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Abstract

Concept drift means that the concept about which data is obtained may shift from

time to time, each time after some minimum permanence. Except for this minimum

permanence, the concept shifts may not have to satisfy any further requirements

and may occur infinitely often. Within this work is studied to what extent it is

still possible to predict or learn values for a data sequence produced by drifting

concepts. Various ways to measure the quality of such predictions, including mar-

tingale betting strategies and density and frequency of correctness, are introduced

and compared with one another.

For each of these measures of prediction quality, for some interesting concrete classes,

(nearly) optimal bounds on permanence for attaining learnability are established.

The concrete classes, from which the drifting concepts are selected, include regular

languages accepted by finite automata of bounded size, polynomials of bounded

degree, and sequences defined by recurrence relations of bounded size. Some im-

portant, restricted cases of drifts are also studied, for example, the case where the

intervals of permanence are computable. In the case where the concepts shift only
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among finitely many possibilities from certain infinite, arguably practical classes,

the learning algorithms can be considerably improved.

1 Introduction

In many machine learning situations, the concepts to be learned
or the concepts auxiliarily useful to learn may drift with time
[2,3,5,6,8,11,19]. As in the just previous references, to sufficiently
track drifting concepts to permit learning something of them at
all, it is necessary to consider some restrictions on the nature of
the drift. For example, Helmbold and Long [8] bound the prob-
ability of disagreement between subsequent concepts. Blum and
Chalasani [3] place some constraints on how many different con-
cepts may be used, or the frequency of concept switches. Bartlett,
Ben-David and Kulkarni [2] consider ‘class of legal function se-
quences’ based on some constraints (such as being formed from
a walk on a directed graph).

The previous literature on drift considers what can be learned
with suitably “slow” or otherwise constrained drift. In some cases
lower bounds are shown too. In the general computability set-
ting of the present paper we examine constraints on drift that
are absolutely forced (given our criteria of success). Many of our
results prove necessary (sometimes surprising) bounds on these
constraints in concrete situations. Our upper and lower bounds
are often nearly tight in the cases where we supply them. The
models we consider are on-line (rather than off-line), and we con-
sider next value extrapolation. In this context we consider several
liberal but intrinsically interesting criteria of success (liberal, in
part to keep the necessary constraints relatively mild).

More particularly, in the present paper we consider some pleas-
antly modest, necessary restrictions on the rate with which one
concept changes into another, model concepts as functions and
employ as our principal learning vehicle (computable) martingale
betting strategies [9,16]. It is our hope that the present study,
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with its necessary bounds on natural, concrete cases, may lead
to better insight into which kinds of drifting concepts might be
successfully tackled in the real world. Also, our use of martingale
betting strategies, etc. may suggest to the machine learning prac-
titioner some new approaches for on-line learning in cases where
such a style of criteria might be acceptable and workable (and
where other criteria might not).

N denotes the set of natural numbers {0, 1, 2, . . .}. Functions (as
concepts) considered in this paper have domain N or, in some
special cases, the set of binary strings {0, 1}∗ which is identified
with N in a standard way. The range of the functions is nor-
mally N , but it is sometimes {0, 1} (in the case of computable
languages represented as characteristic functions) or the set of in-
tegers I or rationals Q (in the cases of some concrete examples).
We sometimes call {0, 1}-valued functions, binary functions.

It is not possible to predict the next values of a rapidly shifting
concept if, in each time step, the concept changes without restric-
tion. For example, a drift which randomly vacillates between the
constantly 0 function and the constantly 1 function can produce
as a data sequence any {0, 1}-valued function, and, hence, the
class of such data sequences cannot be usefully predicted.

Therefore, given a class S of functions, the learning tasks we
consider involve data sequences for segments of members of S
where these segments do not change from one member of S to
another too often. We require that any concept/function from
such an S in a drifting data sequence be present for some minimal
number of successive data points. We call a function p computing
this minimal number the permanence. The class of data sequences
with segments from members of S with each segment required to
be present with permanence p is called S[p]. The formal definition
follows immediately.

|I| denotes the length of the interval I.

Definition 1 Let S be a class of computable functions. A func-
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tion f is said to be obtained from S by concept drift with per-
manence p if and only if, for each x, there is an interval Ix con-
taining x and a function gx ∈ S such that |Ix| ≥ p(min(Ix)) and
f(y) = gx(y), for all y ∈ Ix. S[p] denotes the class of all such
functions f .

We consider permanence p only such that p is a non-decreasing
and {1, 2, 3, . . .}-valued function. We always assume such restric-
tion on p without explicitly saying so. If, for example, the basic
set S consists of linear functions and the permanence is 5, then
every data-item must belong to an interval of length 5 where f
follows one linear rule.

t t t t t
t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t

Learning deals normally not with a single concept but with a
class of concepts. Therefore it is necessary to define when a class
of objects is learnable under a given criterion. As we see in the
immediately following definition, learnability of a class is defined
in terms of learnability of the single objects in it.

Definition 2 A class S of functions can be learned under a given
criterion with permanence p if and only if there is a computable
and total machine M which succeeds on every function f ∈ S[p]
under the given criterion. (Here and below “total” means that the
machine always has defined output.)

So it suffices, then, to define various criteria under which a learner
M is said to succeed on a single function f . Shortly below we
define three such criteria of success.

Learning is normally modeled as a process to identify an underly-
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ing global concept which describes the observed behavior. Under
concept drift, this underlying global description does not exist
or is too complicated. Therefore, the learner can be expected to
give local descriptions only. Within this paper, the local behav-
ior is mostly described by just guessing the next value(s). (Since
we deal almost always with “learning by prediction” we often
just write “M learns f” as a shorthand notation for “M learns
f by predicting values of f” and so on.) Because of the unpre-
dictable drifts of the concept, it is unavoidable to err infinitely
often. So the learning criteria considered, in effect, involve the
ratios of successes and failure during the learning process. The
learners studied in the sequel are always total and computable de-
vices which give predictions for the values f(x+1) from the data
f(0), f(1), . . . , f(x). The criteria of correctness for such devices
differ in how the quantity of correct and incorrect predictions are
measured and compared. The next three definitions introduce
learning criteria each of which quantify the amount of correct
prediction which is required of a successful learner M operating
on a function f (normally in S[p]).

Regarding frequency identification, (see Definition 3 just below),
note that Kinber and Zeugmann [10] previously studied an inter-
esting off-line (hence, different) criteria of frequency learning or
identification.

Definition 3 A learner M learns a function f (or predicts f)
with frequency a out of b if and only if, for each x, at least a of
the equations

f(y + 1) = M(f(0)f(1) . . . f(y))

are correct, where y ranges over the b arguments x, x+1, . . . , x+
b− 1. We refer to such learners as frequency learners.

We say that a class is frequency learnable if and only if some
learner predicts all functions in the class with frequency a out of
b, for some a, b, with 1 ≤ a ≤ b.
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The requirement that, for each interval of length b, at least a
of the predictions are correct is quite restrictive. This could be
alleviated somewhat by aiming for a particular ratio between a
and b in a limiting sense instead of requiring it for each interval.
In other words, the set X of all correct predictions need only
be of some minimum “density.” We employ a notion of density
introduced by Tennenbaum [14, §9.5/9-38] in formalizing this ap-
proach to frequency learners. Tennenbaum called the limit infe-
rior ? of the sequence 1

x+1 · (A(0)+A(1)+ . . .+A(x)) the density
of the set A. ?? Royer [15] introduced the related notion of uni-
form density of a set A to be the limit inferior of the sequence
min{ 1

x+1 · (A(y) + A(y + 1) + . . . + A(y + x)) : y ∈ N }. These
notions are incorporated in the next definition.

Definition 4 A learner M learns a function f (or predicts f)
with (uniform) density q if and only if the (uniform) density of
the set {x : M(f(0)f(1) . . . f(x)) = f(x + 1)} is at least q. We
refer to such learners as (uniform) density learners.

It may be argued that in the criteria introduced so far, the learner
is unnecessarily penalized by being required to make a prediction
at all times. The learner is not allowed to use any knowledge
about the times when predictions are easy and when they are
difficult. The learner may be bogged down by difficult predic-
tions even if it has some restricted knowledge which is enough
to correctly predict the majority of values. A well-known set-
ting that models such a case is the world of gambling [9]. Here a
gambler may decide whether and how much to bet on a certain
prediction coming true or whether to pass if it is too difficult to
make a prediction with a reasonable chance of success. Such a
gambling learner is said to succeed if and only if it can extract
enough information about the values of f so that successive bet-

? The definition of the limit inferior can be found in most advanced calculus text
books, for example, [18]. The limit inferior of a sequence a0, a1, . . ., is the supremum
r of all rational numbers q which are below almost all an: r = supremum{q :
(∀∞n) [q < an]}
??For A ⊆ N , A(x) = 1 if x ∈ A and A(x) = 0 if x /∈ A.
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ting (predicting) allows it to accumulate arbitrarily large amount
of money. The following definition introduces this criterion via
martingales.

Definition 5 A martingale is a computable function m from
strings to positive rational numbers such that, for every string
σ, there is a symbol a and a rational q such that

• 0 ≤ q < m(σ);
• m(σa) = m(σ) + q and m(σb) = m(σ)− q, for b 6= a.

The martingale m learns a function f (or succeeds on f or wins
on f) if and only if the function x → m(f(0)f(1) . . . f(x)) is not
bounded by any constant.

Intuitively, the martingale calculates the accumulated wealth of
a player who, for every sequence or string σ, bets an amount of
money q that (a number) a will follow σ and receives it in the
case of success and loses it otherwise. This definition includes the
ability to pass by betting 0 and also the ability to bet arbitrary
small amounts of money. That is, there is no smallest unit like a
“Cent” which cannot be split into smaller pieces. On the other
hand, the player cannot (in our definition) go broke by playing
at some time his total accumulation at that time. This latter
constraint is for expository convenience in the present paper —
we avoid having to test for going broke — and our results hold
with or without it.

A martingale wins iff — according to the previous example — the
gambler has arbitrary large amounts of money at some suitable
time. This analogy becomes more striking by the fact, that the
definition of martingale learning is invariant under the following
change of definition.

A martingale m learns f iff the limit inferior of
m(f(0)f(1)...f(x)) is ∞, that is, iff, for all c, for all but finitely
many x,
m(f(0)f(1)...f(x)) > c.
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This is interesting since, when successful, the money of the gam-
bler exceeds any given bound c almost always and not only in-
finitely often.

Any of the above criteria requires that the learner correctly pre-
dicts infinitely often on functions to be learned. One might say
that this is an essential precondition for any kind of learning
process. Hence we call a learning criterion reasonable, if it ex-
plicitly as above or at least implicitly requires that the learner
M predicts each function to be learned infinitely often correctly.
The class of all binary functions is not learnable with respect
to a reasonable criterion: if M is a learner then one constructs
a binary function f inductively by f(0) = 0; f(x + 1) = 1, if
M(f(0)f(1) . . . f(x)) ↓= 0, and f(x + 1) = 0, otherwise. This
function f disagrees with every prediction of M . So any crite-
rion which allows to learn the class of all the binary functions
is not reasonable. Frequency learning, martingale learning, and
learning with a density q > 0 are reasonable criteria; learning
with density 0 is not reasonable since the requirement for success
is void.

In the sequel we proceed as follows.

In Section 2, we compare the relative predictive ability of martin-
gale learners, frequency learners and density learners. We show
that frequency learners are the most restrictive, while martin-
gale learners and density learners with low density (below 1

2) are
incomparable generalizations of them.

In Section 3, we analyze the learnability of several interesting
concrete concept classes under the various criteria introduced in
the present section. Our upper bounds on permanence are also
shown to be (nearly) optimal.

We show that, for all h ∈ N − {0}, if constant permanence p
satisfies p > (3h + 3) log(h + 3), then S[p] is frequency learnable,
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where S is the class of the regular languages over the alphabet
{0, 1} accepted by finite automata with up to h states. Note that
here and in the subsequent sections, logarithms are base 2.

While polynomials of bounded degree are shown to be learnable
with reasonable constant permanence under all our criteria, we
show that the natural concept class of pattern languages [1] with
erasing separates martingale learners from density learners (also
from frequency learners and uniform density learners). A martin-
gale learner succeeds on the erasing pattern languages already at
the surprising small constant permanence 7.

Fibonacci and other sequences defined by similar recurrence re-
lations grow exponentially, yet we show such classes defined by
bounded size of recurrence relations are learnable with reasonable
constant permanence under all our criteria.

While Sections 2 and 3 deal with drifts having no restrictions
except for permanence bounds, Section 4 is devoted to some nat-
ural restrictions on drift like (a) the resulting function has to be
computable, (b) the set N is computably partitioned into dis-
joint intervals I0, I1, . . . such that each In has at least p(min(In))
elements and each f ∈ S[p] presented to the learner agrees on
each interval In with some function gn ∈ S and (c) the drift vac-
illates between a finite number of functions in S. In each case,
it is shown that there are classes S and permanences p such
that the class S[p]′ consisting of all functions f ∈ S[p] satisfying
an additional restriction on the drift can be learned with some
smaller permanence or sharper learning criterion than the class
S[p]. Hence, there are always situations where that restriction
on the drift pays off, that is, where knowledge of some regularity
within the drift allows construction of better learning algorithms.

Any computability terminology used below and not explained
herein may be found in [14].
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2 Martingale, Frequency and Density Learners

The first result states that everything that can be learned by a
frequency learner can also be learned by a martingale learner. The
strategy employed by the martingale learner is the well known
doubling-algorithm which sometimes ruins gamblers but which
nicely works in this case.

Proposition 6 Suppose a class, S, of functions (possibly but not
necessarily generated by some concept drift) is frequency learn-
able. Then S can be learned by a martingale.

Proof. Suppose M predicts a class of functions with frequency
1 out of b. Note that M makes infinitely many correct predictions
and never a sequence of b consecutive wrong predictions.

Now a martingale m is constructed which wins on all functions
on which M succeeds with frequency 1 out of b. This is done
by just making the same predictions as M , but using the ability
to choose the amount of money to bet in such a way that, at
each correct prediction, losses since the last correct prediction
are compensated.

In the beginning, the initial capital is divided into 2b units. The
martingale m bets money as follows. After ` consecutive failures
since the last success (or since the beginning), it bets 2` units.
Note that, due to the doubling of amount bet, each success wins 1
more unit than the loss incurred since the last success. Moreover,
since there can be at most b−1 consecutive losses, the martingale
never goes bankrupt. It is easy to verify that the amount of money
that the martingale has after the k-th successful prediction is
2b + k. So the strategy pays off in the limit.

The next result investigates the inclusion relation on frequency
learning for different parameters. We first introduce some def-
initions. In the following the natural numbers a, b, c, d always
satisfy 1 ≤ a ≤ b and 1 ≤ c ≤ d. Let Fa,b(bx + y) = ax, for
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y = 0, 1, . . . , b−a, and Fa,b(bx+y) = ax+y, for y = −a+1, . . . , 0.
Note that, for every natural number d, it is possible to find
x ∈ N , y ∈ I with −a < y ≤ b − a, such that d = bx + y.
For all a, b and d it holds that ad

b − a < Fa,b(d) ≤ ad
b . The graph

of Fa,b looks like this:

0
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�
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Theorem 7 Every class learnable with frequency a out of b is
also learnable with frequency c out of d if c ≤ Fa,b(d). If c >
Fa,b(d), then there exists a class of functions which is learnable
with frequency a out of b, but not with frequency c out of d.

Proof. For the first part, let c ≤ Fa,b(d) and suppose M predicts
S with frequency a out of b. We claim that M also predicts S
with frequency c out of d. Let f be an arbitrary function in S.
Suppose d = bx + y, where −a < y ≤ b − a. The proof now
proceeds based on whether y is positive.

(a): y ≥ 0. Then Fa,b(d) = ax. Since M predicts correctly a values
of f on every interval of length b, M also predicts correctly ax
values of f on every interval of length bx which can be viewed
upon as a union of x disjoint intervals. Since d ≥ bx it follows that
M predicts at least ax = Fa,b(d) values correctly on an interval
of length d.

(b): y < 0. Then Fa,b(d) = ax + y. For the ease of notation let
z = −y and d = bx − z, z is positive. Again one knows that M
predicts correctly ax values of f on an interval of length bx. From
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these predictions at most z can be correct on the last z arguments.
So M makes at least Fa,b(d) = ax− z correct predictions on any
interval of length d = bx− z.

So in both cases M predicts f correctly on each interval of length
d at least Fa,b(d) times, in particular at least c times. So M learns
f with frequency c out of d.

For the second part of the theorem, consider the class of all
primitive recursive functions which take the value 0 on the set
X = {xb + y : y ∈ {0, 1, . . . , a − 1}}. S[p] is then the set of
all functions (also the noncomputable ones) which are 0 on the
set X. For every learner M , there is a function f ∈ S[p] which
differs from the predicted value on every z /∈ X. So starting
with any input of the form z = xb + a − 1, M correctly pre-
dicts f(z + u), for u = 1, 2, . . . , d, only if z + u is in X. Thus the
number of correct predictions is at most |X ∩ {xb + a, xb + a + 1,
. . . , xb + a + d− 1}| = Fa,b(d). This completes the proof.

Fact 8 For the notion of predicting with density and uniform
density the following results hold.
(a) If S[p] is learnable with uniform density q, then S[p] is also
learnable with density q. On the other hand, there is a class S
such that, for every permanence p, S[p] is learnable with den-
sity 1 but not with any uniform density q > 0.
(b) If S[p] is learnable with frequency a out of b, then S[p] is also
learnable with uniform density a

b .
(c) Some S[p] is learnable with density 1

2 but not by any martin-
gale.
(d) If S[p] is learnable with density q > 1

2, then it is also learn-
able by a martingale.

Proof. (a): This implication of learning with uniform density
towards learning with normal density follows directly from the
definition. The separation follows ideas of Royer [15]. Consider
the class S of all primitive recursive functions which are 0 on the
set X = {x : (∃y) [2y < x < 2y+1 − y] }. Then S[p] contains all
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total functions which are 0 on X. So an algorithm which predicts
0 everywhere is correct on X. On the other hand, for any M ,
there is an f ∈ S[p] which differs from the predictions on every
input outside X. So S[p] can be learned with density 1 (since X
has density 1) but not with positive uniform density (since X has
the uniform density 0).

(b): Let M be any learner which predicts all f ∈ S[p] with
frequency a out of b. Then, for any interval of length d, M
predicts all f ∈ S[p] with frequency Fa,b(d) out of d. Since
Fa,b(d) > ad

b − a, it follows that M learns S[p] with uniform
density limd→∞

1
d · Fa,b(d) = a

b .

(c): Let p(x) = 2x. Let S be the class of all primitive recursive
{0, 1}-valued functions g which satisfy x+1

2 − 2 log(x) ≤ g(0) +
g(1) + . . . + g(x) ≤ x+1

2 + 2 log(x), for all x ≥ 1. There is a
random function f which also satisfies this relation for all x ≥ 1
[13]. This f is in S[p], for any permanence p, since every prefix of
f is extended by some g ∈ S. On the other hand, this sequence
is not learnable by a martingale because of its randomness.

So it remains to show that just predicting 1 gives correctness
density 1

2 or more. Fix f ∈ S[p]. We show that the sequence

x → f(0)+f(1)+...+f(x)
x+1 has the limit inferior 1

2 . Let the intervals Ix

be as in Definition 1. If both, x and y, belong to the same interval
Iz then f(x+1)+f(x+2)+ . . .+f(y) ≥ y−x

2 −2 log(x)−2 log(y).
We define a sequence x0, x1, . . . as follows. x0 = 1 and xn+1 be the
least number x′ > xn such that either x′ ≥ 2xn or no Ix′′ contains
both xn and x′ + 1. Note that f agrees with some g ∈ S on the
arguments xn +1, xn +2, . . . , xn+1. Then xn+2 ≥ 2xn, since either
(i) xn+1 ≥ 2xn or (ii) xn+2 ≥ 2xn+1 or (iii) xn, xn+2 /∈ Ixn+1

. The
conditions (i) and (ii) clearly imply xn+2 ≥ 2xn, using the fact
that xn+2 ≥ xn+1 ≥ xn; the condition (iii) implies xn+2 ≥ 2xn

using the facts that xn < min(Ixn+1
), xn+2 > max(Ixn+1

) and
max(Ixn+1

) ≥ 2 min(Ixn+1
). Thus, for any n and any x between xn

and xn+1, one has that f(0) + f(1) + . . .+ f(x) ≥ x−xn

2 + xn−xn−1

2
+ . . . + x1−x0

2 − 2 log(x) − 4 log(xn) − 4 log(xn−1) − 4 log(x1)
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− 2 log(x0) ≥ x
2 − 4(n + 1) log(x). Since xm+2 ≥ 2xm, for all m,

one has that xn ≥ 2n/2 and n ≤ 2 log(xn). It follows that the sum
f(0) + f(1) + . . . + f(x) is greater than x

2 − 12(log(x))2 and the

sequence x → f(0)+f(1)+...+f(x)
x+1 has the limit inferior (and also the

limit superior) 1
2 .

(d): Schnorr [16, Section 10] shows that every binary function
not learnable by a martingale satisfies the law of large numbers,
that is, the density of 1’s converges to 1

2 . Furthermore he showed
that if the density of 1’s is larger than 1

2 , then some martingale
succeeds by always betting a suitable amount of money on 1.
Similarly one can argue, for S[p] learnable by M with density q >
1/2, that some martingale succeeds on S[p], by betting always
a suitable amount of money on the value predicted by M (since
these predictions are correct on a set of density q > 1

2).

The results of Fact 8 have some straightforward extensions:
Learnability by martingales can also be obtained if S contains
only functions f which are learnable via some fixed machine un-
der some uniform density qf > 0 — or, equivalently, which are
learnable under some frequency 1 out of bf . That means, that it is
more important that all functions in the given class are learnable
by the same learner than that they are learnable with respect to
the same parameters. The other way, to fix the parameter but
not the machine, does not help since every computable function
is predictable with frequency 1 out of 1 — by its own program
— but the class of all computable functions is not learnable by a
martingale [16].

3 Concrete Classes

In this section optimal and nearly optimal bounds are derived for
the permanence necessary and sufficient to learn certain concrete
classes under drift.
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Suppose S is a class of up to k binary functions. We first investi-
gate for which constant (depending on k) permanence p the class
S[p] is frequency learnable.

Looking at the class of all binary functions which repeat with
period blog(k)c one sees directly that the condition p > log(k)
is necessary — otherwise the class S[p] contains every binary
function and is not learnable under every reasonable criterion.
On the other hand, there is an upper bound that is only a bit
above this lower bound. The problem which gives an upper bound
slightly larger than the expected value blog(k) + 1c, is that one
does not explicitly know the intervals on which f coincides with
some g from the concept class. So the learner intuitively has to
assume that these intervals may be chosen by an adversary. The
implicit bound on p in the next theorem could also be made a
bit more explicit by taking stronger sufficient conditions such as
p ≥ log(k) + 2 log log(k + 1) + 10 or p ≥ log(k) + log log(k + 1) +
2 log log log(k + 3) + 10.

Theorem 9 Suppose S contains up to k computable {0, 1}-
valued functions and nothing else. Then S[p] is frequency learn-
able if p− log(p) > log(k).

Proof. Fix k and corresponding p. Since all functions in S are
computable and permanence is constant, it is possible to compute
on any interval x + 1, x + 2, . . . , x + b, the finite set Fx of all
possible value-vectors (f(x + 1), f(x + 2), . . . , f(x + b)), where
f ranges over S[p]. Whenever there is a constant b such that
|Fx| < 2b, for all x, then one can predict one of the values in the
given interval by the well-known halving algorithm. By restarting
this process after any successful prediction one can show that S[p]
is predictable with frequency 1 out of b. So it remains to find such
a b.

Let b = 2p−1. Any interval I ′ of length b contains a subinterval I
of length p on which f equals some g ∈ S. The behavior of f on
I ′ can be described by the starting point of I, which is among the
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first p positions of the interval, the index of the function g ∈ S,
which coincides with f on I, and p − 1 binary bits to represent
the remaining values of f . Thus, there are k · p · 2p−1 possibilities
which f can take on the interval I ′. Since log(k) < p− log(p), we
have log(k) + log(p) < p, k · p < 2p and k · p · 2p−1 < 2b which is
the desired combinatorial condition.

As an application of this theorem, the class of all regular lan-
guages accepted by some deterministic finite automaton having
at most h states, can be learned in the presence of concept drift
with constant permanence (where, of course, the constant de-
pends on h).

Example 10 Suppose S is the class of the regular languages over
the alphabet {0, 1} accepted by deterministic finite automata with
up to h states. Then, S[p] is frequency learnable, if p− log(p) >
3h log(h + 1). (For example, p − log(p) > 3h log(h + 1) holds if
p ≥ (3h + 3) log(h + 3).)

For p ≤ h, S[p] is not learnable under any reasonable learning
criterion, since S[p] is the class of all the binary functions.

Proof. The positive result is obtained by first noting that there
are at most (2h2)h deterministic finite automata with h states
— those with fewer states are also covered since they just might
have additional inaccessible states. Each state can be accepting
or rejecting which gives the term 2h within the product. For each
state the transition for input 0 and for input 1 can access one of
the other h states. This gives the term h2h in the product above.
Letting k = (2h2)h one uses the upper bound 3h log(h + 1) ≥
h(2 log(h)+log(2)) = h log(2h2) for log(k) to obtain the sufficient
condition from Theorem 9.

We now consider the second part of the theorem. Suppose p = h.
Suppose, a binary string a0a1 . . . an represents the binary number
(1a0a1 . . . an)−1. Any binary function, f , on the natural numbers
which is periodic, with period h, can be represented with a finite
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state automaton of h states as follows.

For y < h, state y of the automaton is accepting iff f(xh+y) = 1.
The automaton starts in state 0 (which represents the empty
string). Transition from state v to state w is done on input a,
iff w = 2v + a + 1 modulo h. Note that, on any input binary
string s, the automaton ends up in state y iff the natural number
corresponding to string s is of the form xh + y.

For each interval, xh, xh + 1, . . . , xh + h − 1, one can find a pe-
riodic function g interpolating any given binary values on this
interval. Thus every binary function is in S[p]. Therefore S[p] is
not learnable according to any reasonable learning criterion.

Finding the best permanence often requires considerable combi-
natorics. Some classes, such as polynomials, are easier to handle
where a full solution of the possible learning frequencies in de-
pendence of the allowed degree and permanence is possible. The
proof of Theorem 11 (c) furthermore gives the more general result
that a class, which contains an extension of every function with
finite domain, is not learnable under concept drift. The same
principle holds if only the binary functions with finite domain
are extended. Thus, one can obtain another proof for the second
statement in the previous example.

Theorem 11 Let k be a natural number and S be the class of
all polynomials of degree up to k.
(a) S[k+1] contains every function and thus S cannot be learned
with permanence k + 1 under any reasonable learning criterion.
(b) If h > k + 1, then S[h] is learnable with frequency a out of b
iff a ≤ Fh−k−1,h(b).
(c) Let S be the class of all polynomials. Then, for every perma-
nence p, the class S[p] contains all total functions and thus is not
learnable under any reasonable criterion.

Proof. (a): Let In = {n(k + 1), n(k + 1) + 1, . . . , n(k + 1) + k};
the intervals I0, I1, . . . form a partition of N and each interval

17



contains exactly k + 1 elements. Given any function f , one can
find for each n a polynomial gn of degree up to k which is equal
to f on In. Thus,

(∀f) (∀n) (∃gn ∈ S) (∀x ∈ In) [gn(x) = f(x)]

and S[k + 1] contains all the total functions.

(b): For the positive result, with a ≤ Fh−k−1,h(b), it is sufficient
to show that S can be frequency learned with frequency h−k−1
out of h. The learner M predicts 0 for f(0), f(1), . . . , f(k) and M
predicts gx(x+k+1) for f(x+k+1), where gx is the polynomial of
least degree which coincides with f on f(x), f(x+1), . . ., f(x+k).
Let I = {y, y + 1, . . . , y + h − 1} be an interval of length h and
assume that y+u is the first place where the prediction algorithm
makes an error. y + u must belong to some interval J of length h
on which f coincides with some polynomial g of degree up to k.
Since M errs, u must be among the first k + 1 elements of J . So
M makes at least h−k−1 correct predictions on the input y+u,
y +u+1, . . ., y +u+h− 1. Since M makes in total u+h− k− 1
correct predictions on the interval {y, y + 1, . . . , y + u + h − 1},
it follows that M makes at least h− k− 1 correct predictions on
the interval {y, y + 1, . . . , y + h− 1}.

Next we consider the converse direction. Given any learner M ,
one can use the intervals In = {hn, hn + 1, . . . , hn + h − 1}
and find, for each n, a polynomial gn of degree not above k,
such that gn(hn + u) = M(f(0)f(1) . . . f(hn + u − 1)) + 1, for
u = 0, 1, . . . , k. Let f = gn on In. This inductive procedure gives
a function f such that M fails to predict f(x) correctly, whenever
x is in {0, 1, . . . , k} modulo h. It follows that, if M learns f with
frequency a out of b, then a ≤ Fh−k−1,h(b) must hold.

(c): This is similar to case (a). The growing permanence is com-
pensated by the absence of any degree bound. Choosing a par-
tition I0, I1, . . . of N , respecting the permanence, one can find,
for each function f and each natural number n, a polynomial
gn, which agrees with f on In. Thus, S[p] contains every total
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function.

The values of polynomials can be computed from the preced-
ing ones. So a linear function satisfies the equation f(x + 2) =
2f(x + 1) − f(x) and a quadratic function satisfies f(x + 3) =
3f(x + 2) − 3f(x+1)+f(x). The functions satisfying such equa-
tions are a natural generalization of polynomials. The Fibonacci
numbers, given by f(x+2) = f(x)+f(x+1), and the powers of 2,
given by f(x+1) = 2f(x), cannot be represented by polynomials
and demonstrate that the generalization is proper. In the case
of polynomials, it was necessary to bound the degree in order to
achieve learnability. For the generalization, this bound is given
by the number of terms on the right-hand side of the recurrence
relation (1).

Example 12 Let S be the class of functions defined by a finite
recurrence relation

f(x + k + 1) = a0f(x) + a1f(x + 1) + . . . + akf(x + k), (1)

where the values f(0), f(1), . . ., f(k) can be chosen arbitrarily.
This class S is frequency learnable with permanence 2k + 3 but
not with permanence k + 2.

Proof. Let V be the set of all possible parameters
(a0, a1, . . . , ak). V is a vector set of dimension k + 1. For each
tuple (a0, a1, . . . , ak) one calls

max{y ≤ x : (∀z) [ if x− y ≤ z < x then

f(z + k + 1) = a0f(z) + a1f(z + 1) + . . . + akf(z + k) ]}

the confidence of this tuple of parameters at x. The confidence is
always at least 0 and at most x. In order to predict f(x+k+1) one
computes a tuple (a0, a1, . . . , ak) with maximal confidence at x —
if there are several possibilities it does not matter which one is
taken — and outputs the value a0f(x)+a1f(x+1)+. . .+akf(x+k)
for this tuple.
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For verification one works with the superclass of all Q-valued
functions which is of course more difficult to learn than the
integer-valued functions satisfying (1). Next one shows that at
least one of the predictions for f(x + k + 1), f(x + k + 2), . . .,
f(x + 2k + 2) is correct if the concept is the same at x, x + 1,
. . ., x + 2k + 2. Let Vh denote the class of all recurrence relations
consistent with the input data on the interval from x to x+k+h.
Each set Vh is a nonempty vector set containing a relation valid
for the function f on the data between x and x+k+h. Predicting
f at x + k + h + 1 always uses a tuple of parameters from Vh. So
each wrong prediction causes at least one tuple being removed
from Vh+1 and therefore reduces the dimension of Vh+1 (in com-
parison to Vh) by at least 1. Since V0 has dimension k + 1 and
Vk+2 has dimension at least 0, it follows that there are at most
k + 1 wrong predictions.

So whenever the permanence is at least 2k+3, within any interval
of length at least 4k +5 some concept is correct for a subinterval
{x, x+1, . . . , x+2k+2} of length 2k+3. Thus at least one of the
k +2 values f(x+ k +1), f(x+ k +2), . . ., f(2k +2) is predicted
correctly. Thus the class S is learnable with frequency 1 out of
4k + 5.

The lower bound k + 2 is due to periodic functions of the form
f(x + k + 1) = f(x) or the form f(x + k + 1) = −f(x)
which can interpolate any sequence in {−1, 1}k+2 on intervals
of length k + 2.

It is quite natural to ask whether the lower bound can be lifted
to 2k + 2. The following example illustrates that a lower bound
2k + 2 would need some nontrivial properties of the space of the
values which perhaps are present in the field Q and in the ring I
of the integers but which are certainly not present in the Boolean
field {0, 1}.

Example 13 Let S be the class of functions defined by a finite
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recurrence relation

g(x + k + 1) = a0g(x) + a1g(x + 1) + . . . + akg(x + k),

over the Boolean field {0, 1} where the multiplication is the
“Boolean and”, the addition is the “Boolean exclusive or” and
the values g(0), g(1), . . ., g(k) can be chosen arbitrarily. This
class S is frequency learnable with permanence 2k + 2.

Proof. The learning algorithm is easy in this case. It just says
0 to predict f(x(k + 2)) and says 1 to predict f(x(k + 2) + y) for
y = 1, 2, . . . , k + 1. We now show that, if x(k + 2) > 2k+1 + k,
then at least one of the predictions for f on the interval from
x(k + 2) − k − 1 to x(k + 2) + k + 1 is correct. Thus the whole
class S[2k + 2] is learnable with frequency 1 out of 2k+1 + 2k + 2
and density 1

2k+3 .

This algorithm is based on some special properties which are
outlined now. First, each function g ∈ S is periodic from 2k+1 on,
with a period whose length is also at most 2k+1: there are only
2k+1 many different vectors (g(x), g(x+1), . . . , g(x+k)) and thus
two of them must be equal, say (g(x), g(x + 1), . . . , g(x + k)) =
(g(x+y), g(x+y+1), . . . , g(x+y+k)), where 0 ≤ x < x+y ≤ 2k+1.
It follows that g(z + y) = g(z) for all z ≥ x. Second, if g has
k + 1 consecutive 0’s then it remains at 0 thereafter (since, if
g(x) = g(x + 1) = · · · = g(x + k) = 0, then by induction, for all
r ≥ 1, g(x + k + r) = a00 + a10 + . . . + ak0 = 0) and thus takes
0 at any place beyond 2k+1 because of the periodicity.

Given any number of the form x(k + 2) > 2k+1 the values of
some f belong to the same concept g on some interval of length
2k + 2 containing x(k + 2). If now g(x(k + 2)) 6= 0 then g is not
0 on k + 1 consecutive places and thus takes 1 somewhere on the
interval from x(k + 2)− k− 1 to x(k + 2)− 1 and on the interval
from x(k + 2) + 1 to x(k + 2) + k + 1. Hence, either the first half
of the interval where f and g coincide is below x(k + 2), or the
second half of this interval is beyond x(k +2). Therefore, f takes
a 1 somewhere on the interval from x(k+2)−k−1 to x(k+2)−1
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or somewhere on the interval from x(k+2)+1 to x(k+2)+k+1.
So one of the predictions on the interval from x(k + 2)− k− 1 to
x(k + 2) + k + 1 is correct.

The pattern languages [1] are a prominent and natural language
class. We consider a known natural extension with the aim of
showing that some natural class S separates the ability to learn
by a martingale from that to learn by a frequency learner.

We employ a dyadic coding of the Boolean strings 1-1, onto the
natural numbers and identify each such string with its natural
number code. In this coding the empty string represents the nat-
ural number 0 and the length one Boolean strings 0, 1 represent
the natural numbers 1, 2, respectively. For an arbitrary Boolean
string bikbik−1

. . . bi1bi0, we write dij for the element of {1, 2} cod-
ing the Boolean bit bij and we code bikbik−1

. . . bi1bi0 by the natural
number dik2

k + dik−1
2k−1 + . . .+ di12

1 + di02
0. Hence, for example,

the code of the Boolean string 00 is 3, and that of the string 111
is 14. A pattern is a string consisting of variables and (Boolean)
constants. It generates the language of all words which can be
obtained by replacing each variable by a binary string. A pattern
language [1] is called erasing if the variables in the defining pat-
tern may be replaced by the empty string. So the pattern 0x1xy
generates words like 01, 010, 011, 0010, 00100, 00101 and so on,
but it does not generate the words 0000 and 11111 since the con-
stants 0 and 1 cannot be removed. We refer the reader to the
paper [17] for a nice survey on results about pattern languages.

Example 14 If S is the class of all erasing pattern languages
then S[7] can be learned by a martingale but S[p] is not frequency
learnable even for very fast growing permanences p. For constant
permanence p, it is also impossible to learn S[p] with some density
q > 0.

Proof. λ denotes the empty string.

The first result is based on the fact that every pattern language
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containing the words 0n00, 0n01 and 0n11 also contains 0n10. To
see this, note, that the pattern has to end with some variables
since otherwise either 0n00 or 0n01 are not in the language. Fur-
thermore the variable generating the 1 in 0n01 occurs only once.
If one takes the substitution λ for all other variables, we get that,
for some m, the language generated by 0mx is contained in the
language generated by the given pattern. In particular m ≤ n
(since otherwise the pattern could not generate 0n11) and thus
0n10 is in the language by taking x = 0n−2−m10. An analysis
similar to above also holds with 0 and 1 interchanged.

Considering S[7], one observes that a martingale can use the
fact that no function f ∈ S[7] takes the characteristic function
1, 0, 1, 1, 1, 1, 0, 1 on the strings 1n00, 1n01, 1n10, 1n11, 0n+100,
0n+101, 0n+110, 0n+111 (since either the first four or the last four
strings are evaluated by the same pattern. Thus whenever 1n00,
1n10 and 1n11 in the first case or 0n+100, 0n+101 and 0n+111 in
the second case belong to the language represented by f , so is
also 1n01 or 0n+110, respectively). So one can correctly predict,
for each n, the function f on one of the eight strings 1n00, 1n01,
1n10, 1n11, 0n+100, 0n+101, 0n+110, 0n+111. Following the basic
idea of the proof of Proposition 6, a martingale can translate this
knowledge into a winning strategy for functions in S[p].

The second result that S[p] is not frequency learnable for any p
can be obtained by showing that there are infinitely many places
where — provided that the concept is drifting at these places —
it is impossible to correctly predict any of the next 2n inputs.
That is, for any given predictor, one constructs an f ∈ S[p] such
that there are infinitely many strings zn for which f(znu) differs
from the predicted value for all u ∈ {0, 1}n. The drift takes place
just before the places zn0

n and the zn can be made so large that
every interval between zn0

n and zn+10
n+1 has the minimum length

required by the permanence.

Let zn = 0110 0a(n)n1a(n)n — where n → a(n) is a function nec-
essary to satisfy a rapidly growing permanence and in addition
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a(n) ≥ 2 for all n. Fix a predictor M . For each n and each
u ∈ {0, 1}n, let f(znu) = 0 iff M predicts 1 for f(znu) and let
f(znu) = 1 otherwise. Note that M predicts wrongly on zn{0, 1}n,
for each n. We will define below a pattern which interpolates the
values of f on zn{0, 1}n; the values between zn0

n up to the last
string before zn+10

n will follow the so defined n-th pattern. Let
{u0, u1, . . . , uh} = {u ∈ {0, 1}n : f(znu) = 1} be the set of the
suffixes u for which f(znu) = 1.

The pattern which interpolates f on all inputs in zn{0, 1}n is

x0y0x1y1 . . . xnyn y0x0y1x1 . . . ynxn0
a(n)n1a(n)nσ0(u0)σ1(u1) . . . σh(uh)

where σm(um) is a string of length n, consisting only of the vari-
ables xm and ym, such that the i-th variable in the string is xm,
if um[i] = 0 and ym, if um[i] = 1. So σm(01101) = xmymymxmym.
Then any word 0110 0a(n)n1a(n)n um is generated by the pattern
(by taking xm = 0, ym = 1 and all other variables to be λ).

On the other hand, due to length constraints the constant part
of any word of length 4 + n + 2a(n)n generated by the pattern
has the constant part at the same middle position. So the part
generated by x0y0x1y1 . . . xnyn y0x0y1x1 . . . ynxn is 0110.

There are at most three ways to generate this part. (i): One
variable generates at least two characters. In this case all other
variables are λ and the prefix has the form xmxm which cannot
generate 0110. So this case does not arise. (ii): xm and ym both
generate one character each. Then xm = 0 and ym = 1 and the
generated word is 0110 0a(n)n1a(n)n um. (iii): Two variables, say xi

and yj, both generate one character each, where i 6= j since the
equality matches the previous case (ii). Then these two variables
occur in the sequence xiyjxiyj or yjxiyjxi, none of which can
generate the prefix 0110. The same holds for the cases when these
variables are xi and xj or yi and yj, where i 6= j. So this case also
does not arise.

Putting the cases (i), (ii) and (iii) together it follows that f co-
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incides with the language generated by the pattern on the argu-
ments zn{0, 1}n. So it is not possible to learn S[p] with frequency
1 out of 2n, for all n. That is, the erasing pattern languages are
not frequency learnable under any concept drift.

The third result is that S[p] is not learnable with positive (uni-
form) density for constant p. In the case of uniform density, this
is already covered by the proof of the second result. For nonuni-
form density, the proof must be adapted in such a way that the
predictions do not only fail completely on some intervals, but fail
completely on arbitrary long intervals.

There are two modifications compared to the previous proof. First
the permanence is constant. Thus one can choose a different suit-
able pattern on almost all intervals of the form z{0, 1}n, with
4n ≤ |z| < 4n+5. Second it is shown that a suitable pattern can
interpolate a given function f , if the Kolmogorov complexity of z
is sufficiently high. So one can take a diagonalizing f such that,
for z, x with 4n ≤ |z| < 4n + 5 and |x| = n, f(zx) is 0 if z is
too small or the Kolmogorov complexity of z is too small; and f
diagonalizes a given learner M whenever z is long enough and its
Kolmogorov complexity is sufficiently high. So let n be so large
that 2n > p and the Kolmogorov complexity [13] of any string of
the form 0∗1∗0∗1∗0∗1∗ of length up to 4n + 4 is below 3n− 1.

Let z be any string of Kolmogorov complexity above 3n, satisfy-
ing the length constraint 4n ≤ |z| ≤ 4n + 4 and having the form
z = 0a01v10w (or 1a10v01w which can be dealt symmetrically)
where 10 is first occurrence of this form after the prefix 0a01;
therefore v ∈ 0∗1∗. The pattern

0a x0y0x1y1 . . . xhyh v y0x0y1x1 . . . yhxh w σ0(u0)σ1(u1) . . . σh(uh)

interpolates f on z{0, 1}n, where um ∈ {0, 1}n are the strings
satisfying f(zum) = 1 and h is the number of such strings (here
σm(um) depends on um as above). Next consider any substitution
of the above pattern which generates a string of length |z| + n.
In this case, one can show that if x0y0x1y1 . . . xhyh 6= 01 and
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y0x0y1x1 . . . yhxh 6= 10, then one can compute z from 0a, the two
strings x0y0x1y1 . . . xhyh and y0x0y1x1 . . . yhxh, the string v and
perhaps the last four characters of w. a can be expressed by an
expression of size log(a) ≤ log(4n). v is of the form 0b1c and thus
can be expressed by an expression of size 2 log(4n+4). The last 4
characters of w need an expression of size 4 to be described. The
strings x0y0x1y1 . . . xhyh and y0x0y1x1 . . . yhxh can be described
using n + 4 bits, since the constant parts 0a, v and w already
cover |z| − 4 bits. So the total string z could be described using
a constant plus n + 2 log(n) bits, which contradicts the fact that
z has Kolmogorov complexity at least 3n, for sufficiently large n.

Thus, if p is constant, q > 0 and n is large enough, then, for
all intervals of the form z{0, 1}n, where 4n ≤ |z| ≤ 4n + 4 and
K(z) ≥ 3n, one might find concepts which contradict all pre-
dicted values on these intervals. Every sufficiently long string z′

with K(z′) ≥ 5|z′|
6 can be represented in such a form. Thus for

every given learner M and every constant permanence p, there is
an f ∈ S[p] such that M fails to predict f on almost all strings
z′ with Kolmogorov complexity K(z′) ≥ 5|z′|

6 . These strings have
density 1 among the set of all strings. Thus M does not learn f
with any density q > 0.

4 Restrictions on Drift

The previous section dealt with arbitrary drift and therefore the
learning algorithms intuitively had to compensate for drifts pro-
duced by an arbitrarily unpleasant adversary. One might argue
that nature does not always follow the worst case but is some-
times more pleasant and well-behaved. In particular, drifting con-
cepts might follow some rules and laws; the next three subsections
are devoted to discussing the influence of such rules on the abil-
ity to learn under concept drift. So we derive conditions under
which the subclass S[p]′ ⊆ S[p] of the functions resulting from
a particular restricted drift may be (and are) easier to learn. As
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will be seen, the exact meaning of the notation S[p]′ will change
from one subsection of this section to the next.

4.1 Drifts Preserving Computability

Let REC be the set of all total computable functions. The present
section investigates the case where the drift results in computable
functions, that is, where S[p]′ = S[p]∩REC. The results of Sec-
tions 2 and 3 carry over to the case where S[p]′ is used instead
of S[p]; provided that in the places where something is “not
learnable under any reasonable learning criterion”, this state-
ment is weakened to “not learnable under any criterion which
does not permit the learnability of all binary recursive functions.”
It is quite obvious that the inclusions in the previous results
go through. However, the noninclusions requires some additional
work: instead of taking an arbitrary function for diagonalization
one has to construct, for every computable learner, a specific
computable function in S[p] on which this learner fails. The next
quite easy example shows how to do this.

Example 15 There is a class S and permanence p such that
S[p] is frequency 2 out of 3 learnable but not frequency 3 out of
4 learnable even under computable concept drift.

Proof. Let S be the class of all constant functions and consider
the class S[3]′. It is easy to see that the algorithm always pre-
dicting the last value received so far succeeds to show that S[3]
is learnable with frequency 2 out of 3. Next assume that M is an
arbitrary frequency learner and consider the function f given by
f(0) = 0, and, for x ∈ N and y ∈ {1, 2, 3},

f(3x+y) =


0 if y = 3 and M(f(0)f(1) . . . f(3x + 2)) > 0;
1 if y = 3 and M(f(0)f(1) . . . f(3x + 2)) = 0;
f(3x) if y = 1 or y = 2.

Since M is computable and total, so is f . Furthermore M makes a
prediction error on every number of the form 3x+3. In particular,
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if one looks at the predictions at 3x + 3, 3x + 4, 3x + 5, 3x +
6, then at most two of them are correct. Therefore there is no
computable machine which learns the class of constant functions
with frequency 3 out of 4 and permanence 3.

Some criteria like learning with a fixed frequency a out of b either
succeed on a function f or fail already on some finite prefix of f .
So whenever such a learner fails on some f one can abstain from
changing the concept after this failure. So, if a given learner fails
on some f ∈ S[p], then it also fails on some computable f from
the same class. Thus the question whether S[p] is learnable with
frequency a out of b does not depend on the decision whether all
or only the computable functions in S[p] have to be learned.

However, for the other learning criteria, at best it can only be
known in the limit whether the learner is successful or not. So, for
certain problems, one can compensate early errors by a lot of good
predictions. For these criteria it can be an essential difference
whether the learner has to cope with the whole class S[p] or
only the subclass S[p]′ of all computable functions in S[p]. In
particular the next theorem shows that there are classes where
this transition allows a large improvement in learnability.

Theorem 16 There is a class S of computable functions such
that, for any p, the class S[p] cannot be learned under any rea-
sonable learning criterion. However, the subclass S[p]′ ⊆ S[p] is
learnable with uniform density 1.

Proof. Let A be an immune set [14, §8.2] and define S as:

g ∈ S ⇔

g is computable and (∀x) [g(x) = 0 ∨ g(x) ∈ A− {1, 2, . . . , x}. ]

For every predictor M , there is a function f ∈ S[p], such that
M fails to predict f : f(x + 1) is just the first y ∈ A with y >
M(f(0)f(1) . . . f(x))+x. For any p, f is in S[p], since it coincides
on each interval {x, x + 1, . . . , p(x)} with the function g given by
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g(y) = f(y), for y ≤ p(x), and g(y) = 0, for y > p(x). It is easy
to verify that g ∈ S.

On the other hand, S[p]′ contains only computable functions.
Since A is immune and since the range of any f ∈ S[p]′ is a
subset of A ∪ {0}, it follows that the range of f is finite and has
some maximum, say x. For y > x, f(y) must coincide with g(y),
for some g ∈ S; from g(y) < y it then follows that g(y) = 0 and
therefore also f(y) = 0. So S[p]′ contains only functions which are
almost everywhere 0. Thus S[p]′ can be predicted with (uniform)
density 1.

4.2 Permanence on Disjoint Computable Intervals

The second model limits the drift by requiring computable inter-
vals I0, I1, I2, . . . partitioning N on which the function to be pre-
dicted equals some concept in S; we use S[p]′ to denote the drift
class formed in this fashion, where I0, I1, I2, . . . is understood. The
next two examples deal with the case where the learner has — as
some kind of additional information — a program computing the
intervals I0, I1, I2, . . . while the last example deals with learners
ignorant of the actual intervals. Those learners then only exploit
the fact that the intervals are disjoint and therefore also work if
the intervals are a non-computable partitioning of N .

Example 17 If S contains up to k finite functions and p >
log(k), then the functions in S[p] respecting the computable in-
tervals I0, I1, . . ., are frequency learnable by just using the major-
ity vote algorithm on each interval In. The frequency is 1 out of
2blog(k)c+ 1.

One might argue that such an improvement is due only to the ease
of finding an algorithm and not to any real difference between
the two concepts. The next example shows that there is a class
S such that S ′[2] is frequency learnable for computable intervals
while the general class S[2] is not learnable under any reasonable
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criterion for arbitrary drift.

Example 18 Let S be the class of all increasing binary func-
tions, that is, S = {0n1∞ : n ∈ N }. Let I0, I1, . . . be a computable
partition of N such that every interval In contains at least two
elements. Let S[2]′ be the class of all functions f ∈ S[2] which in
addition coincide with some gn ∈ S on every interval In. Then,
S[2]′ is frequency learnable while S[2] itself is not learnable under
any reasonable learning criterion.

Proof. The learner for S[2]′ predicts f(x) = 0, if x = min(In)
for some n, and predicts f(x−1) otherwise. So the learner makes
a prediction error only if x = min{y ∈ In : f(y) = 1} for some n,
that is, there is at most one error per interval. Since the length of
the intervals is at least 2, there are never more than two consec-
utive errors, which occur in the adversary case, at the end of the
last and the beginning of the new interval. So S[2]′ is learnable
with frequency 1 out of 3.

For the second result on the nonlearnability of the whole class
S[2], consider any {0, 1}-valued function f with f(0) = 0. If it
vacillates infinitely often between 0 and 1, then one can split N
into finite intervals In such that f takes on In first some 0’s and
then some 1’s; for example, if f � 01001100010, then I0 = {0, 1}
where f takes 01, I1 = {2, 3, 4, 5} where f takes 0011 and I2 =
{6, 7, 8, 9} where f takes 0001. Each of these intervals has length
at least 2 and f is increasing on these intervals. If f converges to
0 or 1, then one splits N into initial intervals as above and then
has a rest I ′ on which f either equals 0∞ or 0n1∞. This rest I ′ can
then be divided into intervals of length 2 on which f is also non-
decreasing. Thus S[2] contains all {0, 1}-valued functions with
f(0) = 0 and is thus not learnable.

The construction above can be made effective in the following
sense: If M is a total recursive machine, then, from an index of
M , one can construct a recursive function f not learned by M
in the sense that every prediction at some place x > 0 is wrong
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and also construct a computable sequence of intervals I0, I1, I2, . . .
partitioning N such that f coincides with some function 0n1∞

on every interval. So the positive part is mainly due to the fact,
that the learner knows the intervals I0, I1, I2, . . . and without this
knowledge, no successful learning is possible.

The next example shows that disjointness itself without knowing
the intervals can already yield advantages in terms of learnability
with higher frequencies. In contrast to the previous examples,
one has one single machine which, for every partition, learns the
functions in the corresponding class S[2]′ with frequency 2 out
of 5. This learner succeeds even for nonrecursive partitions and
does not need any a priori knowledge on the actual positions of
the intervals.

Example 19 Let S contain all functions which are 0 at all but
one argument and let I0, I1, I2, . . . be a (not necessarily recursive)
partition of N into intervals of length at least 2. Then the subclass
S[2]′ of all functions f ∈ S[2] which coincide with functions in S
on the intervals I0, I1, I2, . . . is learnable with frequency 2 out of
5. The whole class S[2] is not learnable with frequency 2 out of 5,
though it is learnable with frequency 2 out of 6. The corresponding
densities of the best possible learning algorithms are 1

2 and 1
3.

Proof. Consider any f ∈ S[2]′. For any n, there is a gn ∈ S
with f = gn on In. Consider an algorithm that always predicts
0. Let J be an interval of length 5. J intersects at most three
of the intervals I0, I1, . . . and thus, f(x) 6= 0 for at most three
x ∈ J . Therefore the above algorithm, which always predicts 0,
is correct on 2 of the arguments in J . Thus, S[2]′ is learnable with
frequency 2 out of 5 by this algorithm. Furthermore, the learning
algorithm predicts correctly with density 1

2 , since, for any n, f is
0 on at least half of the inputs from I1 ∪ I2 ∪ . . . ∪ In.

For the general case S[2] and any interval J = {x, x + 1, x + 2}
of length 3 one knows that f must coincide with some g ∈ S
either on {x, x + 1} or {x + 1, x + 2}. So if f(x + 1) 6= 0 then
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either f(x) = 0 or f(x + 2) = 0. Therefore the algorithm always
predicting 0 is again a frequency learner for S[2] — but with
the reduced rate 1 out of 3. The class S[p] is also learnable with
frequency 2 out of 6 and — by Fact 8 (b) — S[p] is also learnable
with (uniform) density 1

3 . On the other hand one should note that
every f , with f(3x + 1) = 0, for all x, is in S[2]: one can take
intervals as {3x, 3x+1} and {3x+1, 3x+2}. So, for each predictor
M , there is an f which differs from the predictions for all inputs
of the form 3x + 2 and 3x + 3. Thus S[p] is not learnable with
any density q > 1

3 and — by using the contrapositive of Fact 8
— not learnable with frequency 2 out of 5.

4.3 Vacillating Drift

There are cases where, in principle, a drifting concept might in-
volve any members of some infinite class but, in reality, the drift is
only between finitely many of them, for example, between finitely
many constant functions.

t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t
t t t t t t t t

In this case, this knowledge can be exploited to achieve real im-
provements in learnability.

As in the case of computable drift, vacillation cannot be exploited
for frequency learners. However an improvement can be observed
for other types of learning considered in this paper, that is, for
martingale learners, learners with some density and learners with
uniform density.
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It should be noted that such an improvement is possible on many
practical classes and not only on some artificially constructed
examples as in the case of computable drift. These examples are
the class of all polynomials for the case of constant permanence
and any uniformly enumerable class for the case of nonconstant
permanence.

Example 20 Let p be constant and S[p]′ denote the class of all
functions which vacillate between a finite number of polynomials
each with permanence p. Then S[p]′ can be learned with uniform
density p−1

p .

Proof. Let g0, g1, . . . be a 1–1 enumeration of all the polyno-
mials. Now the learner M searches on input f(0)f(1) . . . f(x) for
the first k such that gk(x) = f(x). Then M outputs gk(x + 1) as
a prediction for the next value:

M(f(0)f(1) . . . f(x)) = gmin{k:gk(x)=f(x)}(x + 1).

For the verification of this algorithm, fix f ∈ S[p]′. There is an
h such that f vacillates only between the functions g0, g1, . . . , gh.
Any two distinct polynomials agree on only finitely many argu-
ments. So there is a y such that all the polynomials g0, g1, . . . , gh

are different at each x ≥ y.

Let x ≥ y and assume that the prediction for f(x+1) fails. There
is a unique k ≤ h with f(x + 1) = gk(x + 1). By assumption
f(x) 6= gk(x) since the prediction failed. Then f and gk coincide
at an interval of length p containing x + 1 and not x. Thus the
predictions for f at x + 2, x + 3, . . . , x + p are correct. Hence,
each wrong prediction is followed by at least p − 1 correct ones.
It follows that M , on an interval of length x, makes at most y+ x

p

mistakes. Thus M learns this f and also all other functions in
S[p]′ with uniform density p−1

p .

The above algorithm works for the special case of polynomials
and there is no directly general equivalent. For example, if S is
the class of all periodic functions, then no learner achieves some
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minimum density on all functions in S[p]′ for constant perma-
nence p. Hereby a function is periodic iff there is a y such that
f(x + y) = f(x) for all x. However, in the case of unbounded
permanence, that is, in the case that p is not decreasing and not
bounded by any constant, it is possible to learn the class S[p]′

with uniform density 1.

Theorem 21 Let S = g0, g1, . . . be an effectively enumerable
class of total functions and let p be a computable non-decreasing
and unbounded permanence. Then the class S[p]′ of all functions
in S[p] which vacillate between finitely many functions in S can
be learned with uniform density 1.

Proof. The algorithm M for the general problem follows the
same basic idea as the one for the polynomials, but needs some
more explicit conditions and bounds since certain beautiful prop-
erties are absent. Without loss of generality one might assume
that any finite function is extended by some gk; this can be
achieved by joining an enumeration of all polynomials to the orig-
inally given one. The condition whether:

for each y with y +p(y) ≤ x, there is an h ≤ k, and an interval
I of length p(min(I)) containing y such that f agrees with gh

on I,

can be checked effectively in x and k. Such a number k is called a
legal bound for f (at the data f(0), f(1), . . . , f(x)). Such a legal
bound is always found since there is always some gk coinciding
with f on 0, 1, . . . , x. Furthermore, this legal bound converges
in the limit (since f ∈ S[p] is obtained by vacillating among
finitely many functions in S). The basic idea of the learner M is
to remember the index of the function (in g0, g1, . . .) used for the
last prediction, and, in the case the last prediction was wrong, to
use cyclically the next index from the set {0, 1, . . . , k} of currently
legal indices. For f(0) the algorithm predicts g0(0) and for f(x+1)
it works as follows.

On input f(0), f(1), . . . , f(x),
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M computes a legal bound k for these data.
Suppose h′ is the index used for the last prediction gh′(x). Let

h =


h′ if gh′(x) = f(x);
h′ + 1 if gh′(x) 6= f(x) and h′ < k;
0 otherwise, that is, gh′(x) 6= f(x) and h′ ≥ k.

Then M predicts gh(x + 1).

One can argue that, for large enough x, the above algorithm
uses a fixed constant k. If I is an interval on which f coincides
with some gh, h ≤ k, then M makes at most k false predictions
on I: M goes cyclically through the indices 0, 1, . . . , k and since
each prediction error induces a cyclic change of the hypothesis,
M reaches the correct hypothesis after at most k errors and then
does not make any further error until reaching the end of I. Since
p is unbounded, for each real r > 0, there is an x such that every
interval of length x can be covered by at most r · x intervals I
on which f coincides with some concept gh, h ≤ k. Thus, except
for finitely many errors (say c) due to M not having reached
the limiting value of the legal bound k, the number of further
errors by M on intervals of length x is at most rxk. So if one
chooses, for given q < 1, an r and corresponding x such that
rxk+c ≤ (1−q)x, then M outputs on each interval of length x at
least qx correct predictions. Thus, M learns S[p]′ with uniform
density q, for every q < 1. It follows that M learns S[p]′ with
uniform density 1.

5 Density Learning of Predictions Versus of Programs

The notions of density learners and uniform density learners pre-
sented above in the present paper are different from those intro-
duced by Fulk and Jain [7, Definitions 6, 7, 9 and 10]. The dif-
ferences can be motivated partly by the fact that the functions
f ∈ S[p] in the general case do not coincide with computable
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functions on any infinite computable domain. We sketch these
differences in this final section.

The model of Fulk and Jain postulates — with several variations
— that the learner outputs a sequence of guessed programs such
that (a) there is an ascending sequence of sets An covering the
whole domain N , (b) the n-th guess is correct on An and — in
the case that density is involved in the definition — (c) the limit
inferior of the densities of the sets An is greater or equal to given
rational q.

This model already allows to approximate non-computable func-
tions as, for example, the class S of all functions f satisfying
f(x) = f(y), whenever the number of the trailing 0’s of the
decimal representations of x and y is the same. So, if f ∈ S,
then f(2) = f(3) = f(11111), f(300) = f(900) = f(1100) and
f(7000) = f(9000) but f(3) may be different from f(20). So, if
one knows f(1), f(10) and f(100), then one knows already the
value of f on 99.9% of the inputs; only the values of f(x · 1000)
are unknown. The approximation which employs f(x · 10k) = 0,
for the first k, where f(10k) has not yet been seen, coincides with
f on a set of density 1 − 10−k. So the class S is learnable by
approximations with density 1.

The above example is also predictable with respect to all criteria
defined in Section 1. This does not generalize since self-reference
— as in [4] — might be employed. There are functions which,
on input 0, output a program for the function itself. So one has
that they are learnable with respect to all the criteria of Fulk and
Jain: they are even “finitely” learnable. The problem is that the
predictor does not know when it receives some faulty program
from illegal input (which does not belong to any function in the
learned class), but still has to predict some value then. So it is
natural to ask whether some relation of the kind NV = PEx
holds — where NV is the criterion to predict a function almost
everywhere correctly by a total machine and PEx is to infer the
function by a learner who on every input outputs only programs
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of total functions [4]. The next theorem shows that only one
direction holds.

Theorem 22 If some general class S (possibly but not necessar-
ily generated by some concept drift) is learnable with (uniform)
density q > 0 in the manner defined by Fulk and Jain [7] and if
this learner outputs for any input only programs for total func-
tions, then S is also predictable with (uniform) density q as de-
fined in Definition 4 above.

The converse does not hold.

Proof. Let ϕi denote the partial computable function computed
by program i [14].

Suppose M learns with (uniform) density q in the manner de-
fined by Fulk and Jain [7] and that M outputs, for any input,
only programs for total functions. The corresponding prediction
algorithm is the mapping N given by

N(f(0)f(1) . . . f(x)) = ϕM(f(0)f(1)...f(x))(x + 1)

which is well-defined since M is total and outputs only total pro-
grams. Next it is shown that N learns every f ∈ S with (uniform)
density q. Let f be some function in S and let r < q. Then there
is a set A of (uniform) density r and a y such that, for all x ≥ y,
the program output by M(f(0)f(1) . . . f(x)) coincides with f on
A. Thus, for x ≥ y and x + 1 ∈ A, the program M(f(0)...f(x))
computes f(x + 1) correctly. Therefore the predictions of N are
correct on every element of A greater than y. Since the (uniform)
density of a set does not change if finitely many elements are
removed, the set of all places where M predicts correctly has
at least the (uniform) density r. Since this holds for all r < q
it follows that N predicts f with (uniform) density q. Since N
does not depend on f it follows, that N predicts all f ∈ S with
(uniform) density q.

Next we consider the converse direction. Consider the class C =
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{f : (∀x) (∀y < 2x+1) [f(x2+y) = f(x2)]}. Now, a learner which
predicts the value f(z) for f(z + 1) is correct with (uniform)
density 1 on each function of the class. We now show that, for
every computable learner M , there is a function f ∈ C such that
f does not coincide with any index output by M on an infinite set
— this directly implies the non-learnability under all the criteria
of Fulk and Jain [7].

Let e0, e1, . . . be an enumeration of all programs output by M
on some input. All these programs compute total functions. One
defines

f(x2 + y) = 1 +
∑

n≤x,z<(x+1)2
ϕen

(z)

where 0 ≤ y < (x + 1)2 − x2 holds. The function f is in the class
to be learned and satisfies, for x ≥ n, f(x2 + z) > ϕen

(x2 + z).
Thus it coincides with a given function ϕen

on at most n2 inputs.
Thus M does not output any function which agrees with f on
an infinite set. Therefore M does not learn f under the learning
criteria given by Fulk and Jain [7].

A similar result to the previous one is the following which of
course also holds with uniform density in place of density.

Theorem 23 Assume that for a class S (possibly but not nec-
essarily generated by some concept drift) there is a recursively
enumerable family of total computable functions g1, g2, . . . such
that, for every f ∈ S, there is a g which coincides with f on
a set of density greater than q (where q is rational). Then S is
learnable with density q.

Proof. Let d(i, z) = 1
z+1 · |{y ≤ z : f(y) = gi(y)}| measure the

density of the arguments y with f(y) = gi(y) below z. On input
f(0)f(1) . . . f(x), the learner finds the least pair (i, j) such that
d(i, z) > q for all z ∈ {j, j + 1, . . . , x} and then predicts gi(x).
Since some gi agrees with f on a set of density greater than q,
there is a j such that d(i, z) > q, for all z ≥ j. Thus, for all but
finitely many x, the above algorithm uses a fixed pair (i, j) such
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that gi and f agree with density at least q. Thus S can be learned
with density q.

6 Some Concluding Remarks

Finally, we would like to point out a connection between our
model and the mistake-bound learning model of Littlestone [12].
(We are grateful to an anonymous referee of COLT for enquiring
about a connection.) Consider the setting from [12] in which a
machine M predicts the values of a function f on a sequence of
arguments x0, x1, x2, . . . as follows. M is given x0, M predicts the
value of f at x0, M is given f(x0), M is given x1, M predicts the
value of f at x1, M is given f(x1), M is given x2, M predicts the
value of f at x2, and so on. In general, M learns a class S of
functions with mistake-bound c iff M predicts, for each sequence
x0, x1, x2, . . . and each function f ∈ S, the function i → f(xi) at
all but at most c places correctly.

The sequence x0, x1, x2, . . . can be arbitrary making this model
difficult. Many of our basic definitions in the present paper de-
pend quite essentially on order. We would, though, get our same
results mutatis mutandis if we replaced the standard ordering of
natural numbers by any fixed computable ordering.

For our remaining remarks we shall require the sequence x0, x1, . . .
be increasing.

An example of a class of functions then so learnable with mistake-
bound c is the class Sc = { decreasing f : f(0) ≤ c}.

The following interesting result can be shown. If a class S is
learnable with a mistake-bound of c and if b ≤ p for some constant
permanence p, then S[p] is learnable with frequency a out of b
where a = b − 2c − 1. Furthermore, the class Sc[p] cannot be
learned with frequency a + 1 out of b; hence, the bound is tight.
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