

(1) If cnt(σ) = ∅, then C(σ, τ) is the sequence of truth values of τ for ∅.

16

(2) Otherwise, let e ∈ N be such that cnt(σ) ⊆ {〈e, x〉 | x ∈ N} (if there is no such e, then clearly,
σ is not for L, and thus the output of C is irrelevant).

(3) Let m be maximal such that ∈〈e,m〉 is in τ .
(4) If cnt(σ) contains 〈e, 4s + i〉 for some s ∈ N and i ∈ {1, 3}, then C(σ, τ) is the sequence of

truth values of τ for F s
e ∪ {〈e, 4s+ i〉} where s, i are such that 〈e, 4s+ i〉 ∈ cnt(σ) (note that

such an s and i are unique if σ is for L).
(5) Otherwise, C(σ, τ) is the sequence of truth values of τ for Fm

e ∪ cnt(σ).

Note that the mind change in (4) and (5) are conservative for L, as in (4) there is unique language
in L which contains 〈e, 4s+ i〉, and any change in classification due to (5) is clearly conservative.
Also, for σ for L, the classification as in (4) and (5) is clearly consistent. Furthermore, C classifies
L, as for any text t for L ∈ L, for large enough initial segment σ of t such that cnt(σ) = L, if
L = Sse then (4) will succeed and if L = Fe, then the answer as in (5) is correct.

To consider the number of mind changes made by the classifier we argue as follows. For each
L ∈ L, for some e, one of the following holds:

(i) L = Fe ⊇ Fm
e and Fe \ Fm

e contains at most one element from {〈e, x〉 | x ≤ m}.
(ii) L = Sse , for some s ≤ m, and (Sse \ Fm

e) ∩ {〈e, x〉 | x ≤ m} ⊆ {〈e, 4s+ ie〉}.
(iii) L = Sse ⊇ Fm

e , for some s > m, and (Sse \ Fm
e)∩ {〈e, x〉 | x ≤ m} ⊆ Fe \ Fm

e , which contains
at most one element from {〈e, x〉 | x ≤ m}.
(i) above holds by property (PE) for Fe. For (ii), note that F s

e ⊆ Fm
e . Thus, the only element in

Sse \ Fm
e is 〈e, 4s+ ie〉.

For (iii), note that Sse \Fm
e ⊆ (Fe \Fm

e)∪{〈e, 4s+ ie〉}. As 4s+ ie > m and Fe \Fm
e has at most

one element from {〈e, x〉 | x ≤ m} (by property (PE) for Fe), (iii) holds.

It immediately follows that C, for input texts for non-empty languages from L makes at most
two mind changes. One from outputing a classification for ∅ to outputing classification for Fm

e ,
and then maybe to the final correct answer.

We are now ready to define F s
e , e, s ∈ N. Let (Ce)e∈N denote an effective enumeration of all

partial computable In-classifiers. For each e, we will define F s
e , s ∈ N along with ie ∈ {1, 3} so

as to make sure that Ce does not strong consistently classifies L.

Let F 0
e = {〈e, 0〉}. Let τr denote (∈0,∈1, . . . ,∈r). Inductively, if we have already defined F s

e but
not F s+1

e , then we define F s+1
e as follows.

(S1) If there exists an odd number q and s′′ such that 〈e, q〉 ≤ s′′ ≤ s and within s computation
steps, Ce(〈e, 0〉, τs′′) converges and gives truth value 1 to ∈〈e,q〉, Then
– for all s′ > s, let F s′

e = F s
e , and

– let ie = 1, if q mod 4 = 3; otherwise ie = 3.
(S2) If there is no such odd number q, then let p be the largest s′ ≤ s such that F s′

e 6= F s′−1
e

(where we take F−1e = ∅).
If there exists a s′′ such that

17

– 〈e, 4p+ 4〉 ≤ s′′ ≤ s,
– Ce(〈e, 0〉, τs′′) halts within s steps, and
– Ce(〈e, 0〉, τs′′) gives truth value 0 to ∈〈e,4p+4〉 and truth value 1 to ∈x for all x ∈ F s

e

then set F s+1
e = F s

e ∪ {〈e, 4p+ 4〉}; otherwise, set F s+1
e = F s

e .

If ie is not already defined during the process of defining F s
e (due to some step (S1) as above),

then let ie = 1.

It is easy to verify that the F s
e as defined above satisfy the properties (PA) to (PD). For property

(PE) note that if F s+1
e 6= F s

e , then it is due to step (S2), where we add 〈e, 4p + 4〉 to F s+1
e ; but

then, for any future additions to Fe, we will use only p ≥ s+ 1 in step (S2); thus property (PE)
holds.

We now show that Ce does not strong consistently classify L. Suppose otherwise. Consider the
first case below which applies.

Case 1: In the construction of (F s
e)s∈N above, the condition in (S1) succeeds at some point.

In this case Ce is not consistent, as for some s′′ and odd number q, Ce(〈e, 0〉, τs′′) gave truth
value 1 to ∈〈e,q〉 even though 〈e, q〉 is not in any language in L.

Case 2: Note case 1, and in the construction of (F s
e)s∈N, condition in (S2) succeeds for infinitely

many s.
Then Fe is infinite, and by step (S2), for all s′ such that F s′

e 6= F s′+1
e , there exist s′′′ ≥ s′′ ≥

〈e, 4(s′ + 1)〉 such that Ce(〈e, 0〉, τs′′) gives truth value 0 to ∈〈e,4(s′+1)+4〉 and Ce(〈e, 0〉, τs′′′)
gives truth value 1 to ∈〈e,4(s′+1)+4〉. Thus Ce is not strong consistent.

Case 3: Not Cases 1 and 2.
In this case, Fe is finite. Let s be such that Fe = F s

e . Suppose X is the language such that, for
large enough s′′, Ce(〈e, 0〉, τs′′) is the sequence of truth values of τs′′ for X. As Ce is supposed
to be consistent, X must contain 〈e, 0〉.

Case 3a: X contains 〈e, q〉, for some odd q ∈ N.
In this case (S1) would eventually succeed and Case 1 would apply.

Case 3b: X contains some y 6∈ Fe, where y 6= 〈e, q〉 for any odd q.
Then, for some large enough s′′, Ce(〈e, 0〉, τs′′) gives truth value 1 for 〈e, 0〉 and y, even though
{〈e, 0〉, y} is not contained in any language in L.

Case 3c: X = Fe.
Then, for large enough s′ > s, in step (S2) F s′

e would be made proper superset of F s
e , a

contradiction to Fe = F s
e .

Case 3d: X ⊂ Fe.
Let s′ > 〈e, 4s+ 3〉 be large enough such that Ce(〈e, 0〉, τs′) is the sequence of truth values of
τs′ for X. But then Ce is not consistent as there is no language L′ in L such that Ce(〈e, 0〉, τs′)
is the sequence of truth values of τs′ for L′.

From the above cases it follows that Ce is not strong consistent on L. ut

18

Theorem 19. Let k > 1 be given. There exists a class L of languages such that some strongly
consistent within class and conservative In-classifier classifies L making at most k mind changes,
but no In-classifier classifies L making at most k − 1 mind changes.

Proof. Let L consist of all sets of the form {0, 1, 2, . . . , i} with i ≤ k. It is easily verified that
some strongly consistent within class and conservative In-classifier classifies L making at most
k mind changes.

Let C be an In-classifier that classifies L. Set τ = (∈0,∈1,∈2, . . . ,∈k). Then a text for {0, 1, . . . , k}
with initial segments σ0, . . . , σk can be constructed in such a way that for all i ≤ k, cnt(σi) =
{0, 1, 2, . . . , i} and C(σi, τ) is the sequence of truth values of τ for {0, 1, . . . , i}. So C makes at
least k mind changes on the classification task τ . ut

If conservative classifiers were required to output an initial hypothesis different to ? (in line with
what is required of consistent classifiers), then the number of mind changes for conservative
classifiers could be one more than the number of mind changes needed by strongly consistent
classifiers. Indeed, consider the class of languages defined as in Theorem 19 augmented with
{k + 1} and {0, k + 1}. If C was a conservative In-classifier in that alternative sense, then
C
(
(), (0, 1, . . . , k)

)
could not be (1, 0, . . . , 0), as C would otherwise fail to classify {k+ 1}. Hence

k + 1 mind changes would be needed for C to classify that class of languages, whereas k mind
changes are sufficient for a strongly consistent In-classifier.

Similarly, if conservative learners could not output ?, then the number of mind changes by the
conservative learner in the next theorem would increase by one. This result should be compared
with Theorem 14, as it also shows that the behaviour of a classifier can be improved “for free”.
Here k rather than at most one mind change is allowed, and conservativeness is the behaviour
of the classifier which can be guaranteed.

Theorem 20. Let k ∈ N and a class of languages L be given. If some In-classifier classifies
L making at most k mind changes, then some conservative In-classifier classifies L making at
most k mind changes.

Proof. Let C be an In-classifier that classifies L making at most k mind changes. Without loss
of generality assume that C(σ, τ) is defined for all σ and τ . Let an In-classifier C ′ be defined as
follows. Let τ ∈ In? be given. Set C ′

(
(), τ

)
=?. For all σ ∈ SEQ and x ∈ N∪{#}, if C(σ�x, τ) 6= ?

and C(σ�x, τ) is the sequence of truth values of τ for cnt(σ�x), then let C ′(σ�x, τ) = C(σ�x, τ);
otherwise, C ′(σ � x, τ) = C ′(σ, τ). Note that C ′ essentially only copies those C(σ, τ) which are
exactly for σ. Thus, it can immediately be seen that C ′ is conservative and classifies L making
at most k mind changes. ut

The last result of the paper deals with the hierarchy of the number of mind changes that might
be needed as a function of the number of membership predicates to decide. It shows that for
any strictly increasing total function f , for some class of languages L, it is impossible for any

19

consistent classifier for L to decide n predicates using at most f(n) mind changes, though for
some particular choices of f , some classifier might do so with f(n+ 1) mind changes at most.

Theorem 21. For every strictly increasing total function f from N into N, there exists a class
L of languages which satisfies the following:

1. For all consistent In-classifiers C for L and n > 0, there exists τ ∈ Inn, L ∈ L and a text t
for L such that {i ∈ N | C

(
t|i+1, τ

)
6= C

(
t|i, τ

)
} has cardinality greater than f(n).

2. There exists a consistent In-classifier C for L such that for all n ∈ N, for all τ ∈ Inn, for
all L ∈ L and for all texts t for L, the set {i ∈ N | C

(
t|i+1, τ

)
6= C

(
t|i, τ

)
} has cardinality at

most 3(f(n) + 2).

Proof. Let (Ce)e∈N denote an effective enumeration of all partial computable In-classifiers. Let
e ∈ N and n > 0 be given. Let τe,n denote the sequence (∈〈e,n,0〉, . . . ,∈〈e,n,n−1〉). If there exists
p ∈ N such that Ce(#

p, τe,n) is defined and is a sequence of nothing but 0’s, then let g(e, n) denote
such a p; otherwise, let g(e, n) denote 0. Given e ∈ N, n > 0 and r ∈ {n, . . . , n + f(n) + 1}, let
Lre,n denote {〈e, n, x〉 | n ≤ x ≤ r}, σre,n the concatenation of #g(e,n) with (〈e, n, n〉, . . . , 〈e, n, r〉),
and for all i < n, Lr,ie,n the set Lre,n ∪ {〈e, n, i〉}.
Let L consist of ∅ and, for e ∈ N, n > 0 and r ∈ {n, . . . , n+ f(n) + 1}, sets of the form Lre,n or
Lr,ie,n such that the following holds.

– Suppose that n ≤ r ≤ n + f(n) and r − n is even. Then for all i < n, L contains Lr,ie,n iff L

contains Lse,n and Ls,i
′

e,n for all s ∈ {n, . . . , r − 1} and i′ < n. Moreover, L contains Lre,n iff (i)
L contains Lr,ie,n for all i < n and (ii) Ce(σ

r
e,n, τe,n) is defined and is a sequence where 1 occurs

once and only once.
– Suppose that n ≤ r ≤ n + f(n) and r − n is odd. Then L contains Lre,n iff L contains Lse,n

and Ls,i
′

e,n for all s ∈ {n, . . . , r − 1} and i′ < n. Moreover, for all i < n, L contains Lr,ie,n iff (i)
L contains Lre,n and (ii) Ce(σ

r
e,n, τe,n) is defined and is a sequence of nothing but 0’s.

– Suppose that r = n+ f(n) + 1. Then L contains Lre,r and Ln,ie,r for all i < n iff L contains Lse,n
and Ls,ie,n for all s ∈ {n, . . . , r − 1} and i < n.

Let e ∈ N be such that Ce is a consistent In-classifier that classifies L. Let n > 0 be given. Since
Ce classifies ∅, the definition of g(e, n) implies that Ce(#

g(e,n), τe,n) is a sequence of nothing but
0’s. Moreover, for all members r of {n, . . . , n + f(n)}, either r − n is even and C(σre,n, τe,n) is
defined and is a sequence where 1 occurs once and only once, or r − n is odd and C(σre,n, τe,n)
is defined and is a sequence of nothing but 0’s. Indeed, suppose otherwise for a contradiction.
Let r ∈ {n, . . . , n + f(n)} be least such that the previous condition does not hold. Assume
that r − n is even. (The case where r − n is odd is similar.) According to its definition, L

contains Lr,ie,n for all i < n, but it contains no Lse,n with s ∈ {r, . . . , n + f(n) + 1}. Since Ce
classifies L and is consistent, we infer that Ce(σ

r
e,n, τe,n) is defined and is a sequence where

1 occurs once and only once. This is a contradiction. Hence any text t for L
n+f(n)+1
e,n having

20

σre,n as initial segment for all r ∈ {n, . . . , n + f(n) + 1} is such that the cardinality of the set

{i ∈ N | Ce
(
t|i+1, τe,n

)
6= Ce

(
t|i, τe,n

)
} is greater than f(n). This completes the proof of part 1.

For part 2, define an In-classifier C as follows. For all τ ∈ In?, and σ such that cnt(σ) 6= ∅, let
C
(
σ, τ
)

consist of nothing but 0’s. Now, let n ∈ N, τ ∈ Inn and σ be for L. Let natural numbers
e and m be such that (all of) the members of cnt(σ) are of the form 〈e,m, x〉. Let p be the largest
integer such that 〈e,m, p〉 belongs to cnt(σ).

– Suppose that p < m. Then C(σ, τ) is the sequence of truth values of τ for Lm,pe,m.
– Suppose that p ≥ m and, for some p′ < m, ∈〈e,m,p′〉 is not in τ . If there exists i < m such that

cnt(σ) contains 〈e,m, i〉 then C(σ, τ) is the sequence of truth values of τ for Lp,ie,m. Otherwise,
C(σ, τ) is the sequence of truth values of τ in Lpe,m.

– Suppose that p ≥ m and ∈〈e,m,p′〉 is in τ for all p′ < m. If there exists i < m such that
cnt(σ) contains 〈e,m, i〉 then C(σ, τ) is the sequence of truth values of τ for Lp,ie,m. Suppose
otherwise.
• If p−m is odd then C(σ, τ) is the sequence of truth values of τ for Lpe,m.
• If p−m is even then C(σ, τ) is the sequence of truth values of τ for Lp,0e,m, unless Ce(σ, τ)

is found out within len(σ) steps to be defined and be a sequence where 1 occurs once and
only once, in which case C(σ, τ) is the sequence of truth values of τ for Lpe,m.

It is easy to verify that C classifies L and is consistent. Furthermore, for all texts t for L, n ∈ N
and τ ∈ Inn, {i ∈ N | C

(
t|i+1, τ

)
6= C

(
t|i, τ

)
} has cardinality at most equal to 3× (f(n) + 2). ut

6 Conclusion

Our aim was to close the gap between classification and learning, using a notion of multiclas-
sification where arbitrarily large finite sets of membership queries have to be dealt with syn-
chronously. Learning implicitly permits to multiclassify the membership of all numbers in the
limit and therefore our results that in many cases learnability is more difficult to achieve than
classification is not unexpected. More precisely, we considered BC-learnability and showed that
with at most two mind changes, classifiers enjoying good properties in terms of consistency and
conservativeness could succeed where BC-learners would fail. Then we considered Ex-learnability
and showed that it could be easier than classification in terms of mind changes, and we estab-
lished deeper relationships between classification and learning by exhibiting how an Ex-learner
could be constructed from a classifier constrained in the maximum number of mind changes it
is allowed to make.

We have also shown that multiclassification is interesting in its own right. In particular, we
combined it with conservativeness and various variants of consistency which resulted in a complex
and interesting picture. More precisely, we considered conservativeness together with one form
of consistency, and possibly with restrictions on the maximal number of mind changes, and we
showed that it allows classifiers to be sometimes more powerful than classifiers not required to
be conservative, but subjected to more stringent conditions on consistency or on mind changes.

21

Acknowledgements

We thank the anonymous referees for several helpful comments which improved the presentation
of the paper.

References

[Ang80] Dana Angluin. Inductive inference of formal languages from positive data. Information
and Control, 45:117–135, 1980.

[Bār74a] Janis Bārzdiņš. Inductive inference of automata, functions and programs. In Proceed-
ings of the 20th International Congress of Mathematicians, Vancouver, pages 455–560,
1974. In Russian. English translation in American Mathematical Society Translations:
Series 2, 109:107-112, 1977.

[Bār74b] Janis Bārzdiņš. Two theorems on the limiting synthesis of functions. In Theory of
Algorithms and Programs, vol. 1, pages 82–88. Latvian State University, 1974. In
Russian.

[BB75] Lenore Blum and Manuel Blum. Toward a mathematical theory of inductive inference.
Information and Control, 28(2):125–155, 1975.

[Cas74] John Case. Periodicity in generations of automata. Mathematical Systems Theory,
8(1):15–32, 1974.

[CKSS04] John Case, Efim Kinber, Arun Sharma and Frank Stephan. On the classification of
recursive languages. Information and Computation, 192:15–40, 2004.

[CL82] John Case and Chris Lynes. Machine inductive inference and language identification.
In M. Nielsen and E. M. Schmidt, editors, Proceedings of the 9th International Col-
loquium on Automata, Languages and Programming, volume 140 of Lecture Notes in
Computer Science, pages 107–115. Springer-Verlag, 1982.

[CS83] John Case and Carl H. Smith. Comparison of identification criteria for machine in-
ductive inference. Theoretical Computer Science, 25:193–220, 1983.

[FH94] Rūsiņš Freivalds and Achim Hoffmann. An inductive inference approach to classifica-
tion. Journal of Experimental and Theoretical Artificial Intelligence, 6:63–72, 1994.

[GM98] Bill Gasarch and Georgia Martin. Bounded Queries in Recursion Theory. Birkhäuser
1998.

[GSPM98] William Gasarch, Frank Stephan, Mark G. Pleszkoch and Mahendran Velauthapillai.
Classification using information. Annals of Mathematics and Artificial Intelligence,
23(1-2), 147–168, 1998.

[Gol67] E. Mark Gold. Language identification in the limit. Information and Control,
10(5):447–474, 1967.

[Jai01] Sanjay Jain. On an open problem in classification of languages. Journal of Experi-
mental and Theoretical Artificial Intelligence, 13(2):113–118, 2001.

[JB81] Klaus Peter Jantke and Hans-Rainer Beick. Combining postulates of naturalness in
inductive inference. Journal of Information Processing and Cybernetics (EIK), 17:465–
484, 1981.

22

[JMS08] Sanjay Jain, Eric Martin and Frank Stephan. Absolute versus probabilistic classifi-
cation in a logical setting. Theoretical Computer Science A, 397(1–3):114–128, 2008.
Special Issue on Forty Years of Inductive Inference. Dedicated to the 60th Birthday
of Rolf Wiehagen.

[JORS99] Sanjay Jain, Daniel Osherson, James Royer and Arun Sharma. Systems that Learn:
An Introduction to Learning Theory. MIT Press, second edition, 1999.

[OW82] Daniel Osherson and Scott Weinstein. Criteria of language learning. Information and
Control, 52:123–138, 1982.

[Rog67] Hartley Rogers. Theory of Recursive Functions and Effective Computability. McGraw-
Hill, 1967. Reprinted by MIT Press in 1987.

[Ste01] Frank Stephan. On one-sided versus two-sided classification. Archive for Mathematical
Logic, 40:489–513, 2001.

[SWZ97] Carl H. Smith, Rolf Wiehagen and Thomas Zeugmann. Classifying predicates and
languages. International Journal of Foundations of Computer Science, 8:15–41, 1997.

[WL76] Rolf Wiehagen and Walter Liepe. Charakteristische Eigenschaften von erkennbaren
Klassen rekursiver Funktionen. Journal of Information Processing and Cybernetics
(EIK), 12:421–438, 1976.

[WS95] Rolf Wiehagen and Carl H. Smith. Generalization versus classification. Journal of
Experimental and Theoretical Artificial Intelligence, 7:163–174, 1995.

[ZZ08] Thomas Zeugmann and Sandra Zilles. Learning recursive functions: A survey. The-
oretical Computer Science A, 397(1–3):4–56, 2008. Special Issue on Forty Years of
Inductive Inference. Dedicated to the 60th Birthday of Rolf Wiehagen.

23

