
Learning Languages and Functions by Erasing

Sanjay Jain a, Efim Kinber b, Steffen Lange c, Rolf Wiehagen d,
Thomas Zeugmann e

aDepartment of Information Systems and Computer Science, National University
of Singapore, Singapore, Email: sanjay@iscs.nus.edu.sg

bDepartment of Computer Science, Sacred Heart University, Fairfield,
CT 06432-1000, U.S.A., Email: kinber@shu.sacredheart.edu

cInstitut für Informatik, Universität Leipzig, PF 920, D-04009 Leipzig, Germany,
Email: slange@informatik.uni-leipzig.de

dFB Informatik, Universität Kaiserslautern, PF 3049, D-67653 Kaiserslautern,
Germany, Email: wiehagen@informatik.uni-kl.de

eDepartment of Informatics, Kyushu University, Fukuoka 812-81, Japan,
Email: thomas@i.kyushu-u.ac.jp

Abstract

Learning by erasing means the process of eliminating potential hypotheses from
further consideration thereby converging to the least hypothesis never eliminated.
This hypothesis must be a solution to the actual learning problem.

The capabilities of learning by erasing are investigated in relation to two factors:
the choice of the overall hypothesis space itself and what sets of hypotheses must
or may be erased. These learning capabilities are studied for two fundamental kinds
of objects to be learned, namely languages and functions.

For learning languages by erasing, the case of learning indexed families is inves-
tigated. A complete picture of all separations and coincidences of the considered
models is derived. Learning by erasing is compared with standard models of lan-
guage learning such as learning in the limit, finite learning and conservative learning.
The exact location of these types within the hierarchy of the models of learning by
erasing is established. Necessary and sufficient conditions for language learning by
erasing are presented.

For learning functions by erasing, mainly the case of learning minimal programs
is studied. Various relationships and differences between the considered types of
function learning by erasing and also to standard function learning are exhibited. In
particular, these types are explored in Kolmogorov numberings that can be viewed as
natural Gödel numberings of the partial recursive functions. Necessary and sufficient
conditions for function learning by erasing are derived.

Preprint submitted to Elsevier 11 March 2020

1 Introduction

Learning by erasing means the process of eliminating potential hypotheses
from further consideration thereby converging to a unique hypothesis which
will never be eliminated. This hypothesis has to be a correct solution to the
actual learning problem.

This approach is motivated by similarities to both human learning or, more
general, human problem solving as well as automated problem solving. Actu-
ally, in solving a problem we mostly find out several “non-solutions” to that
problem first, contradicting the data we have or explaining them unsatisfac-
torily. Of course, we then will exclude these non-solutions from our further
consideration and keep only a more or less explicitly given remaining set of
potential solutions. Often, at any time of the solving process we have an ac-
tual “favored candidate” among all the remaining candidates for a solution
which, though, up to now cannot be proved to be really a solution and which
also may change from time to time. Then, at least, the following can happen.
Eventually we find a solution to the problem, can even prove its correctness
and hence successfully stop the solving process. Or, our “favored candidate”
will be stable from some point on, it is really a solution, but we are not ab-
solutely sure of that. The latter case is a version of successful learning in the
limit, which is what we do in building theories or, even more real-world, in
writing computer programs. In our approach of learning by erasing we can
model both situations of being successful above. However, our main intention
is a rigorous study of learning by erasing in the limit.

All the types of learning by erasing defined below have in common that at any
step of the learning process the “favored candidate” will always be the least
hypothesis not yet eliminated. This seems to be just the most natural choice.
Moreover, in our opinion, this choice is justified by the following observations.
First, by the principle of Occam’s razor “simple” hypotheses should be favored.
Second, in case that even in the limit many hypotheses remain uncanceled, we
get a distinguished final hypothesis, just the least uncanceled one, and thus one
can decide from outside whether or not the learning process was successful.
And third, more formally, in case the learning machine eventually finds a
provably correct hypothesis, then it can eliminate all the other hypotheses up
to that one (or even all but that one) thereby making that hypothesis the least
uncanceled one.

A special case of our approach, so-called co-learning, was introduced in Frei-
valds et al. [10], and then further studied in Freivalds et al. [11] for learn-
ing of recursively enumerable classes of recursive functions. In that case the
learner has to eliminate all hypotheses but one and this one has to be cor-
rect. This approach was then used by Kummer [20] who showed that a recur-
sively enumerable class of recursive functions is co-learnable with respect to

2

all of its numberings iff all of these numberings are equivalent (i.e., intercom-
pilable); thus giving a learning-theoretic solution to a longstanding problem
of recursion-theoretic numbering theory. Furthermore, co-learning of indexed
families of languages from text was studied in Freivalds and Zeugmann [13].

We relax the all-but-one approach by giving the learner more freedom concern-
ing the sets of hypotheses it is allowed to erase eventually. Then the capabilities
of learning by erasing are investigated in relation to two factors: the choice
of the overall hypothesis space and what sets of hypotheses must or may be
erased.

The capabilities of learning by erasing are studied for two fundamental kinds
of target objects, namely languages and functions. Learning of languages and
functions is usually very different from one another (cf., e.g., [3,5,8,14,19,27],
also for a general background of learning theory). Hence, it is only natural
to ask whether or not there are major differences between language learning
by erasing and function learning by erasing, too. In this paper, we provide
both similarities and distinctions. However, the overall goal is much more far-
reaching. In particular, we are mainly interested in the general capabilities of
learners that achieve their learning goal by erasing non-appropriate hypothe-
ses.

For learning languages by erasing, the case of learning indexed families is
investigated. A complete picture of all separations and coincidences of the
considered models is derived. Learning by erasing is compared with standard
models of language learning such as learning in the limit, finite inference and
conservative learning. The exact location of these types within the hierar-
chy of the learning by erasing models is established. Necessary and sufficient
conditions for language learning by erasing are presented.

For learning functions by erasing, mainly the case of learning minimal pro-
grams is studied. Various relationships and differences between the considered
types of function learning by erasing and also to standard function learning
are exhibited. In particular, these types are explored in Kolmogorov number-
ings that can be viewed as natural Gödel numberings of the partial recursive
functions. Necessary and sufficient conditions for function learning by erasing
are derived.

The paper is organized as follows. Section 2 presents notations which are com-
mon to the whole paper. Section 3 deals with language learning by erasing.
Subsection 3.1 gives the definitions which are specific for language learning by
erasing as well as for standard language learning. In Subsection 3.2 the char-
acterizations of the types of language learning by erasing are exhibited. In
Subsection 3.3 learning from text is studied, whereas in Subsection 3.4 learn-
ing from informant is investigated. Section 4 deals with function learning by
erasing. Subsection 4.1 contains the definitions which are specific for function

3

learning by erasing and those for standard function learning. Subsection 4.2
deals with Kolmogorov numberings as hypothesis spaces. In Subsection 4.3
the corresponding learning problems are investigated for Gödel numberings
as hypothesis spaces. In Subsection 4.4 the characterizations will be derived.
In Section 5 the results are discussed and open problems are outlined. Pre-
liminary versions of these results appeared in Jain et al. [16] and Lange et
al. [21].

2 Notations

IN is the set of natural numbers. We set IN+ = IN\{0}. By ∅, ∈, ⊂, ⊆,
⊃, ⊇, and # we denote the empty set, element of, proper subset, subset,
proper superset, superset, and incomparability of sets, respectively. Further-
more, let maxS and minS be the maximum and minimum of a set S, re-
spectively, where, by convention, max ∅ = 0 and min ∅ =∞. We write |S| for
the cardinality of a set S. By 〈·, ·〉 we denote Cantor’s pairing function, i.e.,
〈x, y〉 = ((x+ y)2 + 3x+ y)/2 for all x, y ∈ IN. Note that 〈·, ·〉 is monotonically

increasing in both of its arguments. The quantifiers
∞
∀ and

∞
∃ denote ‘for all

but finitely many’ and ‘there exist infinitely many,’ respectively. Let ε be the
empty word.

For n ≥ 1,Rn and Pn denote the sets of total and partial computable functions
of n arguments, respectively. We also write R = R1 and P = P1 for the
(partial) computable functions of one argument. A numbering ψ is a (possibly
partial) computable function from IN2 to IN, i.e., ψ ∈ P2. For a numbering ψ,
ψi denotes the function λx.ψ(i, x) and Rψ = {ψi i ∈ IN, ψi ∈ R}. ψ is said to
have a recursive equality problem iff there is a total recursive predicate p such
that, for all j, k ∈ IN, p(j, k) = 1 if and only if ψj = ψk. A class C of recursive
functions is said to be recursively enumerable iff C = Rψ for some ψ ∈ R2,
i.e., iff C can be recursively enumerated by some total recursive numbering.

A numbering ψ is called acceptable iff for every numbering η, there exists a
recursive function h such that for all i ∈ IN, ηi = ψh(i) (cf. Rogers [28]).
Acceptable numberings are also called Gödel numberings. A numbering ψ is
a Kolmogorov numbering iff for every numbering η, there exist a recursive
function h and a constant c such that for all i ∈ IN, ηi = ψh(i) and h(i) ≤
max {c · i, c}. A numbering ψ is called 1–1 iff ψi 6= ψj for all i 6= j.

Let C ⊆ R be recursively enumerable. Then there is a numbering ψ ∈ R2

such that C = Rψ and ψ has a recursive equality problem. If C is infinite, then
there is a 1–1 numbering ψ ∈ R2 such that C = Rψ. For a proof we refer the
reader to Kummer [20], Fact 1.

By ϕ we denote a standard acceptable (Gödel) numbering. Φ denotes a Blum

4

complexity measure for ϕ (cf. Blum [4]). We use ↓ to denote that a computation
converges. Thus, ϕi(x)↓ denotes that ϕi(x) is defined.

3 Language Learning by Erasing

In this section our objects to be learned are indexed families of languages, i.e.,
recursively enumerable classes of uniformly recursive languages. Since the pa-
per of Angluin [1] learning of indexed families of languages has attracted much
attention (cf., e.g., [33]). Mainly, because most of the established language
families such as regular languages, context-free languages, context-sensitive
languages, or pattern languages are indexed families.

In the approaches of learning by erasing below we introduce the following
possibilities for sets of hypotheses, which must or may be erased during the
inference process:

• an arbitrary set of hypotheses may be erased,
• exactly all hypotheses less than the least correct one have to be erased,
• only incorrect hypotheses may be erased,
• exactly all incorrect hypotheses have to be erased,
• all incorrect hypotheses have to be erased and an arbitrary set of correct

hypotheses may be erased, too,
• all but one hypothesis have to be erased.

We consider both modes of information presentation established in language
learning, text (positive data, only) and informant (positive and negative data).
And we study class preserving learning (the hypothesis spaces exactly enu-
merate the language family to be learned), class comprising learning (the
hypothesis spaces enumerate a possibly proper superset of the family to be
learned) and absolute learning (the families have to be learned with respect
to all hypothesis spaces enumerating them exactly).

Our results can be classified along the lines of characterizations, comparisons
inside, and comparisons with known types of language learning.

Characterizations. For all types of learning by erasing we present character-
izations, i.e., conditions that are both necessary and sufficient for learnability
in the corresponding sense. Often these characterizations are stated in terms
being independent from learning theory. In several cases the corresponding
condition is a purely structural one, namely that the language family may not
contain any language together with a proper sublanguage. In other cases, the
characterization achieves the “granularity” of deriving necessary and sufficient
learnability conditions for any given pair of a language family and a hypothe-
sis space. Such granularity results were already derived in language learning

5

theory (cf., e.g., [1,2,18,22,34]). Surprisingly, our characterizations do work
without the explicit use of so-called “telltales” which were commonly used in
most previous characterizations in language learning. Even more surprisingly,
up to now no such granularity results are known in Gold’s [14] paradigm of
learning recursive functions. There the basic structure of most of the charac-
terizations is the following. Given a class C of recursive functions and some
learning type Lt ; then C is Lt-learnable iff there is a suitable hypothesis space
such that . . . (cf. Wiehagen [32]). Note that also some characterizations in
language learning have this “there is” flavor (cf., e.g., Jain and Sharma [17]).

Comparisons inside. We derive a complete picture containing all separations
and coincidences of the types of learning by erasing defined. Fortunately, this
picture is of a pretty regular structure and not as sophisticated as sometimes in
inductive inference. Several of the separations follow from the characterizations
above.

Comparisons with known types of language learning. We compare the
types of language learning by erasing with well-known standard types of learn-
ing indexed language families such as learning in the limit, finite learning and
conservative learning (or, equivalently, learning without overgeneralization,
cf. [1,18,24,25,33]). We present the exact location of these established learning
types in the hierarchy of the types of language learning by erasing.

3.1 Definitions

The class of all {0, 1} valued functions f ∈ Rn is denoted byRn
0,1; for n = 1 we

omit the upper index. For ψ ∈ R2
0,1, let L(ψj) denote the language generated or

described by ψj, i.e., L(ψj) = {x ψj(x) = 1, x ∈ IN}. We call L = (L(ψj))j∈IN

an indexed family (cf. Angluin [1]). Then range(L) = {L(ψj) j ∈ IN}. We
sometimes write L ∈ L instead of L ∈ range(L). For the sake of presentation,
we restrict ourselves to consider exclusively indexed families of non-empty
languages. Let L be an indexed family. Then L is said to be inclusion-free iff
L 6⊂ L̂ for all languages L, L̂ ∈ range(L). Every numbering ψ ∈ R2

0,1 is called
hypothesis space. A hypothesis space ψ is said to be class comprising for L iff
range(L) ⊆ {L(ψj) j ∈ IN}. Furthermore, we call a hypothesis space ψ class
preserving for L iff range(L) = {L(ψj) j ∈ IN}. For a hypothesis space ψ and
a language L, we set minψ(L) = min {j L(ψj) = L}.

Let L be a language and let t = s0, s1, s2, . . . be an infinite sequence of natural
numbers such that content(t) =df {sk k ∈ IN} = L. Then t is said to be a text
for L or, synonymously, a positive presentation. Let text(L) denote the set of
all positive presentations of L, and let text(L) =

⋃
L∈L text(L). Moreover, let t

be a text, and let y ∈ IN. Then ty is the initial segment of t of length y+1, i.e.,
ty = s0, . . . , sy. Finally, t+y denotes the content of ty, i.e., t+y = {sz z ≤ y}.

6

Next, we recall the notion of the canonical text (cf. [22]) that turns out to be
helpful in proving some characterizations. Let L be any non-empty recursive
language, and let 0, 1, 2, . . . be the ordered text of IN. The canonical text of L
is obtained as follows. Test sequentially whether z ∈ L for z = 0, 1, 2, . . . until
the first z is found such that z ∈ L. Since L 6= ∅, there must be at least one z
fulfilling the test. Set t0 = z. We proceed inductively. For all x ∈ IN we define:

tx+1 =

tx, z + x+ 1, if z + x+ 1 ∈ L,

tx, n, otherwise, where n is the last element in tx.

An inductive inference machine (abbr. IIM) is an algorithmic mapping from
initial segments of a text to IN ∪ {?}. We interpret the hypotheses output
by an IIM with respect to some hypothesis space ψ. When an IIM outputs
a number j, we interpret it to mean that the machine is hypothesizing the
language L(ψj). The output “?” represents the case where the machine outputs
“no conjecture.”

Furthermore, we define an erasing learning machine (abbr. ELM) to be an
algorithmic device working exactly as an IIM does. However, there is a major
difference in the semantics of the output of an IIM and an ELM, respectively.
Let ψ ∈ R2

0,1 be any hypothesis space. Suppose an ELM M has been succes-
sively fed an initial segment ty of a text t, and it has output numbers j0, . . . , jz.
Then we interpret j = min (IN \ {j0, . . . , jz}) as M ’s actual guess. Intuitively,
if an ELM outputs a number j, then it definitely deletes j from its list of poten-
tial hypotheses. For an ELM M , a text t and y ∈ IN, let ProgSet(M, ty) be the
set of all numbers output by M when successively fed ty, and let ProgSet(M, t)
be the overall set of numbers output by M on text t.

We define convergence of IIMs as usual. Let t be a text, and let M be an IIM.
The sequence (M(ty))y∈IN is said to converge to a number j iff all but finitely
many terms of (M(ty))y∈IN are equal to j.

An ELM M is said to stabilize to a number j on a text t iff its sequence of
actual guesses converges to j, i.e., j = min(IN \ ProgSet(M, t)).

Now we are ready to define learning and learning by erasing.

Definition 1 (Gold [14]). Let L be an indexed family, let L be a language,
and let ψ ∈ R2

0,1 be a hypothesis space. An IIM M CExTxtψ-infers L iff for
every t ∈ text(L), there exists a j ∈ IN with L = L(ψj) such that the sequence
(M (ty))y∈IN converges to j.

M CExTxtψ-infers L iff M CExTxtψ-infers L for each L ∈ range(L).

Let CExTxtψ denote the collection of all indexed families L for which there is

7

an IIM M such that M CExTxtψ-infers L.

Finally, CExTxt denotes the collection of all indexed families L for which there
are an IIM M and a hypothesis space ψ such that M CExTxtψ-infers L.

Since, by the definition of convergence, an IIM has only seen a finite amount of
data about L until the (unknown) point of convergence is reached, whenever
an IIM infers the language L, some form of learning must have taken place.
For this reason, hereinafter the terms infer , learn, and identify are used in-
terchangeably.

In Definition 1 the prefix C is used to indicate class comprising learning,
i.e., the fact that L may be learned with respect to some class comprising hy-
pothesis space ψ for L. The restriction of CExTxt to class preserving hypothe-
sis spaces is denoted by ExTxt and referred to as class preserving inference.
Moreover, we use the prefix A to express the fact that an indexed family L
must be inferred with respect to all class preserving hypothesis spaces for L,
and we refer to this learning model as to absolute learning. We adopt these
conventions in the definitions of the learning types below.

The following proposition states that, if there is a hypothesis space ψ such that
an indexed family L can be CExTxtψ-learned, then it can be ExTxt-inferred
with respect to every class preserving hypothesis space for L.

Proposition 1 (Lange and Zeugmann [25]). AExTxt = ExTxt = CExTxt .

Note that, in general, it is not decidable whether or not an IIM M has already
converged on a text t for the target language L. With the next definition, we
consider a special case where it has to be decidable whether or not an IIM has
successfully finished the learning task.

Definition 2 (Gold [14]; Trakhtenbrot and Barzdin [31]). Let L be an indexed
family, let L be a language, and let ψ ∈ R2

0,1 be a hypothesis space. An IIM
M CFinTxtψ-infers L iff for every t ∈ text(L), there exist j, z ∈ IN such that
L = L(ψj), M (ty) = ? for all y < z, and M (ty) = j for all y ≥ z.

M CFinTxtψ-infers L iff M CFinTxtψ-infers L for each L ∈ range(L).

Finally, CFinTxtψ and CFinTxt are defined analogously as above.

The analogue to Proposition 1 also holds for finite learning.

Proposition 2 (Zeugmann et al. [34]). AFinTxt = FinTxt = CFinTxt .

Now, we define conservative IIMs. Conservative IIMs maintain their actual
hypothesis at least as long as they have not received data that “provably
misclassify” it. Hence, whenever a conservative IIM performs a mind change
it is because it has perceived a clear contradiction between its hypothesis and
the actual input.

8

Definition 3 (Angluin [1]). Let L be an indexed family, let L be a language,
and let ψ ∈ R2

0,1 be a hypothesis space. An IIM M CConsvTxtψ-infers L iff

(1) M CExTxtψ-infers L,
(2) for all t ∈ text(L) and all y, k ∈ IN such that M(ty), M(ty+k) 6= ?, if

M (ty) 6= M (ty+k) then t+y+k 6⊆ L(ψM (ty)).

M CConsvTxtψ-infers L iff M CConsvTxtψ-infers L for all L ∈ range(L).

CConsvTxtψ and CConsvTxt are defined analogously to Definition 1.

The following proposition shows that conservative learning is sensitive to the
particular choice of the hypothesis space.

Proposition 3 (Lange and Zeugmann [24]).

AConsvTxt ⊂ ConsvTxt ⊂ CConsvTxt ⊂ AExTxt .

Next, we define learning by erasing.

Definition 4. Let L be an indexed family, let L be a language, and let ψ ∈ R2
0,1

be a hypothesis space. An ELM M CArbTxtψ-infers L iff for every t ∈ text(L),
there exists a j ∈ IN with L = L(ψj) such that M on t stabilizes to j.

M CArbTxtψ-infers L iff M CArbTxtψ-infers L for each L ∈ range(L).

CArbTxtψ denotes the collection of all indexed families L for which there is
an ELM M such that M CArbTxtψ-infers L.

Finally, let CArbTxt denote the collection of all indexed families L for which
there are an ELM M and a hypothesis space ψ such that M CArbTxtψ-
infers L.

Definition 5. Let L be an indexed family, let L be a language, and let ψ ∈ R2
0,1

be a hypothesis space. An ELM M is said to

(A) CMinTxtψ-infer L,
(B) CSubTxtψ-infer L,
(C) CEqualTxtψ-infer L,
(D) CSuperTxtψ-infer L,
(E) CAllTxtψ-infer L,

iff M CArbTxtψ-infers L and for each t ∈ text(L), the following corresponding
condition is satisfied

(A) ProgSet(M, t) = {j j < minψ(L), j ∈ IN}, i.e., M has to erase exactly
all hypotheses prior to the least correct index for L;

(B) ProgSet(M, t) ⊆ {j L(ψj) 6= L, j ∈ IN}, i.e., M is only allowed to erase
hypotheses that are incorrect for L;

(C) ProgSet(M, t) = {j L(ψj) 6= L, j ∈ IN}, i.e., M has to erase exactly all
hypotheses that are incorrect for L;

9

(D) ProgSet(M, t) ⊇ {j L(ψj) 6= L, j ∈ IN}, i.e., M has to erase all
hypotheses that are incorrect for L but it may additionally erase correct
hypotheses for L;

(E) |IN \ ProgSet(M, t)| = 1, i.e., M has to erase all but one hypothesis.

Finally, CMinTxtψ, CSubTxtψ, CEqualTxtψ, CSuperTxtψ, and CAllTxtψ as
well as CMinTxt, CSubTxt, CEqualTxt, CSuperTxt, and CAllTxt are defined
analogously to Definition 4.

In order to study learning by erasing from both positive and negative data
we have to introduce some more notations and definitions. Let L ⊆ IN be a
language, and let i = (s0, b0), (s1, b1), . . . be an infinite sequence of elements
of IN × {+,−} such that content(i) =df {sk k ∈ IN} = IN, i+ =df {sk bk =
+, k ∈ IN} = L and i− =df {sk bk = −, k ∈ IN} = IN \ L. Then we refer
to i as an informant for L. If L is classified via an informant then we also
say that L is represented by positive and negative data. By info(L) we denote
the set of all informants for L. We use ix to denote the initial segment of i
of length x + 1, and define i+x = {sk bk = +, k ≤ x} and i−x = {sk bk =
−, k ≤ x}. ProgSet(M, i) where i is an informant is defined analogously as
ProgSet(M, t) where t is a text. Furthermore, CExInf and CFinInf are defined
analogously as in Definitions 1 and 2, respectively, by replacing everywhere
text by informant. Finally, we extend all the definitions of learning by erasing
in the same way, and denote the resulting learning types by CLtInf for all
Lt ∈ {Arb,Min, Sub,Equal , Super ,All}.

Figure 1 summarizes most of the relations between the learning types studied
in Section 3. It may also serve as a kind of map for the reader. Each learning
type is represented as a vertex in a directed graph. A directed edge (or path)
from vertex A to vertex B indicates that A is a proper subset of B. Finally, Lt
stands for Arb, Min, Sub, Equal and Super , respectively, and λ stands for A, ε
and C, respectively. Note that FinInf ⊂ ConsvTxt also holds, cf. Proposition 7
below, which is not indicated by an arrow in Figure 1.

3.2 Characterizations

In this section we present characterizations of all the models of learning by
erasing. These characterizations may help to better understand what these
models have in common and what their differences are. Notice that there will
be two kinds of characterizations. On the one hand, we present characteri-
zations of learning types in terms being independent of learning theory (cf.

10

ExInf =ALtInf =AllInf

ExTxt =ArbTxt =SuperTxt =AllTxt

CSubTxt =CMinTxt

SubTxt =MinTxt

λEqualTxt =ALtTxt

AAllTxt

FinTxt

6

6

6

6

6

6

AAllInf

FinInf

XX
XXX

XXX
XXXy

XXX
XXX

XXX
XXy
6

���
���

���
��:

CConsvTxt

ConsvTxt

AConsvTxt

��
���

���
���:

���
���

���
��:

XXX
XXX

XXX
XXy

6

6

Figure 1. Summary

Theorems 1, 4, 5, 6 and Proposition 4). On the other hand, we characterize
learning types by showing that they coincide with other learning types. The
latter approach is also technically useful for the remainder of Section 3 in that
it allows to prove results only for one representative of each group of coinciding
learning types.

Our first result characterizes EqualTxt in purely structural terms.

Theorem 1. For any indexed family L, L ∈ EqualTxt iff L is inclusion-free.

Proof. Necessity: Let L ∈ EqualTxt . Hence L ∈ CEqualTxt . Consequently, L
is inclusion-free by Claim A below.

Claim A. For every indexed family L, if L ∈ CEqualTxt, then L is inclusion-
free.

Let L be any indexed family, let ψ be any class comprising hypothesis space
for L, and let M be any ELM witnessing L ∈ CEqualTxtψ. Suppose that there

are L, L̂ ∈ L with L ⊂ L̂. Let t ∈ text(L). Since M CEqualTxtψ-learns L,

on successive input t, M has to delete sometimes a ψ-index for L̂, i.e., there
is a least y ∈ IN such that M (ty) = j with L(ψj) = L̂. Because of L ⊂ L̂,

ty can be extended to a text t̂ ∈ text(L̂). Moreover, L̂ ∈ L and thus M must

CEqualTxtψ-identify L̂. However, M , when fed the initial segment t̂y, outputs

a correct ψ-index for L̂, a contradiction.

11

Sufficiency: Clearly, it suffices to prove the following Claim B.

Claim B. For any indexed family L, if L is inclusion-free, then L ∈ AEqualTxt.

Let ψ ∈ R2
0,1 be any class preserving hypothesis space for any inclusion-free in-

dexed family L. Choose an ELM M that meets ProgSet(M , t) = {j (∃y)[t+
y 6⊆

L(ψj)]} for all t ∈ text(L). By construction, M , when fed a text t for L ∈ L,
never outputs a correct ψ-index for L. On the other hand, M eventually out-
puts all incorrect ψ-indices for L. Actually, if L(ψj) 6= L for some j ∈ IN, then
L 6⊆ L(ψj), since L is inclusion-free. Hence, t+y 6⊆ L(ψj) for some y ∈ IN, and
j is erased by M . Consequently, M EqualTxtψ-identifies L. 2

Claim A and Claim B above immediately yield the following corollary.

Corollary 2. AEqualTxt = EqualTxt = CEqualTxt .

Furthermore, Theorem 1 and Corollary 2 can be exploited to characterize
AArbTxt , ASubTxt and ASuperTxt as well.

Theorem 3. For all Lt ∈ {Arb, Sub, Super}, ALtTxt = AEqualTxt.

Proof. By Definitions 4 and 5, we have AEqualTxt ⊆ ASubTxt ⊆ AArbTxt
and AEqualTxt ⊆ ASuperTxt ⊆ AArbTxt . Hence, it suffices to show that
AArbTxt ⊆ AEqualTxt . But this follows from the claim below via Claim B
from the proof of Theorem 1.

Claim. For any indexed family L, if L ∈ AArbTxt, then L is inclusion-free.

Suppose to the contrary that there are L, L̂ ∈ L with L ⊂ L̂. Now, choose any
class preserving hypothesis space ψ for L such that L(ψ0) = L̂ and L(ψj) 6= L̂
for all j > 0. Clearly, such a hypothesis space always exists. By assumption,
L ∈ AArbTxt , and hence there is an ELM M which ArbTxtψ-identifies L. Now,
let t be any text for L. Then, M (tx) = 0 for some x ∈ IN, since, otherwise, M
would stabilize on t to 0, but L(ψ0) 6= L. Choose any text t̂ for L̂ ⊃ L with
the initial segment tx. Obviously, on t̂, M deletes the one and only ψ-index
for L̂, a contradiction. 2

For characterizing AAllTxt we have to combine the structural approach with
the numbering theoretical one used by Kummer [20].

Theorem 4. For any indexed family L, L ∈ AAllTxt iff

(1) L is inclusion-free, and
(2) every class preserving hypothesis space for L has a recursive equality prob-

lem.

Proof. Necessity: Let L ∈ AAllTxt . By definition, L ∈ AArbTxt , and thus
L is inclusion-free (cf. the claim in the proof of Theorem 3). On the other
hand, AAllTxt ⊆ AAllInf . Kummer [20] has shown that L ∈ AAllInf iff every

12

class preserving hypothesis space for L has a recursive equality problem (cf.
Proposition 4 below). Hence, we are done.

Sufficiency: Let L be any inclusion-free indexed family, and let ψ be any class
preserving hypothesis space for L. Then, by (2), ψ has a recursive equality
problem. Define an ELM M such that ProgSet(M , t) contains all and only the
ψ-indices j satisfying (i) or (ii), where

(i) t+y 6⊆ L(ψj) for some y ∈ IN,
(ii) ψk = ψj for some k < j.

Consider M when fed any t ∈ text(L) for some L ∈ L. By clause (i), M
eventually erases all incorrect ψ-indices for L, since L is inclusion-free, and
therefore L(ψj) 6= L implies L 6⊆ L(ψj). Moreover, clause (ii) guarantees that
there is exactly one correct ψ-index for L that never will be erased, namely
the minimal one. Hence, M AllTxtψ-learns L. 2

Next, we characterize CSubTxt and SubTxt . Now we derive necessary and
sufficient conditions for any given pair of an indexed family and a hypothesis
space for it. Again, the characterization is mainly based on structural proper-
ties of the relevant hypothesis spaces. However, we have to add a component
of computability to these structural properties. Within the next definition we
provide the necessary framework for establishing the desired characterization
theorems.

Definition 6. Let L be any indexed family, and let ψ be any class comprising
hypothesis space for L. Then we set:

(1) Bad(L, ψ) = {j (∃L ∈ range(L))[L ⊂ L(ψj) ∧ j < minψ(L)]},
(2) Wrong(L, ψ) = {j L(ψj) /∈ range(L)}.

Theorem 5. For any indexed family L and any class comprising hypothesis
space ψ for L, L ∈ CSubTxtψ iff Bad (L, ψ) ⊆ W ⊆ Wrong(L, ψ) for some
recursively enumerable set W.

Proof. Necessity: Let L be any indexed family, let ψ be any class comprising
hypothesis space for L, and let M be any ELM which CSubTxtψ-learns L.

Next, we use M to define f ∈ P such that W = range(f). For every k ∈ IN,
let tk denote the canonical text for the language L(ψk). For every k, x ∈ IN,
we set:

f(〈k, x〉) =

M (tkx), if content(tkx) ⊆ L(ψM (tkx)),

not defined, otherwise.

Using the convention that, if M(tkx) = ? then f(〈k, x〉) is not defined, we ob-
viously have f ∈ P . It remains to show that Bad(L, ψ) ⊆ W ⊆Wrong(L, ψ).

13

Claim A. W ⊆Wrong(L, ψ).

If W = ∅, we are done. Now, let z = f(〈k, x〉) for some k, x ∈ IN. By definition
of f , we have M (tkx) = z and content(tkx) ⊆ L(ψz). Suppose, L(ψz) ∈ L. Since
content(tkx) ⊆ L(ψz), t

k
x is an initial segment of some text t̂ for L(ψz). Thus

M , when fed the text t̂ for L(ψz) ∈ L, outputs the correct ψ-index z for L(ψz).
This contradicts our assumption that M CSubTxtψ-infers L. Thus, Claim A
follows.

Claim B. Bad(L, ψ) ⊆ W .

Suppose the converse, i.e., there is a z ∈ Bad(L, ψ) \W . Hence, z < minψ(L)
for some L ∈ L with L ⊂ L(ψz). Let k be any ψ-index for L. Consider M
when fed the canonical text tk for L. Since M CSubTxtψ-identifies L, M must
stabilize on tk to minψ(L). Because of z < minψ(L), there has to be an x ∈ IN
with M (tkx) = z . Thus, f(〈k, x〉) = z, and hence z ∈ W , a contradiction. Thus,
Claim B follows, and we are done.

Sufficiency: Let L be any indexed family, let ψ be any class comprising hy-
pothesis space for L, and let W be any recursively enumerable set with
Bad(L, ψ) ⊆ W ⊆ Wrong(L, ψ). Define an ELM M such that ProgSet(M , t)
contains exactly the ψ-indices j with (i) or (ii), where

(i) t+y 6⊆ L(ψj) for some y ∈ IN,
(ii) j ∈ W .

Let L ∈ L and t ∈ text(L). By construction, on input t, M never outputs a
correct ψ-index for L. Moreover, M stabilizes to minψ(L). Actually, for any
j < minψ(L), either L 6⊆ L(ψj) or L ⊂ L(ψj). In the former case, j is erased
by (i). In the latter case, j is erased by (ii), since j ∈ Bad(L, ψ) ⊆ W . Hence,
M CSubTxtψ-learns L. 2

Theorem 6. For any indexed family L and any class preserving hypothesis
space ψ for L, L ∈ SubTxtψ iff Bad(L, ψ) = ∅.

Proof. Recall that Wrong(L, ψ) = ∅ for any class preserving hypothesis
space ψ for L. Hence, Theorem 6 follows immediately from Theorem 5. 2

We now prove the equivalence of all corresponding variants of Min-learning
by erasing and Sub-learning by erasing from text.

Theorem 7. For all λ ∈ {A, ε, C}, λMinTxt = λSubTxt.

Proof. By definition, λMinTxt ⊆ λSubTxt for all λ ∈ {A, ε, C}. The con-
verse easily follows by transforming any given ELM M into an ELM M̂ such
that for every text t, ProgSet(M̂ , t) = {j (∀i ≤ j)[i ∈ ProgSet(M, t)]}. 2

From Theorem 7 it follows immediately that for CMinTxt and MinTxt , the
characterizations from Theorems 5 and 6, respectively, also apply. Moreover,

14

since AMinTxt = ASubTxt = AEqualTxt = EqualTxt by Theorem 7, The-
orem 3 and Corollary 2, the characterization of Theorem 1 is also valid for
AMinTxt .

Next, we characterize the remaining models of learning by erasing from text.

Theorem 8. For all Lt ∈ {All , Super , Arb}, LtTxt = ExTxt .

Proof. By definition, AllTxt ⊆ SuperTxt ⊆ ArbTxt . Since ExTxt ⊆ AllTxt
(cf. [13], Theorem 3), it suffices to show that ArbTxt ⊆ ExTxt .

Claim. For any indexed family L and for any class comprising hypothesis space
ψ ∈ R2

0,1 for L, if L ∈ CArbTxtψ then L ∈ CExTxtψ.

Let M be an ELM witnessing L ∈ CArbTxtψ. Let an IIM M̂ always output

the least ψ-number not yet definitely deleted by M . Obviously, M̂ CExTxtψ-
learns L.

Since the claim above especially holds for any class preserving hypothesis
space, we obtain ArbTxt ⊆ ExTxt , and the theorem follows. 2

Proposition 1 and the claim in the proof of Theorem 8 above directly allow
the following corollary.

Corollary 9. For all Lt ∈ {All , Super , Arb}, CLtTxt = ExTxt .

Finally, we derive characterizations for language learning by erasing from in-
formant.

Theorem 10. For all Lt ∈ {Arb, Min, Sub, Equal , Super}, ALtInf =
LtInf = CLtInf = ExInf .

Proof. First, we prove that every indexed family belongs to both AEqualInf
and AMinInf .

Claim A. For any indexed family L, L ∈ AEqualInf .

Let ψ ∈ R2
0,1 be any class preserving hypothesis space for L. Define an ELM

M which deletes every j ∈ IN such that L(ψj) is inconsistent with the given
informant i, i.e., ProgSet(M , i) = {j (∃y)[i+

y 6⊆ L(ψj)∨ i−y 6⊆ IN \L(ψj)]}. By
construction, M never outputs a correct ψ-index for L. Moreover, M eventu-
ally deletes all incorrect ψ-indices for L.

Claim B. For any indexed family L, L ∈ AMinInf .

Let ψ ∈ R2
0,1 be any class preserving hypothesis space for L. By Claim A above,

there is an ELM M that EqualInfψ-learns L. Clearly, an ELM M ′ MinInfψ-
learns L provided that ProgSet(M ′, i) = {j (∀k ≤ j)[k ∈ ProgSet(M , i)]}.

By definition, AEqualInf ⊆ ALtInf for all Lt ∈ {Arb, Sub, Super}, and
thus, by Claim A, every indexed family is contained in ALtInf , too. On the

15

other hand, every indexed family belongs to ExInf (cf. Gold [14]). Finally,
taking into account that ALtInf ⊆ LtInf ⊆ CLtInf for any learning type
Lt ∈ {Arb, Sub, Equal , Super , Min}, the theorem directly follows. 2

The remaining characterizations, namely for AAllInf , AllInf and CAllInf , can
be found already in the literature.

Proposition 4 (Kummer [20]). For any indexed family L, L ∈ AAllInf iff
every class preserving hypothesis space for L has a recursive equality problem.

Proposition 5 (Freivalds et al. [10]). AllInf = ExInf .

The latter result immediately yields CAllInf = ExInf , since ExInf already
contains any indexed family (cf. Gold [14]).

3.3 Learning from Text

In this subsection, we compare the capabilities of all the types of learning
from positive data by erasing to one another as well as to finite inference,
learning in the limit and conservative identification from text. Recall that
several coincidences of the corresponding types were already exhibited in the
previous subsection (cf. Theorems 3, 7, 8 and Corollaries 2, 9). Hence we now
confine ourselves to derive mainly proper inclusion and incomparability results.
Thereby, we also analyze the power of learning by erasing in dependence on
the set of admissible hypothesis spaces. In 3.3.1, 3.3.2 and 3.3.3 we are dealing
with class preserving, class comprising and absolute learning, respectively.

3.3.1 Class Preserving Learning

Since AllTxt = SuperTxt = ArbTxt = ExTxt by Theorem 8 and MinTxt =
SubTxt by Theorem 7, it remains to clarify the power of EqualTxt and SubTxt
as well as to compare these types with both FinTxt and ConsvTxt . This will
be done by the following result.

Theorem 11. FinTxt ⊂ EqualTxt ⊂ SubTxt ⊂ ConsvTxt .

Proof. Claim A. FinTxt ⊂ EqualTxt .

Let L ∈ FinTxt and let ψ ∈ R2
0,1 be a class preserving hypothesis space

for L. By Proposition 2, there exists an IIM M witnessing L ∈ FinTxtψ.
To EqualTxtψ-learn L simulate M and, as soon as M outputs its first (and
correct) guess, say j, erase all i with ψi 6= ψj.

In order to separate FinTxt and EqualTxt consider the indexed family L =
(Lj)j∈IN with Lj = IN \ {j} for all j ∈ IN. Note that L /∈ FinTxt (cf. [13]).
Since L is inclusion-free, L ∈ EqualTxt (cf. Theorem 1).

16

Claim B. EqualTxt ⊂ SubTxt .

Since, by definition, EqualTxt ⊆ SubTxt , it suffices to show that SubTxt \
EqualTxt 6= ∅. For all j ∈ IN, let Lj = {0, . . . , j}, and set L = (Lj)j∈IN.

First, we verify that L ∈ SubTxt . Choose the hypothesis space ψ ∈ R2
0,1 with

L(ψj) = Lj for all j ∈ IN. Define an ELM M such that ProgSet(M , t) =
{j (∃y)[t+

y 6⊆ L(ψj)]} for all t ∈ text(L). Clearly, when fed any t ∈ text(L),
all hypotheses erased by M are incorrect. Moreover, M stabilizes to the only
ψ-index for the language to be learned. Thus, M SubTxtψ-identifies L.

Since L is not inclusion-free, we have L /∈ EqualTxt by Theorem 1, and
Claim B follows.

Claim C. SubTxt ⊂ ConsvTxt .

Let L0 = IN and for all j ∈ IN, let Lj+1 = {j} as well as L = (Lj)j∈IN. We
claim that L ∈ ConsvTxt \ SubTxt . Obviously, L ∈ ConsvTxtL. Suppose L ∈
SubTxt . Thus, there are a class preserving hypothesis space ψ and an ELM M
witnessing L ∈ SubTxtψ. Let k = minψ(L0). Since range(L) is infinite, there
must be an L ∈ L such that minψ(L) > k. Thus, Bad(L, ψ) 6= ∅, and, by
Theorem 6, L /∈ SubTxtψ, a contradiction.

It remains to prove SubTxt ⊆ ConsvTxt . Let ψ be some class preserving
hypothesis space ψ such that L ∈ SubTxtψ. Then, for all L ∈ L, and all
j ∈ IN, j < minψ(L) implies L 6⊂ L(ψj), since Bad(L, ψ) = ∅ by Theorem 6.
The desired conservative IIM M uses the hypothesis space ψ and is defined
as follows. On a possible input tx, M outputs the least j with t+x ⊆ L(ψj). By
construction, if M (tx) 6= M (tx+z) for some z ∈ IN, then t+x+z 6⊆ L(ψM (tx)); thus
M is conservative. Let L ∈ L, t ∈ text(L), and k = minψ(L). Since L 6⊂ L(ψj)
for all j < k, every such j must be abandoned eventually. Thus, M converges
to k. This proves Claim C. 2

3.3.2 Class Comprising Learning

Taking into account that CEqualTxt = EqualTxt by Corollary 2, CLtTxt =
ExTxt for all Lt ∈ {All , Super , Arb} by Corollary 9, and CMinTxt =
CSubTxt by Theorem 7, it remains to investigate the learning power of the
learning type CSubTxt , only.

Theorem 12.

(1) SubTxt ⊂ CSubTxt ⊂ ExTxt .
(2) CSubTxt # CConsvTxt .

Proof. Claim A. ConsvTxt \ CSubTxt 6= ∅.
One easily verifies that the indexed family L used in the proof of Theorem 11,
Claim C, separates ConsvTxt and CSubTxt , too, and thus Claim A follows.

17

Since ConsvTxt ⊂ CConsvTxt ⊂ ExTxt (cf. Proposition 3), Claim A yields
both CConsvTxt \CSubTxt 6= ∅ and ExTxt \CSubTxt 6= ∅. By definition and
by Corollary 9, CSubTxt ⊆ CArbTxt = ExTxt . Hence CSubTxt ⊂ ExTxt . The
following claim provides us the remaining part of Assertions (1) and (2).

Claim B. CSubTxt \ CConsvTxt 6= ∅.
Note that the verification of this claim is based on a technique from Lange
and Zeugmann [24]. First, we define the desired indexed family L witnessing
the claimed separation. For the sake of presentation, we describe L as a family
of languages over the alphabet Σ = {a, b, c}. Note that, by convention, x0 = ε
for x ∈ Σ.

Subsequently, we assume that Φk(k) ≥ 1 for all k ∈ IN. For all k, j ∈ IN, we
set:

L〈k,j〉 =

 {a
kbm m ≤ j − Φk(k)}, if Φk(k) ≤ j ≤ 2 · Φk(k),

{akbm m ∈ IN}, otherwise.

Finally, let L = (L〈k,j〉)k,j∈IN. Since L /∈ CConsvTxt (cf. Theorem 1 in Lange
and Zeugmann [24]), it suffices to show that L ∈ CSubTxt .

The desired ELM M uses the following class comprising hypothesis space
H = (H〈k,j〉)k,j∈IN. For all j, k ∈ IN, we set:

H〈k,j〉 =

L〈k,j〉 ∪ {a
kcΦk(k)}, if not Φk(k) ≤ j,

L〈k,j〉, otherwise.

By definition, H serves as a class comprising hypothesis space for L. Note
that, by convention, L〈k,j〉 ∪ {akcΦk(k)} equals L〈k,j〉, if ϕk(k) is undefined. On
the other hand, if ϕk(k) is defined, then the languages H〈k,j〉 with j < Φk(k)
are clearly out of range(L). Therefore this “comprising part”of the space H
can be erased “without risk” by a machine CSubTxtH-learning L. On any
t ∈ text(L), such an ELM M works as follows.

ELM M : “ On input text t determine the unique k such that content(t) ⊆
{akbn n ∈ IN}. Erase all i ∈ IN \ {〈k, j〉 j ∈ IN}. If and when ϕk(k) turns
out to be defined, then erase all 〈k, j〉 such that
(i) j < Φk(k) or

(ii) Φk(k) ≤ j ≤ 2 · Φk(k) and, for some y ∈ IN, t+y 6⊆ H〈k,j〉.”

Let L ∈ L, and let k ∈ IN be unique such that L ⊆ {akbn n ∈ IN}. In order
to verify the correctness of M we distinguish the following cases.

18

Case 1. ϕk(k) is undefined.

Hence, L = L〈k,j〉 = H〈k,j〉 for all j ∈ IN. By construction, M outputs exactly
the set IN \ {〈k, j〉 j ∈ IN}. Thus, M erases exclusively incorrect H-indices
for L, and M stabilizes to 〈k, 0〉, the minimal H-index for L.

Case 2. ϕk(k) is defined.

Let L = H〈k,j〉. Then j ≥ Φk(k), since j < Φk(k) would imply H〈k,j〉 /∈ L. As
in Case 1, it is justified to erase all the numbers from IN \ {〈k, j〉 j ∈ IN}.
Moreover, erasing all the 〈k, i〉 with i < Φk(k), as M does by (i), is justified
and necessary. Now, if Φk(k) ≤ j ≤ 2 · Φk(k), then L is finite and, by (ii), M
will stabilize to 〈k, j〉, the only H-index of L. Finally, if j > 2 · Φk(k), then
L = {akbn n ∈ IN} and, again by (ii), M will stabilize to 〈k, 2 · Φk(k) + 1〉,
the minimal H-index of L.

To sum up, M CSubTxtH-learns L, and thus M witnesses L ∈ CSubTxt .

Clearly, Assertion (2) follows immediately by Claim A and Claim B. Finally,
since SubTxt ⊆ CSubTxt and SubTxt ⊂ ConsvTxt (cf. Theorem 11), we obtain
SubTxt ⊂ CSubTxt via Claim B. Thus Assertions (1) and (2) are proved. 2

3.3.3 Absolute Learning

We start with studying AAllTxt . As we shall see, this type is the least powerful
one of learning by erasing from text.

Theorem 13. FinTxt ⊂ AAllTxt ⊂ AEqualTxt .

Proof. We know already that FinTxt ⊂ AAllTxt (cf. Theorems 11 and 21 in
[13]). Thus, it remains to show that AAllTxt ⊂ AEqualTxt . By definition and
by Theorem 3, AAllTxt ⊆ AArbTxt = AEqualTxt .

Claim. AEqualTxt \ AAllTxt 6= ∅.
We define the desired indexed family L as follows. For all k ∈ IN, let L2k =
{2k, 2k+Φk(k) + 1} and L2k+1 = {2k, 2k+Φk(k) + 3}, where, by definition, L2k =
L2k+1 = {2k} iff ϕk(k) is undefined. One easily verifies that L is indeed an
indexed family. Moreover, L is inclusion-free, and therefore L ∈ AEqualTxt
by Claim B in the proof of Theorem 1. In order to show that L /∈ AAllTxt
consider the hypothesis space ψ with L(ψk) = Lk for all k ∈ IN. Now, one easily
verifies that the equality problem for ψ is not recursive. Hence, L /∈ AAllTxt
follows from Theorem 4. 2

Since for all Lt ∈ {Arb, Min, Sub, Equal , Super}, the types ALtTxt coincide
by Theorems 3 and 7, AAllTxt indeed turns out to be the least powerful type
of learning by erasing from text by Theorem 13. On the other hand, the “A-
requirement” results in decreasing the power of all the types of learning by

19

erasing from text, as our next result shows (the only exception is AEqualTxt =
EqualTxt , Corollary 2).

Corollary 14. For all Lt ∈ {Arb, Min, Sub, Super , All}, ALtTxt ⊂ LtTxt.

Proof. By Theorems 8, 11, 13 and Corollary 2, AAllTxt ⊂ AEqualTxt =
EqualTxt ⊂ ExTxt = AllTxt . Moreover, by Theorems 3, 8, 11 and Corollary 2,
ASuperTxt = AArbTxt = AEqualTxt = EqualTxt ⊂ ExTxt = SuperTxt =
ArbTxt . Finally, by Theorems 3, 7, 11 and Corollary 2, AMinTxt = ASubTxt =
AEqualTxt = EqualTxt ⊂ SubTxt = MinTxt . 2

Finally, we compare AConsvTxt-inference with the models of learning by eras-
ing.

Theorem 15.

(1) AConsvTxt \ CSubTxt 6= ∅.
(2) SubTxt \ AConsvTxt 6= ∅.

Proof. First, we show (1). Let L0 = IN and, for all j ∈ IN, let Lj+1 = {j} as
well as L = (Lj)j∈IN. We know already that L /∈ CSubTxt (cf. Theorem 12,
Claim A) and L ∈ ConsvTxtL (cf. Theorem 11, Claim C). Now, let ψ ∈ R2

0,1

be any class preserving hypothesis space for L. Then, there is a recursive
compiler c from L to ψ, i.e., Lj = L(ψc(j)) for all j ∈ IN. Given c and an
IIM M witnessing L ∈ ConsvTxtL, the IIM M ′ ConsvTxtψ-learns L where
M ′(tx) = c(M (tx)) for all possible inputs tx, and, by convention, c(?) = ?.

To verify (2), let L = (L〈k,j〉)k,j∈IN with L〈k,j〉 = {〈k, 0〉, 〈k, j〉} for all k, j ∈ IN.
Clearly, L ∈ SubTxtL by an ELM with ProgSet(M, t) = {j (∃y)[t+y 6⊆ Lj]}.
Next, we define a class preserving hypothesis space L′ for L such that L /∈
ConsvTxtL′ . For all k, j ∈ IN, let L′〈k,0〉 = {〈k, 0〉, 〈k,Φk(k)〉}, and, in case
that j ≥ 1, let L′〈k,j〉 = {〈k, 0〉, 〈k, j〉}, if Φk(k) 6= j, and L′〈k,j〉 = {〈k, 0〉},
otherwise. Clearly, range(L′) = range(L). Now, let I = {〈k, j〉 |L′〈k,j〉| = 1}.
Furthermore, let K = {k ϕk(k) is defined} denote the halting set of ϕ. From
the definition of L′, it follows immediately that, for any k ∈ IN, there is exactly
one j ∈ IN such that |L′〈k,j〉| = 1, namely j = 0, if k /∈ K, and j = Φk(k), if
k ∈ K.

Claim A. L ∈ ConsvTxtL′ implies that I is recursively enumerable.

Let M be an IIM that ConsvTxtL′-identifies L. Then define a function f ∈ R
as follows. On input k, simulate M when successively fed tk = 〈k, 0〉, 〈k, 0〉, . . .
If and when M outputs its first guess j with 〈k, 0〉 ∈ L′j, then define f(k) =
j. Since M , in particular, ConsvTxtL′-identifies the singleton language L =
{〈k, 0〉} on its unique text tk, L′j must equal L, and thus j ∈ I. Moreover, j is
the only L′-index of {〈k, 0〉}. Hence, I = range(f).

20

Claim B. I is not recursively enumerable.

Assume to the contrary that I is recursively enumerable. Then, given any
k ∈ IN, compute the only j ∈ IN such that 〈k, j〉 ∈ I. If j = Φk(k), then
k ∈ K, otherwise k /∈ K. Consequently, K is recursive, a contradiction.

From Claims A and B we immediately obtain L /∈ ConsvTxtL′ , and therefore
L /∈ AConsvTxt . 2

Theorem 16. EqualTxt ⊂ AConsvTxt .

Proof. Since EqualTxt ⊆ SubTxt , AConsvTxt \EqualTxt 6= ∅ follows immedi-
ately from Theorem 15, Assertion (1). Now, let L ∈ EqualTxt . By Theorem 1,
Claim A, L is inclusion-free. Let ψ ∈ R2

0,1 be any class preserving hypothesis
space for L. An IIM M that ConsvTxtψ-learns L can be defined as follows.
M , when successively fed any t ∈ text(L) for any L ∈ L, outputs the least
ψ-index j with t+x ⊆ L(ψj). By definition, M performs exclusively justified
mind changes, and therefore M is conservative. Since L is inclusion-free, we
have L 6⊆ L(ψj) for all j < minψ(L), and thus M converges to minψ(L). 2

3.4 Learning from Informant

As we have seen in Theorem 10, most of the types of learning by erasing from
informant coincide with ExInf . It only remains to clarify the power of AAllInf
which will be done by Proposition 6 and Theorem 17 below. We then study
the interplay between information presentation and learning capabilities, i.e.,
we compare “Inf-types” with “Txt-types” and vice versa.

Freivalds et al. [10] introduced the learning types AllInf and implicitly also
AAllInf , and referred to them as to co-learning. Furthermore, they considered
the co-learnability of recursively enumerable classes of arbitrary total recursive
functions. This contrasts our scenario, since we exclusively study the learn-
ability of {0, 1} valued functions. Nevertheless, their results easily translate
into our setting.

Proposition 6 (Freivalds et al. [10]). FinInf ⊆ AAllInf ⊂ AllInf .

Using a deep result due to Selivanov [30], Freivalds et al. [11] could exhibit
a recursively enumerable function class which is co-learnable with respect to
all of its total recursive numberings, but which is not finitely learnable. Note,
however, that the used function class is not {0, 1} valued. The same result
was independently obtained by Kummer [20]. This result directly raises the
question whether or not AAllInf \ FinInf 6= ∅. Our next theorem answers
this question. Again, the proof is based on Selivanov’s [30] result. For this
proof and also in the following we need the notion of discreteness. An indexed

21

family L = (L(ψj))j∈IN is said to be discrete iff for every k ∈ IN, there is a finite
function δk ⊆ ψk such that for all j ∈ IN, if δk ⊆ ψj then ψk = ψj. We refer
to δk as to a separating function for ψk. An indexed family L = (L(ψj))j∈IN is
said to be effectively discrete iff there exists an algorithm computing for every
k ∈ IN a separating function δk for ψk.

Theorem 17. AAllTxt \ FinInf 6= ∅.

Proof. Selivanov [30] showed that there is a recursively enumerable class Use
of total recursive functions fulfilling the following requirements:

(1) every numbering τ ∈ R2 for Use has a recursive equality problem, and
(2) Use is not effectively discrete.

Since Use is not {0, 1} valued, some transformation of it is in order. Using Use
we define an indexed family Lse that is well-suited to separate AAllTxt and
FinInf .

Let τ ∈ R2 be any numbering for Use . For all j, x, y ∈ IN we set:

ψj(〈x, y〉) =

 1, if τj(x) = y,

0, otherwise.

Finally, set Lse = (L(ψj))j∈IN. Clearly, Lse is an indexed family.

Claim A. Lse ∈ AAllTxt .

Applying the characterization of AAllTxt (cf. Theorem 4) it suffices to show
that Lse is inclusion-free and, furthermore, every class preserving hypothesis
space for Lse has a recursive equality problem.

Let j ∈ IN. Since τ is a numbering of total recursive functions, we may easily
conclude that, for every x ∈ IN, there is exactly one y ∈ IN with 〈x, y〉 ∈ L(ψj).
Hence Lse is inclusion-free.

Now, assume any class preserving hypothesis space ψ̂ for Lse . For all j, x ∈ IN,
set τ̂(j, x) = y, where y is the uniquely determined number with 〈x, y〉 ∈ L(ψ̂j).

Obviously, τ̂ ∈ R2. Since ψ̂ is class preserving for Lse , τ̂ is a numbering for
Use . Clearly, τ̂j = τ̂k iff L(ψ̂j) = L(ψ̂k). By Property (1), τ̂ has a recursive
equality problem, and thus we are done.

Claim B. Lse 6∈ FinInf .

Suppose the converse, i.e., Lse ∈ FinInf . Since finite inference is invariant
with respect to choice of the hypothesis space (cf. Lange and Zeugmann [26]),
we may assume that there is an IIM M witnessing Lse ∈ FinInf ψ, where ψ is
the hypothesis space defined above.

22

Given M , we define an algorithm A that assigns a separating function δk
to every τk. A is defined as follows. On input k ∈ IN, execute the following
instructions:

(A1) For z = 0, 1, 2, . . . generate successively the lexicographically ordered
informant ik for L(ψk) until M outputs a guess, say on input ikẑ .

(A2) Let m = max{x ∃y[〈x, y〉 ∈ content(ikẑ)]}. Set δk = {(x, τk(x)) x ≤ m}.

Since M FinInf ψ-identifies Lse , we may conclude that Instruction (A1) ter-
minates for every k ∈ IN, and thus A is recursive. It suffices to show that, for
all j ∈ IN, δk ⊆ τj implies τk = τj.

Suppose any j ∈ IN with δk ⊆ τj. Clearly, τk(x) = τj(x) for all x ≤ m, and
therefore ψj(〈x, y〉) = ψk(〈x, y〉) for all y ∈ IN and all x ≤ m. By the choice
of m, ikẑ is an initial segment of the lexicographically ordered informant ij for
L(ψj). By Definition 2, M , when successively fed ik and ij, respectively, is
only allowed to generate a single, but correct hypothesis. Since M , when fed
ikẑ = ijẑ, has output its one and only hypothesis, we obtain M (i kẑ) = M (i jẑ),
and hence L(ψk) = L(ψj). Consequently, τk = τj, too. Thus, Use is effectively
discrete, a contradiction. 2

So far we have studied learning from text and learning from informant sep-
arately. Now we focus our attention to another aspect, namely the interplay
between information presentation and learnability constraints, i.e., we com-
pare “Inf-types” with “Txt-types” and vice versa. The first known result along
this line relates finite learning from informant to conservative inference from
text.

Proposition 7 (Lange and Zeugmann [23]). FinInf ⊂ ConsvTxt .

Since FinInf ⊆ AAllInf by Proposition 6, the question arises whether or not
Proposition 7 generalizes to AAllInf ⊂ ConsvTxt or at least to AAllInf ⊂
ExTxt . While the validity of the former inclusion remains open, we show that
the latter one is indeed valid by Corollary 19 below. In order to establish this
result we first prove that discreteness implies ExTxt-learnability.

Theorem 18. For any indexed family L, if L is discrete, then L ∈ ExTxt.

Proof. Let L be any indexed family that is discrete, and let ψ be any class
preserving hypothesis space for L. For any t ∈ text(L) and for any i, x ∈ IN,
let axi = max{z ≤ x (∀y ≤ z)[ψi(y) = 1 iff y ∈ t+x]}. Clearly, given tx and i,
axi is computable. Define an IIM M as follows.

M (tx) = min{i i ≤ x and ax
i = max{ax

j j ≤ x}}.

Let L ∈ L, and let k = minψ(L). Then, by discreteness of L and since ψ
is class preserving for L, there is an a ∈ IN such that, for all j ∈ IN with

23

L(ψj) 6= L, L(ψj) differs from L on some y ≤ a. For any t ∈ text(L), there
is an x′ > max{a, k} such that t+x′ ⊇ {y ≤ a y ∈ L}. Now, for all x ≥ x′,
we have axk ≥ a, whereas axj < a for all j ∈ IN with L(ψj) 6= L. By definition,
M (tx) = k for all x ≥ x′, and thus M converges to the minimal ψ-index for
L. Hence, M ExTxtψ-identifies L. 2

Note that Theorem 18 cannot be sharpened to show that discreteness implies
conservative learnability, since the indexed family L defined in the proof of
Theorem 12, Claim B is discrete but L 6∈ CConsvTxt (cf. Theorem 1 in Lange
and Zeugmann [24]).

Corollary 19. AAllInf ⊂ ExTxt .

Proof. Let L ∈ AAllInf . Then L is discrete (cf. Theorem 10 and Fact 5 in
Kummer [20]). Hence, L ∈ ExTxt follows by Theorem 18 above. On the other
hand, let Lfin denote the indexed family canonically enumerating all finite sets
of natural numbers. Obviously, Lfin is not discrete, and thus, Lfin /∈ AAllInf .
But Lfin ∈ ExTxt , and the corollary follows. 2

By Theorem 8, we may easily conclude:

Corollary 20. For all Lt ∈ {Arb, Super , All}, AAllInf ⊂ LtTxt .

The following theorem enables us to clarify the relation between the remaining
models of learning by erasing from text and informant, respectively.

Theorem 21.

(1) FinInf \ CSubTxt 6= ∅.
(2) EqualTxt \ AAllInf 6= ∅.

Proof. For verifying Assertion (1) recall the definition of the indexed family
L = (Lj)j∈IN used in the proof of Theorem 11, i.e., L0 = IN and Lj+1 = {j}.
Obviously, L is FinInf -identifiable, and since L /∈ CSubTxt (cf. Theorem 12,
Claim A), Assertion (1) follows.

To verify Assertion (2), we refer the reader to the proof of Theorem 13. There,
an indexed family L ∈ EqualTxt is presented that possesses a class preserving
hypothesis space having no recursive equality problem. Hence, L /∈ AAllInf
by Proposition 4. 2

Taking into account that ExTxt ⊂ ExInf (cf. Gold [14]), we directly arrive at
the following corollary displaying the consequences of Theorem 21.

Corollary 22. For all Lt ∈ {Arb, Min, Sub, Equal , Super , All} and for all
λ ∈ {A, ε, C}, λLtTxt ⊂ λLtInf .

Putting Theorem 21 together with Corollary 2 we can easily conclude:

24

Corollary 23.

(1) AEqualTxt # AAllInf .
(2) SubTxt # AAllInf .
(3) CSubTxt # AAllInf .
(4) AAllTxt # FinInf .

4 Function Learning by Erasing

We now turn to the problem of learning (by erasing) of functions instead of
languages. For function learning, it is more interesting to study the relationship
between criteria for a fixed numbering (in Section 4.4 we consider the case
of “identifiable in some numbering”). Freivalds et al. [10] have studied the
analogue of All -learning, which they called co-learning. For special computable
non-Gödel numberings of partial recursive functions, this analogue of All -
learning, turned out to be significantly more restrictive than learning in the
limit. However, in Gödel numberings any learnable family can be learned by an
erasing strategy. Already the results in Section 3.4 for learning from informant
indicate that the less restrictive versions of learning by erasing as considered
in Section 3, do not increase the learning power.

Therefore in this section we concentrate on learning minimal programs by
erasing and learning minimal programs by strategies that result from learning
by erasing. Moreover we will mostly concentrate on Gödel numberings. We
show that learning of minimal programs by erasing, as originally defined in
Freivalds et al. [10], is significantly weaker than learning minimal programs
even in Gödel numberings. In order to enhance the learning power of erasing
strategies, we generalize the concept in a manner analogous to Section 3. First,
we allow the learning strategy to possibly not cancel out more than one of the
programs for the input function, but we still require the strategy to cancel all
incorrect programs of that function (Super in our notation). Secondly, we ob-
serve learning by erasing some incorrect programs only, including all programs
that are smaller than the minimal correct one (Sub in our notation). We show
that each of the above two types of learning minimal programs by erasing
is considerably more powerful than erasing all but the minimal program. We
only briefly consider Arb and Equal notions, since they turn out to be either
identical to other notions or trivial. Then we exhibit various relationships and
differences between the types of learning minimal programs by erasing and
give some examples of classes learnable within each of those paradigms. In
particular, we explore learning by erasing in Kolmogorov numberings that can
be viewed as “natural” Gödel numberings of the partial recursive functions.

Learning of minimal programs by erasing naturally suggests a special strategy
of learning minimal programs: each new hypothesis is larger than the prior

25

one. In contrast, one can also consider learning minimal programs by strategies
of the opposite type: each new hypothesis is smaller than the prior one. We
show that these both types of learning minimal programs are weaker than
learning minimal programs in the general case.

We derive necessary and sufficient conditions for the considered types of func-
tion learning by erasing. Therefore we show that the types coincide with the
type Ex of standard learning in the limit provided that arbitrary hypothesis
spaces are allowed among them also non-Gödel numberings. Then we derive
a pure numbering-theoretic characterization of all these types. Finally, we
present a characterization which comes to the granularity of exhibiting neces-
sary and sufficient learnability conditions for an arbitrary pair of a function
class and a hypothesis space. Note that this is the first characterization result
of such kind in function learning.

4.1 Definitions

In the following we present the necessary definitions both for standard function
learning and for learning functions by erasing. Furthermore, we state some
basic results which easily follow from these definitions.

For f ∈ R and n ∈ IN, the initial segment (f(0), f(1), . . . , f(n− 1)) is denoted
by f [n], or, more formally, the code of the tuple (f(0), f(1), . . . , f(n − 1)) in
some fixed one-one computable encoding of all tuples of natural numbers onto
IN. Let SEG = {f [n] f ∈ R, n ∈ IN}. Λ denotes the empty segment f [0].
An inductive inference machine (IIM) (also called learning machine) is an
algorithmic mapping from SEG to IN ∪ {?}. Intuitively, we will interpret the
output of a learning machine as a program. “?” then represents the case where
the machine outputs “no conjecture”. We let M , with or without, decorations
range over learning machines.

An erasing learning machine (ELM) is similar to an IIM but, in a way similar
to that of language learning, we interpret the output of an ELM in a different
manner. We let M range over erasing learning machines, too. The context will
determine whether M denotes IIM or ELM.

In the following definitions let ψ denote any numbering and f any recursive
function. Let Progsψ(f) denote the set of ψ-programs for f , i.e., Progsψ(f) =
{i ψi = f}. Let minψ(f) = min Progsψ(f).

Definition 7 (Gold [14]). M Exψ-infers f iff there exists an i ∈ IN such that
the sequence (M (f [n]))n∈IN converges to i and ψi = f .

M Exψ-infers C iff M Exψ-infers each f ∈ C.

Let Exψ denote the collection of all classes of functions for which there is an
IIM M such that M Exψ-infers C.

26

It can be shown that Exψ = Exϕ, for all Gödel numberings ψ. Thus the
class Ex is invariant under Gödel numbering chosen to interpret the programs
conjectured by the machines. Thus we often refer to Exϕ as just Ex .

Definition 8 (Freivalds [6]). M MinExψ-infers f iff f ∈ Rψ and the sequence
(M (f [n]))n∈IN converges to minψ(f).

M MinExψ-infers C iff M MinExψ-infers each f ∈ C.

Finally, MinExψ is defined analogously as above.

Unlike Ex inference, the class MinExψ depends on the Gödel numbering ψ (cf.
Freivalds [6]).

Definition 9 (Gold [14]). M Finψ-infers f iff there exists an i such that
ψi = f and the sequence (M (f [n]))n∈IN contains only the program i (besides
possibly “ ?”).

M Finψ-infers C iff M Finψ-infers each f ∈ C.

Finally, Finψ is defined analogously as above.

The class Finψ is the same for all Gödel numberings ψ. Thus we often refer
to Finϕ as just Fin.

Definition 10 (Freivalds [6]). M MinFinψ-infers f iff f ∈ Rψ and the
sequence (M (f [n]))n∈IN contains only the program minψ(f) (besides possi-
bly “ ?”).

M MinFinψ-infers C iff M MinFinψ-infers each f ∈ C.

Finally, MinFinψ is defined analogously as above.

The class MinFinψ depends on the Gödel numbering ψ (cf. Freivalds [6]).

We will now consider the different versions of learning by erasing. Similar to
the definitions of Ex and Fin, we will first define the general version and
then the minimal version. Again in the definitions below let ψ denote any
numbering and f any recursive function.

Definition 11. Let ProgSet(M , f) = {M (f [n]) n ∈ IN ∧ M (f [n]) 6=?}, and
let ProgSet(M , f [n]) = {M (f [m]) m ≤ n ∧ M (f [m]) 6=?}.

We say that M stabilizes on f to i iff i = min(IN \ ProgSet(M , f)). We say
that M stabilizes on f iff there exists an i such that M stabilizes on f to i.

Definition 12. An ELM M Arbψ-infers f iff there exists an i such that ψi = f
and M stabilizes on f to i.

M Arbψ-infers C iff M Arbψ-infers each f ∈ C.

Finally, Arbψ is defined analogously as above.

27

Definition 13. An ELM M MinArbψ-infers f iff f ∈ Rψ and M stabilizes
on f to minψ(f).

M MinArbψ-infers C iff M MinArbψ-infers each f ∈ C.

Finally, MinArbψ is defined analogously as above.

The definition of Allψ below was first given by Freivalds et al. [10].

Definition 14. An ELM M

(A) Subψ-infers f ,
(B) Equalψ-infers f ,
(C) Superψ-infers f ,
(D) Allψ-infers f ,

iff M Arbψ-infers f and the following corresponding condition is satisfied

(A) ProgSet(M , f) ⊆ IN\Progsψ(f), i.e., M is only allowed to erase incorrect
programs;

(B) ProgSet(M , f) = IN \ Progsψ(f), i.e., M has to erase exactly all the in-
correct programs;

(C) ProgSet(M , f) ⊇ IN \ Progsψ(f), i.e., M has to erase all the incorrect
programs;

(D) |IN \ ProgSet(M , f)| = 1 , i.e., M has to erase all but one program.

We can define Subψ (Superψ, Allψ, Equalψ)-identification of classes by an ELM
M in a manner similar to above. Finally, the classes Subψ, Superψ, Allψ, and
Equalψ can be analogously defined.

Definition 15. An ELM M

(A) MinSubψ-infers f ,
(B) MinEqualψ-infers f ,
(C) MinSuperψ-infers f ,
(D) MinAllψ-infers f ,

iff M MinArbψ-infers f and the following corresponding condition is satisfied

(A) ProgSet(M , f) ⊆ IN\Progsψ(f), i.e., M is only allowed to erase incorrect
programs;

(B) ProgSet(M , f) = IN \ Progsψ(f), i.e., M has to erase exactly all the in-
correct programs;

(C) ProgSet(M , f) ⊇ IN \ Progsψ(f), i.e., M has to erase all the incorrect
programs;

(D) |IN \ ProgSet(M , f)| = 1 , i.e., M has to erase all but one program.

We can define MinSubψ (MinSuperψ, MinAllψ, MinEqualψ)-identification of
classes by an ELM M in a manner similar to above. Finally, the classes
MinSubψ, MinSuperψ, MinAllψ, and MinEqualψ can be analogously defined.

28

For Gödel numberings ψ, by Proposition 11 below, Arbψ = Exψ. By Proposi-
tion 9, for all numberings ψ, MinArbψ = MinSubψ. Thus, we will not consider
MinArbψ,Arbψ further in this paper.

For Gödel numberings ψ, the criterion Equalψ is essentially trivial, so we do
not consider Equalψ any further in this paper, too.

Learning by erasing in the sense of MinSubψ suggests a natural strategy of
learning minimal programs: output, in increasing order, all the indices smaller
than the minimal one for the given function. We will observe below in Propo-
sition 9 that this type of learning minimal programs and MinSubψ are of the
same power.

Definition 16. M MinIncExψ-infers f iff M MinExψ-infers f and the se-
quence (M (f [n]))n∈IN (except for initial sequence of ?’s) is monotonically non-
decreasing.

M MinIncExψ-infers C iff M MinIncExψ-infers each f ∈ C.

Finally, MinIncExψ is defined analogously as above.

As a dual to MinIncExψ criterion we consider the case where the machine is
required to output its conjectures in a decreasing order.

Definition 17. M MinDecExψ-infers f iff M MinExψ-infers f and the se-
quence (M (f [n]))n∈IN (except for initial sequence of ?’s) is monotonically non-
increasing.

M MinDecExψ-infers C iff M MinDecExψ-infers each f ∈ C.

Finally, MinDecExψ is defined analogously as above.

For any learning type Lt above, we set Lt =
⋃
ψ∈P2 Ltψ.

It can easily be shown that there exists an r.e. sequence of machines M0 ,M1 , . . .,
such that, for any learning type Ltψ discussed in this section, if C ∈ Ltψ then,
for some i ∈ IN, Mi Ltψ-infers C. Intuitively, this enumeration of machines al-
lows us to restrict our attention to just these machines in the diagonalizations.

Clearly, the minimal version of each of the criteria defined above can only be
restrictive, thus:

Proposition 8. For every Lt ∈ {Fin,Ex , Sub, Super ,All} and every number-
ing ψ, MinLtψ ⊆ Ltψ.

The following proposition essentially follows directly from the definitions, we
omit the details.

Proposition 9. MinIncExψ = MinSubψ = MinArbψ = Subψ and MinIncExψ
∩MinDecExψ = MinFinψ for every numbering ψ.

29

Hence in order to derive results on MinSubψ and Subψ it suffices to study
MinIncExψ instead. We will use this approach at various places below.

Proposition 10. MinFinψ ⊆ MinAllψ ⊆ MinSuperψ ⊆ MinSubψ ⊆ MinExψ
and MinFinψ ⊆ MinDecExψ ⊆ MinExψ for every numbering ψ.

Proof. We show MinSuperψ ⊆ MinSubψ. All the other inclusions follow from
the definitions.

Suppose M is given. Let M ′ be such that ProgSet(M ′, f) = {i (∀j ≤ i)[j ∈
ProgSet(M , f)]} for all f . It is easy to construct M ′ as above. It is now easy
to see that M ′ MinSubψ-infers each function MinSuperψ-identified by M . 2

Proposition 11. Allψ = Superψ = Arbψ = Exψ for every Gödel number-
ing ψ.

Proof. Clearly, for all numberings ψ, Allψ ⊆ Superψ ⊆ Arbψ ⊆ Exψ. For
Gödel numberings ψ, Exψ ⊆ Allψ (cf. Freivalds et al. [10]). 2

Since we are mainly interested in Gödel numberings and Kolmogorov number-
ings, due to Proposition 11, we will mostly be interested only in the minimal
versions of the criteria of learning by erasing.

Note that in contrast to Proposition 11 the following holds.

Proposition 12. Subψ ⊂ Exψ for every Gödel numbering ψ.

Proof. Let ψ be any Gödel numbering. Then, by Proposition 9 and by Frei-
valds [6], Subψ = MinIncExψ ⊆ MinExψ ⊂ Exψ. 2

4.2 Kolmogorov Numberings as Hypothesis Spaces

In this section we show that all of the different minimal criteria defined
above are separated in every Kolmogorov numbering. There is one excep-
tion, though, namely for MinSuperψ and MinAllψ, at present we know only
that these types are separated in some Kolmogorov numbering. The other
“exception” concerns MinSubψ and MinIncExψ which cannot be separated,
since these types coincide by Proposition 9. Figure 2 summarizes the inclu-
sions of the types of both standard learning and learning by erasing of minimal
programs in Kolmogorov numberings.

First, we will show the following result.

Theorem 24. For every Kolmogorov numbering ψ,

(1) MinSuperψ ⊂ MinIncExψ,

30

MinEx

MinIncEx =MinSub

MinSuper

MinAll

MinFin

MinDecEx
���

���
���

��:

6

���
���

���
��

XXX
XXX

XXX
XXy

XXX
XXX

XXX
XXy

6

6

- Proper containment in all Kolmogorov numberings

- Proper containment in some Kolmogorov numbering

Figure 2. Learning in Kolmogorov numberings

(2) MinAllψ ⊂ MinIncExψ,
(3) MinSuperψ # MinDecExψ,
(4) MinAllψ # MinDecExψ,
(5) MinIncExψ # MinDecExψ.

The proof of Theorem 24 will be based on several other results which we
will prove now. Some of these results are interesting in its own. Moreover,
the proofs of these results demonstrate some techniques which turn out to be
useful just in Kolmogorov numberings.

Let H = {hj j ∈ IN}, where hj is defined as follows.

hj(x) =
{

1, if x = j,
0, otherwise.

Theorem 25 (Freivalds [7,8]). For every Kolmogorov numbering ψ, there is
a C ⊆ H such that |C| =∞ and C ∈ MinFinψ.

Recall that MinFinψ ⊆ MinIncExψ by Proposition 9. We next consider the
following proposition.

Proposition 13. For every Gödel numbering ψ, all C ∈ MinIncExψ and all
f ∈ R, C ∪ {f} ∈ MinIncExψ.

Proof. Suppose ψ, C, f are as given in the hypothesis. Let i = minψ(f).
Then there exists a k ∈ IN such that, for all g ∈ R, if g[k] = f [k], then

31

minψ(f) ≤ minψ(g). Suppose M MinIncExψ infers C. Define M ′ as follows:

M ′(g [n]) =

0, if n ≤ k;
M (g [n]), if n > k, and f [k] 6= g[k];
i, if n > k, and g[n] = f [n];
max {i,M (g [n])}, otherwise.

It is easy to verify that M ′ MinIncExψ-identifies C ∪ {f}. 2

Proposition 13 does not hold for MinDecEx replacing MinIncEx . Let ZERO
be the everywhere 0 function. Note that any machine MinDecExψ-identifying
ZERO can MinDecExψ-identify only finitely many functions in H. Thus:

Proposition 14. For every numbering ψ and every C ⊆ H with |C| =∞, C ∪
{ZERO} 6∈ MinDecExψ.

Freivalds’ proof of Theorem 25 essentially also shows:

Theorem 26. For every Kolmogorov numbering ψ, there are ε > 0, C ∈
MinFinψ and infinitely many r ∈ IN such that |{i ≤ r hi ∈ C}| ≥ ε · r.

Using Theorem 26 we derive the following result.

Theorem 27. For every Kolmogorov numbering ψ, there is a C ⊆ H with
|C| =∞ and C ∪ {ZERO} ∈ MinAllψ.

Proof. Let M , ε > 0, and C ′ ⊆ H, be such that M MinAllψ-infers C ′ and

(
∞
∃ r)[|{i ≤ r hi ∈ C ′}| ≥ ε · r]. Note that there exists such M , ε, C ′ by

Theorem 26 and Proposition 10.

Let M ′ be defined as follows. Suppose z = minψ(ZERO).

ProgSet(M ′,ZERO[n]) = {x x ≤ ε · n/2 ∧ x 6= z}
ProgSet(M ′, hj) = ProgSet(M , hj) ∪ ProgSet(M ′,ZERO[j])

Note that such an M ′ can be easily constructed.

Note that M ′ MinAllψ-infers ZERO. It may however not MinAllψ-identify all
the functions MinAllψ-identified by M (due to the extra programs output by
M ′ on hj[j]).

Let C = {hj hj ∈ C ′ and minψ(hj) > ε · j/2}. It is easy to verify that M ′

MinAllψ-infers each function in C. Moreover, |C| = ∞, since it contains at
least (ε− ε/2) · r functions in {h1, . . . , hr} for infinitely many r. 2

From Theorem 27 and Proposition 14, we have:

Theorem 28. MinAllψ\MinDecExψ 6= ∅ for every Kolmogorov numbering ψ.

32

The following Corollary follows from Theorem 28. It can also be obtained
directly from Theorem 25 and Propositions 13 and 14.

Corollary 29. MinIncExψ \MinDecExψ 6= ∅ for every Kolmogorov number-
ing ψ.

Corollary 30. MinDecExψ ⊂ MinExψ for every Kolmogorov numbering ψ.

We now prove a result which is complementary to Corollary 29.

Theorem 31. MinDecExψ \MinIncExψ 6= ∅ for every Kolmogorov number-
ing ψ.

Proof. Suppose a Kolmogorov numbering ψ is given. We will construct a
numbering τ as follows.

For each i ∈ IN, j ≤ i, we will define lji , u
j
i ∈ IN. Think of the programs (in

the numbering τ) as being divided into intervals, Ii, and each interval Ii as
being subdivided into i + 1 subintervals Iji . The numbers lji and uji are the
boundaries of the interval Iji .

l00 = 1.

l0i+1 = uii + 1. For j < i, lj+1
i = uji + 1.

For j ≤ i, uji = lji · i · 3 + 1.

For j ≤ i, let Iji = {p lji ≤ p ≤ uji}.
Let Ii =

⋃
j≤i I

j
i .

Each τk will either be a total recursive function or the everywhere undefined
function.

In the construction below, we will define the functions τk, for k ∈ Ii (such a
construction is carried out for each i separately). Intuitively, for each i, we plan
to construct a collection Si of functions, such that none of M0 ,M1 , . . . ,Mi−1
MinIncExψ-identifies any function in Si. These Si will, in addition, satisfy
some nice properties. This, in turn will allow us to construct the diagonalizing
class witnessing the theorem.

Informally, in the construction below, we start with j = i and define all τp for
p ∈ Iji . Then, we search for one out of the i machines M0 , . . . ,Mi−1 , which
can be “diagonalized” against using (an appropriate initial segment of) one
of the functions τp already defined (see step 3, 4). If the search is successful,
the procedure is repeated with j = i − 1, searching for one more machine
which can be diagonalized against, and so on. Since, we do not know about
the reduction from τ to ψ, the diagonalization mentioned above may not work
for all i. It however works for all but finitely many i.

33

The diagonalization condition in step 4:

|{r < i (∃q ≥ i · lji)[q ∈ ProgSet(Mr , τp [y])]}| > s

is due to the fact that a machine Mr, which has already been diagonalized
against, will fulfill the requirement (∃q ≥ i · lji)[q ∈ ProgSet(Mr , τp [y])] in
the subsequent stages. Thus, after each (successful) stage s, we would have
diagonalized against at least s+ 1 machines.

We now proceed formally. Actual definition of Si and the diagonalization class
witnessing the theorem will be given after the construction.

Definition of τk, for k ∈ Ii.
Let σ0

i (0) = i (σ0
i is of length 1). Go to stage 0.

Begin stage s.
1. Let j = i− s.
2. Let m = |σsi | (i.e., m is the least element not in the domain of σsi).
3. For all p ∈ Iji , define τp as follows

τp(x) =

σs(x), if x < m,
p, if x = m,
0, otherwise.

4. Search for p ∈ Iji and y > m, such that, |{r < i (∃q ≥ i · lji)[q ∈
ProgSet(Mr , τp [y])]}| > s .

(* Intuitively if (∃q ≥ i · lji)[q ∈ ProgSet(Mr , τp [y])] then Mr has output a
“large” program, and thus would become useless *)

5. If and when such p, y are discovered, let σs+1
i = τp[y] and go to stage s+1.

End stage s.
End of Definition of τk, for k ∈ Ii.

First note that τ is indeed a numbering. To compute τk(x), first determine the

interval Ij
′

i , such that k ∈ Ij
′

i . Then, simulate the construction above, until
the stage is reached where j = j′. If this stage is not reached, then τk(x) is
undefined. Otherwise, the value of τk(x) can be computed from the assignment
in step 3.

Next note that there cannot be infinitely many stages, since the search in step
4 will, at the latest, not hold for s = i. Let si denote the last stage that is
executed, and let ji = i− si.

It is easy to observe that, τp is total, for p ∈ ⋃j=ij=ji I
j
i , and τp is everywhere

undefined, for p ∈ ⋃j=ji−1
j=0 Iji . Moreover, all total functions in {τk k ∈ IN} are

pairwise different.

Let c be a constant such that, for all p, there exists a p′ ≤ max {c · p, c}, such

34

that τp = ψp′ (since ψ is a Kolmogorov numbering, there exists such a c). Let
i > c. We note the following property about the functions τp, p ∈ Ijii .

For all r < i, either ProgSet(Mr , τp) contains a ψ-program which is greater
than or equal to i · lji+1

i > i · ujii ≥ i · p > c · p (Mr was diagonalized against
in some of the previous stages), or ProgSet(Mr , τp) contains only programs
less than i · ljii (Mr could not be diagonalized against in any stage).

Thus Mr , r < i, can MinIncExψ-identify only those τp in {τp ljii ≤ p ≤ ujii },
whose minimal ψ programs are < i · ljii . Let

Si = {τp ljii ≤ p ≤ ujii ∧ minψ(τp) ≥ i · ljii }

It immediately follows that no machine Mr can MinIncExψ-identify any func-
tion in Si, for i > max {r, c}. We will construct our diagonalizing class as an
infinite subset of

⋃
i>c Si, using a trick used by Freivalds [7,8]. For i > c, let

S ′i = {τp τp ∈ Si ∧ |{q ≤ c · ujii τp[|σi−jii |+ 1] ⊆ ψq}| ≤ 4c}

Note that |S ′i| ≥ [ujii − l
ji
i] − ujii /4 − i · l

ji
i (i · ljii term is for functions spoiled

due to them having small (< i · ljii) minimal programs in ψ; the ujii /4 term is
due to the functions having more than 4c programs ≤ c · ujii in the numbering
ψ). Thus S ′i is non-empty (for i > c).

Let C =
⋃
i>c S ′i. We now construct M ′

1 ,M
′
2 , . . . ,M

′
4c, such that at least one of

these machines MinDecExψ-infers an infinite subset of C.

The idea of the construction of M ′
r is as follows. Suppose the input function

is f ∈ S ′i (i can be determined from f(0)). Thus f must be the same as τp, for
some p ∈ Ijii . Note that, |{x > 0 τp(x) 6= 0}| = i − j + 1, for p ∈ Iji , j ≥ ji.
Moreover, if τp = f , then minψ(f) must lie in the interval [i · ljii , c · u

ji
i] (note

that c · ujii ≤ i · ujii < i · lji+1
i). This is what our construction uses. Note that

σi−ji , if defined, can be effectively determined. The following algorithm for M ′
r

will only use j (for further processing) such that σi−ji is defined. So assume
such a restriction on j. Let nji = |σi−ji | + 1 (note that nji − 1 determines the
point at which the functions in {τp p ∈ Iji } differ).

Let Xj
i = {q i · lji ≤ q ≤ c · uji and f [nji] ⊆ ψq}.

M ′
r is defined as follows. M ′

r(f [n]) =?, for n ≤ 1. For n > 1, let j = i−|{x 0 <
x < n ∧ f(x) 6= 0}|+1; M ′

r(f [n]) is then the r-th element, if any, in a standard
1–1 enumeration of Xj

i .

It is easy to note that the conjectures of M ′
r are monotonically decreasing

(since c ·uji ≤ i · lj+1
i —recall that i > c, and the j’s as used in the definition of

M ′
r are monotonically decreasing). Moreover, at least one of the machines M ′

r ,
1 ≤ r ≤ 4c, MinExψ-infers f (since |Xji

i | ≤ 4c, for f ∈ C, and Xji
i contains

35

a minimal program for f .) Thus for every function f ∈ C, at least one of the
machines M ′

1 , . . . ,M
′
4c MinDecExψ-infers f . Since C is infinite, there exists

a machine which MinDecExψ-infers an infinite subset of C. Since no infinite
subset of C is in MinIncExψ, the theorem follows. 2

From Theorem 31 and Corollary 30 we immediately get the following result.

Corollary 32. MinIncExψ ⊂ MinExψ for every Kolmogorov numbering ψ.

Theorem 33. MinIncExψ \MinSuperψ 6= ∅ for every Kolmogorov number-
ing ψ.

Proof. The idea of the proof is similar to that of the proof of Theorem 31
though there are subtle differences. Suppose a Kolmogorov numbering ψ is
given. We will construct a numbering τ as follows.

For each i ∈ IN, j ≤ i, we will define, lji , u
j
i .

l00 = 1.

l0i+1 = uii + 1. For j < i, lj+1
i = uji + 1.

For j ≤ i, uji = (l0i)
2(3i+ 1)5i+j.

For j ≤ i, let Iji = {p lji ≤ p ≤ uji}, and let Ii =
⋃
j≤i I

j
i .

Each τk will either be a total recursive function or the everywhere undefined
function. We will now define the functions τk, for k ∈ Ii (such a construction
is carried out for each i separately). Intuitively, this will give us a collec-
tion of functions Si, such that none of the machines M0 ,M1 , . . . ,Mi−1 , will
MinSuperψ-identify any of the functions in Si.

Definition of τk, for k ∈ Ii.
Let σ0

i (0) = i (σ0
i is of length 1). Go to stage 0.

Begin stage s.
1. Let j = s.
2. Let m = |σsi | (i.e. m is the least element not in the domain of σsi).
3. For all p ∈ Iji , define τp as follows

τp(x) =

σs(x), if x < m,
p, if x = m,
0, otherwise.

4. Search for p ∈ Iji and y > m, such that, |{r < i |{q ≤ i · uii q 6∈
ProgSet(Mr , τp [y])}| ≤

√
i · u i

i }| > j .

(* Intuitively |{q ≤ i · uii q 6∈ ProgSet(Mr , τp [y])}| ≤
√

i · u i
i means that

Mr can MinSuperψ-identify only “few” relevant functions *)

5. If and when such p, y are discovered, let σs+1
i = τp[y] and go to stage s+1.

36

End stage s.
End of Definition of τk, for k ∈ Ii.

First note that there cannot be infinitely many stages. In fact, if the construc-
tion reaches stage i, then the search at step 4 cannot succeed. Let si denote
the last stage that is executed, and let ji = si.

It is easy to observe that each τk is either a total function or the everywhere
undefined function (for p ∈ Iji , τp is total iff j ≤ ji.) Moreover, total functions
in the numbering τ are pairwise different.

Let c be a constant such that, for all p, there exists a p′ ≤ max {c · p, c}, such
that τp = ψp′ (since ψ is a Kolmogorov numbering, there exists such a c). Let
i > c. We note the following property about the functions τp, p ∈ Ijii .

For all r < i, either

(a) there exists an S ⊆ {x x ≤ i · uii}, such that |S| <
√
i · uii and, for

all p ∈ Ijii , IN \ ProgSet(Mr , τp) ⊆ S (Mr has been diagonalized against in
previous stages) or

(b) for each p ∈ Ijii , ProgSet(Mr , τp) does not contain at least
√
i · uii

programs ≤ i · uii. (Mr was not diagonalized against in any of the stages)

In either case Mr , r < i, can MinSuperψ-identify at most
√
i · uii of the func-

tions in {τp ljii ≤ p ≤ ujii } (in case (a), there are only
√
i · uii possibilities for

Mr to stabilize to; in case (b) there can be at most
√
i · uii distinct programs

for which Mr erases all the incorrect programs ≤ i · uii).

Let Si = {τp ljii ≤ p ≤ ujii ∧ (∀r < i)[τp 6∈ MinSuperψ(Mr)]}.

It immediately follows that no machine Mr can MinSuperψ-identify any func-
tion in Si, for i > max {r, c}.

We will construct our diagonalizing class as an infinite subset of
⋃
i>c Si, using

a trick used by Freivalds [7,8]. For i > c, let

S ′i = {τp τp ∈ Si ∧ minψ(τp) ≥ i · ljii ∧ |{q ≤ c ·ujii τp[|σjii |+1] ⊆ ψq}| ≤ 4c}.

Note that, for large enough i, |S ′i| ≥ (ujii − l
ji
i)− ujii /4− i · l

ji
i − i ·

√
i · uii > 0

(i · ljii term is for functions spoiled due to them having small (< i · ljii) minimal
program in ψ; the ujii /4 term is due to the functions having more than 4c

programs ≤ c · ujii in the numbering ψ; i ·
√
i · uii term is for the functions

which are MinSuperψ-identified by some Mr , r < i). Thus S ′i is non-empty for
large enough i > c.

Let C =
⋃
i>c S ′i. We now construct M ′

1 ,M
′
2 , . . . ,M

′
4c, such that at least one of

these machines MinIncExψ-infers an infinite subset of C.

37

The idea of the construction of M ′
r is as follows. Suppose the input function

is f ∈ S ′i (i can be determined from f(0)). Thus f must be the same as τp,
for some p ∈ Ijii . Note that, |{x > 0 τp(x) 6= 0}| = j + 1, for p ∈ Iji , j ≤ ji.
Moreover, for f ∈ S ′i, minψ(f) must lie in the interval [i · ljii , c · u

ji
i] (note that

c · ujii ≤ i · ujii < i · lji+1
i). This is what our construction uses.

Note that σji , if defined, can be effectively determined. The following algorithm
for M ′

r will only use j (for further processing) such that σji is defined. So assume
such a restriction on j. Let nji = |σji | + 1 (note that nji − 1 determines the
point at which the functions in {τp p ∈ Iji } differ).

Let Xj
i = {q i · lji ≤ q ≤ c · uji ∧ f [nji] ⊆ ψq}.

M ′
r is defined as follows. M ′

r(f [n]) =?, for n ≤ 1. For n > 1, let j = |{x 0 <
x < n ∧ f(x) 6= 0}|−1; M ′

r(f [n]) is then the r-th element, if any, in a standard
1–1 enumeration of Xj

i .

It is easy to note that the conjectures of M ′
r are monotonically increasing

(since c ·uji ≤ i · lj+1
i —recall that i > c, and the j’s as used in the definition of

M ′
r are monotonically increasing). Moreover, at least one of the machines M ′

r ,
1 ≤ r ≤ 4c, MinExψ-infers f (since |Xji

i | ≤ 4c, for f ∈ C, and Xji
i contains

a minimal program for f .) Thus for every function f ∈ C, at least one of
the machines M ′

1 , . . . ,M
′
4c MinIncExψ-infers f . Since C is infinite, there exists

a machine which MinIncExψ-infers an infinite subset of C. Since no infinite
subset of C is in MinSuperψ, the theorem follows. 2

We are now ready to prove Theorem 24.

Proof of Theorem 24.

Let ψ be any Kolmogorov numbering.

MinSuperψ ⊂ MinIncExψ can be seen as follows. By Proposition 10, MinSuperψ
⊆ MinSubψ. By Proposition 9, MinIncExψ = MinSubψ. Thus, MinSuperψ ⊆
MinIncExψ. Furthermore, by Theorem 33, MinIncExψ \MinSuperψ 6= ∅.

MinAllψ ⊂ MinIncExψ is proved as follows. By definition and Propositions 9
and 10, MinAllψ ⊆ MinSuperψ ⊆ MinSubψ = MinIncExψ. By Theorem 33,
we have MinIncExψ \MinSuperψ 6= ∅; thus MinIncExψ \MinAllψ 6= ∅.

Next we show MinSuperψ # MinDecExψ. By Theorem 28, we have MinAllψ \
MinDecExψ 6= ∅. Since, by definition, MinAllψ ⊆ MinSuperψ, we obtain
MinSuperψ \ MinDecExψ 6= ∅. Conversely, by Theorem 31, MinDecExψ \
MinIncExψ 6= ∅. Since, by Propositions 9 and 10, MinSuperψ ⊆ MinSubψ =
MinIncExψ, we get MinDecExψ \MinSuperψ 6= ∅.

MinAllψ # MinDecExψ follows, since, by Theorem 28, we have MinAllψ \

38

MinDecExψ 6= ∅, and, by Theorem 31, MinDecExψ \ MinIncExψ 6= ∅. As
above, MinAllψ ⊆ MinIncExψ; hence MinDecExψ \MinAllψ 6= ∅.

MinIncExψ # MinDecExψ is a direct consequence of Corollary 29 and Theo-
rem 31. 2

From Theorem 24 parts (1), (2), (5) and Proposition 9 we immediately get
the following corollary.

Corollary 34. For every Kolmogorov numbering ψ,

(1) MinSuperψ ⊂ MinSubψ,
(2) MinAllψ ⊂ MinSubψ,
(3) MinSubψ # MinDecExψ.

The only separation which is not given by Theorem 24 and Corollary 34 con-
cerns the types MinAll and MinSuper . We conjecture that for every Kol-
mogorov numbering ψ, MinAllψ ⊂ MinSuperψ. However, at present we only
know that these types are separated in some Kolmogorov numbering. In the
following we exhibit such a numbering.

Theorem 35. There is a Kolmogorov numbering ψ and C ∈ MinSuperψ such
that for every Gödel numbering η, C 6∈ MinAllη.

Proof. Without loss of generality suppose that ϕ is a Kolmogorov numbering.
We will construct a Kolmogorov numbering ψ and class C witnessing the
theorem.

Let ψ7i = ϕi. Note that this makes ψ a Kolmogorov numbering. Define h as
follows: h(0) = 1, and for all i ≥ 0, h(i+ 1) = 3(h(i) + 1).

Note that for any Gödel numbering η, there must be a 1–1, increasing, recur-
sive function ϕj witnessing the reduction from ψ to η. Thus we will try to
diagonalize against all pairs of machines, Mi , and potential reduction func-
tions, ϕj.

Let Sk = {p (∃l h(k) < l ≤ h(k + 1))(∃r 0 < r < 7)[p = 7l + r]}.
Intuitively, Sk denotes the k-th set of available programs for diagonalization.
We will use the programs in the set Sk for diagonalization against machine
Mi and reduction function ϕj, where k = 〈i, j〉. It will be the case that all
functions computed by programs in Sk will be total functions.

Let C = {ψp p ∈ ⋃k Sk ∧ p = minψ(ψp)}.

Note that totality of all functions computed by ψp, p ∈
⋃
k Sk, immediately im-

plies that C ∈ MinSuperψ. For each k = 〈i, j〉, we will construct the functions
computed by ψp, p ∈ Sk, in such a way that, if ϕj is an increasing function

39

witnessing a reduction from ψ to Gödel numbering η, then, for at least one
p ∈ Sk, we get ψp ∈ C \MinAllη(Mi). This would prove that C 6∈ MinAllη, for
any Gödel numbering η.

For each r ∈ IN, let fr denote the constant function fr(x) = r. For w ∈
{1, 2, 3}, and l such that h(k) < l ≤ h(k+ 1), we will now define the functions
ψ7l+w and ψ7l+w+3.

ψ7l+w = f7l+w.

ψ7l+w+3(x) =

7l + w, if x = 0,

f7l+w(x), if x > 0 and Φj(7l + w + 3) > x,

f7l+w(x), if x > 0 and Φj(7l + w + 3) ≤ x and

|{q ≤ ϕj(7l + w + 3) q 6∈ ProgSet(Mi , f7l+w [x])}| > 1 ,

7l + w + 3, otherwise.

It is easy to verify that all functions computed by programs in
⋃
k Sk are

total. Suppose ϕj, is a 1–1, increasing, recursive function which witnesses the
reduction between ψ and η. Then Mi does not MinAllη-identify at least one of
ψ7l+w and ψ7l+w+3. Moreover, for each k, there exists an l, h(k) < l ≤ h(k+1),
and a w ∈ {1, 2, 3}, such that for all x ≤ h(k+ 1), ϕx(0) 6= 7l+w. (This holds
since the number of such pairs l, w is 3(h(k + 1) − h(k)) > h(k + 1) + 1). It
immediately follows that there exists a p ∈ Sk, such that ψp ∈ C, and Mi does
not MinAllη-identify ψp. 2

As a corollary, we get the following separation.

Corollary 36. There is a Kolmogorov numbering ψ such that MinAllψ ⊂
MinSuperψ.

Proof. By definition, MinAllψ ⊆ MinSuperψ for every numbering ψ. The
proper inclusion follows from Theorem 35. 2

Our main aim in this section was to separate all the minimal identification
criteria in each Kolmogorov numbering. As an aside we note that a variant
of the proof of Theorem 11 in Jain [15] can be used to show that there is
an infinite class C ⊆ H such that for every Kolmogorov numbering ψ, C ∈
MinFinψ. Hence Corollary 29 can be strengthened in the following way.

Theorem 37. There is C ⊆ R such that for every Kolmogorov numbering ψ,
C ∈ MinIncExψ \MinDecExψ.

Thus the same class could be used for diagonalization for all Kolmogorov
numberings. Such a result can also be obtained for Theorem 28. However, we

40

do not yet know whether we could use the same class for other diagonalizations
in this section.

We now note that a result similar to Theorem 35 can also be proved for
MinDecEx versus MinIncEx .

Theorem 38. There are a Kolmogorov numbering ψ and a C ∈ MinDecExψ
such that for every Gödel numbering η, C 6∈ MinIncExη.

Proof. Let C = {f ∈ R (∀x)[f(x) = f(0)]}, the class of constant functions.
We first construct a Kolmogorov numbering ψ such that C ∈ MinDecExψ. Let
ψ be defined as follows.

Without loss of generality suppose that ϕ is a Kolmogorov numbering. Let
ψ2i+1 = ϕi. Note that this makes ψ a Kolmogorov numbering. For all x, let
ψ2i(x) = ϕi(0). Consider the following machine M .

M (f [0]) =?. For n > 0,

M (f [n]) =

2j, if (∃i ≤ n)[Φi(0) ≤ n ∧ ϕi(0) = f(0)] and

j = min {i ≤ n Φi(0) ≤ n ∧ ϕi(0) = f(0)},
?, otherwise.

It is easy to verify that M MinDecExψ-infers C.

Let η be any Gödel numbering and M be any machine. We now show that M
cannot MinIncExη-identify C. This would prove the theorem.

By implicit use of Kleene’s recursion theorem, there exists an e such that ηe
may be defined as follows. Let fc denote the function, fc(x) = c, for all x.

Definition of ηe.
1. Search for c, n ∈ IN, such that M (fc[n]) > e.
2. If and when such c, n are found, let ηe = fc.
End of Definition of ηe.

Note that if step 1 does not succeed then M can MinIncExη-identify only
finitely many functions in C. On the other hand, if step 1 search succeeds then,
clearly, minη(fc) ≤ e. However, since M on fc outputs a program larger than e,
M cannot MinIncExη-identify fc. It follows that M does not MinIncExη-
identify C. 2

We now present a result on MinAllψ-learning of recursively enumerable classes
in Kolmogorov numberings.

Theorem 39. For any infinite r. e. U ⊆ R, there are an infinite V ⊆ U and
a Kolmogorov numbering ψ such that V ∈ MinAllψ.

41

Proof. Let η ∈ R2 be a 1–1 numbering such that U = {ηi i ∈ IN}. Since η
is 1–1, it is easy to see that there is a machine M MinAllη-learning U . Let β
be a Kolmogorov numbering. Define ψ as follows. ψ3i = βi, ψ3i+1 = η2i and
ψ3i+2 = η2i+1. Let M ′ be such that ProgSet(M ′, f) = {3i i ∈ IN} ∪ {3i +
1 2i ∈ ProgSet(M , f)} ∪ {3i + 2 2i + 1 ∈ ProgSet(M , f)}.

Let V = {η2i (∀j ≤ i)[βj 6= η2i]} ∪ {η2i+1 (∀j ≤ i)[βj 6= η2i+1]}. It is easy to
verify that V is infinite and M ′ MinAllψ-infers V . 2

Finally, we compare the type MinFin with the types of learning by erasing.

Corollary 40. For every Kolmogorov numbering ψ,

(1) MinFinψ ⊂ MinAllψ,
(2) MinFinψ ⊂ MinDecExψ.

Proof. MinFinψ ⊆ MinAllψ by Proposition 10. Moreover, MinFinψ ⊆ MinDecExψ
by Proposition 10 and MinAllψ \ MinDecExψ 6= ∅ by Theorem 28. Hence
MinFinψ ⊂ MinAllψ.

MinFinψ = MinIncExψ ∩ MinDecExψ by Proposition 9. Furthermore, we
have MinIncExψ#MinDecExψ by Theorem 24, Assertion (5). Consequently,
MinFinψ ⊂ MinDecExψ. 2

4.3 Gödel Numberings as Hypothesis Spaces

In this section we prove that some of the diagonalizations shown for arbitrary
Kolmogorov numberings in the previous section may not hold for every Gödel
numbering.

Theorem 41. There exists a Gödel numbering ψ such that MinFinψ =
MinAllψ = MinSuperψ = MinIncExψ = MinDecExψ = MinExψ.

Proof. Taking a Gödel numbering ψ such that MinExψ contains only finite
classes of functions (cf. Freivalds [6]) gives the theorem. 2

In fact, using the above theorem, for every “reasonable” relationship between
the minimal criteria considered in this paper, we can construct a Gödel num-
bering in which this relationship does hold. The essential idea is to interleave
the needed diagonalizations in Theorems 43, 44, 45, 46, 47, with the number-
ing generated in Theorem 41 (cf. Freivalds and Jain [9] used a similar trick to
generate Gödel numberings for any reasonable relationship between MinFinψ,
MinAllψ, MinExψ). We omit the details.

Theorem 42. Suppose α1, α2, α3, α4, β1, β2 ∈ {⊂,=} such that β1 and β2 are

42

both ‘=’ iff α1, α2, α3, α4 are all ‘=’. Then there exists a Gödel numbering ψ
such that

(1) MinFinψ α1 MinAllψ α2 MinSuperψ α3 MinIncExψ α4 MinExψ, and
(2) MinFinψ β1 MinDecExψ β2 MinExψ.

We now prove the theorems on non-Gödel numberings needed for the proof of
Theorem 42.

Theorem 43. There is a numbering ψ such that

(1) Rψ ∈ MinIncExψ and |Rψ| =∞,
(2) for any S ⊆ Rψ with |S| =∞, S 6∈ MinDecExψ ∪ Superψ.

Proof. We exploit the fact that for Superψ-identification one needs to erase
all the incorrect programs.

For i ∈ IN, define fi as follows: fi(0) = i, and, for x > 0, let fi(x) = 0.

Let C = {fi i ∈ IN}. Let h(0) = 0. Let h(i+ 1) = h(i) + 2i+ 1.

We will make sure that (a), (b) and (c) are satisfied.

(a) For each i, exactly one of the programs in Si = {p h(i) < p ≤ h(i + 1)}
will compute fi. All the other programs in Si will compute non-total functions.
This will make Rψ = C.
(b) For j < i, Mj does not MinDecExψ-identify or Superψ-identify fi.

(c) C ∈ MinIncExψ.

This will prove the theorem.

Fix i. We now define ψj, for j ∈ Si.

Definition of ψj, for j ∈ Si.
Let CancelS0

i = CancelD0
i = ∅.

Go to stage 0.
Begin stage s
1. Let p(i, s) = h(i) + 1 + |CancelSsi |+ |CancelDs

i |.
2. For all x ≤ s, let ψp(i,s)(x) = fi(x).

(Intuitively, we want to make ψp(i,∞) = fi).
3. Let CancelDs+1

i = CancelDs
i ∪ {j < i p(i, s) ∈ ProgSet(Mj , fi [s])}.

4. Let CancelSs+1
i = CancelSsi ∪ {j < i {l ≤ h(i + 1) l 6= p(i, s)} ⊆

ProgSet(Mj , fi [s])}.
5. Go to stage s+ 1.
End stage s.
End of Definition of ψj, for j ∈ Si.

43

It is easy to verify that CancelDs
i , CancelSsi are monotonically nondecreasing

in s with respect to ⊆. Let CancelD∞i = lims→∞CancelDs
i and CancelS∞i =

lims→∞CancelSsi . Note that p(i, s) is monotonically nondecreasing in s. Let
p(i,∞) = limn→∞ p(i, s). Note that h(i) < p(i, s) ≤ h(i) + 1 + 2i ≤ h(i + 1).
Also, ψp(i,∞) = fi, and for all j ∈ Si \ {p(i,∞)}, ψj is a non-total function.
Thus (a) is satisfied.

Consider any j < i. If j ∈ CancelDs
i , then ProgSet(Mj , fi) contains a program

smaller than p(i, s) ≤ p(i,∞). If j 6∈ CancelD∞i , then ProgSet(Mj , fi) does
not contain p(i,∞). In either case Mj does not MinDecExψ-identify ψp(i,∞) =
fi. Similarly, if j ∈ CancelSsi , then ProgSet(Mj , fi) contains p(i,∞). If j 6∈
CancelS∞i , then {l ≤ h(i + 1) l 6= p(i,∞)} 6⊆ ProgSet(Mj , fi). In either case
Mj does not Superψ-identify ψp(i,∞) = fi. Thus (b) is satisfied.

To show that C ∈ MinIncExψ, note that p(i, s) is a monotonically non-
decreasing function of s, which converges to the minimal ψ-program for fi.
Thus C ∈ MinIncExψ, and (c) is satisfied. 2

Theorem 44. There is a numbering ψ such that

(1) Rψ ∈ MinSuperψ and |Rψ| =∞,
(2) for any S ⊆ Rψ with |S| =∞, S 6∈ MinAllψ ∪MinDecExψ.

Proof. The proof of this theorem is similar to the proof of Theorem 43.

For i ∈ IN, define fi as follows: fi(0) = i, and, for x > 0, let fi(x) = 0.

Let C = {fi i ∈ IN}. Let h(0) = 0. Let h(i+ 1) = h(i) + 2i+ 1.

We will make sure that (a), (b) and (c) are satisfied.

(a) For each i, there exists a j ∈ Si = {p h(i) < p ≤ h(i + 1)}, such that
(a.1) (∀j′ j ≤ j′ ≤ h(i+ 1))[ψj′ = fi] and (a.2) (∀j′ h(i) < j′ < j)[ψj′ 6∈ R].
This will make Rψ = C.
(b) For j < i, Mj does not MinDecExψ-identify or MinAllψ-identify fi.

(c) C ∈ MinSuperψ.

This will prove the theorem.

Fix i. We now define ψj, for j ∈ Si.

Definition of ψj, for j ∈ Si.
Let CancelA0

i = CancelD0
i = ∅.

Go to stage 0.
Begin stage s
1. Let p(i, s) = h(i) + 1 + |CancelAs

i |+ |CancelDs
i |.

44

2. For all j′ such that p(i, s) ≤ j′ ≤ h(i+ 1), for all x ≤ s, let ψj′(x) = fi(x).
(Intuitively, we want to make p(i,∞) as j in clause (a)).

3. Let CancelDs+1
i = CancelDs

i ∪ {j < i p(i, s) ∈ ProgSet(Mj , fi [s])}.
4. Let CancelAs+1

i = CancelAs
i ∪ {j < i {l ≤ h(i + 1) l 6= p(i, s)} ⊆

ProgSet(Mj , fi)}.
5. Go to stage s+ 1.
End stage s.
End of Definition of ψj, for j ∈ Si.

It is easy to verify that CancelDs
i , CancelAs

i are monotonically nondecreasing
in s with respect to ⊆. Let CancelD∞i = lims→∞CancelDs

i and CancelA∞i =
lims→∞CancelAs

i . Note that p(i, s) is monotonically nondecreasing in s. Let
p(i,∞) = lims→∞ p(i, s). Note that h(i) < p(i, s) ≤ h(i) + 2i + 1 ≤ h(i + 1).
Also, for all j′, such that p(i,∞) ≤ j′ ≤ h(i+ 1), ψj′ = fi, and for all j′ such
that h(i) < j′ < p(i,∞), ψj′ is a non-total function. Thus (a) is satisfied.

Consider any j < i. If j ∈ CancelDs
i , then ProgSet(Mj , fi) contains a program

smaller than p(i, s) ≤ p(i,∞). If j 6∈ CancelD∞i , then ProgSet(Mj , fi) does
not contain p(i,∞). In either case Mj does not MinDecExψ-identify ψp(i,∞) =
fi. Similarly, if j ∈ CancelAs

i , then ProgSet(Mj , fi) contains p(i,∞). If j 6∈
CancelA∞i , then {l ≤ h(i+ 1) l 6= p(i,∞)} 6⊆ ProgSet(Mj , fi). In either case
Mj does not MinAllψ-identify ψp(i,∞) = fi. Thus (b) is satisfied.

To show that C ∈ MinSuperψ, note that p(i, s) is a monotonically non-
decreasing function of s, which converges to minψ(fi). Moreover, for all j′,
such that p(i,∞) ≤ j′ ≤ h(i + 1), ψj′ = fi. Thus C ∈ MinSuperψ, and hence
(c) is satisfied. 2

Theorem 45. There is a numbering ψ such that

(1) Rψ ∈ MinDecExψ and |Rψ| =∞,
(2) for any S ⊆ Rψ with |S| =∞, S 6∈ MinIncExψ.

Proof. The proof of this theorem is similar to the proof of Theorem 43, with
some minor changes.

For i ∈ IN, define fi as follows: fi(0) = i, and, for x > 0, let fi(x) = 0.

Let C = {fi i ∈ IN}. Let h(0) = 0. Let h(i+ 1) = h(i) + 2i+ 1.

We will make sure that (a), (b) and (c) are satisfied.

(a) For each i, exactly one of the programs in Si = {p h(i) < p ≤ h(i + 1)}
will compute fi. All the other programs in Si will compute non-total functions.
This will make Rψ = C.
(b) For j < i, Mj does not MinIncExψ-identify fi.

(c) C ∈ MinDecExψ.

45

This will prove the theorem.

Fix i. We now define ψj, for j ∈ Si.

Definition of ψj, for j ∈ Si.
Let CancelI0

i = ∅.
Go to stage 0.
Begin stage s
1. Let p(i, s) = h(i+ 1)− |CancelIsi |.
2. For all x ≤ s, let ψp(i,s)(x) = fi(x).

(Intuitively, we want to make ψp(i,∞) = fi).
3. Let CancelIs+1

i = CancelIsi ∪ {j < i p(i, s) ∈ ProgSet(Mj , fi [s])}.
4. Go to stage s+ 1.
End stage s.
End of Definition of ψj, for j ∈ Si.

It is easy to verify that CancelIsi is monotonically nondecreasing in s with
respect to ⊆. Let CancelI∞i = lims→∞CancelIsi . Note that p(i, s) is monoton-
ically nonincreasing in s. Let p(i,∞) = lims→∞ p(i, s). Note that h(i + 1) ≥
p(i, s) ≥ h(i + 1)− i > h(i). Also, ψp(i,∞) = fi, and for all j ∈ Si \ {p(i,∞)},
ψj is a non-total function. Thus (a) is satisfied.

Consider any j < i. If j ∈ CancelIsi , then ProgSet(Mj , fi) contains a program
> p(i, s) ≥ p(i,∞). If j 6∈ CancelI∞i , then ProgSet(Mj , fi) does not contain
p(i,∞). In either case Mj does not MinIncExψ-identify ψp(i,∞) = fi. Thus (b)
is satisfied.

To show that C ∈ MinDecExψ, note that p(i, s) is a monotonically non-
increasing function of s, which converges to minψ(fi). Thus C ∈ MinDecExψ,
and hence (c) is satisfied. 2

Theorem 46. There is a numbering ψ such that

(1) Rψ ∈ MinAllψ and |Rψ| =∞,
(2) for any S ⊆ Rψ with |S| =∞, S 6∈ MinDecExψ.

Proof. We will construct a numbering ψ, ψ ∈ R2, such that

(a) ψ is 1–1, and

(b) no infinite subset of Rψ is in MinDecExψ.

This would prove the theorem, since for any 1–1 total numbering ψ, Rψ ∈
MinSuperψ = MinAllψ.

If there exists a σ such that M0 (σ) 6= ?, then let σ0 be the least such σ;
otherwise, let σ0 = Λ. For i > 0, if there exists a σ ⊇ σi−1 such that Mi(σ) 6= ?,

46

then let σi be the least such σ; otherwise, let σi = σi−1. Note that σi can be
determined effectively in the limit. Let τ ji be such that

(i) τ ji can be determined effectively from i and j,

(ii) τ ji ⊆ τ ji+1, and

(iii) limj→∞ τ
j
i = σi.

Note that there exist such τ ji .

Let ψi be defined as follows.

ψi(x) =
{
τ ii (x), if x < |τ ii |,
i, otherwise.

It is easy to verify that each ψi ∈ R, and ψi’s are pairwise different. Hence (a)
is satisfied. Note that for each i, for all but finitely many j, σi ⊆ τ jj . Thus, for
all i,

(c) for all but finitely many j, σi ⊆ ψj,

(d) either Mi(σi) 6=?, or (∀σ ⊇ σi)[Mi(σ) =?].

It follows immediately that Mi can MinDecExψ-identify at most finitely
many ψj. Thus (b) is satisfied. 2

Theorem 47. There is a numbering ψ such that

(1) Rψ ∈ MinExψ and |Rψ| =∞,
(2) for any S ⊆ Rψ with |S| =∞, S 6∈ MinDecExψ ∪MinIncExψ.

Proof. This is a somewhat more complicated modification of the proof of
Theorem 43.

For i ∈ IN, define fi as follows: fi(0) = i, and, for x > 0, let fi(x) = 0.

Let C = {fi i ∈ IN}. Let h(0) = 0. Let h(i+ 1) = h(i) + 22i+2 − 1.

We will make sure that (a), (b) and (c) are satisfied.

(a) For each i, exactly one of the programs in Si = {p h(i) < p ≤ h(i + 1)}
will compute fi. All the other programs in Si will compute non-total functions.
This will make Rψ = C.
(b) For j < i, Mj does not MinDecExψ-identify or MinIncExψ-identify fi.

(c) C ∈ MinExψ.

This will prove the theorem.

Fix i. We now define ψj, for j ∈ Si.

47

Definition of ψj, for j ∈ Si.
Let CancelI0

i = CancelD0
i = ∅.

l(i, 0) = h(i) + 1. u(i, 0) = h(i+ 1).
Go to stage 0.
Begin stage s
1. Let p(i, s) = l(i,s)+u(i,s)

2
.

2. For all x ≤ s, let ψp(i,s)(x) = fi(x).
(Intuitively, we want to make ψp(i,∞) = fi).

3. if there exists a j < i such that j 6∈ CancelDs
i and p(i, s) ∈

ProgSet(Mj , fi [s])
then let l(i, s) = p(i, s)+1 and CancelDs+1

i = CancelDs
i ∪{j < i p(i, s) ∈

ProgSet(Mj , fi [s])}
4. elseif there exists a j < i such that j 6∈ CancelIsi and p(i, s) ∈

ProgSet(Mj , fi [s])
then let u(i, s) = p(i, s)− 1 and CancelIs+1

i = CancelIsi ∪ {j < i p(i, s) ∈
ProgSet(Mj , fi [s])}

endif
5. Go to stage s+ 1.
End stage s.
End of Definition of ψj, for j ∈ Si.

It is easy to verify that CancelDs
i , CancelIsi are monotonically nondecreasing

in s with respect to ⊆. Let CancelD∞i = lims→∞CancelDs
i and CancelI∞i =

lims→∞CancelIsi . Also it is easy to verify that lsi is monotonically nonde-
creasing and usi is monotonically nonincreasing in s. Let u∞i = lims→∞ u

s
i ,

and l∞i = lims→∞ l
s
i . Let p(i,∞) = lims→∞ p(i, s) = (l∞i + u∞i)/2. Note

that h(i) < lsi < p(i, s) ≤ usi ≤ h(i + 1). Also, ψp(i,∞) = fi, and for all
j ∈ Si \ {p(i,∞)}, ψj is a non-total function. Thus (a) is satisfied.

Consider any j < i. If j ∈ CancelDs
i , then ProgSet(Mj , fi) contains a program

< l(i, s) ≤ l(i,∞) < p(i,∞). If j 6∈ CancelD∞i , then ProgSet(Mj , fi) does not
contain p(i,∞). In either case Mj does not MinDecExψ-identify ψp(i,∞) = fi.
Similarly, if j ∈ CancelIsi , then ProgSet(Mj , fi) contains a program > u(i, s) ≥
u(i,∞) > p(i,∞). If j 6∈ CancelI∞i , then ProgSet(Mj , fi) does not contain
p(i,∞). In either case Mj does not MinIncExψ-identify ψp(i,∞) = fi. Thus (b)
is satisfied.

To show that C ∈ MinExψ, note that p(i, s) converges to minψ(fi). Thus
C ∈ MinExψ, and hence (c) is satisfied. 2

4.4 Characterizations

We now prove a characterization for all the considered types of function learn-
ing by erasing, when the hypothesis space may be chosen freely. It turns out

48

that all these types coincide with Ex . In order to show this we need both
allowing non-Gödel numberings as hypothesis spaces and a characterization
of Ex in terms of non-Gödel numberings.

Theorem 48. For all Lt ∈ {All , Super , Sub},MinLt = Lt = Ex .

Proof. Let Lt ∈ {All , Super , Sub}. We show MinLt ⊆ Lt ⊆ Ex ⊆ MinLt .
MinLt ⊆ Lt : By Proposition 8.

Lt ⊆ Ex : Let C ∈ Ltψ by a machine M . Let M ′ be a machine always outputting
the least ψ-number which has not yet been erased by M . Clearly, C ∈ Exψ
by M ′.
Ex ⊆ MinLt : We need the following result from Wiehagen [32].

Lemma 1. C ∈ Ex iff there is a numbering ψ such that

(1) C ⊆ Rψ, and
(2) there is d ∈ R2 such that, for any i 6= j, ψi[d(i, j)] 6= ψj[d(i, j)].

Now, suppose C ∈ Ex . Let ψ, d be as given in the lemma. First note that
ψ is 1-1. Hence ψ contains exactly one program for any function in C. Thus
showing that C ∈ MinAllψ suffices, since any machine witnessing C ∈ MinAllψ
automatically witnesses both C ∈ MinSuperψ and C ∈ MinSubψ. Let M be
defined such that ProgSet(M , f) = {j (∃i 6= j)[f [d(i , j)] = ψi [d(i , j)]]}. It is
easy to verify that M MinAllψ-infers C. 2

Note that the proof of Lemma 1 as given in Freivalds et al. [12] immediately
shows that Rψ ∈ MinIncExψ. Hence we also have the following characteriza-
tion of MinIncEx .

Theorem 49. MinIncEx = Ex .

Lemma 1 also gives a pure numbering-theoretic characterization for All ,
MinAll , Super , MinSuper , Sub, MinSub, IncEx , MinIncEx via Theorems 48
and 49.

Finally, we exhibit an alternative characterization of MinIncExψ (and thus,
by Proposition 9, of MinSubψ and Subψ) which holds for every numbering ψ.

Theorem 50. For every numbering ψ, C ∈ MinIncExψ iff there is P ∈ P
such that the following properties are satisfied.

(1) C ⊆ Rψ.
(2) For all f ∈ C, P (minψ(f))↓.
(3) For all i ∈ IN, P (i)↓ implies (3a) and (3b):

(3a) For all x < P (i), ψi(x)↓.
(3b) For all j < i with ψj ∈ C, ψj[P (i)] 6= ψi[P (i)] .

49

Proof. Necessity: Suppose C ∈ MinIncExψ as witnessed by M . (1) must
clearly hold. Let P be defined as follows:

P (i) = min {x (∀y < x)[ψi(y)↓] ∧ M (ψi [x]) = i}

It is easy to verify that (2) and (3) must hold.

Sufficiency: We use the fact that MinSubψ = MinIncExψ (Proposition 9).
Suppose (1) holds and P is such that (2) and (3) hold. Then consider a machine
M such that ProgSet(M , f) = {j (∃i > j)[P(i)↓ = n ∧ f [n] = ψi [n]]}.

Note that such a machine M can easily be constructed. Using the properties
of P above it is easy to verify that M MinSubψ-infers each function in C. 2

5 Conclusions

Different models of learning by erasing are defined. The capabilities of learning
by erasing are investigated in relation to two factors: the choice of the overall
hypothesis space itself and what sets of hypotheses must or may be erased.
The power of the resulting learning types is related to one another as well
as to those of standard learning types. These learning capabilities are studied
for two fundamental kinds of objects to be learned, namely languages and
functions.

For language learning by erasing, it turns out that all but the EqualTxt learn-
ing model are sensitive with respect to the particular choice of the hypothesis
space, thus nicely contrasting learning in the limit and finite learning. More-
over, the learning power of the SubTxt model is even very dependent on the
set of admissible hypothesis spaces.

A further interesting aspect is provided by Theorems 11 and 12. These results
show that the process of elimination cannot be restricted to incorrect hy-
potheses for achieving its full learning power. On the other hand, all models
of learning by erasing that are allowed to erase correct hypotheses, too, are as
powerful as learning in the limit provided the hypothesis space is appropriately
chosen (cf. Theorem 8). Consequently, in order to decide whether or not a par-
ticular indexed family can be LtTxt-learned, Lt ∈ {Arb, Super , All}, one can
apply any of the known criteria for ExTxt-inferability (cf., e.g., Angluin [1],
Sato and Umayahara [29]).

These differences almost vanish if absolute learning is considered. Now, we
have a somehow opposite effect. Erasing all but one guess turns out to be
most restrictive with respect to the resulting learning capabilities.

50

The phenomena described above find their natural explanation in our char-
acterization theorems. All models ALtTxt of absolute learning by erasing are
constrained by the structural properties of the indexed families to be learned,
i.e., they must be inclusion-free for Lt ∈ {Arb, Sub, Equal , Super , All}, and
in case of AAllTxt , additionally, all hypothesis spaces must be equivalent with
respect to reducibility, i.e., they must have a recursive equality problem.

Moreover, in Section 3.4 we study the problem whether or not information
presentation may be traded versus learnability. The results obtained put the
strength of AAllInf -learning into the right perspective as displayed in Fig-
ure 1. However, it remains open whether or not AAllInf ⊂ ExTxt can be
strengthened to AAllInf ⊂ CConsvTxt .

For function learning by erasing, we study three types of hypothesis spaces,
Gödel numberings, Kolmogorov numberings and non-Gödel numberings. For
Gödel numberings the same effect as in language learning by erasing can be
observed, namely that erasing cannot be restricted to incorrect hypotheses
in order to achieve full learning power (cf. Proposition 12). Since in Gödel
numberings the other types of function learning by erasing yield the same
power as Ex , the type of standard learning in the limit, (cf. Proposition 11),
we turn over to investigate learning minimal programs.

For learning minimal programs by erasing, there are significant differences be-
tween arbitrary Gödel numberings and Kolmogorov numberings as hypothesis
spaces. Whereas for all minimal learning criteria considered, any “reasonable”
coincidence/inclusion between these criteria does hold in some Gödel number-
ing, as shown in Theorems 41 and 42, all these criteria (except for MinAll
versus MinSuper) are separated in every Kolmogorov numbering (cf. Theo-
rem 24). At present, MinAllψ ⊂ MinSuperψ is proved only for some Kol-
mogorov numbering ψ. However, we conjecture that this separation is true for
every Kolmogorov numbering. In order to achieve these results for Kolmogorov
numberings some techniques are demonstrated which prove to be useful just
in Kolmogorov numberings.

Non-Gödel numberings are used for both providing the necessary means to
prove Theorem 42 and characterizing the types of learning by erasing. All
the types of function learning by erasing considered coincide with Ex if also
non-Gödel numberings are allowed as hypothesis spaces (cf. Theorem 48).
Thus, the corresponding numbering-theoretic characterization of Ex given by
Lemma 1 yields a “unique kind” of (non-Gödel) hypothesis spaces in which
exactly every class from Ex can be learned in all of our erasing models. Fur-
thermore, as in Theorems 5 and 6 for characterizing language learning by
erasing, a characterization for MinIncExψ, MinSubψ and Subψ (these types
coincide by Proposition 9) is derived which holds for every numbering ψ,
thereby exhibiting the first characterization of such type in function learning
at all (cf. Theorem 50).

51

Finally, we want to point out a further possible line of research. In our opinion,
it may also be interesting to investigate the complexity of learning by erasing.
This includes the comparison of the complexity of both the different models of
learning by erasing as well as of learning by erasing with standard learning. As
a result of the first type we have the following comparison of the complexity
of hypothesis spaces for language learning by erasing in the sense of AllTxt
and ArbTxt , respectively. There is an infinite indexed family L such that

(1) for every ψ ∈ R2
0,1 such that L ∈ AllTxtψ, all but one language from L

must have infinitely many ψ-numbers,
(2) there exists ψ ∈ R2

0,1 such that L ∈ ArbTxtψ and every language from L
has exactly one ψ-number.

This can be easily verified using the indexed family L defined in the proof of
Theorem 11, Claim B, thus Property (2) follows. Property (1) is an immediate
consequence of Theorem 13 in Freivalds and Zeugmann [13]. Hence in the sense
of AllTxt this family L can be learned only with respect to hypothesis spaces
possessing infinite “redundancy”, whereas in the sense of ArbTxt it can be
learned without redundancy.

Acknowledgement

We would like to thank the referees for many valuable comments and sugges-
tions which have resulted in several improvements of the presentation of the
paper.

References

[1] D. Angluin, Inductive inference of formal languages from positive data,
Information and Control 45 (1980) 117–135.

[2] G. Baliga, J. Case, and S. Jain, Synthesizing enumeration techniques for
language learning, in: Proc. 9th Annual ACM Conference on Computational
Learning Theory (ACM Press, New York, 1996) 169–180.

[3] L. Blum and M. Blum, Toward a mathematical theory of inductive inference,
Information and Control 28 (1975) 125–155.

[4] M. Blum, A machine-independent theory of the complexity of recursive
functions, Journal of the ACM 14 (1967) 322–336.

[5] J. Case and C.H. Smith, Comparison of identification criteria for machine
inductive inference, Theoretical Computer Science 25 (1983) 193–220.

52

[6] R. Freivalds, Minimal Gödel numbers and their identification in the limit,
in: Proc. International Conference on Mathematical Foundations of Computer
Science, Lecture Notes in Computer Science, Vol. 32 (Springer, Berlin, 1975)
219–225.

[7] R. Freivalds, Inductive inference of minimal programs, in: Proc. 3rd Annual
Workshop on Computational Learning Theory (Morgan Kaufmann, San Mateo,
1990) 3–20.

[8] R. Freivalds, Inductive inference of recursive functions: Qualitative theory,
in: Baltic Computer Science, Lecture Notes in Computer Science, Vol. 502
(Springer, Berlin, 1991) 77–110.

[9] R. Freivalds and S. Jain, Kolmogorov numberings and minimal identification,
in: Proc. 2nd European Conference on Computational Learning Theory, Lecture
Notes in Artificial Intelligence, Vol. 904 (Springer, Berlin, 1995) 182–195.

[10] R. Freivalds, M. Karpinski, and C.H. Smith, Co-learning of total recursive
functions, in: Proc. 7th Annual Conference on Computational Learning Theory
(ACM Press, New York, 1994) 190–197.

[11] R. Freivalds, D. Gobleja, M. Karpinski, and C.H. Smith, Co-learnability
and FIN-identifiability of enumerable classes of total recursive functions,
in: Proc. 4th International Workshop on Analogical and Inductive Inference,
Lecture Notes in Artificial Intelligence, Vol. 872 (Springer, Berlin, 1994) 100–
105.

[12] R. Freivalds, E.B. Kinber, and R. Wiehagen, How inductive inference strategies
discover their errors, Information and Computation 118 (1995) 208–226.

[13] R. Freivalds and T. Zeugmann, Co-learning of recursive languages from positive
data, in: Proc. Perspectives of System Informatics, 2nd International Andrei
Ershov Memorial Conference, Lecture Notes in Computer Science, Vol. 1181
(Springer, Berlin, 1996) 122–133.

[14] E.M. Gold, Language identification in the limit, Information and Control 10
(1967) 447–474.

[15] S. Jain, An infinite class of functions identifiable using minimal programs in
all Kolmogorov numberings, International Journal of Foundations of Computer
Science 6 (1995) 89–94.

[16] S. Jain, E. Kinber, and R. Wiehagen, On learning and co-learning of minimal
programs, Technical Report LSA-96-06E, Centre for Learning Systems and
Applications, Department of Computer Science, University of Kaiserslautern,
1996.

[17] S. Jain and A. Sharma, Characterizing language learning by standardizing
operations, Journal of Computer and System Sciences 49 (1994) 96–107.

[18] S. Kapur and G. Bilardi, Language learning without overgeneralization,
Theoretical Computer Science 141 (1995) 151–162.

53

[19] R. Klette and R. Wiehagen, Research in the theory of inductive inference by
GDR mathematicians – A survey, Information Sciences 22 (1980) 149–169.

[20] M. Kummer, A learning-theoretic characterization of classes of recursive
functions, Information Processing Letters 54 (1995) 205–211.

[21] S. Lange, R. Wiehagen, and T. Zeugmann, Learning by erasing, Technical
Report RIFIS-TR-CS-122, Research Institute of Fundamental Information
Science, Kyushu University, 1996.

[22] S. Lange and T. Zeugmann, Types of monotonic language learning and their
characterization, in: Proc. 5th Annual ACM Workshop on Computational
Learning Theory (ACM Press, New York, 1992) 377–390.

[23] S. Lange and T. Zeugmann, Monotonic versus non-monotonic language
learning, in: Proc. 2nd International Workshop on Nonmonotonic and Inductive
Logic, December 1991, Lecture Notes in Artificial Intelligence, Vol. 659
(Springer, Berlin, 1993) 254–269.

[24] S. Lange and T. Zeugmann, Language learning in dependence on the space of
hypotheses, in: Proc. 6th Annual ACM Conference on Computational Learning
Theory (ACM Press, New York, 1993) 127–136.

[25] S. Lange and T. Zeugmann, Learning recursive languages with bounded mind
changes, International Journal of Foundations of Computer Science 4 (1993)
157–178.

[26] S. Lange and T. Zeugmann, Characterization of language learning from
informant under various monotonicity constraints, Journal of Experimental &
Theoretical Artificial Intelligence 6 (1994) 73–94.

[27] D. Osherson, M. Stob, and S. Weinstein, Systems that Learn, An Introduction
to Learning Theory for Cognitive and Computer Scientists (MIT Press,
Cambridge, Mass., 1986).

[28] H. Rogers, Theory of Recursive Functions and Effective Computability
(McGraw-Hill, New York, 1967, Reprinted, MIT Press, Cambridge, Mass.,
1987).

[29] M. Sato and K. Umayahara, Inductive inferability for formal languages from
positive data, IEICE Transactions on Information and Systems E–75D (1992)
415–419.

[30] V.L. Selivanov, Enumerations of families of general recursive functions, Algebra
i Logika 15 (1976) 205–226; English Translation, Algebra and Logic 15 (1976)
128–141.

[31] B.A. Trakhtenbrot and Ya.M. Barzdin, Finite Automata – Behavior and
Synthesis, Fundamental Studies in Computer Science 1 (North-Holland,
Amsterdam, 1973).

[32] R. Wiehagen, Characterization problems in the theory of inductive inference,
in: Proc. International Colloquium on Automata, Languages and Programming,
Lecture Notes in Computer Science, Vol. 62 (Springer, Berlin, 1978) 494–508.

54

[33] T. Zeugmann and S. Lange, A guided tour across the boundaries of learning
recursive languages, in: Algorithmic Learning for Knowledge-Based Systems,
Lecture Notes in Artificial Intelligence, Vol. 961 (Springer, Berlin, 1995) 190–
258.

[34] T. Zeugmann, S. Lange, and S. Kapur, Characterizations of monotonic and
dual monotonic language learning, Information and Computation 120 (1995)
155–173.

55

