
SIAM J. COMPUT. c© 2006 Society for Industrial and Applied Mathematics
Vol. 36, No. 1, pp. 28–55

IDENTIFYING CLUSTERS FROM POSITIVE DATA∗

JOHN CASE† , SANJAY JAIN‡ , ERIC MARTIN§ , ARUN SHARMA¶, AND

FRANK STEPHAN‖

Abstract. The present work studies clustering from an abstract point of view and investigates
its properties in the framework of inductive inference. Any class S considered is given by a hypothesis
space, i.e., numbering, A0, A1, . . . of nonempty recursively enumerable (r.e.) subsets of N or Qk. A
clustering task is a finite and nonempty set of r.e. indices of pairwise disjoint such sets. The class
S is said to be clusterable if there is an algorithm which, for every clustering task I, converges in
the limit on any text for

⋃
i∈I Ai to a finite set J of indices of pairwise disjoint clusters such that⋃

j∈J Aj =
⋃

i∈I Ai. A class is called semiclusterable if there is such an algorithm which finds a J

with the last condition relaxed to
⋃

j∈J Aj ⊇
⋃

i∈I Ai.
The relationship between natural topological properties and clusterability is investigated. Topo-

logical properties can provide sufficient or necessary conditions for clusterability, but they cannot
characterize it. On the one hand, many interesting conditions make use of both the topologi-
cal structure of the class and a well-chosen numbering. On the other hand, the clusterability of
a class does not depend on which numbering of the class is used as a hypothesis space for the
clusterer.

These ideas are demonstrated in the context of naturally geometrically defined classes. Besides
the text for the clustering task, clustering of many of these classes requires the following additional
information: the class of convex hulls of finitely many points in a rational vector space can be clustered
with the number of clusters as additional information. Interestingly, the class of polygons (together
with their interiors) is clusterable if the number of clusters and the overall number of vertices of these
clusters is given to the clusterer as additional information. Intriguingly, this additional information
is not sufficient for classes including figures with holes.

While some classes are unclusterable due to their topological structure, others are only compu-
tationally intractable. An oracle might permit clustering all computationally intractable clustering
tasks but fail on some classes which are topologically difficult. It is shown that an oracle E permits
clustering all computationally difficult classes iff E ≥T K ∧ E′ ≥T K′′. Furthermore, no 1-generic
oracle below K and no 2-generic oracle permits clustering any class which is not clusterable without
an oracle.

Key words. inductive inference, clustering, hypothesis space, numbering, Turing degree, topo-
logical and geometric properties of clusterable classes

AMS subject classifications. 03D20, 03D25, 68Q32, 68T05

DOI. 10.1137/050629112

∗Received by the editors April 12, 2005; accepted for publication (in revised form) December 2,
2005; published electronically May 3, 2006. The work of J. Case is supported in part by NSF grant
CCR-0208616 and by USDA IFAFS grant 01-04145. The work of S. Jain is supported in part by NUS
grant R252-000-127-112. A. Sharma and F. Stephan conducted most of this research while working
at National ICT Australia which is funded by the Australian Government’s Department of Com-
munications, Information Technology and the Arts and by the Australian Research Council through
Backing Australia’s Ability and the ICT Centre of Excellence Program. The work of F. Stephan is
supported in part by NUS grant R252-000-212-112.

http://www.siam.org/journals/sicomp/36-1/62911.html
†Computer and Information Sciences Department, University of Delaware, Newark, DE 19716-

2586, (case@cis.udel.edu).
‡School of Computing, National University of Singapore, Singapore 117543 (sanjay@comp.

nus.edu.sg).
§School of Computer Science and Engineering, UNSW Sydney NSW 2052, Sydney, Australia

(emartin@cse.unsw.edu.au).
¶Division of Research and Commercialization, Queensland University of Technology, GPO Box

2434, Brisbane QLD 4001, Australia (arun.sharma@qut.edu.au).
‖Department of Mathematics and School of Computing, National University of Singapore, Singa-

pore 117543 (fstephan@comp.nus.edu.sg).

28

IDENTIFYING CLUSTERS FROM POSITIVE DATA 29

1. Introduction. The basic idea of clustering, given a set of points
XX

XXXX XX XXXX

XXXXX XXX XXXX

XXXX XXX XXXXX

X X XX XXXXXXXX

X

is to find a natural way to group the points into clusters (sets) such that every point
belongs to exactly one cluster; the current example gives four clusters:
11

1111 33 4444

11111 333 4444

1111 333 44444

1 2 33 44444444

3

Clustering has been widely studied in several forms in the fields of machine learning
and statistics [2, 5, 10, 17, 19]. Abstract treatments of the topic are rare; however,
Kleinberg [14] provides an axiomatic approach to clustering. The present work in-
vestigates clustering from the perspective of Gold-style learning theory [9, 11], where
limitations can stem from uncomputable phenomena.

The purpose of this paper is to study the roles of computation, topology, and ge-
ometry in the clustering process. In this interest, the following topics are investigated
in an abstract model of clustering:

1. necessary or sufficient topological conditions for clustering;
2. various relationships between clustering, learning, and hypothesis spaces;
3. clusterability of many natural classes of geometrically defined objects;
4. oracles as a method to distinguish between topological and computational

aspects of clustering.
The basic setting is that a hypothesis space of potential clusters is given. This space
is recursively enumerable. A finite set I of (r.e. indices of) pairwise disjoint clusters
from the given class is called a clustering task. Given such a clustering task, the
clusterer—which might be any algorithmic device—receives a text containing all the
data occurring in these clusters and is supposed to find in the limit a set J of (indices
of) pairwise disjoint clusters which cover all the data to be seen. There are two variants
with respect to a third condition: if one requires that the union of the clusters given
by I is the same as the union of the clusters given by J , then one refers to this
problem as clustering; if this condition is omitted, then one refers to this problem as
semiclustering.

Clustering is, in some cases, more desirable than semiclustering; for example, the
clustering tasks from the class Sconv,k defined in Definition 8.1 are collections of convex
sets having a positive distance from each other. The solution to such a clustering task
is unique since each of these sets corresponds to a cluster. A clusterer has to identify
these sets, while a semiclusterer can just converge to the convex hull of all data to
be seen. Such a solution is legitimate for semiclustering since it is again a member of
the class Sconv,k. But it fails to meet the intuition behind clustering since it does not
distinguish the data from the various clearly different clusters.

Note that in the process of clustering, it is sufficient to find the set J of indices
mentioned above. From this J one can find, for every data-item x in the set

⋃
j∈J Aj

of all permitted data, the unique cluster to which x belongs. One just enumerates the

30 CASE, JAIN, MARTIN, SHARMA, AND STEPHAN

sets with the indices in J until the data-item appears in one of them and then uses
an index of this set as a description for the cluster to which this data-item belongs.
Thus, from a recursion-theoretic point of view, finding the set J is the relevant part
of a given clustering problem.

For every indexed class of recursively enumerable sets, there is a canonical transla-
tion from these indices to type-0 grammars in the Chomsky hierarchy which generate
the corresponding sets. This links the current setting of clustering to grammatical
inference, although there is no need herein to exploit the detailed structure of the
grammars obtained by such a translation.

We now summarize some of our results.
1. A class has the finite containment property iff any finite union of its members

contains only finitely many other members. In section 5 it is shown that classes sat-
isfying this natural property separate the basic notions of clusterability, semicluster-
ability, and learnability. There is no purely topological characterization of clusterable
classes: if a class contains an infinite set C and all singleton sets disjoint from C, then
the class is clusterable iff C is recursive. Proposition 6.1 gives a further characteriza-
tion, which depends on the numbering: a class of disjoint sets is clusterable iff it has
a numbering in which every set occurs only finitely often. Section 6 provides some
further sufficient criteria for clusterability that take into account topological aspects
as well as properties of the given hypothesis space. These criteria are refinements of
the finite containment property.

2. Clusterable classes are learnable, but learnable classes may not be clusterable.
Although clusterable classes are, by definition, uniformly recursively enumerable, the
set of clustering tasks might fail to be. Proposition 3.2 shows that a class that can be
clustered using a class comprising hypothesis space, that is, a hypothesis space which
enumerates the members of a superclass, can also be clustered using any hypothesis
space which enumerates the members of the class only. But by Example 3.3, a cluster-
able class might not be clusterable with respect to some class comprising hypothesis
space.

3. In sections 7 and 8 it is demonstrated how one can map concrete examples into
this general framework. These concrete examples are geometrically defined subsets of
Qk: affine sets, classes of sets with distinct accumulation points, and convex hulls of
finite sets. This third example is not clusterable, but it turns out to be clusterable
if some additional information about the clustering task given to the clusterer is re-
vealed. While there are several natural candidates for the additional information in
the case of convex hulls of finite sets, this approach becomes much more difficult when
dealing with clusters of other shapes. In the case of polygons in the 2-dimensional
space, the additional information provided can consist of the number of clusters plus
the overall number of vertices in the polygons considered. Still, this additional infor-
mation is insufficient for clustering classes of geometrical objects, some of which have
holes. But the k-dimensional area is sufficient additional information as long as one
rules out that the symmetric difference of two clusters has k-dimensional area 0.

4. Oracles are a way to distinguish between topological and computational diffi-
culty of a clustering problem. In section 4 the relationship between an oracle E and
the classes clusterable relative to E is investigated. For example, every 1-generic ora-
cle E which is Turing reducible to the halting problem is trivial: every class which is
clusterable relative to E is already clusterable without any oracle. On the other hand,
some classes are not clusterable relative to any oracle. Proposition 4.3 characterizes
the maximal oracles which permit clustering of any class which is clusterable relative
to some oracle; in particular, it is shown that such oracles exist.

IDENTIFYING CLUSTERS FROM POSITIVE DATA 31

2. The basic model. Most of the notation follows the books [11, 18]. The next
paragraph summarizes the most important notions used in the present work.

Basic notation. A class S is assumed to consist of recursively enumerable sub-
sets of a countable underlying set U where, in sections 3–6, U is the set of natural
numbers N and where, in sections 7 and 8, U is a rational vector space of finite pos-
itive dimension. Most of the time, S is even required to be uniformly recursively
enumerable, which means that there is a sequence A0, A1, . . . of subsets of U such that
first, S = {A0, A1, . . .}, and second, {(i, x) ∈ N × U : x ∈ Ai} is recursively enumer-
able. Such a sequence A0, A1, . . . is called a numbering for S. The only exceptions
are Proposition 3.9 and Remark 4.2, where clusterability is used for general classes as
defined in Definition 3.8.

The letters I, J,H always range over finite subsets of N. The norm is used to
induce a one-one ordering of the finite sets: it is defined as norm(I) =

∑
i∈I 2i. Note

that norm(I) ≤ norm(J) whenever I ⊆ J . Define AI as
⋃

i∈I Ai. Let Ai,s denote the
set of elements enumerated into Ai within s steps, and let AI,s =

⋃
i∈I Ai,s. Without

loss of generality, Ai,s ⊆ {0, 1, . . . , s} for all s. The sets Ai,s are uniformly recursive;
that is, {(i, s, x) : x ∈ Ai,s} is recursive.

Let disj(S) contain all finite sets I such that Ai ∩Aj = ∅ for all different i, j ∈ I.
The sets in disj(S) are called clustering tasks. There is an approximation disjs(S) to
disj(S) such that I ∈ disjs(S) if Ai,s ∩Aj,s = ∅ for all different i, j ∈ I.

For any set A, let |A| be the cardinality of A. Let A∗ be the set of all finite
sequences of members of A and |σ| be the length of a string σ ∈ A∗.

A text for a nonempty set A ⊆ U is any infinite sequence containing all elements,
but no nonelements, of A. Clusterers and semiclusterers are recursive functions from
U∗ to finite subsets of N; learners are recursive functions from U∗ to N. Also, mappings
ME represented by a machine M having access to an oracle E are considered. An
element σ ∈ A∗ is called a stabilizing sequence (for A and M) if M(στ) = M(σ) for
all τ ∈ A∗.

The sequence W0,W1, . . . denotes an acceptable numbering of all recursively enu-
merable sets, and We can be interpreted as the domain of the eth partial-recursive
function ϕe. The set K = {e : e ∈ We} is called the halting problem and this notion
can be generalized to computation relative to oracles: A′ is the halting problem rel-
ative to A; in particular, K ′ is the halting problem relative to K, and K ′′ is relative
to K ′. For more information on iterated halting problems, see [18, p. 450].

An oracle G is k-generic if for every Σ0
k-set T of strings there is a prefix η � G

such that either η ∈ T or η′ /∈ T for all η′ � η. There are 1-generic sets but no
2-generic sets below K. Nevertheless, k-generic sets exist for all k ∈ {1, 2, . . .}.

Definition 2.1. A class S = {A0, A1, . . .} of clusters is called clusterable iff
there is a clusterer M which, for every I ∈ disj(S), converges on every text for AI to
a J ∈ disj(S) with AJ = AI . Such an M is called a clusterer for S.

S is called semiclusterable if one replaces AJ = AI with the weaker condition that
AJ ⊇ AI .

S is called learnable in the limit from positive data with respect to the hypothesis
space A0, A1, . . . iff there is a learner M which, for every L ∈ S, converges on every
text for L to a j ∈ N with Aj = L. In the following, “learnable” stands for “learnable
in the limit from positive data with respect to the hypothesis space A0, A1,”

Note that every learner, clusterer, or semiclusterer M which succeeds on A has
a stabilizing sequence σ ∈ A∗. Furthermore, M(σ) is then also a correct hypothesis
for A.

32 CASE, JAIN, MARTIN, SHARMA, AND STEPHAN

Remark 2.2. A clusterer M for S = {A0, A1, . . .} might also use a different
hypothesis space instead of the default one. Here a numbering B0, B1, . . . is called
the hypothesis space of M iff for every clustering task I and any text for AI , M
converges on this text to a finite set J such that BJ = AI and Bi ∩ Bj = ∅ for all
different i, j ∈ J . The hypothesis space is class preserving if S = {B0, B1, . . .} and
class comprising if S ⊆ {B0, B1, . . .}. Nevertheless, in light of Proposition 3.2, it is
assumed that a clusterer uses the default numbering A0, A1, . . . as its hypothesis space
unless explicitly stated otherwise.

Remark 2.3. Many learning criteria have analogous definitions for clustering. For
example, a machine M is confident iff it converges on every input to some hypothesis.
Thus, one could consider the notion of confidently clusterable classes. This notion is
more restrictive; that is, there are classes which are clusterable but not confidently
clusterable. In many respects, the theory developed on the basis of these notions is
very similar to the corresponding one for learning due to the following reason.

Many separations of different criteria C1 and C2 in learning from positive data can
be carried over to separations of the corresponding criteria C̃1 and C̃2 in clustering.
Given a class S separating the learning criterion C1 from C2, one can consider the
class

S̃ = {Ã : A ∈ S} where Ã = {0} ∪ {x + 1 : x ∈ A}

to separate C̃1 from C̃2. The main idea is to use the 0 in order to avoid any two
members of S̃ being disjoint. Then every clustering task and every reasonable hypo-
thesis is a singleton set. Learners for S and clusterers for S̃ can be translated into
each other.

For example, there is a class S which is learnable but not confidently learnable.
Then the class S̃ is clusterable but not confidently clusterable. That is, S̃ witnesses
that the notion of confident clustering is more restrictive than the notion of clustering.

This explains some of the many similarities between learning and clustering.
Thus, the present work does not focus on the introduction and study of clusterability
notions parallel to the many variants of learning in the limit. Instead, emphasis is
given more on the relations between clusterability on the one hand and topological,
recursion-theoretic, and geometrical properties of classes under consideration on the
other.

3. Numberings and clustering. The main topic of this section is the investi-
gation of the role of numberings in clustering. A natural question is whether clustering
is independent of the numbering chosen as the hypothesis space. Another important
issue is the relationship between numberings of the class of clusters and numberings
of the class of finite disjoint unions of clusters. The latter, which represents the clus-
tering tasks, might not have a numbering despite the fact that the former does, as
shown in the next example. The class of sets representing the clustering tasks in this
example cannot be made recursively enumerable by changing the numbering of the
class of clusters.

Example 3.1. For every i ∈ N, let

Ai =

{
{i + 1} if i /∈ K,
{0, i + 1} if i ∈ K.

The class S = {A0, A1, . . .} is uniformly recursively enumerable, but the class {AI :
I ∈ disj(S)} is not. Taking i to be the minimum of K, one has for all j > i,

j /∈ K ⇔ (∃I ∈ disj(S)) [{0, i + 1, j + 1} ⊆ AI].

IDENTIFYING CLUSTERS FROM POSITIVE DATA 33

This connection holds for all numberings of S but fails for any numbering of the
superclass of all finite sets.

Thus, there are clusterable classes in which the corresponding class of all clustering
tasks does not have a numbering. Nevertheless, a fundamental result of de Jongh and
Kanazawa [4] carries over to clustering: whenever a class is clusterable with respect to
a class comprising hypothesis space, the class is also clusterable with respect to every
class-preserving hypothesis space. Actually, the following result is even a bit stronger
since it does not require that the hypothesis space B0, B1, . . . be class comprising but
only that it satisfy the following more technical, but also more general, condition:

S ⊆ {BJ : (∀i, j ∈ J) [i = j ∨Bi ∩Bj = ∅]}.

Thus, for every I ∈ disj(S) there is a finite set J such that {Bj : j ∈ J} is pairwise
disjoint and AI = BJ . Note that this condition is indeed more general than the class-
comprising condition, as it holds in the case that A0, A1, . . . is an enumeration of
all two-element sets and B0, B1, . . . is an enumeration of all one-element sets. An
application of the next result is that every uniformly recursively enumerable class
consisting only of finite sets is clusterable.

Proposition 3.2. Let A0, A1, . . . be a numbering of a class S and B0, B1, . . .
be another numbering (of a possibly different class) such that for every I ∈ disj(S)
there is a J with AI = BJ . If there is a clusterer for S using the hypothesis space
B0, B1, . . . , then there is another clusterer that uses the original numbering A0, A1, . . .
as its hypothesis space.

Proof. Assume that M is a clusterer for S using the numbering B0, B1, . . . as its
hypothesis space. Note that M is required to be correct only on clustering tasks from
S, whereas the superclass {B0, B1, . . .} is not required to be clusterable.

The clusterer M has on every AI with I ∈ disj(S) a stabilizing sequence σI which
can be found in the limit: σI = lims σI,s with σI , σI,s ∈ A∗

I and M(σIτ) = M(σI)
for all τ ∈ A∗

I . Then the following clusterer N uses A0, A1, . . . as its hypothesis
space.

Algorithm N. On input of length s, N computes the output J of M fed with
the same input and searches for the set H ⊆ {0, 1, . . . , s} of least norm satisfying the
following conditions:

• H ∈ disjs(S);
• σH,s ∈ B∗

J,s;
• M(σH,sτ) = M(σH,s) for all τ ∈ B∗

J,s of length up to s.
If H is found, then output H, else output ∅.

Verification. Given a clustering task and a text for this task, let J be the hy-
pothesis to which M converges. Let I be the set of least norm such that AI = BJ

and I ∈ disj(S). Note that for all H with norm(H) < norm(I), either H /∈ disj(S),
or range(σH) �⊆ BJ , or there is a τ ∈ B∗

J such that M(σHτ) �= M(σH). Thus, if
the length s of the part of the text fed into N is sufficiently large, then the following
properties hold:

• I ⊆ {0, 1, . . . , s};
• for all H with norm(H) ≤ norm(I), H ∈ disjs(S) ⇔ H ∈ disj(S);
• for all H ∈ disj(S) with norm(H) ≤ norm(I), σH,s = σH ;
• σI ∈ B∗

J,s and M(σI) outputs J ;
• for all H ∈ disj(S) with norm(H) < norm(I), either σH /∈ B∗

J or there is a
τ ∈ B∗

J,s of length up to s with M(σHτ) �= M(σH).

34 CASE, JAIN, MARTIN, SHARMA, AND STEPHAN

Hence I satisfies the search conditions of N , but no H with norm(H) < norm(I) does.
Thus, N converges on a text for BJ to the set I and N witnesses that S is clusterable
using the hypothesis space A0, A1, . . . for S.

Example 3.3. The converse of Proposition 3.2 does not hold: there is a cluster-
able class S and a numbering of a superclass of S such that no clusterer for S can use
this numbering as a hypothesis space.

Proof. For every i, let Ai = {〈i, x〉 : x ≤ |Wi|} and let S = {A0, A1, . . .}. It is
easy to see that S is clusterable using the numbering A0, A1, . . . as the hypothesis
space: on input σ the clusterer just outputs {i : 〈i, 0〉 ∈ range(σ)}.

For better readability, the second numbering has two indices. One defines that
Bi,j = {〈i, x〉 : min({j, x}) ≤ |Wi|}. Note that Bi,j = {〈i, 0〉, 〈i, 1〉, . . .} iff either Wi

is infinite or j ≤ |Wi|. Furthermore {Ai : i ∈ N} ⊆ {Bi,j : i, j ∈ N}; that is, the
hypothesis space of the Bi,j is class comprising.

Assume by way of contradiction that M is a clusterer for S using the numbering
of the Bi,j as its hypothesis space. Given any i, M converges on every text for Ai

to a singleton {(i, j)} with Ai = Bi,j . If Wi is finite, then j > |Wi|. Thus, one can
compute relative to K whether Wi is finite as follows:

1. Taking a default enumeration of Ai, one can use K to determine j such that
M—using this enumeration as a text for Ai—converges to {(i, j)};

2. one can use K to determine whether |Wi| > j;
3. if |Wi| > j, Wi is infinite; if not, Wi is finite.

This K-recursive algorithm contradicts the fact that the set {i : Wi is finite} has the
same Turing degree as K ′ and gives the desired contradiction.

Although there are classes S = {A0, A1, . . .} such that {AI : I ∈ disj(S)} is
not uniformly recursively enumerable, the superclass {AI : I ⊆ N ∧ |I| is finite} is
uniformly recursively enumerable. A clusterer for S can easily be converted to a
learner for S using the hypothesis space given by the numbering B0, B1, . . . , which
satisfies Bnorm(I)−1 = AI for all nonempty sets I. But learnability of uniformly
recursively enumerable classes does not depend on the hypothesis space; following
a result of de Jongh and Kanazawa [4], there is also a learner for S which uses
A0, A1, . . . as its hypothesis space. Thus, every clusterable class is learnable, although
the converse direction does not hold.

Property 3.4. Every clusterable class is learnable.
Example 3.5. (a) The class Sgold consisting of N and all its finite subsets is

neither learnable nor clusterable. But Sgold is semiclusterable.
(b) The class Ssing consisting of all singletons and the set N is learnable and

semiclusterable but not clusterable.
(c) Let C be infinite and recursively enumerable. The class SC consisting of C

and all singletons disjoint from C is learnable. Furthermore, SC is clusterable iff SC

is semiclusterable iff C is recursive.
Proof. (a) Gold [9] observed that Sgold is not learnable. By Property 3.4, the class

Sgold is also not clusterable. But Sgold is semiclusterable by the trivial algorithm,
which always conjectures an index for N.

(b) The class Ssing is learnable by the algorithm which conjectures an index for
range(σ) if |range(σ)| = 1 and an index for N if |range(σ)| �= 1. Since every finite set
belongs to a clustering task from Ssing, the structure of the clustering tasks of Ssing

is equal to that of Sgold. Thus, Ssing is semiclusterable but not clusterable.
(c) Note that the class SC has a numbering by taking Ai = C if i ∈ C and

Ai = {i} otherwise. One first enumerates i into Ai and, whenever i shows up in C,
one enumerates also the other elements of C into Ai.

IDENTIFYING CLUSTERS FROM POSITIVE DATA 35

The class SC can be learned by conjecturing the cluster Ai for the first number i
occurring in the text; once selected, the output is kept forever.

If C is recursive, then SC is clusterable: on input σ, one outputs range(σ) if
range(σ) ∩ C = ∅ and {min(C)} ∪ (range(σ) − C) otherwise. What this algorithm
does is output the set containing the minimal indices of the clusters which intersect
the set of data items seen so far. Note that every clusterer is also a semiclusterer.
Thus, SC is semiclusterable as well.

It remains to show that C is recursive whenever there is a semiclusterer M for
SC . The set C has a stabilizing sequence σ with respect to M . Now let J = M(σ).
There is a finite and possibly empty set D disjoint from C such that AJ = C ∪ D.
Thus, one has that

x /∈ C ⇔ x ∈ D ∨ (∃τ ∈ C∗) [M(σxτ) �= M(σ)].

These formulas witness that C is recursively enumerable. Since C itself is also
recursively enumerable, the set C is actually recursive.

The classes Ssing and SC , where C is nonrecursive, are learnable but not cluster-
able. Both have the property that they are not closed under disjoint union. The next,
easy-to-verify, result shows that this property is essential for getting examples which
are learnable but not clusterable.

Property 3.6. Let a class S be closed under disjoint union, that is, A∪B ∈ S for
all disjoint A,B ∈ S. Then S is clusterable iff S is learnable.

A learner M for a class S is called prudent if it outputs only indices of sets it
learns. One can enumerate all possible hypotheses e0, e1, . . . of M and thus obtain a
numbering B0, B1, . . . with Bi = Wei of a learnable superclass of S. Fulk [8] showed
that every learnable class has a prudent learner. Therefore, it is sufficient to consider
only uniformly recursively enumerable classes for learning. So Fulk’s result can be
stated as follows.

Property 3.7 [see 11, Proposition 5.20]. Every learnable class has a prudent
learner. In particular, every learnable class is contained in some learnable and uni-
formly recursively enumerable class.

Thus, every learnable class can be extended to one which is learnable and uni-
formly recursively enumerable. But in contrast to learning in the limit, this require-
ment turns out to be restrictive for clustering. Indeed, Proposition 3.9 below gives
for every {0, 1}-valued function F �≤T K ′′ a clusterable class which is not contained
in any uniformly recursively enumerable clusterable class. Furthermore, the union of
any two such classes, given by different functions F, F ′, is no longer clusterable. So
one cannot cover these classes by countably many clusterable superclasses. Most in-
teresting results are based on Definition 2.1 with the consequence that only countably
many classes are clusterable. The more general notion below expands the collection
of clusterable classes to an uncountable one. Although the latter collection contains
many irregular classes of limited interest, it still gives some fundamental insights.

This notion of “clustering in the general sense” is formally introduced in Defini-
tion 3.8 and used only in Proposition 3.9 and Remark 4.2 below. As the enumeration
A0, A1, . . . is not available, a fixed acceptable numbering W0,W1, . . . is used as hypo-
thesis space instead.

Definition 3.8. A class S of recursively enumerable sets is clusterable in the
general sense iff there is a machine M which converges on every text for the union of
finitely many disjoint sets L0, L1, . . . , Ln ∈ S to a finite set J of indices of pairwise
disjoint members of S such that L0 ∪ L1 ∪ · · · ∪ Ln =

⋃
e∈J We.

36 CASE, JAIN, MARTIN, SHARMA, AND STEPHAN

Proposition 3.9. Let F be a {0, 1}-valued function which is not computable
relative to the oracle K ′′. For all x, y ∈ N and z ∈ {0, 1}, let Ax,z, Bx,y be defined as

Ax,z = {〈x, 0, z〉, 〈x, 1, z〉, 〈x, 2, z〉, . . .},
Bx,y = {〈x, y, 0〉, 〈x, y, 1〉}.

Then the class S containing all sets Ax,z and Bx,y with x, y ∈ N and z = F (x) is
clusterable in the general sense but not contained in any clusterable class which is
uniformly recursively enumerable.

Proof. A clustering algorithm outputs on input σ a set J which contains indices
of the following sets:

• Ax,z whenever 〈x, 0, z〉 ∈ range(σ) but 〈x, 0, 1 − z〉 /∈ range(σ);
• Bx,y whenever Bx,y ⊆ range(σ).

The verification of the correctness of this algorithm can be carried out by taking
into account that for every x the following holds: S contains exactly one of the sets
Ax,0, Ax,1; every clustering task never contains both Ax,z and Bx,y.

Assume by way of contradiction that C0, C1, . . . is a numbering of a clusterable
superclass of S. This numbering contains exactly one, and only one, of the sets
Ax,0, Ax,1 since Ax,F (x) ∈ S and every class containing both Ax,0, Ax,1 together with
the sets Bx,y for all y ∈ N is not clusterable. The class of all Ax,0, Ax,1, and Bx,y has a
basic principle in common with the class Ssing from Example 3.5: the set Ax,0∪Ax,1 is
the disjoint union of the subsets Bx,0, Bx,1, . . . , and therefore no clusterable superclass
of S contains both sets Ax,0 and Ax,1. Thus, one can get F from the numbering
C0, C1, . . . as follows:

F (x) = z ⇔ (∃i) [Ci = Ax,z].

Since the equality of two recursively enumerable sets can be tested relative to the
oracle K ′, the function F would be computable relative to K ′′ in contradiction to the
choice of F .

4. Clustering and oracles. Oracles are a method for measuring the complex-
ity of a problem. Some classes are clusterable with a suitable oracle, while others
cannot be clustered with any oracle. Thus, the use of oracles permits us to distin-
guish problems caused by the computational difficulty of the class involved from those
which are unclusterable for topological reasons. This is illustrated in the following
remark.

Remark 4.1. Recall the classes SC and Sgold from Example 3.5. The class SC is
clusterable iff the set C in its definition is recursive. It is easy to see that supplying C
as an oracle to the clusterer resolves all computational problems in the case that C is
not recursive. But the class Sgold is unclusterable because of its topological structure
and remains unclusterable relative to every oracle.

Oracles have been extensively studied in the context of inductive inference [1,
6, 13, 16]. These studies considered arbitrary classes but not uniformly recursively
enumerable ones. The results for arbitrary classes carry over directly from learning
to clustering in the general sense.

Remark 4.2. Fortnow and coworkers [6] investigated for many settings of learning
the question of which oracles are maximal for learning in the sense that they enable us
to solve all principally solvable learning problems. Jain and Sharma [13] showed that
in the setting of learning languages from positive data there is no maximal oracle.
The same holds for clustering: for every oracle E, the class SE

jump consisting of all

IDENTIFYING CLUSTERS FROM POSITIVE DATA 37

sets {2x, 2x + 1} with x ∈ E′ and {2x}, {2x + 1} with x /∈ E′ is clusterable in the
general sense relative to an oracle F iff E′ ≤T F ′. The reason is that a clusterer MF

on a text for {2x, 2x + 1} can figure out in the limit how many clusters of SE
jump are

needed to cover {2x, 2x + 1}:

x ∈ E′ ⇔ MF converges on 2x (2x + 1) (2x + 1) . . . to I with |I| = 1;

x /∈ E′ ⇔ MF converges on 2x (2x + 1) (2x + 1) . . . to I with |I| = 2.

Thus, there is no oracle E which is maximal for clustering in the general sense,
meaning that every class which is clusterable in the general sense relative to some
oracle is also clusterable in the general sense relative to E.

An oracle is called trivial for clustering in the general sense iff every class which is
clusterable in the general sense relative to this oracle is also clusterable in the general
sense without it. Now it is shown that a nonrecursive oracle E is trivial for clustering
in the general sense iff it has a 1-generic degree and is Turing reducible to the halting
problem, that is, Case 1 below is satisfied.

Case 1. E ≤T G for a 1-generic set G ≤T K. Let S be any class which is
clusterable in the general sense relative to E. By [6, Lemma 4.19] there is a clusterer
MG which asks on every text belonging to any clustering task from S only finitely
many queries to G. The answers to these queries can be successfully figured out in
the limit—thus there is a recursive clusterer for S which converges on every text of
any finite disjoint union of sets in S to exactly the same output as MG. In particular,
G (and thus E) is trivial for clustering in the general sense.

Case 2. E �≤T G for any 1-generic set G ≤T K. Kummer and Stephan [16,
Theorem 10.5] showed that there is a class SE

func which is learnable relative to E
but not without any oracle. This class SE

func consists of graphs of recursive functions
and, following Remark 2.3, one can assume without loss of generality that f(0) = 0
for every function whose graph is in SE

func. The class SE
func is, on the one hand,

clusterable in the general sense relative to E and, on the other hand, not clusterable
in the general sense without any oracle. In particular, SE

func witnesses that E is not
trivial for clustering in the general sense.

The previous remark completes the investigation of clustering in the general sense
within the present work. From now on, S denotes again a uniformly recursively
enumerable family of clusters. That is, S = {A0, A1, . . .}, and the set {(i, x) ∈ N2 :
x ∈ Ai} is recursively enumerable.

The usefulness of oracles with respect to clustering differs much from the case of
clustering in the general sense. Dealing only with uniformly recursively enumerable
classes reduces our ability to separate oracles by suitable classes. The definitions for
maximal and trivial oracles for clustering are the following.

Call an oracle E maximal for clustering if every uniformly recursively enumerable
class which is clusterable relative to some oracle is already clusterable relative to E.
Call an oracle E trivial for clustering if every uniformly recursively enumerable class
which is clusterable relative to E is already clusterable without any oracle.

Here the word “maximal” instead of “omniscient” is used since by Remark 4.1
some classes are not clusterable with any oracle. In contrast, omniscient oracles for
learning functions permit us to learn the class of all recursive functions [1] and do not
leave any function learning problem unsolved.

The next result shows that, in contrast to the case of clustering in the general
sense, there are maximal oracles for clustering. It turns out that for an oracle E below
K the following three conditions are equivalent: E is trivial for clustering, E is trivial

38 CASE, JAIN, MARTIN, SHARMA, AND STEPHAN

for learning sets, E is trivial for learning functions; see [6] for the equivalence of the
last two statements.

Proposition 4.3. For every oracle E the following statements are equivalent:
(a) E ≥T K and E′ ≥T K ′′;
(b) the oracle E is maximal for learning from positive data—every uniformly re-

cursively enumerable class is either not learnable with any oracle or learnable
with oracle E;

(c) the oracle E is maximal for clustering—every uniformly recursively enumer-
able class is either not clusterable with any oracle or clusterable with oracle E.

Proof. Assume that E satisfies E ≥T K and E′ ≥T K ′′ and assume that S =
{A0, A1, . . .} is clusterable relative to some oracle. Then S satisfies Angluin’s telltale
condition below and one can actually give an algorithm which succeeds with the
oracle E.

Angluin’s condition (see [3]). The class S is clusterable with the help of some
oracle iff for every I ∈ disj(S), there is a finite set D, called a telltale set for I, such
that D ⊆ AI and no J ∈ disj(S) satisfies D ⊆ AJ ⊂ AI .

Note that one can test with oracle K ′′ whether the telltale condition holds for
given I,D: F (D, I) = 1 ⇔ (∀J ∈ disj(S)) [D �⊆ AJ ∨AJ �⊂ AI]. This condition has an
E-recursive approximation Fs(D, I) which converges for s → ∞ to 1 if F (D, I) = 1
holds and to 0 otherwise.

Algorithm M . Given an E-recursive enumeration of {(D, J) : D is a finite
subset of N and J ∈ disj(S)}, M(σ) outputs J from the first pair (D, J) satisfying
the following conditions:

• D ⊆ range(σ) ⊆ AJ ;
• F|σ|(D, J) = 1.

In order to guarantee that M is total, the search is limited to the first |σ| pairs, and
M(σ) outputs ∅ if none of the first |σ| pairs qualifies.

Verification. Since every clustering task I ∈ disj(S) has a telltale set D′ such
that D′ ⊆ AI and F (D′, I) = 1, the algorithm converges to some pair (D, J) with
F (D, J) = 1. One has that D ⊆ AI ⊆ AJ and it then follows from Angluin’s condition
that AI = AJ .

Complete class. It remains to show that condition (a) on E is necessary. The
class Scomp considered here consists of the sets Ai,D defined below, where i ∈ N and
D is a finite subset of N. Note that below, the entry for ∅ is given explicitly, and
therefore D �= ∅ in the second entry; in particular, max(D) is defined there:

Ai,∅ = {〈i, x〉 : x ∈ Wi ∪ {0}},
Ai,D = {〈i, x〉 : x ∈ D ∪ {0}

∨ (x > max(D) ∧ {z : max(D) ≤ z < x} ⊆ Wi)

∨ (x ≤ max(D) ∧ {z : x ≤ z ≤ max(D)} ⊆ Wi)}.

Clusterer N with oracle K′′. Given input σ, NK′′
determines the sets

Bi = range(σ) ∩ {〈i, 0〉, 〈i, 1〉, . . .}.

Then J consists of the pairs (i,D), where Bi �= ∅ and D is a finite set of least norm
satisfying one of the following conditions:

1. Ai,D = Bi;
2. D = ∅, Bi ⊆ Ai,∅, and Wi coinfinite;

IDENTIFYING CLUSTERS FROM POSITIVE DATA 39

3. Ai,D = Bi ∪ {〈i, x〉 : x ≥ max(D)}.
Then NK′′

outputs J .
Verification. Given a clustering task I, the clusterer obviously finds all i, where

(i, C) ∈ I for some C. Furthermore, there is at most one C with (i, C) ∈ I since Ai,C

always contains 〈i, 0〉. It can be seen that the above cases 1, 2, 3 in the algorithm
of NK′′

are disjoint and that NK′′
converges syntactically whenever NK′′

converges
semantically:

• If Ai,C is finite, then eventually all elements show up and NK′′
outputs an

index for this set.
• If Ai,C is infinite and Wi coinfinite, then C = ∅ and no finite subset of Ai,∅

is in Scomp. Thus, the first case does not apply and NK′′
puts (i, ∅) into J

according to the second case.
• If Ai,C is infinite and Wi cofinite, then let ai be the first number such that

all x ≥ ai are in Wi. In particular, the set D = {x ≤ ai : 〈i, x〉 ∈ Ai,C}
satisfies Ai,D = Ai,C , and therefore (i,D) or some equivalent index goes into
J whenever Bi contains all 〈i, x〉 ∈ Ai,C with x ≤ ai.

This completes the verification of the clusterer NK′′
. It is easy to see that Scomp is

also learnable relative to K ′′. Furthermore, Scomp is clusterable and learnable relative
to any oracle which is maximal for clustering.

Hardness. It is sufficient to show that learning is hard since no member of Scomp

is the disjoint finite union of two or more other members of Scomp, and every clusterer
therefore has to find for every L ∈ Scomp a singleton {(i,D)} such that Ai,D = L. In
the following, assume that an oracle E and a learner OE using the oracle E are given.
Note that every set Ai,∅ has a stabilizing sequence. Let σi be the first stabilizing
sequence found by a search applying the oracle E′. Note that OE(σi) has to be an
index for Ai,∅ since OE(σiτ) = OE(σi) for all τ ∈ (Ai,∅)

∗ by the definition of a
stabilizing sequence. Let bi be the maximum of all y with 〈i, y〉 ∈ range(σi).

Let H1 ⊕H2 denote the set {2x : x ∈ H1} ∪ {2x+ 1 : x ∈ H2}. There is an index
i such that Wi = N ⊕ K. Then Ai,∅ = {〈i, y〉 : y ∈ Wi}. Now consider any x with
2x > bi and Ai,D, where D consists of 2x and all y with 〈i, y〉 ∈ range(σi). If x ∈ K,
then range(σi) ∪ {〈i, 2x + 1〉} ⊆ Ai,∅. If x /∈ K, then Ai,D − Ai,∅ = {〈i, 2x + 1〉}.
Therefore,

x ∈ K ⇔ 2x + 1 ∈ Wi,

x /∈ K ⇔ (∃τ ∈ (Ai,∅)
∗) [OE(σi〈i, 2x + 1〉τ) �= OE(σi)].

A finite modification of the above formula takes care of the x with 2x ≤ bi and shows
that K is computable relative to E.

Assume that the set Wi is cofinite and ai is, as above, the minimum of all x with
{x, x + 1, . . .} ⊆ Wi. Now consider any y < ai with y ∈ Wi. Then Ai,∅ − {〈i, y〉} is
in Scomp. Since σi is a stabilizing sequence for Ai,∅, 〈i, y〉 occurs in σi. Thus, there
are no elements of Wi strictly between bi and ai. In particular, Wi is cofinite iff every
x > bi with x ∈ Wi actually satisfies {x, x+ 1, . . .} ⊆ Wi. As it is already known that
K ≤T E, one has that K ′ ≤ E′, and the following algorithm decides relative to E′

whether Wi is cofinite.
Given i, compute relative to E′ the sequence σi and the number bi. Check whether

there is an x > bi with x ∈ Wi. If not, then Wi is finite and thus coinfinite. If so, one
can find such an x with oracle E. Then Wi is cofinite iff {x, x + 1, . . .} ⊆ Wi, which
can again be checked with oracle E′.

40 CASE, JAIN, MARTIN, SHARMA, AND STEPHAN

Thus, exploiting that E ≥T K and E′ ≥T K ′, one can derive that E′ ≥T K ′′

since K ′′ and the index-set {i : Wi is cofinite} have the same Turing degree. This
completes the proof.

Proposition 4.4. Let E be a nonrecursive oracle with E ≤T K.
(a) If E has 1-generic degree, then E is trivial and permits us to cluster only

classes which can already be clustered without any oracle.
(b) If E does not have 1-generic degree, then there is a uniformly recursively

enumerable class which can be clustered using the oracle E but not without
any oracle.

The same characterizations hold for learning in place of clustering.
Proof. (a) Clustering S and learning S̃ = {AI : I ∈ disj(S)} have the same diffi-

culty if one does not require the use of the hypothesis space {A0, A1, . . .}. Therefore,
if one can cluster S with the help of oracle E, then one can also learn S̃ with the
help of the same oracle. Thus, by Kummer and Stephan [16, Theorem 10.5], S̃ can
be learned without any oracle. This learner can be interpreted as a clusterer which
outputs only singleton classes and uses an acceptable numbering of all recursively
enumerable sets as its hypothesis space. By Proposition 3.2 one can translate this
learner into a clusterer using A0, A1, . . . as its hypothesis space.

(b) By [16, Theorem 10.5] there is a class SE
func of graphs of recursive functions

which can be learned relative to oracle E but not without any oracle. Suppose ME

learns SE
func. The main task is to build a uniformly recursively enumerable superclass

which still can be learned with oracle E. Without loss of generality, all functions f
with a graph in SE

func satisfy that f(0) = 0. Therefore, 〈0, 0〉 is in all members of
SE

func. Furthermore, 〈0, 0〉 will also be in all the members of the superclass S of SE
func

to be constructed. Thus, S is clusterable iff it is learnable.
Since E ≤T K, the oracle E has a recursive approximation E0, E1, . . . and the

machine ME has also approximations ME0 ,ME1 , . . . such that MEs works with Es

instead of E. The sequence of these approximations to ME is uniformly recursive.
The class S. For every given i, j, k ∈ N, let Ai,j,k contain all pairs 〈x, y〉 which

satisfy one of the three conditions below. The class S consists of all Ai,j,k with
i, j, k ∈ N.

Condition 1. The pair 〈x, y〉 is just 〈0, 0〉.
Condition 2. There is a number s ≥ max({i, j, k, x}) such that the following

statements hold:
• ϕi(z) is defined for all z ≤ max({j, x}), ϕi(0) = 0, and ϕi(x) = y;
• for all t with k ≤ t ≤ s, MEt(〈0, ϕi(0)〉〈1, ϕi(1)〉 . . . 〈j, ϕi(j)〉) = {i};
• for z = j, j+1, . . . ,max({j, x}), MEs(〈0, ϕi(0)〉〈1, ϕi(1)〉 . . . 〈z, ϕi(z)〉) = {i};
• either j = 0 or MEs(〈0, ϕi(0)〉〈1, ϕi(1)〉 . . . 〈j − 1, ϕi(j − 1)〉) �= {i}.

Condition 3. This condition does not depend on 〈x, y〉 since it covers the case in
which the parameters do not permit us to construct a desired set but might already
have caused the enumeration of pairs different from 〈0, 0〉:

– ϕi is defined on 0, 1, . . . , j;
– MEs(η) �= MEk(η) for some s > k and η � 〈0, ϕi(0)〉〈1, ϕi(1)〉 . . . 〈j, ϕi(j)〉.

It is easy to see that this class is uniformly recursively enumerable. The intuition
behind the conditions is the following. Condition 1 makes the set Ai,j,k nonempty and
enforces that S is clusterable relative to E iff S is learnable relative to E. Condition
2 tries to put information on the graph of ϕi into Ai,j,k, where j, k serve as additional
information. Condition 3 takes care of the class when the choice of the parameters j, k
is inadequate. Note that whenever ME converges for a total function f to {i} such
that ϕi = graph(f), there is a position j from which on ME has converged to {i}. In

IDENTIFYING CLUSTERS FROM POSITIVE DATA 41

particular, Ai,j,k = graph(f) where k is the least number such that MEs(η) = ME(η)
for all s ≥ k and η � 〈0, f(0)〉〈1, f(1)〉 . . . 〈j, f(j)〉. Let (izero, jzero, kzero) be an index
of {〈0, 0〉} and (iall, jall, kall) be an index of {〈x, y〉 : x, y ∈ N}.

Algorithm N with oracle E. On input σ, NE does the following steps:
1. Let f(m) be the least number y such that 〈m, y〉 is in range(σ);
2. if f(0) or f(1) cannot be recovered from range(σ), then output (izero, jzero,

kzero) and halt;
3. if there is 〈m, z〉 ∈ range(σ) with z > f(m), then output (iall, jall, kall) and

halt;
4. find the largest n such that f(0), f(1), . . . , f(n) can be recovered from range(σ);
5. compute for m = 0, 1, . . . , n the indices im such that

ME(〈0, f(0)〉〈1, f(1)〉 . . . 〈m, f(m)〉) = {im}

and let km,|σ| be the least number o such that 〈0, 1〉 is not enumerated into
Aim,m,o within |σ| − o steps;

6. determine all numbers m ∈ {1, 2, . . . , n} such that either range(σ) consists of
the elements enumerated into Aim,m,km,|σ| within |σ| steps or m is the least
number with im = im+1 = · · · = in;

7. output {(im,m, km,|σ|)} for the least m that was selected in step 6 and halt.
Verification. Let L be any set in S. It is easy to see that NE identifies the sets

Aizero,jzero,kzero and Aiall,jall,kall
. Thus, one can consider any set L ∈ S which is of

the form {〈x, f(x)〉 : x < b}, where b ∈ {2, 3, . . . ,∞} and f is a recursive function. It
is obvious that any 〈x, y〉 ∈ range(σ) satisfies f(x) = y, thus f is correctly recovered
by NE and n is the largest integer such that all pairs 〈x, f(x)〉 with x ≤ n occur in σ.

Let j be the least number such that j < b and for ij = ME(f(0), f(1), . . . , f(j)),
there is a k with Aij ,j,k = L. Now fix this k to be the minimal one with Aij ,j,k = L.
Then Aij ,j,o �= L for all o < k; indeed Aij ,j,o = Aiall,jall,kall

for these o. Note that
m, km,|σ| as chosen in step 7 of the algorithm, respectively, converge to j and k from
below, where k is the least integer such that the f(0), f(1), . . . , f(j) chosen by the
algorithm satisfy

(∀m′ ≤ j) (∀s ≥ k)[MEs(〈0, f(0)〉〈1, f(1)〉 . . . 〈m′, f(m′)〉)
= ME(〈0, f(0)〉〈1, f(1)〉 . . . 〈m′, f(m′)〉)].

Given any text for L, assume that σ is so long that the following statements hold:
1. All pairs 〈m, f(m)〉 with m ≤ j have occurred in σ, and thus NE knows

f(0), f(1), . . . , f(j);
2. if L is finite, then L = range(σ) and all elements of L are enumerated into

Aij ,j,k within |σ| steps;
3. for all m ≤ j and t > |σ|, km,t = km,|σ|;
4. an element of Aim,m,km,|σ| −L is enumerated into Aim,m,km,|σ| within |σ| steps

whenever this difference is not empty and m ≤ j;
5. an element of L − Aim,m,km,|σ| has occurred in σ whenever this difference is

not empty and m ≤ j.
The first statement implies that NE can recover the relevant part of f . The second
statement implies that whenever L is finite, its elements and the finitely many elements
of Aij ,j,k are explicitly known to the learner. The third statement enforces that kj,|σ| =
k, and thus k is known to the learner. The fourth and fifth statements guarantee for
all m < j that NE does not output {(im,m, km,|σ|)} whenever Aim,m,km,|σ| �= L. By

42 CASE, JAIN, MARTIN, SHARMA, AND STEPHAN

the choice of j, this holds for all m < j and NE outputs {(ij , j, k)} on input σ. Thus,
NE identifies L.

The following example shows that there is a difference between the trivial oracles
for clustering in the general sense and clustering of uniformly recursively enumerable
classes.

Example 4.5. Every 2-generic oracle is trivial for clustering.
Proof. Assume that G is 2-generic and S = {A0, A1, . . .} is clusterable relative

to G via an oracle machine MG. Without loss of generality, ME is total for every
oracle E. Now consider the following sets of strings:

T = {η : (∃I, J) (∃x, t) (∃σ ∈ A∗
I) (∀τ ∈ A∗

I) (∀E � η) (∀s ≥ t)

[(J /∈ disjs(S) ∨AI,s(x) �= AJ,s(x)) ∧ I ∈ disjs(S) ∧ME(στ) = J]};

UI,σ = {ϑ : (∃τ ∈ A∗
I) (∀E � ϑ) [ME(στ) �= ME(σ)]}.

The oracles quantified in the definitions above are evaluated only up to a certain
point. Thus, one can make the definitions of the sets to be Σ0

2.
Given any I ∈ disj(S), MG has a stabilizing sequence σ for AI . If σ is not also

a stabilizing sequence for ME , then there is a τ and a prefix ϑ � E with ME(στ) �=
ME(σ), where all queries to E while computing these two values target only the
domain of ϑ. Thus, ϑ ∈ UI,σ. Since G is 2-generic and σ is a stabilizing sequence for
MG, there is a prefix α � G such that no extension ϑ � α is in UI,σ. In particular, σ
is a stabilizing sequence for AI and ME whenever the oracle E satisfies E � α. Thus,
the stabilizing sequence σ is uniform for all ME with E � α.

The set T contains all η such that for some I ∈ disj(S), for some J and a uniform
stabilizing sequence σ for AI with respect to η, ME(σ) = J for all E � η and either
J /∈ disj(S) or AJ �= AI . It follows again that η �� G for all η ∈ T . Thus there is a
prefix θ � G such that no extension of θ is in T .

Algorithm N . The clusterer N is a variant of the locking sequence hunting
construction and searches simultaneously for an η � θ and σ built from the data and
a J such that ME(στ) = J for all E � η and τ obtained from data seen so far. That
is, if at stage s the set D is the range of all data seen so far, N searches the first pair
(σ, η) in an enumeration of N∗ × {0, 1}∗ such that

1. σ ∈ D∗ and η ∈ θ · {0, 1}∗;
2. for all τ ∈ D∗ with |τ | ≤ s− |σ| and all E,F � η, ME(στ) = MF (σ).

Let J = MF (σ) for the set F = {x : η(x) ↓= 1}; N outputs J .
Verification. First, note that the search always terminates, as any σ ∈ D∗ with

|σ| > s and any η extending ϑ trivially satisfy the requirements. Furthermore, there
is a pair (σ, η) which is a uniform stabilizing sequence for AI satisfying η � θ, and
N finds such a sequence in the limit. Since G strongly avoids T in the sense that no
extension of the prefix θ is in T , any pair (σ, η) considered by N infinitely often is a
correct uniform stabilizing sequence, and thus N converges to an index J ∈ disj(S)
of AI .

5. The finite containment property. The main topic of this section is to
investigate the relationship between the topological structure of the class S and the
question of whether S is clusterable. Recall that the classes Sgold and Ssing are not
clusterable for topological reasons: they contain a cluster which is the disjoint infinite
union of some other clusters. Thus, one might impose the following natural condition
in order to overcome this problem.

IDENTIFYING CLUSTERS FROM POSITIVE DATA 43

Definition 5.1. A class S = {A0, A1, . . .} has the finite containment property
if every finite union of clusters contains only finitely many clusters. That is, for all i
there are only finitely many sets B ∈ S with B ⊆ A{0,1,...,i}.

Note that the finite containment property is not necessary for clusterability. The
class { {i, i+1, . . .} : i ∈ N} is learnable and clusterable but does not satisfy the finite
containment property.

It is easy to see that the finite containment property implies Angluin’s condition:
for every set AI , there are only finitely many sets AJ with AJ ⊂ AI . If one takes D
to be the set {min(AI − AJ) : AJ ⊂ AI}, then D is finite and there is no AJ with
D ⊆ AJ ⊂ AI . Thus, from the proof of Proposition 4.3 one has the following.

Property 5.2. If S = {A0, A1, . . .} has the finite containment property, then S is
clusterable relative to every oracle E with E ≥T K and E′ ≥T K ′′.

Although the finite containment property guarantees clusterability from the topo-
logical point of view, it fails to guarantee clusterability from the recursion-theoretic
point of view. Indeed, the class Scomp given in the proof of Proposition 4.3 satisfies
the finite containment property. If Wi is cofinite, then there are only finitely many
subsets of {〈i, 0〉, 〈i, 1〉, . . .} in Scomp. If Wi is coinfinite, then Ai,∅ is the only infinite
subset of {〈i, 0〉, 〈i, 1〉, . . .} in Scomp and all further subsets of {〈i, 0〉, 〈i, 1〉, . . .} are
finite sets which are not contained in Ai,∅.

Note that the class SC from Example 3.5 is, for the case that C is nonrecursive,
a witness for a class satisfying the finite containment property which is learnable but
not semiclusterable. This gives the following property.

Property 5.3. There is a class satisfying the finite containment property which is
learnable but neither clusterable nor semiclusterable.

Since the topological structure of SC is the same whenever C is infinite, cluster-
ability of the class SC is not determined by its topological structure.

Property 5.4. Clusterability cannot be characterized in topological terms only.
If one takes C to be the halting problem K, then SC (from Example 3.5) witnesses

that the oracle K is necessary for semiclustering, even in the case where classes have
to satisfy the finite containment property. Proposition 5.5 below shows that semiclus-
tering is much easier than clustering: every uniformly recursively enumerable class is
semiclusterable using the halting problem as an oracle. In particular, no topological
condition can make semiclustering impossible, but only computational conditions can.

Furthermore, every uniformly recursive class is semiclusterable. But this condi-
tion is not necessary for either semiclusterable or clusterable classes. For example,
the class { {x : ϕx(x) ↓= i} : i ∈ N} is clusterable but consists of pairwise disjoint
and recursively inseparable sets.

Proposition 5.5. Every r.e. class has a semiclusterer using the halting problem
as an oracle. Furthermore, a class S = {A1, A2, . . .} is semiclusterable without any
oracle if the representation of the class is a uniformly recursive family, that is, if
{(i, x) ∈ N2 : x ∈ Ai} is recursive and not only recursively enumerable.

Proof. It is sufficient to assume that M can check whether some x is in Ai. This
can be done either by using the halting problem as an oracle or by assuming that the
sequence A0, A1, . . . is uniformly recursive.

Now M on input σ determines all J ⊆ {0, 1, . . . , |σ|} such that J ∈ disj|σ|(S) and
range(σ) ⊆ AJ . If there are several such sets, M outputs the one with the least norm.
If there are none, M outputs ∅.

Note that all J which either do not represent disjoint sets or do not contain all
data showing up in the limit are eventually disqualified. On the other hand, the set I
representing the clustering task is among the determined sets whenever |σ| ≥ max(I).

44 CASE, JAIN, MARTIN, SHARMA, AND STEPHAN

Thus, M converges in the limit to some J such that norm(J) ≤ norm(I), J ∈ disj(S),
and AI ⊆ AJ . Therefore M witnesses that S is semiclusterable.

By Property 5.3 one can separate learnability from clusterability and semiclus-
terability by a class satisfying the finite containment property. The next results
show that there are no implications between the notions of learnability, clusterability,
and semiclusterability except the following two: “clusterable ⇒ semiclusterable” and
“clusterable ⇒ learnable.” All nonimplications are witnessed by classes satisfying the
finite containment property.

Proposition 5.6. There is a class with the finite containment property which is
semiclusterable and learnable but not clusterable.

Proof. Let S consist of the clusters

A3i = {〈i, x〉 : x ∈ N};
A3i+1 = {〈i, x〉 : x is even and x < 2 + |Wi|};
A3i+2 = {〈i, x〉 : x is odd and x < 2 + |Wi|}.

If Wi is infinite, then A3i+1 consists of the 〈i, x〉 where x is even and W3i+2 con-
sists of those 〈i, x〉 where x is odd. Since the union A0 ∪ A1 ∪ · · · ∪ A3i+2 contains
only the clusters A0, A1, . . . , A3i+2, the class S has the finite containment property.
Furthermore, S is semiclusterable by assigning to every input σ the set

{3i : (∃x ∈ N) [〈i, x〉 ∈ range(σ)]}.

Now it is shown that S is not clusterable. Thus, assume by way of contradiction that
a recursive M witnesses S to be clusterable.

For each A3i, one finds by using the oracle K a stabilizing sequence σi ∈ (A3i)
∗.

One can reduce the question of whether Wi is infinite to the question of whether
range(σi) ⊆ A{3i+1,3i+2}, which is decidable relative to K: if Wi is infinite, then
range(σi) ⊆ A{3i+1,3i+2}; if Wi is finite, then range(σi) �⊆ A{3i+1,3i+2}. The latter
holds, since otherwise σi would also be a stabilizing sequence for A{3i+1,3i+2}, and M
cannot have the same stabilizing sequence for two different sets in which one set is a
subset of the other. The reduction of {i : Wi is infinite} to the oracle K contradicts
the fact that {i : Wi is infinite} is Turing equivalent to K ′.

It remains to show that the class S is learnable. This can be done by considering
the following learner N .

Algorithm N . On input σ, let i be the least number such that a pair of the
form 〈i, x〉 occurs in range(σ). Then

N(σ) =

⎧⎨
⎩

3i if there are even and odd y with 〈i, y〉 ∈ range(σ);
3i + 1 if there are only even y with 〈i, y〉 ∈ range(σ);
3i + 2 if there are only odd y with 〈i, y〉 ∈ range(σ).

The correctness of the learner N can easily be verified.
Example 5.7. The class containing all sets A3i, A3i+1, A3i+2, A{3i+1,3i+2} from

the numbering A0, A1, . . . in the proof of Proposition 5.6 is neither learnable nor clus-
terable. But it satisfies the finite containment property and is semiclusterable.

A natural variant of the finite containment property is the finite meet property,
which says that each member of the class S meets only finitely many other members
(that is, for each A ∈ S, |{A′ ∈ S : A ∩ A′ �= ∅}| is finite). The class SC , from
Example 3.5, witnesses that for C = K one might need the oracle K to cluster a class
satisfying the finite meet property. Since the class given in the proof of Proposition 4.3

IDENTIFYING CLUSTERS FROM POSITIVE DATA 45

satisfies the finite containment property and can be clustered only relative to maximal
oracles, the next result shows that classes satisfying the finite meet property are easier
and require only the oracle K.

Proposition 5.8. If a class satisfies the finite meet property, then it is clusterable
with the halting-problem oracle K.

Proof. Let S = {A0, A1, . . .} satisfy the finite meet property. Let b0, b1, . . . be a
text for AI with I ∈ disj(S); without loss of generality, I consists of minimal indices;
that is, for all i ∈ I and for all j, if Ai = Aj , then i ≤ j. Relative to K and the text,
one can enumerate the set

H = {h : Ah ∩ {b0, b1, . . .} �= ∅ ∧ (∀j < h) [Aj �= Ah] }.

Now one considers all subsets J ⊆ H with J ∈ disj(S). Note that I ⊆ H and
I ∈ disj(S), and thus I is among the considered sets. Due to the finite meet property,
H is finite and only finitely many J are considered. Since these sets are uniformly
recursive relative to K, one can find in the limit a considered set J which satisfies
AJ = {b0, b1, . . .}, that is, AJ = AI . Thus S is clusterable using the oracle K.

6. Numbering-based properties. Every uniformly recursively enumerable
class of pairwise disjoint sets is learnable: the learner just waits until it finds x ∈
range(σ) and i ≤ |σ| such that x is enumerated into Ai within |σ| steps; from then on
the learner outputs the index i. But for nonrecursive sets C, the class SC witnesses
that such a class is not clusterable. Thus, one has to consider not only properties
of the class but also properties of some of its numberings. A class {A0, A1, . . .} has
the numbering-based finite containment property if for every I there are only finitely
many j with Aj ⊆ AI .

Proposition 6.1. A class of pairwise disjoint sets has the numbering-based finite
containment property iff it is clusterable.

Proof. Let S = {A0, A1, . . .} be a class of pairwise disjoint sets. Due to the
numbering-based finite containment property there are, for every i, only finitely many
j with Aj = Ai. Now consider the following clusterer.

Algorithm M . On input σ, find the J of the largest norm which satisfies the
following three conditions:

1. J ⊆ {0, 1, . . . , |σ|};
2. J ∈ disj|σ|(S);
3. Aj ∩ range(σ) �= ∅ for all j ∈ J .

Then output this J .
Verification. Note that the algorithm always terminates since ∅ satisfies the search

conditions. Fix a clustering task I. The set H = {h : Ah ∩ AI �= ∅} is finite. Since
M always outputs subsets of H, it follows that M converges to some J ⊆ H. This J
is the set of the highest norm such that J ⊆ H and J ∈ disj(S). Since the members
of S are pairwise disjoint, it holds for every j ∈ J that Aj not only meets AI but,
moreover, is contained in AI . Furthermore, if i ∈ I, then Ai ∩AJ is not empty, since
otherwise J ∪ {i} is also a subset of H, is in disj(S), and has a norm larger than that
of J . Thus, Ai ⊆ AJ . Since this holds for all i ∈ I, AJ = AI and M is a clusterer
for S.

Converse direction. Assume that N is a clusterer for S and consider the set

E = {i : (∀j < i) (∀σ ∈ A∗
j,i, |σ| ≤ i) (∃τ ∈ (Ai ∪Aj)

∗) [N(στ) �= N(σ)]}.

The set E is recursively enumerable since the universal quantifiers are bounded and
the second one runs over strings of the finite set Aj,i of all elements enumerated into

46 CASE, JAIN, MARTIN, SHARMA, AND STEPHAN

Aj within i steps. Given any set in S, let i be its minimal index. Let j < i. Since
Aj �= Ai, Aj is disjoint from Ai, {j, i} ∈ disj(S), and A{j,i} is a proper superset of Ai.
The clusterer N must converge on texts for Aj and A{i,j} to different outputs. Thus,
there is no σ ∈ A∗

j with N(σ) = N(στ) for all τ ∈ A∗
{i,j}. The index i is eventually

enumerated into E. The set Ai has a stabilizing sequence σ. For all sufficiently large
j with Ai = Aj , the length of σ is shorter than j and its range enumerated into Ai

within j steps. It follows that σ prevents j from being enumerated into E and E
contains only finitely many indices of Ai. The set E has a recursive enumeration
e0, e1, . . . , which defines by Bh = Aeh a new numbering B0, B1, . . . of S having the
desired properties.

Remark 6.2. Proposition 5.6 gives a class which satisfies the numbering-based
finite containment property but is not clusterable. A variant of the class Scomp given in
the proof of Proposition 4.3 satisfies the numbering-based finite containment property
but is clusterable only relative to maximal oracles.

Let the numbering-based finite meet property denote that every Ai meets Aj

only for finitely many j. It follows from Proposition 5.8 that a class satisfying the
numbering-based finite meet property is clusterable with the oracle K. But even this
property is not sufficient for clustering without oracles. The class in Example 5.7
actually satisfies the numbering-based finite meet property but is not clusterable.

A further example of a class which satisfies the numbering-based finite meet prop-
erty but is not clusterable can be constructed using the following result of Jain and
Sharma [12]: there is no learner which identifies all recursively enumerable sets from
any text for the set plus an upper bound on its least index. The class

{{〈i, x〉 : x ∈ Wj} : j ≤ i ∧Wj �= ∅}

has a numbering witnessing that it satisfies the numbering-based finite meet property.
But it consists of copies of sets Wj , having coded an upper bound of an index of Wj

into its first coordinate. This class cannot be learnable or clusterable because one
would get a contradiction to the result of Jain and Sharma otherwise.

In the following, two conditions are presented which are more restrictive than the
numbering-based finite containment property and guarantee that a class is clusterable.

Proposition 6.3. Assume that Ai �⊆
⋃

j �=i Aj for all i and that it is decidable
whether two sets Ai, Aj intersect. Then S = {A0, A1, . . .} is clusterable.

Proof. The clusterer M uses the fact that one can check disjointness effectively,
that is, that disj(S) is recursive.

Algorithm M . On input b0, b1, . . . , bs, M considers all J ⊆ {0, 1, . . . , s} satis-
fying the following conditions:

1. Ai,s ∩ {b0, b1, . . . , bs} �= ∅ for all i ∈ J ;
2. J ∈ disj(S);
3. there is no j ∈ {0, 1, . . . , s} − J such that Aj,s ∩ {b0, b1, . . . , bs} �= ∅ and

J ∪ {j} ∈ disj(S).
If there are several sets J1, J2, . . . , Jn ⊆ {0, 1, . . . , s} which satisfy all three conditions,
then M computes for m = 1, 2, . . . , n the number

cm = max{h ≤ s + 1 : {bj : j < h} ⊆ Jm,s}

and outputs Jm for the m which maximizes cm; if there are still several options, M
outputs the one with the least norm.

IDENTIFYING CLUSTERS FROM POSITIVE DATA 47

Verification. Assume that a clustering task I ∈ disj(S) is given and that b0b1 . . .
is a text for AI . Let s be so large that there is a c satisfying the following conditions:

• s ≥ max(I);
• for any i ∈ I there exists an h ≤ c with bh ∈ Ai −

⋃
j �=i Aj ;

• {b0, b1, . . . , bc} ⊆ AI,s.
Then I clearly satisfies the first two search conditions of M . The third is also satisfied
since, whenever Aj ∩ AI = ∅, Aj does not contain any of the elements b0, b1, . . . , bs.
Thus, any set J �= I satisfying all three conditions is not a superset of I. In particular,
there is an i ∈ I−J and an h ≤ c such that bh ∈ Ai−AJ . Since {b0, b1, . . . , bc} ⊆ AI,s

and {b0, b1, . . . , bc} �⊆ AJ , M outputs I and not J . Thus, M converges on a text for
AI to I, and M is a clusterer for S.

Proposition 6.4. Assume that S = {A0, A1, . . .} satisfies the following three
conditions:

1. Every Ai is infinite;
2. if i �= j, then Ai ∩Aj is finite;
3. S is uniformly recursive, that is, {(i, x) : x ∈ Ai} is recursive.

Then S is clusterable. But no two of these three conditions are sufficient for being
clusterable.

Proof. On input σ, the clusterer M searches for the J of the least norm satisfying
the following properties:

• J ⊆ {0, 1, . . . , |σ|};
• range(σ) ⊆ AJ ;
• J ∈ disj|σ|(S).

If such a J is found, then M outputs J , else M outputs ∅.
First, one can easily see that M is recursive since the search space is limited to

2|σ|+1 candidate sets. Second, one considers any clustering task I and any text for it.
Every sufficiently long prefix σ of the text satisfies i ≤ |σ| and Ai ∩ range(σ) �= ∅ for
all i ∈ I. Thus, I satisfies for all sufficiently long σ the three search conditions, and
hence M converges to a set J with norm(J) ≤ norm(I). For every i ∈ I, the set Ai

is not a subset of AJ−{i} since Ai is infinite and Ai ∩ AJ−{i} is finite. Thus, I ⊆ J .
Since norm(J) ≤ norm(I) (from above), it follows that I = J .

Recall the definition of SC from Example 3.5. The class {A × N : A ∈ SC} for
a nonrecursive parameter-set C satisfies conditions 1 and 2 but is not clusterable.
The class of all cofinite sets satisfies conditions 1 and 3 but is neither learnable [11,
section 3.6.2] nor clusterable. The class Sgold satisfies conditions 2 and 3 but is not
clusterable.

7. Geometric examples. The major topic of this and the following sections
is to look at sets of clusters which are characterized by basic geometric properties.
Therefore, the underlying set is no longer N but the k-dimensional rational vector
space Qk, where k ∈ {1, 2, . . .} is fixed. The classes considered consist of natural
subsets of Qk. This is quite common practice in computer science; for example,
the real numbers used in standard programming languages are indeed rationals, as
they normally consist only of finitely many binary digits multiplied by a power of 2;
furthermore, dealing with rationals avoids the uncountability of the set of reals and
also uncomputable real points. Except for the class Saccu,k in Definition 7.2 below,
the following hold: The clusters are built from finitely many parameter-points in Qk;
the clusters are connected sets; and every clustering task consists of clusters having
a positive distance from each other. Thus, there is a unique natural way of breaking
down a clustering task into clusters.

48 CASE, JAIN, MARTIN, SHARMA, AND STEPHAN

The space Qk is a metric space. The standard metric d between two points is
given by the square root of the sum of the squares of the differences of the coordinates,
for example, d((1, 2, 3), (0, 0, 5)) =

√
(1 − 0)2 + (2 − 0)2 + (3 − 5)2 =

√
1 + 4 + 4 = 3

in Q3. d is also called distance.
Recall that a subset U ⊆ Qk is affine iff for every fixed x ∈ U the set V = {y ∈

Qk : x + y ∈ U} is a rational vector space, that is, closed under scalar multiplication
and addition. The dimension of U is the dimension of V as a vector space; it is
independent of the choice of x.

Example 7.1. Let Saff,k be the class of all affine subspaces of Qk which have
dimension k − 1. The class Saff,k is clusterable but the class Saff,k ∪ {Qk} is not.

Proof. If one considers a one-one numbering A0, A1, . . . of Saff,k, one can easily
verify the following properties:

1. Every Ai has dimension k − 1;
2. if i �= j, then Ai ∩ Aj is either empty or an affine subspace of dimension up

to k − 2;
3. the set {(i, x) : x ∈ Ai} is recursive.

Properties 1 and 2 enforce that Ai �⊆ AJ−{i} for every finite set J . Thus, one can
adapt the clusterer for the class in Proposition 6.4 to a clusterer for Saff,k. The
verification can also easily be transferred.

The class Saff,k ∪{Qk} is just the geometric version of the class Ssing from Exam-
ple 3.5. Let U be a (k−1)-dimensional vector space and W be a 1-dimensional vector
space with U +W = Qk. Furthermore let Ux = {x+ y : y ∈ U}. Since every Ux is in
Saff,k and Qk is the disjoint union of all Ux with x ∈ W , it follows that Saff,k ∪ {Qk}
is not clusterable.

Definition 7.2. Let k be a positive natural number and Saccu,k be a class
{A0, A1, . . .} of bounded subsets of Qk for which there is a recursive and one-one
sequence a0, a1, . . . of points in Qk satisfying the following:

1. Every Ai has exactly one accumulation point which is ai;
2. no accumulation point of the set {a0, a1, . . .} is contained in this set.

Comment. Every set Ai ∪ {ai} is compact, but it is not required that ai ∈ Ai,
and therefore the set Ai itself might fail to be compact.

Proposition 7.3. The class Saccu,k is clusterable.
Proof. The following machine M witnesses that Saccu,k is clusterable.
Algorithm M . On input b0b1 . . . bs, let

Hs = {i ≤ s : (∃h ≤ s) (∀j ≤ h, j �= i)

[bh /∈ {b0, b1, . . . , bi} ∧ d(ai, bh) < d(aj , bh)]},

Js = {i ∈ Hs : (∃h) (∀j ∈ Hs − {i}) [bh ∈ Ai,s −Aj,s]}

and output Js.
Verification. Since ai is an accumulation point of Ai but not of {a0, a1, . . .}, and

since ai �= aj whenever i �= j, for every i there is a threshold εi > 0 such that
• for all q ∈ Qk there is at most one i with d(ai, q) < εi;
• for almost all q ∈ Ai, d(ai, q) < εi.

Consider now a text b0b1 . . . for a set AI with I ∈ disj(Saccu,k). Let H =
⋃

s∈N
Hs

where Hs, Js are the sets constructed by the algorithm with input b0, b1, . . . , bs. There
are only finitely many q ∈ AI which do not satisfy d(ai, q) < εi for an i ∈ I, and there
is a stage t ≥ max(I) such that {b0, b1, . . . , bt} contains all these q. It follows that
H ⊆ {0, 1, . . . , t}. Note that the intersection Ai∩Aj is finite for any different i, j since

IDENTIFYING CLUSTERS FROM POSITIVE DATA 49

the sets Ai, Aj are bounded and have different accumulation points. So all sufficiently
large s satisfy the following conditions:

• H = Hs;
• for all different i, j ∈ H, Ai ∩Aj = Ai,s ∩Aj,s;
• for all i ∈ I, there is an h ≤ s such that bh ∈ Ai− (

⋃
j∈H Aj ∪{b0, b1, . . . , bi})

and d(bh, ai) < εi.
It follows that on the one hand, I ⊆ Hs, and on the other hand, that every j ∈ Hs−I
satisfies AI ∩ Aj ⊆ AI,s. Since b0, b1, . . . is a text for AI , it follows that Js = I and
M is a clusterer for Saccu,k.

The class Saccu,k is clusterable but the machine M makes use of the sequence
a0, a1, . . . as an auxiliary source of information. Nevertheless, this information is
implicit. One can build a program for it into the machine M , which simulates this
program, in order to get some further information on Saccu,k.

8. Clustering with additional information. Freivalds and Wiehagen [7] in-
troduced a learning model in which the learner receives—in addition to the graph of
the function to be learned—an upper bound on the size of some program for this func-
tion. This additional information increases the learning power and enables a machine
to learn the class of all recursive functions.

Similarly, a machine receiving adequate additional information can solve every
clustering task for the class Sconv,k defined below. But without that additional infor-
mation, Sconv,k is not clusterable. Thus, the main goal of this section is to determine
which pieces of additional information are sufficient to cluster certain geometrically
defined classes where clustering without additional information is impossible.

Recall that the convex hull of a set D = {x0, x1, . . . , xn}, denoted by hull(D), is
the set given by

hull(D) = {q0x0 + q1x1 + · · · + qnxn : q0, q1, . . . , qn ∈ Q

∧ q0, q1, . . . , qn ≥ 0 ∧ q0 + q1 + · · · + qn = 1}.

Given a set E as a convex hull of a finite set, there is a unique minimal set D such
that E = hull(D).

Definition 8.1. For a given positive natural number k, the class Sconv,k contains
all subsets of Qk which are the rational points in the convex hull of a finite subset
of Qk.

Note that Sconv,k has the following nice properties, which will be used in the
proofs implicitly: every cluster is ε-connected for all ε > 0; any two clusters Ai, Aj

have either a point in common or have a positive distance from each other, where the
distance is defined as d(Ai, Aj) = inf{d(x, y) : x ∈ Ai, y ∈ Aj}.

Proposition 8.2. The class Sconv,k is semiclusterable but not clusterable.
Proof. A semiclusterer M for Sconv,k works as follows.
Algorithm M . On input σ, M searches for the first i ∈ {0, 1, . . . , |σ|} such that

range(σ) ⊆ hull(Ai,|σ|). If this i is found, then M outputs {i}, else M outputs ∅.
Verification. Let I be the clustering task and i be the least index of a set with

AI ⊆ Ai. Given any text for AI , every sufficiently long prefix σ of the text satisfies
the following three conditions:

• |σ| ≥ i;
• range(σ) �⊆ Aj for all j < i;
• hull(Ai,|σ|) = Ai.

It is easy to see that M(σ) = {i} for the input σ. Therefore, M converges to i and
Sconv,k is semiclusterable.

50 CASE, JAIN, MARTIN, SHARMA, AND STEPHAN

Gold’s condition. Note that every singleton in Qk belongs to Sconv,k and that
there are also infinite clusters. Then, given an M and an infinite Ai, M has a
stabilizing sequence σ ∈ (Ai)

∗. Thus, either M fails on the clustering task I rep-
resenting all singletons {x} with x ∈ range(σ) or M fails on the clustering task {i}
representing Ai.

Proposition 8.3. The class Sconv,k is clusterable with additional information if
for any clustering task I one of the following pieces of information is also provided to
the machine M :

• the number |I| of clusters of the clustering task;
• a positive lower bound ε for γ = min({1} ∪ {d(Ai, Aj) : i, j ∈ I ∧ i �= j});
• the minimal number p of points which are needed to generate all the convex

sets Ai with i ∈ I.
Proof. The algorithm tries to identify in the limit the following pieces of informa-

tion:
• finite sets E0, E1, . . . , Em;
• for each l ∈ {0, 1, . . . ,m}, an index jl such that Ajl = hull(El).

The final conjecture of the algorithm will then be the set J = {j0, j1, . . . , jm}.
The algorithm uses the notion of an ε-component. Given ε > 0, a subset E ⊆ U

is an ε-component of U if the following two conditions hold:
• For any x, y ∈ E, there is a sequence z1, z2, . . . , zh of elements of E such that
x = z1, y = zh, and d(zl, zl+1) < ε for all l with 1 ≤ l < h;

• d(x, y) ≥ ε for any x ∈ E and y ∈ U − E.
Note that for every ε and finite set U , the partition of U into ε-components is unique.

Algorithm M . On input σ, the clusterer goes into the first case applicable from
the following:

• If |I| is given and there is a maximal ε ∈ { 1
|σ| ,

2
|σ| , . . .} such that range(σ)

has exactly |I| ε-components, then let m = |I| and F0, F1, . . . , Fm−1 be these
components. For l = 0, 1, . . . ,m− 1, let El be the smallest subset of Fl with
hull(El) = hull(Fl).

• If ε is given, then let m be the number of ε-components F0, F1, . . . , Fm−1 of
range(σ). For l = 0, 1, . . . ,m− 1, let El be the smallest subset of Fl with
hull(El) = hull(Fl).

• If p is given and there is a number m ∈ {0, 1, . . . , p− 1}, an ε ∈ { 1
|σ| ,

2
|σ| , . . .},

and E0, E1, . . . , Em−1 ⊆ range(σ) such that
– p = |E0| + |E1| + · · · + |Em−1|,
– each set El consists of the corners of hull(El), and
– the sets hull(El) ∩ range(σ) are the ε-components of range(σ),

then fix m and the sets E0, E1, . . . , Em−1.
• If none of the previous cases hold, then let m = |σ| and E0, E1, . . . , Em−1 be

the m singleton subsets of range(σ).
Now find for each l ∈ {0, 1, . . . ,m−1} the least s ≥ |σ| such that there is a jl ≤ s with
hull(El) = hull(Ajl,s); if there are several candidates for this jl, then choose the least
one. Having found m and j0, j1, . . . , jm−1, the output is the set J = {j0, j1, . . . , jm−1}.

Verification. It is easy to verify that M is computable and is defined on every
σ. Fix a clustering task I ∈ disj(Sconv,k) and a text for AI . In the case of additional
information of the second type, let δ be the given lower bound ε for γ; otherwise let
δ = 1 if |I| = 1 and δ = min{d(Ai, Aj) : i, j ∈ I ∧ i �= j} if |I| > 1. Assume that a
prefix σ of the given text is so long that for each i ∈ I, the following conditions hold:

• For all j ∈ {0, 1, . . . , i}, hull(Aj,|σ|) = Ai iff Aj = Ai;

IDENTIFYING CLUSTERS FROM POSITIVE DATA 51

• hull(range(σ) ∩Ai,|σ|) = Ai;

• for all x ∈ Ai, there is a y ∈ range(σ) such that d(x, y) < δ
10 ;

• 1
|σ| <

δ
10 .

Then one can verify that the algorithm will come up with a lower bound ε for δ such
that the ε-components of range(σ) coincide with the δ-components. Furthermore, the
parameter m is the cardinality |I|, and the sets E0, E1, . . . , Em−1 are sets of minimal
cardinality such that

{hull(E0),hull(E1), . . . ,hull(Em−1)} = {Ai : i ∈ I}.

Since σ is a sufficiently long prefix of the text, the output of the algorithm is a finite
set J with {Aj : j ∈ J} = {Ai : i ∈ I}. It follows that M solves the clustering
task I.

The last results of the present work deal with conditions under which nonconvex
geometrical objects can be clustered. Our first approach is to look at unions of convex
objects which are still connected. For k = 1, this class is the same as Sconv,1. But for
k = 2, this class is larger. There the type of additional information used for clustering
Sconv,k is no longer sufficient. Given both the number of clusters and the number
of vertices as additional information, it is possible to cluster the natural subclass
Spolygon,2 of all classes considered. But if one permits holes inside the clusters, this
additional information is no longer sufficient. An alternative parameter is the k-
dimensional area covered by a geometric object. In Example 8.8 a natural class
Sarea,k is introduced which can be clustered with the area of a clustering task given
as additional information. The class Sarea,2 contains Spolygon,2 and the class from
Example 8.7 as subclasses.

Definition 8.4. A polygon is given by n vertices q1, q2, . . . , qn ∈ Q2 and is the
union of n sides, which are the convex hulls of {q1, q2}, {q2, q3}, . . . , {qn, q1}. The
sides do not cross each other, and exactly two sides contain one vertex. Every side
has positive length and the angle between the two sides meeting at a vertex is never
0, 180, or 360 degrees. Let p0, p1, . . . be an enumeration of the polygons, and let Pi

be the set of all points in Q2 which are on the polygon pi or in its interior. Let ni

denote the minimum number of vertices to define the polygon pi, and let Spolygon,2 be
the class {P0, P1, . . .}.

Remark 8.5. Note that every polygon has the same number of sides as vertices.
The length 0 of sides and the angle of 180 degrees are forbidden in order to make the
representation unique up to some permutation of the vertices. The angles of 0 and
360 degrees are forbidden in order to avoid irregularities.

The following fact will be used below. Assume that Pi ⊆ Pj , ni ≤ nj , and every
side of pj contains at least nj + 2 points of Pi. Then Pi = Pj . To see this, consider
any side T of pj . Let c0, c1, . . . , cnj , cnj+1 be nj + 2 points on T ∩ Pi. These points
are all on pi since they are on pj and Pi ⊆ Pj . There is a u ∈ {0, 1, . . . , nj} such that
no vertex of pi is properly between cu and cu+1. Then the convex hull of {cu, cu+1}
is part of a side UT of Pi. So every side T of pj has at least two points in common
with some side UT of pi.

The first claim is that for T �= T̃ , UT �= UT̃ . So suppose by way of contradiction

that there are two sides T, T̃ of Pj such that UT = UT̃ . Let d1 ∈ T ∩ UT and

d2 ∈ T̃ ∩ UT̃ . Then UT contains hull({d1, d2}) and is a subset of Pj , although not a
side of Pj . Since UT touches two sides of Pj and goes through the interior of Pj , UT

splits Pj into two halves, each of which has some sides different from UT . On these
sides are points of pi ∩ pj , and thus Pi would also be split into two halves by UT , a

52 CASE, JAIN, MARTIN, SHARMA, AND STEPHAN

Fig. 1. Left and right hand clusters. Each has 8 vertices and 8 sides.

contradiction. Thus, ni = nj .

The next claim is that if UT and UT̃ are neighbors, then so are T and T̃ (and

thus, the intersection point of UT and UT̃ is the same as that of T and T̃). To see this,
suppose otherwise. Then the angle UT , UT̃ splits Pj into two halves, each of which
has some sides different from UT and UT̃ . On these sides are points of pi ∩ pj , and
thus Pi would also be split into two halves by the angle UT , UT̃ , a contradiction.

It follows from above that T = UT , UT̃ = T̃ , and thus pi = pj .
Note that this property no longer holds if one permits a set of polygons instead of

a single polygon. So there is a polygon pj such that one can find, for any finite subset
F ⊆ Pj , a set {i1, i2} ∈ disj(Spolygon,2) with F ⊆ P{i1,i2} ⊆ Pj . More precisely, let pj
be given by (0, 0), (0, 1), (1, 1), (1, 2), (2, 2), (2, 1), (3, 1), (3, 0), and let F be any finite
subset of Pj . Then take q = min({y : (∃x) [(x, y) ∈ F ∧ y > 1]}) and take i1, i2 repre-
senting the rectangles given by (0, 0), (0, 1), (3, 1), (3, 0) and (1, q), (1, 2), (2, 2), (2, q).

Figure 1 illustrates the last counterexample. More information on polygons can
be found in textbooks on geometry such as [15].

Proposition 8.6. The class Spolygon,2 = {P0, P1, . . .} is clusterable with addi-
tional information in the sense that it is clusterable from the following input provided
to a clusterer for clustering task I in addition to a text for PI : the cardinality |I|
and the number

∑
i∈I ni. Clustering is impossible if only one of these two pieces of

information is available.
Proof. Assume that the algorithm M knows |I| and

∑
i∈I ni and receives as input

a prefix σ of a text for AI . Then M searches for the J ⊆ {0, 1, . . . , |σ|} of least norm
which satisfies the following conditions:

1. J ∈ disj(Spolygon,2);
2. |J | = |I|;
3.

∑
j∈J nj =

∑
i∈I ni;

4. range(σ) ⊆ PJ ;
5. the vertices of the pj with j ∈ J are in range(σ);
6. if T is a side of pj and j ∈ J , then |T ∩ range(σ)| ≥

∑
i∈I ni + 2.

M outputs J if J is found, and ∅ otherwise.
For the verification, it is easy to see that M is recursive. Now consider any

clustering task I ∈ disj(Spolygon,2). Since I satisfies the search conditions for all
sufficiently long prefixes σ of the text, the clusterer converges to a J with norm(J) ≤
norm(I), PI ⊆ PJ , |J | = |I|, and

∑
j∈J nj =

∑
i∈I ni. If i ∈ I, then Pi ⊆ PJ . If

Pi �⊆ Pj for any single j ∈ J , then the Pj with j ∈ J intersecting Pi would have a
positive distance from each other; but since Pi is connected, some points of Pi would
not be in any Pj with j ∈ J . Thus, this case cannot happen. Furthermore, if Pj is
disjoint from PI , then the vertices of Pj never show up in the input, and thus j /∈ J .
It follows that there is a one-one correspondence between the i ∈ I and j ∈ J such
that Pi ⊆ Pj . Since

∑
j∈J nj =

∑
i∈I ni, there are i ∈ I and j ∈ J with Pi ⊆ Pj

and ni ≤ nj . Furthermore Pj ∩ PI−{i} = ∅, and thus all points of Pj which have

IDENTIFYING CLUSTERS FROM POSITIVE DATA 53

Fig. 2. Opening a hole while preserving 10 vertices and 10 sides.

shown up in the input are actually from Pi. It follows for every side T of pj that
nj + 2 ≤ |T ∩ range(σ)| ≤ |T ∩ Pi|. Thus, by Remark 8.5, Pi = Pj and ni = nj .
In particular, there are no i ∈ I, j ∈ J with Pi ⊆ Pj and ni < nj . Since |I| = |J |
and

∑
j∈J nj =

∑
i∈I ni, one can conclude that there are also no i ∈ I, j ∈ J with

Pi ⊆ Pj and ni > nj . Thus, ni = nj whenever i ∈ I, j ∈ J, Pi ⊆ Pj . By the previous
considerations, this gives that Pi = Pj whenever i ∈ I, j ∈ J, Pi ⊆ Pj . In particular,
PJ = PI and M is a clusterer for Spolygon,2 which succeeds whenever it receives on
the input, in addition to a text for PI , the numbers |I| and

∑
i∈I ni.

Now it is shown that, in addition to the text, the other two pieces of information
given to M are needed. That is, M cannot succeed while receiving only one of them.

If only the additional information |I| is given, then consider a stabilizing sequence
σ for the rectangle Pi with vertices (0, 0), (0, 2), (1, 2), (1, 0). Since range(σ) is finite,
there are rationals q1, q2 with 0 < q1 < q2 < 1 such that no point of the form (q, r) with
q1 < q < q2 is in range(σ). Thus σ is also a stabilizing sequence for the Pj given by
the polygon through the vertices (0, 0), (0, 2), (q1, 2), (q1, 1), (q2, 1), (q2, 2), (1, 2), (1, 0)
and Pj ⊂ Pi. Thus, the clusterer fails to identify either the clustering task {i} or the
clustering task {j}.

If only the additional information
∑

i∈I ni is given, one can take I = {i} such that
pi, Pi is given by (0, 0), (0, 1), (1, 1), (1, 2), (2, 2), (2, 1), (3, 1), (3, 0), and ni = 8 as done
in Remark 8.5 (see Figure 1). Now let σ ∈ P ∗

i be a stabilizing sequence for Pi and
q = min({y : (∃x) [(x, y) ∈ range(σ)∧y > 1]}). Then σ is also a stabilizing sequence for
a cluster consisting of the two rectangles which are given as (0, 0), (0, 1), (3, 1), (3, 0)
and (1, q), (1, 2), (2, 2), (2, q). See Figure 1 for an illustration.

Example 8.7. Let Bi,j = pj ∪ (Pi − Pj) and mi,j = ni + nj if Pj ⊆ Pi − pi;
otherwise let Bi,j = Pi and mi,j = ni. Let Shole,2 consist of all sets Bi,j. Then it is
impossible to cluster Shole,2 if besides a text the only pieces of additional information
supplied are |I| and

∑
(i,j)∈I mi,j.

Proof. The counterexample here is an adaptation of the counterexample from
Proposition 8.6. The idea is just to connect the two parts by a bridge and to cutout
only the lower connection.

Now take i, j such that the polygons pi, pj are given by (0, 0), (0, 1), (1, 1), (1, 3),
(4, 3), (4, 0) and (2, 1), (2, 2), (3, 2), (3, 1). Note that mi,j = 10. Let σ ∈ B∗

i,j be a
stabilizing sequence for Bi,j and

q = min({y : (∃x) [(x, y) ∈ range(σ) ∧ y > 1]}).

Then σ is also a stabilizing sequence for a polygon Ph ⊆ Bi,j given by (0, 0), (0, 1),
(3, 1), (3, 2), (2, 2), (2, q), (1, q), (1, 3), (4, 3), (4, 0). The polygon Ph has also 10 vertices
and is obtained by connecting the hole with the outside world. Figure 2 illustrates
this counterexample.

54 CASE, JAIN, MARTIN, SHARMA, AND STEPHAN

Alternatively, one might not restrict the dimension but require that the class
under consideration be the union of convex hulls of finite sets which have a positive k-
dimensional area. Then this area is a natural parameter for clustering with additional
information. Note that in the 2-dimensional case the class Shole,2 from Example 8.7
is a subclass of Sarea,k as defined below, and thus is clusterable using the area as
additional information.

Example 8.8. Let Sarea,k = {A0, A1, . . .} be the class of finite unions of members
of Sconv,k which are connected and have a positive k-dimensional area. Without loss
of generality, the set {(i, x) : x ∈ Ai} and the function mapping i to the area of Ai are
recursive. Then there is a clusterer for Sarea,k which uses the area of the members of
a cluster as additional information. But Sarea,k cannot be clustered without additional
information.

Proof. Assume that AI ⊂ AJ , and let x ∈ AJ − AI be given. The point x has a
positive distance r from AI . But the area of AJ ∩ R, where R is the k-dimensional
cube of side-length r

10k with center x, is positive. It follows that the area of AJ is at
least the sum of the areas of AI and R ∩ AJ . So whenever two sets AI , AJ have the
same area, they are either equal or incomparable. Thus, one can use the following
algorithm.

For any given clustering task I, M receives the additional information q and a
prefix σ of a text for AI . Then M outputs the first J such that J ∈ disj|σ|(Sarea,k),
range(σ) ⊆ AJ , and AJ has the k-dimensional area q.

It is easy to see that M is recursive and total. Furthermore, M converges to the
least J with norm(J) = norm(I), AJ having the area q and AI ⊆ AJ . It follows
from the arguments above that AI = AJ and that M satisfies the required proper-
ties.

9. Conclusion. Clustering is a process which makes important use of prior as-
sumptions. Indeed, not every set of points in an underlying space is a potential
cluster; for instance, geometric conditions play an important role in the definition of
the class of admissible clusters. Whereas such conditions have been taken into ac-
count in previous studies, none of those has investigated the consequences of the more
fundamental requirement that clustering be a computable process. This paper shows
that recursion-theoretic and geometric conditions can both yield substantial insights
on whether or not clustering is possible. It also explores the extent to which cluster-
ing depends on computational properties by characterizing the power of oracles for
clustering. It is expected that further studies of the interaction between topological,
recursion-theoretic, and geometrical properties will turn out to be fruitful.

REFERENCES

[1] L. Adleman and M. Blum, Inductive inference and unsolvability, J. Symbolic Logic, 56
(1991), pp. 891–900.

[2] M. R. Anderberg, Cluster Analysis for Applications, Academic Press, New York, 1973.
[3] D. Angluin, Inductive inference of formal languages from positive data, Inform. and Control,

45 (1980), pp. 117–135.
[4] D. de Jongh and M. Kanazawa, Angluin’s theorem for indexed families of r.e. sets and

applications, in Proceedings of the 9th Annual Conference on Computational Learning
Theory, ACM, New York, 1996, pp. 193–204.

[5] R. Duda, P. Hart, and D. Stork, Pattern Classification, 2nd ed., Wiley, New York, 2001.
[6] L. Fortnow, W. Gasarch, S. Jain, E. Kinber, M. Kummer, S. A. Kurtz, M. Pleszkoch,

T. A. Slaman, R. Solovay, and F. Stephan, Extremes in the degrees of inferability,
Ann. Pure Appl. Logic, 66 (1994), pp. 231–276.

IDENTIFYING CLUSTERS FROM POSITIVE DATA 55

[7] R. Freivalds and R. Wiehagen, Inductive inference with additional information, Elektron.
Informationsverarb. Kybernetik, 15 (1979), pp. 179–185.

[8] M. Fulk, Prudence and other conditions on formal language learning, Inform. Comput., 85
(1990), pp. 1–11.

[9] E. M. Gold, Language identification in the limit, Inform. Control, 10 (1967), pp. 447–474.
[10] A. K. Jain and R. C. Dubes, Algorithms for Clustering Data, Prentice–Hall, Englewood

Cliffs, NJ, 1988.
[11] S. Jain, D. Osherson, J. Royer, and A. Sharma, Systems that Learn: An Introduction to

Learning Theory, 2nd ed., MIT Press, Cambridge, MA, 1999.
[12] S. Jain and A. Sharma, Learning with the knowledge of an upper bound on program size,

Inform. Comput., 102 (1993), pp. 118–166.
[13] S. Jain and A. Sharma, On the non-existence of maximal inference degrees for language

identification, Inform. Process. Lett., 47 (1993), pp. 81–88.
[14] J. Kleinberg, An impossibility theorem for clustering, in Advances in Neural Information

Processing Systems 15 (NIPS 2002), MIT Press, Cambridge, MA, 2003, pp. 446–453.
[15] F. Kürpig and O. Niewiadomski, Grundlehre Geometrie. Begriffe, Lehrsätze, Grundkon-

struktionen, Vieweg, Braunschweig, Germany, 1992.
[16] M. Kummer and F. Stephan, On the structure of the degrees of inferability, J. Comput.

System Sci., 52 (1996), pp. 214–238.
[17] P. B. Mirchandani and R. L. Francis, eds., Discrete Location Theory, Wiley, New York,

1990.
[18] P. Odifreddi, Classical Recursion Theory, North-Holland, Amsterdam, 1989.
[19] S. Theodoridis and K. Koutroumbas, Pattern Recognition, Academic Press, New York,

1998.

