
Robust Learning Aided by Context∗

John Case†

University of Delaware

Sanjay Jain‡

National University of Singapore

Matthias Ott§

Universität Karlsruhe

Arun Sharma¶

University of New South Wales

Frank Stephan‖

Universität Heidelberg

Abstract

Empirical studies of multitask learning provide some evidence that the performance of a
learning system on its intended targets improves by presenting to the learning system related
tasks, also called contexts, as additional input. Angluin, Gasarch, and Smith, as well as
Kinber, Smith, Velauthapillai, and Wiehagen have provided mathematical justification for
this phenomenon in the inductive inference framework. However, their proofs rely heavily on
self-referential coding tricks, that is, they directly code the solution of the learning problem
into the context. Fulk has shown that for the Ex- and Bc-anomaly hierarchies, such results,
which rely on self-referential coding tricks, do not hold robustly. In this work we analyze
robust versions of learning aided by context and show that — in contrast to Fulk’s result
above — context also aids learning robustly. Also, studied is the difficulty of the functional
dependence between the intended target tasks and useful associated contexts.

1 Introduction

There is empirical evidence that in many cases performance of learning systems improves when
they are modified to learn auxiliary, “related” tasks (called contexts) in addition to the primary
tasks of interest [6, 7, 22]. For example, an experimental system to predict the value of German
Daimler stock performed better when it was modified to track simultaneously the German
stock-index DAX [2]. The value of the Daimler stock here is the primary or target concept and
the value of the DAX—a related concept—provides useful auxiliary context. The additional
task of recognizing road stripes was able to improve empirically the performance of a system

∗Most of this work was carried out while J. Case, S. Jain, M. Ott, and F. Stephan were visiting the School of
Computer Science and Engineering at the University of New South Wales.

†Department of CIS, University of Delaware, Newark, DE 19716, USA, Email: case@cis.udel.edu
‡School of Computing, National University of Singapore, Singapore 119260, Republic of Singapore, Email:

sanjay@comp.nus.edu.sg.
§Institut für Logik, Komplexität und Deduktionssysteme, Universität Karlsruhe, 76128 Karlsruhe, Germany,

Email: m ott@ira.uka.de. Supported by the Deutsche Forschungsgemeinschaft (DFG) Graduiertenkolleg “Be-
herrschbarkeit komplexer Systeme” (GRK 209/2-96).

¶School of Computer Science and Engineering, University of New South Wales, Sydney 2052, Australia, Email:
arun@cse.unsw.edu.au. Supported by Australian Research Council Grant A49600456.

‖Mathematisches Institut, Universität Heidelberg, Im Neuenheimer Feld 294, 69120 Heidelberg, Germany,
Email: fstephan@math.uni-heidelberg.de. Supported by the Deutsche Forschungsgemeinschaft (DFG) Grant
Am 60/9-1.

1

learning to steer a car to follow the road [7]. Other examples where multitask learning has
successfully been applied to real world problems appear in [10, 23, 27, 30].

Importantly, these empirical phenomena of such context sensitivity in machine learning [22]
are also supported, for example, by mathematical existence theorems for these phenomena (and
variants) in the inductive inference framework [1]. More technical theoretical work appears in
[18, 20]. For a Bayesian PAC-style approach to multitask learning see [4].

The theoretical papers, [1, 18], provide theorems in the inductive inference framework, wit-
nessing situations in which learnability absolutely (not just empirically) passes from impossible
to possible in the presence of suitable auxiliary contexts to be learned. These theorems are
proved there by means of self-referential coding tricks, where, in effect, correct hypotheses for
the primary tasks are coded into the auxiliary contexts. The use of such coding has been criti-
cized on the grounds of involving (possibly) artificial tricks.1 In the present paper we attempt
to address this criticism and, in this vein, analyze several notions of learning in the presence of
context.

Based on a suggestion of Bārzdiņš, Fulk [14] proposed a strict notion of identification,
called robust with a view to avoiding self-referential coding tricks. He showed that several
important results like the Ex- and Bc-anomaly hierarchies, which had been established using
self-referential coding tricks [9], did not hold robustly. While it was earlier believed that ro-
bust identification avoids all self-referential coding tricks, Jain, Smith, and Wiehagen [17] have
recently shown that it only avoids certain kinds of coding tricks. This result notwithstanding,
establishing robust versions of results demonstrating advantages of learning in the presence of
context considerably strengthens them. We employ Fulk’s notion of robust identification to
show that for several, partially new, models of learning from context, their robust analogs are
still more powerful than conventional identification.

In Section 5, we present results about the problem of finding useful auxiliary contexts to
enable the robust learning of classes of functions which might not be learnable without such
contexts.

Before we proceed formally, we devote the rest of this section to a discussion of robustness
and of various models of learning in the presence of context considered in this paper.

1.1 Robust Identification

In this section we introduce the notion of robust identification and discuss its effectiveness
and limitations in avoiding self-referential coding tricks. We begin with a definition of Ex-
identification.

A machine M Ex-identifies a computable function f just in case M , fed the graph of f ,
outputs a sequence of programs eventually converging to a program for f [5, 9]. A class of
functions S is Ex-identifiable just in case there is a machine that Ex-identifies each member
of S.

Here is a particularly simple example of a self-referential coding trick. Let SD = { com-
putable f | f(0) is a program for f}. Clearly, SD is Ex-identifiable since a machine on f ∈ SD

1On the other hand, the real world may actually have some of its parts coded in other of its parts. As
essentially pointed out in [8], such a view is consistent with both certain Eastern metaphysical principles and
Leibniz’ Monadology.

2

need only wait for the value f(0) and output it.2 However, the Ex-identification of SD severely
depends on programs for its members being coded into the values (at zero) of those members.

In the 1970’s, Bārzdiņš was concerned, among other things, with how to formulate that
an existence result in function learnability was proved to hold without resort to such self-
referential coding tricks. He, in effect, reasoned that instead of the self-referential witness, one
should construct a function class S and then show that the desired result holds for any class
S′ which can be obtained from S by applying a general recursive operator to all functions in
S. The idea was that a suitable general recursive operator would irretrievably scramble the
coding tricks embedded in the self-referential class. For example, for SD itself, consider the
operator ΨL such that, for all partial functions ψ, for all x, ΨL(ψ)(x) = ψ(x+1). ΨL essentially
“shifts the partial function ψ to the left.” It is easy to see that ΨL(SD) = REC , the class
of all computable functions. It is well known that REC is not Ex-identifiable; hence, ΨL

transforms the identifiable class SD into an unidentifiable class REC by removing the self-
referential information from SD that made it identifiable.

Motivated by the above proposal by Bārzdiņš, Fulk [14] defined a class S ⊆ REC to be ro-
bustly Ex-identifiable just in case for all general recursive operators Ψ, Ψ(S) is Ex-identifiable.
Thus, the class SD is Ex-identifiable but not robustly Ex-identifiable. Fulk also showed that
other important results in function learning like the Ex- and Bc-anomaly hierarchies, which
had been established using self-referential coding tricks [9], did not hold robustly. On the other
hand, Jain, Smith, and Wiehagen [17] have recently shown that the mind change hierarchy
holds robustly. Furthermore, Jain [15] proved that Bc and Ex are separated robustly. So, in
some sense, results that hold robustly may be considered “strong” as they appear to hold with-
out resorting to coding tricks. However, as the following discussion demonstrates, robustness
avoids only certain kinds of coding tricks.

Consider the class

C = {f | (∃x)[f(x) 6= 0] and min{x | f(x) 6= 0} is a program for f}.

Certainly, C is defined by a self-referential trick. However, as shown in [17], C is robustly
learnable, by the following argument. Fix a general recursive operator Θ. Let g ∈ Θ(C) be
given. We write f0 for the constant 0-function. If g = Θ(f0) then every program for Θ(f0)
is also a program for g. Otherwise, if g 6= Θ(f0), a learner will eventually find an x with
g(x) 6= Θ(f0)(x). Having this information, the learner can effectively compute an n such that
g is inconsistent with Θ(0n). This implies that n is an upper bound for the minimal program
for any f ∈ C, with Θ(f) = g. That is, there exists a program e ≤ n such that ϕe ∈ C, and
g = Θ(ϕe). Computing programs for all such possible Θ(ϕe), e ≤ n, yields an upper bound for
a program for g. But it is well known that one can Ex-identify a computable function, in our
case g, when an upper bound on one of its programs is known [13].

Thus, though C is defined by a self-referential class, C is robustly learnable. This, in particu-
lar, refutes Bārzdiņš’ (and other’s) belief, that a suitable general recursive operator can destroy
every kind of self-referential coding trick. Rather, as already noted in [17], robustness rules out
“purely numerical” coding tricks like that of SD, but it still allows “topological” coding tricks
as present in the class C.

2And it’s a very large class of computable functions. Blum and Blum [5] essentially show that such classes
contain a finite variant of each computable function!

3

Ott and Stephan [26] recently considered a stronger version of robustness called hyperro-
bustness. In this paper they also showed that if a class is closed under finite variants and
robustly learnable, then it is contained in a recursively enumerable class. This in some sense
shows that requirement of robust learning along with some other natural requirements, such as
closure under finite variants, may vindicate Barzdin’s intuition.

The above discussion notwithstanding, there is clear merit in showing that a result holds
robustly. In this work we follow the flavor of Jain, Smith, and Wiehagen [17] and show, for
several models of learning aided by context, that many interesting existence theorems even hold
robustly.

1.2 Models of Learning Aided by Context

We now describe the models of learning in the presence of context and the results presented in
this paper. To aid in our discussion, we first define the notion of Bc-identification.

A machine M Bc-identifies computable f just in case M , fed the graph of f , outputs a
sequence of programs and beyond some point in this sequence all the programs compute f [3, 9].

In Section 3 we consider essentially the model of Kinber, Smith, Velauthapillai, and Wieha-
gen [18]. They defined this notion using finite learning, that is, Ex-style learning without any
mind changes. We directly introduce the notion for Ex-style learning (which, thus, contains
finite learning as a special case): a learner M is said to (a, b)Ex-identify a set of b pairwise
distinct functions just in case M , fed graphs of the b functions simultaneously, Ex-identifies at
least a of them. [18] showed that for all a, there is a class of functions S which cannot even
be Bc-identified but which is (a, a + 1)Ex-identifiable with 0 mind changes. As we show in
Section 3 below, this result also holds for robust (a, a+ 1)Ex-learning, although no longer with
0 mind changes. However, an only slightly weaker version of this result also holds robustly for
finite learning: there is a class which is robustly (a, a + 2)Ex-learnable with 0 mind changes,
but which is not in Bc.

The above model of parallel learning may be viewed as learning from arbitrary context. No
distinction is made between which function is the target concept and which function provides
the context. Let R ⊆ REC ×REC be given. Intuitively, for (f, g) ∈ R, f is the target function
and g is the context. We say the class R is ConEx-identifiable if there exists a machine which,
upon being fed graphs of (f, g) ∈ R (suitably marked as target and context), converges in the
limit to a program for f . Now, we define a class of functions S ⊆ REC to be SelEx-identifiable
if there exists a mapping C : S → S such that {(f, C(f)) | f ∈ S} is ConEx-identifiable. Here,
C may be viewed as a context mapping for the concept class S. Of course, the freedom to
choose any computable context is very powerful since, then, even REC can be SelEx-identified
with 0 mind changes. To see this, just consider a mapping C that maps each f ∈ REC to a
computable function g such that g(0) codes a program for f . Then, after reading (f(0), g(0)),
a machine need only output g(0). Of course, this natural proof resorts to a purely numerical
coding trick. Nevertheless, as we show in Theorem 4.4 of Section 4, the class REC is even
robustly SelEx-identified, although no longer with 0 mind changes!

The model of SelEx-identification is similar to the parallel learning model of Angluin,
Gasarch, and Smith [1] where they require the learner to output also a program for the context g.
Our Theorem 4.5 in Section 4 is a robust version of their [1, Theorem 6].

Though REC is robustly SelEx-learnable, the appropriate context mappings may be un-

4

computable with unpleasant Turing complexity. For this reason, we also investigate the nature
of the appropriate context mapping to gain some understanding of the functional dependence
between the target (primary task) and the context. In particular, we look for example classes
that are SelEx-identifiable or robustly SelEx-identifiable but are not Ex-identifiable and are
such that the context mapping may be more feasible. We consider two approaches to implement
the context mappings: operators, which work on values of the target function, and program
mappings, which work on programs for the target function. As a sample result we are able
to show that if the functional dependence between the target function and the context is “too
high” then the presence of context is not of much help as the class is learnable without any
context.

2 Preliminaries

The set of natural numbers, i.e., the set of the non-negative integers, is denoted by ω. If A ⊆ ωn,
we write A|i = {xi | (x1, . . . , xi, . . . , xn) ∈ A} for the projection to the i-th component. For
predicates P , µi[P (i)] denotes the smallest i such that P (i) is true (if no such i exists, then
µi[P (i)] is undefined).

We are using an acceptable programming system ϕ0, ϕ1, . . . for the class of all partial com-
putable functions [28, 29]. MinInd(f) = min{e | ϕe = f} is the minimal index of a partial
computable function f with respect to this programming system. The function computed by
the e-th program within s steps is denoted by ϕe,s. Without loss of generality we assume that
dom(ϕe,s) ⊆ {0, . . . , s − 1}. REC denotes the set of all (total) computable functions; REC 0,1

denotes the class of all {0, 1}-valued functions from REC . A class S ⊆ REC is computably
enumerable if S is empty or S = {ϕh(i) | i ∈ ω} for some h ∈ REC .

Seq = ω∗ is the set of all finite sequences from ω. For strings σ, τ ∈ Seq ∪ ωω, σ � τ means
that σ is an initial segment of τ . |a1 . . . an| = n denotes the length of a string a1 . . . an ∈ Seq.
Total functions f : ω → ω are identified with the infinite string f(0)f(1) . . . ∈ ωω. We write
f [n] for the initial segment f(0) . . . f(n− 1) of a total function f . For sets D ⊆ S ⊆ ωω we say
that D is a dense subset of S, if (∀f ∈ S)(∀n)(∃g ∈ D)[f [n] � g]. This is equivalent to the
usual definition that all points from S are accumulation points of some sequence from D if ωω

is supplied with the product topology of the discrete topology on ω.
Let P denote the class of all partial functions mapping ω to ω. For ϕ,ψ ∈ P we write

ϕ ⊆ ψ if (∀x)[ϕ(x) ↓ =⇒ ψ(x) ↓ = ϕ(x)]. Mappings Θ : P → P are called operators. An
operator Θ is recursive if, for all finite functions α, one can effectively (in code for alpha)
enumerate all (x, y) with Θ(α)(x) ↓ = y, and furthermore, Θ is

• monotone, that is,
(∀ϕ,ψ ∈ P)[ϕ ⊆ ψ =⇒ Θ(ϕ) ⊆ Θ(ψ)], and

• compact, that is, (∀ϕ ∈ P)[Θ(ϕ)(x) ↓ = y =⇒ (∃α ⊆ ϕ)[α finite and Θ(α)(x) ↓ = y]].

An operator Θ : P → P is general if Θ(f) is total for all total functions f . For every general
recursive operator C there exists a general recursive operator C ′ such that for all total f ,
C ′(f) = C(f), and

(∗) for all finite sequences τ , {x | C ′(τ)(x)↓} is finite, and a canonical index [29] for it can be
effectively determined from τ .

5

Note that such a C ′ can easily be constructed by “slowing down” C appropriately. Since we are
only interested in the properties of operators on total functions, we may restrict our attention
to general recursive operators satisfying condition (∗). Let Θ0,Θ1, . . . be a (noneffective) listing
of all general recursive operators satisfying condition (∗).

The quantifier (
∞
∀ n) abbreviates (∃m)(∀n ≥ m). Learning machines are typically total

Turing machines which compute some mapping Seqm → (ω ∪ {?})n. Intuitively, output of ?
by M indicates that it has not made up its mind about the hypothesis. It is not necessary to
consider ? when one is considering Ex or Bc identification, but it is useful when one considers
number of mind changes. Bc is the class of all subsets S of REC such that there exists a
learning machine M : Seq → ω ∪ {?} with

(∀f ∈ S)(
∞
∀ n)[ϕM(f [n]) = f].

S is in Ex if there exists a learning machine M such that

(∀f ∈ S)(∃e)[ϕe = f ∧ (
∞
∀ n)[M(f [n]) = e]].

M makes a mind change at stage n + 1 on input f if ? 6= M(f [n]) 6= M(f [n + 1]). A learner
M learns S finitely iff for every f ∈ S, M , fed graph of f , Ex-learns f without any mind
changes, that is, M outputs only one program (not counting initial ? s), and this program is
correct for f . Fin denotes the collection of all finitely learnable classes, that is, the classes
which are Ex-learnable without any mind changes. It is well known that Fin ⊂ Ex ⊂ Bc and
REC 0,1 6∈ Bc (see, e.g., [25]).

3 Learning From Arbitrary Contexts

A very restricted form of learning aided by context arises when we require that the learning
machine be successful with any context from the concept class under consideration. In this case
it is most natural (as argued below) to look at the learning problem in a symmetric manner,
that is, we do not distinguish between the target function and the context. Instead, we treat
each input function with the same importance and try to learn programs for each of them (but
may only be successful on some of the input functions). However, in this case we do have
to require that the input functions are pairwise different; otherwise, we do not get a different
learning notion, since the ordinary Ex-learning problem would reduce to such a learning type.
The resulting learning notion, which we formally introduce in the next definition, has essentially
already been introduced and studied by Kinber, Smith, Velauthapillai and Wiehagen [18, 19]
(see also the work of Kummer and Stephan [20]).

Definition 3.1 S ⊆ REC is in (a, b)Ex if there exists a learning machine M such that for all
pairwise distinct f1, . . . , fb ∈ S:

(∃i1, . . . , ia| 1 ≤ i1 < . . . < ia ≤ b)(∃e1, . . . , ea)(∀j | 1 ≤ j ≤ a)

[ϕej
= fij ∧ (

∞
∀ n)[M(f1[n], . . . , fb[n])|ij = ej]].

In the literature, so far only the very restrictive finite identification variant of (a, b)Ex has been
studied, in which the learner has to correctly infer a out of b given functions without any mind

6

changes. For this version, it was shown in [18] that, for all a, there is a class S of functions
which is not in Bc but is (a, a + 1)Ex-learnable without any mind changes. Thus, presenting
a + 1 functions of a non-Bc-learnable class in parallel may allow finite learnability of at least
a of the a + 1 functions. This result appears to provide a very strong case the usefulness
of parallel learnability. However, the proof of this result uses a purely numerical coding trick.
More precisely, each non-empty finite subset F of S contains one function which holds programs
for all other functions of F in its values. Thus, it is interesting to see whether this result also
holds for the following robust version of learning with arbitrary context.

Definition 3.2 S ⊆ REC is in (a, b)RobEx if Θ(S) ∈ (a, b)Ex for all general recursive oper-
ators Θ.

As the next theorem shows there are still classes in (a, a+ 1)RobEx− Bc, that is, the existence
result from [18] holds robustly, although no longer with 0 mind changes.3 In the proof of
Theorem 3.4, and at several other places, we will use the following consequence of the result of
Freivalds and Wiehagen, that REC , the class of all the computable functions, can be identified
in the Ex sense, if one is given an upper bound on the minimal program for the input function
in addition to the graph of the input function [13] (see also [16]).

Fact 3.3 (Freivalds and Wiehagen [13]) Let S ⊆ REC. If there exists a learning ma-
chine M such that

(∀f ∈ S)(∃c ≥ MinInd(f))(
∞
∀ n)[M(f [n]) = c],

then S is in Ex.

Theorem 3.4 (a, a+ 1)RobEx 6⊆ Bc for all a ∈ ω.

Proof. Let M0,M1, . . . be an enumeration of all learning machines. We inductively define
functions g0, g1, . . . and sequences σ0, σ1, . . . below. Suppose we have defined gi, σi, for i < n.
Then define gn and σn as follows:

(1) Choose gn such that, (a) for i ≤ n, Mi does not Bc-infer gn, and (b) if n > 0, then
gn � σn−1.

(2) Choose σn � gn such that, (a) for all m ≤ n, for all x ≤ MinInd(gn), Θm(σn)(x) ↓ and
(b) if n > 0, then σn � σn−1.

Now let S = {gn | n ∈ ω}. By construction Mi does not Bc-identify gn, for n ≥ i. Thus,
S 6∈ Bc.

One can prove that S ∈ (a, a + 1)RobEx for all a ∈ ω, that is, the statement of The-
orem 3.4 actually holds uniformly in the sense that the class S witnesses the noninclusion
(a, a + 1)RobEx 6⊆ Bc for all a ∈ ω. However, here, we only show S ∈ (a, a + 1)RobEx for

3This result can be “improved” to show that there are classes that are not in Bc, but which can be robustly
(a, a + 2)-finitely identified (i.e., with 0 mind changes). Furthermore, one can show that there are classes that
are not in Bc, but which can be robustly (a, a + 1)-finitely identified if one is willing to tolerate a finite number
of errors in the output programs. It is open at present whether (a, a + 1)RobExk 6⊆ Bc for some k ∈ ω, where
RobExk is RobEx with k mind changes. Note that the class S from the proof of Theorem 3.4 needs an ordinal
mind change bound ω (see [12] for details on ordinal mind change bounds).

7

a = 1. The generalization to arbitrary a ∈ ω is straightforward. Suppose an arbitrary gen-
eral recursive operator Θk is given. We need to show that {Θk(gn) | n ∈ ω} ∈ (1, 2)Ex.
Note that (a, b)Ex is closed under union with finite sets. So, by Fact 3.3, it suffices to
construct a machine M such that, for all i and j satisfying i, j ≥ k, and Θk(gi) 6= Θk(gj),
M(Θk(gi),Θk(gj))↓ ≥ min {MinInd(Θk(gi)),MinInd(Θk(gj))}.

Let er be a program, obtained effectively from r, for Θk(ϕr). Define M as follows.

M(f1[n], f2[n]) =

{

0, if f1[n] = f2[n];
max {er | r ≤ y}, if y = min {x | f1(x) 6= f2(x)}.

We claim that for all i and j such that i, j ≥ k, and Θk(gi) 6= Θk(gj), M(Θk(gi),Θk(gj))↓ ≥
min {MinInd(Θk(gi)),MinInd(Θk(gj))}. To see this, suppose i, j ≥ k, f1 = Θk(gi), f2 = Θk(gj),
and f1 6= f2. Let r = min {i, j}. Thus, σr � gi and σr � gj . It follows by (2) above that, for all
x ≤ MinInd(gr), f1(x) = f2(x). Thus, min {x | f1(x) 6= f2(x)} ≥ MinInd(gr). It follows that
M(f1, f2) ≥ max {er′ | r

′ ≤ MinInd(gr)}. Thus, M(f1, f2) ≥ min {MinInd(f1),MinInd(f2)}.
Theorem follows. 2

In addition to Bc, one can also show for all other inference types IT, which do not contain a
cone {f ∈ REC | σ � f} for any σ, that (a, a+1)Ex contains classes which are not in IT. This
is achieved by suitably modifying (1) in the just above proof. For example, for all non-high sets
A there exist (a, a + 1)RobEx-inferable classes which are not in Ex[A] (see [11, 21]).4 Note
that for all “natural” inference types IT, in particular, for Fin, Ex and Bc, the condition that
IT does not contain a cone {f ∈ REC | σ � f} for any σ is equivalent to REC 6∈ IT.

However, along the lines of [18] it follows that (b, b)Ex = Ex, in particular, (b, b)RobEx =
RobEx for all b ≥ 1. Thus, it is not possible to improve Theorem 3.4 to (b, b)RobEx-learning.

Furthermore, one may wonder whether it is possible to guarantee that an (a, b)Ex-learner
always correctly infers, say, the first of the b input functions. This means that we declare
the first function as the target function and all other functions as context. However, one can
show that this yields exactly the class Ex, by choosing the context functions always from a set
F = {g1, g2, . . . , gb} of cardinality b. Then, on any input function f , we simulate the (a, b)Ex-
learner on (f, hi1 , . . . , hib−1

), where Y = {hi1 , . . . , hib−1
} is a subset of F − {f} containing

b − 1 functions. Thus, variants of learning with arbitrary context, where a target function is
designated, do not increase the learning power compared to an ordinary Ex-learner.

4 Learning From Selected Contexts

In Section 3 we have established that an arbitrary context may be enough to increase the
robust learning ability, if one is willing to pay the price of not learning at most one of the input
functions. Of course, on intuitive grounds, it is to be expected that the learning power can be
further increased if the context given to the learner is not arbitrary, but is carefully selected.
In order to formally define such a notion of learning from selected context, we first introduce
the notion of asymmetric learning from context. This notion is asymmetric since, in contrast
to Section 3, here we distinguish between the target function and the context:

4A is high iff K ′ ≤T A′.

8

Definition 4.1 P ⊆ REC × REC is in ConEx if there exists a learning machine M that for
all (f, g) ∈ P :

(∃e)[ϕe = f ∧ (
∞
∀ n)[M(f [n], g[n]) = e]].

For (f, g) ∈ P we call f the target and g the context function.

The concept ConEx is related to the notion of parallel learning studied by Angluin, Gasarch
and Smith [1]. The main difference being that in the learning type from [1], the learning machine
was required to infer programs for both input functions, not just the target. In Theorem 4.5
we will also present a robust version of one of the results from [1] concerning parallel learning.

The next definition formally introduces the notion of learning in the presence of a selected
context :

Definition 4.2 S ⊆ REC is in SelEx if there exists a mapping C : S → S such that the class
SC := {(f, C(f)) | f ∈ S} is in ConEx. C is called a context mapping for S.

Note that in Definition 4.2 we required that the selected contexts have also to be chosen from
the class S instead of just from whole REC . The intuitive reason for this restriction is that
we want the context task to be “related” to the target task. A formalization of “related” is
difficult. However, to us it seemed to be most reasonable to formalize “related” as “belonging
to the same learning problem”.

A more mathematical reason for restricting the contexts to belong to the class S is as follows.
As was discussed in the introductory section, using a purely numerical coding trick, one can
easily see that the freedom of carefully selecting a context yields extreme increases in learning
power. Indeed, the entire class REC is in SelEx without any mind changes. Furthermore, if
we consider the robust version of SelEx, as specified in Definition 4.3 below, we can still show
that freely selecting a context makes it possible to learn the class of all computable functions.
Thus, if the selected contexts are allowed to be any member of REC , then REC ∈ (Rob)SelEx
implies that every subset of REC is in (Rob)SelEx, and thus there are no further interesting
questions to consider. But if the contexts are restricted to be from the class S itself, then it is
not necessary that every subset of REC is in (robust version of) SelEx. In fact Theorem 4.6
shows this not to be the case.

Definition 4.3 P ⊆ REC × REC is in RobConEx if the class Θ(P) := {(Θ(f),Θ(g)) |
(f, g) ∈ P} is in ConEx for all general recursive operators Θ.

S ⊆ REC is in RobSelEx if there exists a context mapping C : S → S such that the class
SC is in RobConEx.

We will now show that the class REC of all computable functions is in RobSelEx. In Section 5
we will see that the corresponding context mapping cannot be implemented by any general
continuous operator, in particular, it cannot be implemented by a general A-recursive operator
for any oracle A (Theorem 5.1)! However, Theorem 5.4 shows that at least for the class REC 0,1

of all {0, 1}-valued computable functions, REC 0,1 ∈ RobSelEx can be witnessed by a program
mapping which is even computable (without any oracle).

Theorem 4.4 If S ⊆ REC contains a dense, computably enumerable subclass, then
S ∈ RobSelEx. In particular, REC ∈ RobSelEx.

9

Proof. The proof is based on similar ideas as that of Theorem 3.4. Let f0, f1, . . . be a (not
necessarily computable) listing of the functions in S, and {ϕh(i)}i∈ω, with h ∈ REC , be a dense
subset of S. For each n choose a sequence σn � fn such that

(∀m ≤ n)(∀x ≤ MinInd(fn))[Θm(σn)(x) ↓]. (1)

We define the context mapping C : S → S by C(fn) = ϕh(i) for the least i such that σn � ϕh(i).

We want to show that SC is in RobConEx. Let an arbitrary general recursive operator Θk

be given. We need to show that {(Θk(f),Θk(C(f))) | f ∈ S} ∈ ConEx. Note that ConEx
is closed under union with finite sets. So, by Fact 3.3, it suffices to construct a machine M
such that, for all n ≥ k, (i) if Θk(fn) = Θk(C(fn)), then M(Θk(fn),Θk(C(fn)))↓ to a program
for Θk(fn) = Θk(C(fn)), and (ii) if Θk(fn) 6= Θk(C(fn)), then M(Θk(fn),Θk(C(fn)))↓ ≥
MinInd(Θk(fn)).

Let er be a program, obtained effectively from r, for Θk(ϕr). Define M as follows.

M(f [n], g[n]) =

eh(r) if f [n] = g[n], and

r = min {r′ | g[n] � Θk(ϕh(r′))};

max {er | r ≤ y} if y = min {x | f(x) 6= g(x)}.

We claim that for all n ≥ k (i) if Θk(fn) = Θk(C(fn)), then M(Θk(fn),Θk(C(fn)))↓ to a pro-
gram for Θk(fn) = Θk(C(fn)), and (ii) if Θk(fn) 6= Θk(C(fn)), then M(Θk(fn),Θk(C(fn)))↓ ≥
MinInd(Θk(fn)).

To see this, consider any n ≥ k. If Θk(fn) = Θk(C(fn)), then in particular, we will
have Θk(fn) ∈ {Θk(ϕh(r′)) | r′ ∈ ω}. Thus, the first clause in the definition of M en-
sures that M ConEx-identifies (Θk(fn),Θk(C(fn))). If Θk(fn) 6= Θk(C(fn)), then by def-
inition of σn and C(fn), we have σn � fn and σn � C(fn). Thus by (1) we have that
min {x | Θk(fn)(x) 6= Θk(C(fn))(x)} ≥ MinInd(fn). Thus by second clause in the definition
of M it follows that M(Θk(fn),Θk(C(fn))) ≥ MinInd(Θk(fn)). Theorem follows. 2

Theorem 4.4 can be improved in several ways. First, one can show that the mapping C :
REC → REC , which provides a context for each function in REC , can actually be chosen
one-one and onto. Furthermore, this one-one and onto mapping can be constructed in such a
way that not only the target functions but also the context functions can be robustly learned
in parallel. In order to state this result we let ParEx denote the variant of ConEx from
Definition 4.1, where the learning machine is replaced by a machine M : Seq2 → ω2 such
that M converges on each (f, g) ∈ P to a pair of programs (i, j) with ϕi = f and ϕj = g.
ParEx coincides exactly with the 2-ary parallel learning type as defined in [1]. Analogously to
the other robust variants, we let RobParEx contain all classes P ∈ REC × REC such that
{(Θ(f),Θ(g)) | (f, g) ∈ P} ∈ ParEx for all general recursive operators Θ. Thus, the following
theorem provides a robust version of [1, Theorem 6].

Theorem 4.5 There exists a class P ⊆ REC × REC such that P |1 = P |2 = REC, but
P ∈ RobParEx.

Proof. Let (ϕu(i))i∈ω, u ∈ REC , be an effective enumeration without repetitions of F = {σ0ω |
σ ∈ ω∗}, that is, F = {ϕu(i) | i ∈ ω} and (∀i, j)[i 6= j =⇒ ϕu(i) 6= ϕu(j)]. Furthermore,

10

by Ψ0,Ψ1, . . . we denote an effective listing of recursive operators, which contains all general
recursive operators Θi for i ∈ ω. For a finite function α, Ψi,s(α) is the result (which is a
partial function) of Ψi on input α after s steps. Without loss of generality we assume that
dom(Ψi,s(α)) ⊆ {0, . . . , s−1}. Note that a canonical index of Ψi,s(α) can be computed uniformly
from i, s and α.

We inductively define the partial mapping C from REC into REC . In the (non-effective)
construction we identify C =

⋃

e∈ω Ce with its graph. dom(C) = {x | C(x) ↓} denotes the
domain, and rg(C) = {C(x) | x ∈ dom(C)} denotes the range of a partial mapping C.

Stage 0: C0 = ∅.

Stage e+ 1:
If ϕe is total and ϕe 6∈ dom(Ce) ∪ rg(Ce) then:

Let ie be the smallest i such that

(1) ϕu(i) 6∈ dom(Ce) ∪ rg(Ce) ∪ {ϕe},

(2) (∀m ≤ e)¬(∃x ≤ e)[Ψm(ϕe)(x) ↓ 6= Ψm(ϕu(i))(x) ↓].

Let Ce+1 = Ce ∪ {(ϕe, ϕu(ie))}.

Otherwise, let Ce+1 = Ce.

Note that condition (2) in particular implies that if Ψm with m ≤ e is general then

(∀x ≤ e)[Ψm(ϕe)(x) = Ψm(ϕu(i))(x)]

From the definition, we immediately get the following facts:

• dom(C) ∩ rg(C) = ∅,

• dom(C) ∪ rg(C) = REC ,

• C is one-one.

We set
P = {(f, C(f)), (C(f), f) | f ∈ dom(C)}.

Obviously, it holds P |1 = P |2 = REC. We want to prove P ∈ RobParEx. So, let an arbitrary
general recursive operator Ψk be given. Part of the proof is based on similar ideas as in previous
proofs:

(a) It suffices to show that P ′ = {(Ψk(f),Ψk(g)) | (f, g) ∈ P, k ≤ MinInd(f), k ≤ MinInd(g)}
is in Ex.

(b) It suffices to infer an upper bound for the minimal index of both input functions by
Fact 3.3.

(c) Assume that the input functions f = Ψk(ϕe) and g = Ψk(C(ϕe)) with ϕe ∈ dom(C),
e ≥ k, are given. If f = g then both functions f, g are in Ψk(F). In this case we can infer
a program for f and g using “learning by enumeration”. If f 6= g then, by condition (2)
in the construction of C, x′ = µx[f(x) 6= g(x)] is an upper bound on e, from which one
can compute an upper bound on MinInd(f). So, it remains to show how to find an upper
bound on MinInd(C(f)) given an upper bound on MinInd(f).

11

In order to show this last point, we consider, for e, s ∈ ω, the computable set I(e, s) of all i such
that

(∀m,x ≤ e)[(Ψm,s(ϕe,s)(x) ↓ ∧ Ψm,s(ϕu(i))(x) ↓)

=⇒ Ψm,s(ϕe,s)(x) = Ψm,s(ϕu(i))(x)].

For all e ∈ ω, I(e, s) is monotonically decreasing in s and
⋂

s∈ω I(e, s) is infinite.
Fix an e′ such that ϕe′ is in dom(C). Then, ie′ has been defined in the construction of C

and, furthermore, ie′ is in I(e′, s) for all s ∈ ω. Choose an s′ such that

(∀m,x ≤ e′)(∀i ≤ ie′)[(Ψm(ϕe′)(x) ↓ ∧ Ψm(ϕu(i))(x) ↓)

=⇒ (Ψm,s′(ϕe′,s′)(x) ↓ ∧ Ψm,s′(ϕu(i))(x) ↓)]

Then, for s ≥ s′, every i ∈ I(e′, s) with i < ie′ satisfies condition (2) in the construction of C.
Since

|dom(Ce′) ∪ rg(Ce′) ∪ {ϕe′}| ≤ 2e′ + 1

and (ϕu(i))i∈ω is an enumeration without repetitions, we get, for all s ≥ s′,

|{i ∈ I(e′, s) | i < ie′}| ≤ 2e′ + 1.

For e, s ∈ ω let
c(e, s) = µi[|{j ∈ I(e, s) | j ≤ i}| = 2e+ 2].

This implies ie′ ≤ c(e′, s) for all s ≥ s′.
Note that c(e, s) is computable, and, by the properties of I(e, s), converges for all e ∈ ω if

s tends to ∞, that is, (∀e)(∃ce)(
∞
∀ s)[c(e, s) = ce]. Let

u′(y, s) = max{u(i) | e ≤ y, i ≤ c(e, s)}.

Thus, if we have an upper bound y ≥ e′, then lims→∞ u′(y, s) converges to an upper bound on
MinInd(C(ϕe′)).

In order to formulate the learning algorithm for P ′ choose functions v, w ∈ REC with

Ψk(F) = {ϕv(e) | e ∈ ω}, and

ϕw(e) = Ψk(ϕe), for all e ∈ ω.

Now, the following algorithm infers an upper bound on MinInd(f) and MinInd(g) for all
(f, g) ∈ P ′:

Input (f [n], g[n]).

If f [n] = g[n] then output v(µi[f [n] � ϕv(i)]).

If f [n] 6= g[n] then let x′ = µx[f(x) 6= g(x)], compute w′ = max{w(i) | i ≤ x′}, and
output w′ + u′(x′, n).

2

Our results demonstrate that learning with a selected context is a very powerful learning notion,
in particular, it renders the entire class of computable functions learnable. However, it should

12

be noted that in this particular case, the high learning power also results from the very large
function space, namely REC , from which a context can be selected. We required in Defini-
tion 4.2 that for each class S ⊆ REC , the context which we associate with each f ∈ REC , is
also chosen from the set S. So, if one considers proper subsets S ⊂ REC , it may happen that
one loses learning power, just because the space of possible contexts is reduced. Indeed, one
can show that even the non-robust version SelEx of learning from selected contexts does not
contain all subsets of REC . Due to the result from Theorem 4.4 that every class with a dense,
computably enumerable subclass is in RobSelEx, it is actually not easy to construct such a
class which is not in SelEx.5

Theorem 4.6 (∃S ⊆ REC)[S 6∈ SelEx].

The proof of Theorem 4.6 is based on the notion of trees. We briefly recall some basics of this
concept (see [24] for more details). Here, we call a mapping T : {0, 1}∗ → {0, 1}∗ a tree, if

• T is total computable,

• (∀σ, τ)[σ � τ =⇒ T (σ) � T (τ)] and

• (∀σ)[T (σ0) and T (σ1) are incomparable].

σ is a node of T (or in T) if (∃τ)[σ � T (τ)]. Correspondingly, a tree Q is a subtree of T (Q ⊆ T)
if (∀σ)(∃τ)[Q(σ) � T (τ)]. A total function f is a branch of a tree T (or, f is on T) if f is
computable and (∀n)(∃σ)[f [n] � T (σ)]. Note that REC 0,1 is “effectively isomorphic” to the set
of branches of an arbitrary tree T via the mapping f 7→

⋃

n∈ω T (f [n]). In other words, every
tree has “sufficiently many” branches. This implies, in particular, the following corollary:

Corollary 4.7 If T is a tree, then

{f | f on T} ∈ Ex iff REC 0,1 ∈ Ex.

First, we show two lemmata in order to isolate the essential technical steps in the proof of
Theorem 4.6. We write M(f, g) 6→ h if M , on input (f, g), does not Ex-converge to h, that is,

(∀e)[(
∞
∀ n)[M(f [n], g[n]) = e] =⇒ ϕe 6= h].

Lemma 4.8 Let a tree T , a learning machine M and a computable function g ∈ REC be given.
Then there exists a subtree Q ⊆ T such that

(∀f on Q)[M(f, g) 6→ f and M(f, f) 6→ f].

That is, for every f on T , neither g nor f itself provide a suitable context for f with respect to
the learning machine M .

Proof. We first construct a subtree Q ⊆ T which diagonalizes against the context g. For this,
we distinguish two cases:

Case 1: (∀σ in T)(∃τ in T, τ � σ)[M(σ, g[|σ|]) 6= M(τ, g[|τ |])]. Then Q is defined induc-
tively. We start with Q(ε) = ε. Assume that Q(σ) is already defined. In order to determine
Q(σ0) and Q(σ1) we search for the smallest two incomparable strings τ0, τ1 ∈ T such that, for
i = 0, 1,

5Furthermore, this result represents a rather unusual phenomenon, since in inductive inference most learning
types are closed with respect to subclasses.

13

• Q(σ) � τi, and

• M(Q(σ), g[|Q(σ)|]) 6= M(τi, g[|τi|]).

Note that τ1 and τ2 always exist by hypothesis. Now, we set Q(σi) = τi for i = 1, 2. By
construction, for every f on Q, M makes infinitely many mind changes on input (f, g), that is,
M(f, g) 6→ f .

Case 2: (∃σ in T)(∀τ in T, τ � σ)[M(σ, g[|σ|]) = M(τ, g[|τ |])]. Then we choose a τ � σ such
that ϕM(σ,g[|σ|]) is inconsistent with τ , and let Q be the subtree below τ , that is, Q(σ) = T (τσ)
for all σ. Thus, for all g on Q, on input (f, g), M converges to a program e with ϕe 6= f , that
is, M(f, g) 6→ f .

In order to diagonalize also against the context f for all branches f of the tree, we reapply
the construction on Q, but replace, this time, each term of the form M(η, g[|η|]) with the
term M(η, η). 2

Lemma 4.9 Let a tree T and a learning machine M be given. Then there exists a branch
f on T and a subtree Q ⊆ T such that

(∀g on Q)[M(f, g) 6→ f].

That is, no g on Q provides a suitable context for f with respect to the learning machine M .

Proof. Similarly to the proof of Lemma 4.8 we distinguish two cases.
Case 1: (∃f on T)(∀σ in T)(∃τ in T, τ � σ)[M(f [|σ|], σ) 6= M(f [|τ |], τ)]. In this case we

can construct Q similarly as in case 1 of Lemma 4.8.
Case 2: (∀f on T)(∃σ in T)(∀τ in T, τ � σ)[M(f [|σ|], σ) = M(f [|τ |], τ)]. Let W (f) be the

set of all witnesses σ in T to f on T such that the above formula holds, that is,

(∀τ in T, τ � σ)[M(f [|σ|], σ) = M(f [|τ |], τ)].

Furthermore, we set u(f, σ) = M(f [|σ|], σ) for all σ ∈W (f).
Assume that, for all f on T and σ ∈ W (f), we have MinInd(f) ≤ u(f, σ). Then, for all

f on T , we can infer an upper bound on MinInd(f) in the limit by the following algorithm. In
the algorithm, σ0, σ1, . . . denotes an effective enumeration of all nodes of T .

Stage 0:
Initialize i = 0, σ = ε, h = M(f [0], ε).

Stage n > 0:
On input f [n] check whether there exists a τ ∈ T ∩ {0, 1}n such that σ � τ and
h 6= M(f [n], τ).
If so, update i = i + 1, choose a new σ ∈ T ∩ {0, 1}n such that σ is comparable
with σi, and set h = M(f [n], σ).
Output h.

Thus, by Fact 3.3 it follows {f | f on T} ∈ Ex, and thus, REC 0,1 ∈ Ex by Corollary 4.7. We
have a contradiction.

14

Hence, there exists an f on T and a σ′ ∈ W (f) such that u(f, σ′) < MinInd(f). Now,
this f witnesses our claim together with the subtree Q of T below σ′, that is, the subtree Q
with Q(σ) = T (σ′σ) for all σ. 2

Proof of Theorem 4.6. We define a sequence of trees T0 ⊇ T1 ⊇ T2 . . . and a sequence of
functions fi on Ti, i ∈ ω, using Lemmata 4.8 and 4.9. Let M0,M1, . . . be an enumeration of all
learning machines.

Stage 0: T0(σ) = σ for all σ.

Stage s+ 1: We define fs and Ts+1.

1. By applying Lemma 4.8 s times on the functions f0, . . . , fs−1 determine a tree
Qs ⊆ Ts such that

(∀i < s)(∀f on Qs)[Ms(f, fi) 6→ f and Ms(f, f) 6→ f].

2. By applying Lemma 4.9 determine a function fs on Qs and a tree Ts+1 ⊆ Qs ⊆
Ts such that

(∀g on Ts+1)[Ms(fs, g) 6→ fs].

We claim S = {fi | i ∈ ω} 6∈ SelEx. Assume by way of contradiction that S ∈ SelEx as
witnessed by Ms. Thus, there is a function fi ∈ S such that Ms on input (fs, fi) converges
to a program for fs. However, if i ≤ s then M(fs, fi) 6→ fs by Lemma 4.8, since fs is on Qs.
Otherwise, if i > s then M(fs, fi) 6→ fs by Lemma 4.9, since fi is on Ti ⊆ Ts+1. Contradiction.

2

5 Measuring The Functional Dependence

In Section 4 we have shown that there are very hard learning problems which become learnable
when a suitably selected context is supplied to the learner. In this section we analyze the
possible functional dependence between the target functions and the contexts in such examples.
In particular, we attempt to find examples which are only learnable with a context, but so that
the functional dependence between the target function and the context is manageable. The
functional dependence is measured from a computational theoretic point of view, that is, we
are looking for examples in RobSelEx − Ex and SelEx − Ex, such that the problem of
implementing a suitable context mapping has low Turing complexity. We will consider two
types of implementations for context mappings: operators, which work on (the values of) the
target functions, and program mappings, which work on programs for the target functions.

First we consider context mappings C : S → S which are implementable by operators. Here,
one can show that, if the functional dependence between the target function and the context
is too manageable then the multitask problem will not have the desired property, that is, the
learnability with the help of a selected context will imply the learnability of the target functions
without any context.

This can easily be seen if one assumes that a context mapping S → S is implemented by a
general recursive operator C. Then, let s be a computable function from Seq to Seq such that,

15

for all total functions f , s(f [n]) � C(f), and
⋃

n∈ω s(f [n]) = C(f). Note that such an s exists
by condition (∗) mentioned in Section 2, and the discussion around it. This implies that the
machine defined by N(f [n]) = M(f [|s(f [n])|], s(f [n])) Ex-infers every f ∈ S.

In the case of robust learning, this observation can even be surprisingly generalized to the
result that for all classes S ⊆ REC , which are closed under finite variants and robustly learnable
from selected contexts, the existence of a general continuous operator implementing a context
mapping is enough to guarantee that S is contained in a computably enumerable subclass of
REC , in particular, it guarantees the robust learnability of S itself!

An operator Ψ, not necessarily computable, is continuous (by definition) iff it is compact,
that is, (∀f)(∀x)(∃σ � f)[Ψ(σ)(x) = Ψ(f)(x)], and monotone, that is, (∀σ, τ)(∀x)[σ � τ ∧
Ψ(σ)(x) ↓ =⇒ Ψ(τ)(x) ↓ = Ψ(σ)(x)]. As noted in Section 1 above, the general continuous
operators are the continuous operators which map all total functions into total functions.

Theorem 5.1 If S ⊆ REC is closed under finite variants and RobSelEx-learnable as wit-
nessed by a (not necessarily computable) general continuous operator C : S → S, then S is
contained in a computably enumerable subclass of REC, in particular, S is in RobEx.

Proof. We will prove that S is in RobEx. Since S is closed under finite variants it then
follows from [26] that S is contained in a computably enumerable subclass of REC .

If C(f) = f for all f ∈ S, then S ∈ RobEx is obvious. So, assume that there exists a
function f ′ ∈ S with C(f ′) 6= f ′. Choose a σ � f ′ such that there exists an x < |σ| with
C(σ)(x) ↓ 6= σ(x). Since C is continuous, it follows for all total functions f ,

σ ≺ f =⇒ σ 6≺ C(f).

Let τ0, τ1, . . . be an effective enumeration of ω|σ|+1. We choose a general recursive operator Γ
with

Γ(f) =

{

τaf(|σ| + 1)f(|σ| + 2) . . . if σa ≺ f ,

0ω if σ 6≺ f ,

for all total functions f . Note that

S = {Γ(f) | f ∈ S, σ ≺ f},

since S is closed under finite variants.
Now, let an arbitrary general recursive operator Θ be given. Then, Ψ = Θ◦Γ is also general

recursive. Thus, there exists a machine M which ConEx-learns {(Ψ(f),Ψ(C(f))) | f ∈ S}. In
particular, M ConEx-infers the set

{(Ψ(f),Ψ(C(f))) | f ∈ S, σ ≺ f}

= {(Θ(Γ(f)),Θ(Γ(C(f)))) | f ∈ S, σ ≺ f}

= {(Θ(f),Θ(0ω)) | f ∈ S}.

It follows that Θ(S) is Ex-identifiable, and hence, S ∈ RobEx. 2

Since each operator, which is general recursive relative to some oracle A, is already general
continuous, we can thus not hope to find examples in RobSelEx − Ex such that the context

16

mapping can be implemented by a general A-recursive operator, no matter how complex is the
oracle A!

However, for the non-robust version such examples exist for all suitably non-trivial oracles A,
i.e., for all A such that Ex[A] − Ex 6= ∅. Such A’s exist in abundance by [11, 21].

Theorem 5.2 Let S ∈ Ex[A] − Ex such that S contains all almost constant functions. Then
S is SelEx-learnable as witnessed by some general A-recursive operator.

Proof. Let S ∈ Ex[A]−Ex as witnessed by the oracle learning machine MA. Without loss of
generality, we can assume that MA is total. We define a general A-computable operator C by

C(f)(n) = MA(f [n]) for all total functions f.

Thus, for all f ∈ S, there exists an e with

ϕe = f and (
∞
∀ n)[C(f)(n) = e].

Since C(f) is almost constant, C(f) is in S. Consider the learning machine N with N(ε, ε) = 0
and N(σ, τ) = τ(n) for σ, τ ∈ ωn+1. It follows immediately that N ConEx-learns the set
{(f, C(f)) | f ∈ S}. Hence, S is in SelEx via the context mapping C. 2

We now turn our attention to context mappings which are implementable by program mappings.
One can show that the context mapping C : REC → REC constructed in Theorem 4.4 in
Section 4 above is computable relative to K ′, that is, there exists a partial K ′-computable
function h : ω → ω with

(∀e)[ϕe ∈ REC =⇒ [h(e) ↓ ∧ ϕh(e) = C(ϕe)]].

Thus, K ′ provides an upper bound on the Turing degree of context mappings for classes in
RobSelEx − Ex. However, if one wants to reduce this upper bound, the problem arises that
these program mappings are generally not invariant with respect to different indices of the
same function [24].6 And transforming an arbitrary program mapping into an invariant (or
extensional) one generally requires an oracle of degree K ′. It is convenient, then, in the sequel,
to use the following equivalent definition for SelEx and RobSelEx instead of Definition 4.2:

Definition 5.3 S ⊆ REC is in SelEx if there exists a class S ′ ⊆ S × S in ConEx and a
partial program mapping h : ω → ω such that, for every ϕe ∈ S, h(e) ↓ and (ϕe, ϕh(e)) ∈ S′. If,
furthermore, S′ can be chosen from RobConEx, then we say that S is in RobSelEx.

Recall that there are no classes S ∈ RobSelEx−Ex such that the corresponding context map-
ping is implementable by any, even noncomputable, general continuous operator. In contrast,
the following interesting theorem shows that the class REC 0,1 is in RobSelEx as witnessed by
a program mapping h which is computable, i.e., which requires no oracle to compute.

Theorem 5.4 REC 0,1 is RobSelEx-learnable as witnessed by a computable program mapping.

6They are not extensional in the terminology of [29].

17

Proof. We define a computable program mapping h ∈ REC by

ϕh(e)(x) =

ϕe(x) if x < e,

max{0, 1 − ϕe(e)} if x = e and ϕe(e) ↓,

↑ if x = e and ϕe(e) ↑,

0 if x > e.

Let F = {σ0ω | σ ∈ {0, 1}∗}. Note that for all ϕe ∈ REC 0,1 we have

ϕh(e) ∈ F and ϕe[e] � ϕh(e).

We want to prove that h is a program mapping witnessing REC 0,1 ∈ RobSelEx according
to Definition 5.3. So, let an arbitrary general recursive operator Θ be given. We will exploit
the well known fact that, for every n, one can effectively compute a number l(n) such that
Θ(σ)(x) ↓ for all x ≤ n and all σ ∈ {0, 1}l(n). This can be seen, for example, by considering the
computable binary tree7

T = {σ | (∃x ≤ n)[Θ(σ)(x) ↑]}.

If T is infinite, then, by Königs Lemma, T contains an infinite branch f ∈ {0, 1}ω. But this
implies Θ(f)(x) ↑ for some x < n, which contradicts the fact that Θ is general. Thus, actually,
T is finite and l(n) can be computed by l(n) = µm[T ∩ {0, 1}m = ∅].

We will now define a learning machine M , which infers, on input (Θ(ϕe),Θ(ϕh(e))) with
ϕe ∈ REC 0,1, an upper bound for MinInd(Θ(ϕe)) in the limit. This implies our claim by
Fact 3.3.

We choose functions u, v ∈ REC such that

Θ(F) = {ϕu(e) | e ∈ ω}, and

ϕv(e) = Θ(ϕe), for all e ∈ ω.

The learning machine M works as follows:

1. Input (f [n], g[n]).

2. If f [n] = g[n] then output u(µi[f [n] � ϕu(i)]).

3. If f [n] 6= g[n] then let x′ = µx[f(x) 6= g(x)] and output max{v(i) | i ≤ l(x′)}.

Let an arbitrary function ϕe ∈ REC 0,1 be given and consider the input functions f = Θ(ϕe)
and g = Θ(ϕh(e)). Clearly, if f = g then f ∈ Θ(F). In this case M will, in fact, infer a program
e′ for f by step 2 in the description of M . Otherwise, M converges to e′ = max{v(i) | i ≤ l(x′)}
where x′ = µx[f(x) 6= g(x)]. Recall that Θ(σ)(x) ↓ for all x ≤ x′ and σ ∈ {0, 1}l(x′). Assume
l(x′) < e. Then, we get

f(x′) = Θ(ϕe[e])(x
′) ↓ = Θ(ϕh(e)[e])(x

′) ↓ = g(x′),

which is a contradiction. Thus, e ≤ l(x′) holds. This implies e′ ≥ v(e) ≥ MinInd(f). 2

On the other hand, one can also show that there is no upper bound on the complexity of
program mappings implementing context mappings for classes in RobSelEx− Ex:

7For convenience, here, we use a way to define trees which is formally different from that in Theorem 4.6,
but does not change the essential nature of this concept [24]: A subset T ⊆ {0, 1}∗ is a tree if it is closed under
initial segments.

18

Theorem 5.5 For all oracles A, there is a class S ∈ RobSelEx − Ex such that for every
partial program mapping h : ω → ω witnessing S ∈ RobSelEx it holds that A is Turing
reducible to h.

Proof. Let an arbitrary oracle A be given. We construct strings σ0, σ1, . . . and η0, η1, . . ., as
well as computable functions f0, f1, . . . satisfying the following conditions for all n ∈ ω:

(1) fn � σn such that Mm on input (fn, fk) does not converge to (a program for) fn for all
k,m ≤ n,

(so, if Mm(fn, fk) converges to fn, this implies k > n and m > n)

(2) σn � ηn � fn such that Θk(ηn)(x) ↓ for all x ≤ MinInd(fn), k ≤ n,

(3) σn+1 = ηnaA(0) . . . A(n)τ0 . . . τn such that a 6= fn(|ηn|) and the strings τ0, . . . , τn establish,
if possible, Θi(fn) 6= Θi(fn+1), for i = 0, . . . , n, as follows:

Let ρi = ηnaA(0) . . . A(n)τ0 . . . τi−1.

If (∀g � ρi)[Θi(g) = Θi(fn)] then let τi = ε.

If (∃τ, x)[Θi(ρiτ)(x) ↓ 6= Θi(fn) ↓] then let τi = τ .

Now we set S = {fn | n ∈ ω}. Clearly, S is not in Ex by condition (1).
To see that S ∈ RobSelEx let an arbitrary computable operator Θk be given such that,

without loss of generality, Θk(S) is infinite. Since Θk(S) is infinite, it follows from condition (3)
that

(∀n ≥ k)(∀m > n)[Θk(fn) 6= Θk(fm)].

Again it suffices to prove that {Θk(fn) | n ≥ k} is in SelEx. For this we let

P = {(Θk(fn),Θk(fn+1)) | n ≥ k}.

Now, P ∈ ConEx can be shown similarly as in previous proofs due to condition (2).
Finally, let us assume that the partial program mapping h : ω → ω witnesses S ∈

RobSelEx. So, for all e with ϕe = fn it follows that h(e) is defined. We let gn = h(MinInd(fn))
for all n. Since S is in RobSelEx via h, it holds, in particular, that some machineMm witnesses
S ∈ SelEx via h. For n ≥ m, we get gn = fk for some k > n, since gn ∈ S and gn 6∈ {f0, . . . , fn}
by condition (1). We inductively define a sequence of indices er according to:

e0 = MinInd(fm),

en+1 = h(en).

This implies that en is an index of some function fk with k ≥ m + n. Now, the following
algorithm decides A relative to h:

Input: x.

Compute ex, ex+1.

Compute the first y such that ϕex(y) 6= ϕex+1
(y).

Output A(x) = ϕex+1
(x+ y + 1).

2

19

6 Conclusion

In the present work we investigated a number of models for learning from context in the in-
ductive inference framework, namely, learning from arbitrary context, learning from selected
context, and parallel learning. Our positive results showed that for each of these models and
their variants, there exist unlearnable classes of functions that become learnable by addition-
ally providing to the learner a suitable context, that is, another function from the class. More
importantly, all these existence results hold robustly, which clearly strengthens their inherent
claim. In the process of establishing our results on learning from arbitrary context, we general-
ized a theorem due to Kinber, Smith, Velauthapillai, and Wiehagen. Another result on parallel
learning is a generalization of a theorem due to Angluin, Gasarch, and Smith.

One of the most unexpected findings in the paper could be summed up as follows. The
class REC of all computable functions is robustly learnable from selected context. However,
somewhat surprisingly, we are able to construct a subclass of REC which is not learnable
according to even the ordinary notion of learning from selected context.

Finally, we also analyzed the functional dependence between learning tasks and helpful se-
lected contexts. We showed that in general even arbitrary (that is, not necessarily computable)
continuous operators are too weak to describe such a dependence. The situation, however,
changes if one considers context mappings implementable by program mappings. Here, in some
cases, the context mapping can even be implemented by a computable program mapping. How-
ever, on the other hand, we also showed that in general there does not exist an upper bound
on the Turing degree which a program mapping may need to provide useful selected contexts
for all tasks in a particular class.

The ordinary (that is nonrobust) variants of our existence theorems can be established
using self-referential coding tricks. As discussed in the introduction, the notion of robustness
was initially proposed to avoid such coding tricks. However, as shown in [17], robustness, in
general, can only avoid “purely numerical” coding tricks, and still allows “topological” self-
referential coding to go through. The original proofs of the nonrobust variants of Theorem 3.4
and Theorem 4.5 in [18] and [1], respectively, actually used purely numerical coding tricks.
Hence, these proofs do not work in the robust framework. However, a careful analysis of our
robustness proofs reveals that numerical coding has been replaced by topological coding. So, in
addition to the results in [17] our proofs can be seen to provide further evidence of self-referential
coding tricks that are able to get around Fulk’s notion of robust learning.

A natural question is if it is possible to invent a learning notion that “avoids all forms of
self-referential coding” tricks. Hyperrobust learning, which has just recently been introduced
in [26], is such a learning notion, since every hyperrobustly Ex-learnable class is contained in
a recursively enumerable class. As shown in [26], if a class of functions is closed under finite
variants, then it is robustly Ex-learnable iff it is hyperrobustly Ex-learnable. Thus, a class
which is closed under finite variants and robustly learnable is also contained in a recursively
enumerable class. This may be interpreted as follows. Closure under finite variants prevents
topological coding tricks while robustness prevents numerical coding tricks. We can show that
context no longer helps, if, in our definitions, robustness is replaced by hyperrobustness. Thus,
since context helps empirically, this provides evidence that the real world, in a sense, has codes
for some things buried inside others.

So, the question arises whether there is a refined hierarchy of more and more sophisticated

20

coding tricks (beyond directly numerical versus topological)? If so, does such a hierarchy inter-
act in any way with the many learnability hierarchies known in inductive inference? Answers
to these questions may improve our understanding of learnability.

References

[1] D. Angluin, W. I. Gasarch, and C. H. Smith. Training sequences. Theoretical Computer
Science, 66(3):25–272, 1989.

[2] K. Bartlmae, S. Gutjahr, and G. Nakhaeizadeh. Incorporating prior knowledge about fi-
nancial markets through neural multitask learning. In Proceedings of the Fifth International
Conference on Neural Networks in the Capital Markets, 1997.

[3] J. M. Bārzdiņš. Two theorems on the limiting synthesis of functions. Theory of Algorithms
and Programs, Latvian State University, Riga, 210:82–88, 1974. In Russian.

[4] J. Baxter. A bayesian/information theoretic model of learning to learn via multiple task
sampling. Machine Learning, 28:7–39, 1997.

[5] L. Blum and M. Blum. Towards a mathematical theory of inductive inference. Information
and Control, 28:125–155, 1975.

[6] R. A. Caruana. Multitask connectionist learning. In Proceedings of the 1993 Connectionist
Models Summer School, pages 372–379, 1993.

[7] R. A. Caruana. Algorithms and applications for multitask learning. In Proceedings 13th
International Conference on Machine Learning, pages 87–95. Morgan Kaufmann, 1996.

[8] J. Case. Learning machines. In W. Demopoulos and A. Marras, editors, Language Learning
and Concept Acquisition. Ablex Publishing Company, 1986.

[9] J. Case and C. Smith. Comparison of identification criteria for machine inductive inference.
Theoretical Computer Science, 25:193–220, 1983.

[10] T. G. Dietterich, H. Hild, and G. Bakiri. A comparison of ID3 and backpropogation for
English text-to-speech mapping. Machine Learning, 18(1):51–80, 1995.

[11] L. Fortnow, W. Gasarch, S. Jain, E. Kinber, M. Kummer, S. Kurtz, M. Pleszkoch, T. Sla-
man, R. Solovay, and F. Stephan. Extremes in the degrees of inferability. Annals of Pure
and Applied Logic, 66:21–276, 1994.

[12] R. Freivalds and C. Smith. On the role of procrastination in machine learning. Information
and Computation, pages 237–271, 1993.

[13] R. V. Freivalds and R. Wiehagen. Inductive inference with additional information. Elek-
tronische Informationsverarbeitung und Kybernetik, 15:179–185, 1979.

[14] M. Fulk. Robust separations in inductive inference. In Proceedings of the 31st Annual
Symposium on Foundations of Computer Science, pages 405–410, St. Louis, Missouri, 1990.

21

[15] S. Jain. Robust behaviourally correct learning. Technical Report TRA6/98, DISCS, Na-
tional University of Singapore, 1998.

[16] S. Jain and A. Sharma. Learning with the knowledge of an upper bound on program size.
Information and Computation, 102(1):118–166, Jan. 1993.

[17] S. Jain, C. H. Smith, and R. Wiehagen. On the power of learning robustly. In Proceedings
of the Eleventh Annual Conference on Computational Learning Theory, pages 187–197.
ACM Press, New York, NY, 1998.

[18] E. Kinber, C. H. Smith, M. Velauthapillai, and R. Wiehagen. On learning multiple concepts
in parallel. Journal of Computer and System Sciences, 50(1):41–52, Feb. 1995.

[19] E. Kinber and R. Wiehagen. Parallel learning - a recursion-theoretic approach. Informatik-
Preprint 10, Fachbereich Informatik, Humboldt-Universität, 1991.

[20] M. Kummer and F. Stephan. Inclusion problems in parallel learning and games. Journal
of Computer and System Sciences (Special Issue COLT’94), 52(3):403–420, 1996.

[21] M. Kummer and F. Stephan. On the structure of degrees of inferability. Journal of
Computer and System Sciences, 52(2):214–238, Apr. 1996.

[22] S. Matwin and M. Kubat. The role of context in concept learning. In M. Kubat and
G. Widmer, editors, Proceedings of the ICML-96 Pre-Conference Workshop on Learning
in Context-Sensitive Domains, Bari, Italy, pages 1–5, 1996.

[23] T. Mitchell, R. Caruana, D. Freitag, J. McDermott, and D. Zabowski. Experience with a
learning, personal assistant. Communications of the ACM, 37:80–91, 1994.

[24] P. Odifreddi. Classical Recursion Theory. North-Holland, Amsterdam, 1989.

[25] D. Osherson, M. Stob, and S. Weinstein. Systems that Learn. MIT Press, Cambridge,
Massachusetts, 1986.

[26] M. Ott and F. Stephan. Avoiding coding tricks by hyperrobust learning. In Proceedings
of the Fourth European Conference on Computational Learning Theory, to appear.

[27] L. Pratt, J. Mostow, and C. Kamm. Direct transfer of learned information among neural
networks. In Proceedings of the 9th National Conference on Artificial Intelligence (AAAI-
91), 1991.

[28] H. Rogers. Gödel numberings of partial recursive functions. Journal of Symbolic Logic,
23:331–341, 1958.

[29] H. Rogers. Theory of Recursive Functions and Effective Computability. McGraw-Hill, 1967.
Reprinted by MIT Press in 1987.

[30] T. J. Sejnowski and C. Rosenberg. NETtalk: A parallel network that learns to read aloud.
Technical Report JHU-EECS-86-01, Johns Hopkins University, 1986.

22

