
Elementary Formal Systems, Intrinsic Complexity, and

Procrastination

Sanjay Jain

Department of Information Systems and Computer Science

National University of Singapore

Singapore 119260, Republic of Singapore

Email: sanjay@iscs.nus.sg

Arun Sharma∗

School of Computer Science and Engineering

The University of New South Wales

Sydney, NSW 2052, Australia

Email: arun@cse.unsw.edu.au

March 11, 2007

Abstract

Recently, rich subclasses of elementary formal systems (EFS) have been shown to

be identifiable in the limit from only positive data. Examples of these classes are

Angluin’s pattern languages, unions of pattern languages by Wright and Shinohara, and

classes of languages definable by length-bounded elementary formal systems studied by

Shinohara. The present paper employs two distinct bodies of abstract studies in the

inductive inference literature to analyze the learnability of these concrete classes.

The first approach, introduced by Freivalds and Smith, uses constructive ordinals to

bound the number of mind changes. ω denotes the first limit ordinal. An ordinal mind

change bound of ω means that identification can be carried out by a learner that after

examining some element(s) of the language announces an upper bound on the number

of mind changes it will make before converging; a bound of ω · 2 means that the learner

reserves the right to revise this upper bound once; a bound of ω · 3 means the learner

reserves the right to revise this upper bound twice, and so on. A bound of ω2 means

that identification can be carried out by a learner that announces an upper bound on

the number of times it may revise its conjectured upper bound on the number of mind

changes. It is shown in the present paper that the ordinal mind change complexity for

identification of languages formed by unions of up to n pattern languages is ωn. It is

∗This research was partially supported by the Australian Research Council Grant A49600456.

1

also shown that this bound is essential. Similar results are also shown to hold for classes

definable by length-bounded elementary formal systems with up to n clauses.

The second approach, studied by Freivalds, Kinber and Smith and by Jain and

Sharma, employs reductions to study the intrinsic complexity of learnable classes. It

is shown that the class of languages formed by taking unions of up to n + 1 pattern

languages is a strictly more difficult learning problem than the class of languages formed

by the union of up to n pattern languages. It is also shown that a similar hierarchy

holds for the bound on the number of clauses in the case of languages definable by

length-bounded EFS.

In addition to building bridges between three distinct areas of inductive inference,

viz., learnability of EFS subclasses, ordinal mind change complexity, and intrinsic com-

plexity, this paper also presents results that relate topological properties of learnable

classes to that of intrinsic complexity and ordinal mind change complexity. For exam-

ple, it is shown that a class that is complete according to the reductions for intrinsic

complexity has infinite elasticity.

Since EFS languages and their learnability results have counterparts in traditional

logic programming, the present paper demonstrates the possibility of using abstract

results of inductive inference to gain insights into inductive logic programming.

1 Introduction

Arikawa [Ari70] adapted Smullyan’s [Smu61] elementary formal systems (EFS) for inves-

tigation of formal languages. Later, Arikawa et al. [ASY92] showed that EFS can also be

treated as a logic programming language. Recently various subclasses of EFS have been in-

vestigated in the context of learnability. It has been shown that rich classes can be identified

in the limit from only positive data. These learning techniques have been applied to knowl-

edge acquisition from amino acid sequences (see Arikawa et al. [AMS+92, ASMS91]). From

a theoretical point of view, investigations of the learnability of subclasses of elementary

formal systems are important because they yield corresponding results about the learnabil-

ity of subclasses of logic programs. Arimura and Shinohara [AS94] have used the insight

gained from the learnability of EFS subclasses to show that a class of linearly covering

logic programs with local variables is identifiable in the limit from only positive data. More

recently, Krishna-Rao [KR96] has established the learnability from only positive data of an

even larger class of logic programs.

We consider three subclasses of elementary formal systems in the present paper. The

smallest of these classes, the collection of pattern languages (PATTERN), was first intro-

duced by Angluin [Ang80] who showed that this class can be identified in the limit from

only positive data. Shinohara [Shi86] showed that the class of pattern languages is not

closed under union and many rich concepts can be represented by unions of pattern lan-

guages. He also showed that the class of languages formed by union of up to 2 pattern

2

languages (PATTERN2) is identifiable in the limit from only positive data. Later, Wright

[Wri89] generalized this result to show that the classes of languages formed by unions of

up to n pattern languages (PATTERNn) can be identified in the limit from only positive

data. Shinohara [Shi94] later showed that an even richer class, the classes of languages

definable by length-bounded elementary formal systems with up to n clauses (LBEFSn),

is identifiable in the limit from only positive data. An interesting aspect of these results

is that they have counterparts for the learnability of traditional logic programs, e.g., the

learnability of the class LBEFSn implies the learnability of the class of minimal models of

linear Prolog programs consisting of at most n definite clauses (see Shinohara [Shi91] and

Arimura [Ari89]). In this respect, these results are also about inductive logic programming.

In the present paper we employ two distinct bodies of work in the inductive inference

literature to analyze the learnability of the above classes. The first approach, introduced by

Freivalds and Smith [FS92], involves the use of constructive ordinals to bound the number of

mind changes before the onset of convergence. The second approach ([FKS95, JS94, JS95])

involves the use of reductions to study the intrinsic complexity of identifiable classes. Both

these abstract studies have yielded elegant results. The present paper shows that they can

be employed to gain an insight into the learnability of concrete classes. In this paper, we

also present results about how certain topological properties of learnable classes (such as

finite elasticity and infinite elasticity) are related to intrinsic complexity and to ordinal

mind change complexity.

In the rest of this section we proceed as follows: In Section 1.1, we describe the learn-

ing model; in Section 1.2, we informally describe results about EFS and ordinal mind

change complexity; in Section 1.3, we discuss results about EFS and intrinsic complexity;

and in Section 1.4, we briefly mention some results on the connection between topological

properties of language classes and intrinsic complexity. Formal treatment is presented in

Sections 2 and 3.

1.1 Identification

Let N denote the set of natural numbers, {0, 1, 2, . . .}. We first define the notion of texts

for languages.

Definition 1 (a) A text for a language L is a mapping T from N into N ∪ {#} such

that L is the set of natural numbers in the range of T .

(b) content(T) denotes the set of natural numbers in the range of T . (Thus, the content

of a text never includes #.)

(c) The initial sequence of text T of length n is denoted T [n].

(d) The set of all finite initial sequences of N and #’s is denoted SEQ.

3

Intuitively, a text T for a language L is a presentation of elements of L (possibly re-

peated) and no non-elements of L; #’s in the presentation may be thought of as modeling

pauses in data input1. It is easy to see that there exists a computable bijection between

SEQ and N . Members of SEQ are inputs to machines that learn grammars (acceptors) for

r.e. languages. We let σ and τ , with or without decorations2, range over SEQ. Λ denotes

the empty sequence. content(σ) denotes the set of natural numbers in the range of σ.

Definition 2 A language learning machine is an algorithmic mapping from SEQ into N

∪{?}.

Here we interpret a conjecture of ? by a machine as “no guess at this moment”. This is

useful to avoid biasing the number of mind changes of a machine. For this paper, we assume,

without loss of generality, that σ ⊆ τ and M(σ) 6=? implies M(τ) 6=?.

M denotes a typical variable for a language learning machine. We also fix an acceptable

programming system and interpret the output of a language learning machine as the index

of a program in this system. Then, a program conjectured by a machine in response to a

finite initial sequence may be viewed as a candidate accepting grammar for the language

being learned. We say that M converges on text T to i (written: M(T) converges to i) just

in case for all but finitely many n, M(T [n]) = i. The following definition introduces Gold’s

criterion for successful identification of languages.

Definition 3 [Gol67]

(a) M TxtEx-identifies a text T just in case M(T) converges to a grammar for content(T).

(b) M TxtEx-identifies an r.e. language L (written: L ∈ TxtEx(M)) just in case M

TxtEx-identifies each text T for L.

(c) TxtEx denotes all such collections L of r.e. languages such that some machine TxtEx-

identifies each language in L.

1.2 EFS and Procrastination

Natural numbers have been used as counters for bounding the number of mind changes.

However, such bounds do not take into account the scenario in which a learning machine,

after examining an element of the language is in a position to issue a bound on the number of

mind changes it will make before the onset of convergence. For example, consider the class

COINIT = {L | (∃n)[L = {x | x ≥ n}]}. Intuitively, COINIT is the collection of languages

that contain all natural numbers except a finite initial segment. Clearly, a learning machine

that, at any given time, finds the minimum element in the data seen so far, say n, and

1Note that the only text for the empty language is an infinite sequence of #’s.
2Decorations are subscripts, superscripts and the like.

4

emits a grammar for the language {x | x ≥ n} can easily be seen to identify COINIT in the

limit from positive data. It is also easy to see that the class COINIT cannot be identified

by any machine that is required to converge within a constant number of mind changes;

however, the machine identifying COINIT can, after examining an element of the language,

issue an upper bound on the number of mind changes. The class PATTERN has a similar

property because any string in a pattern language yields a finite set of patterns that are

candidate patterns for the language being learned. To model such scenarios Freivalds and

Smith [FS93] introduced the use of constructive ordinals as mind change counters. We

illustrate the idea with a few examples; the formal definition is presented later.

TxtExα denotes the set of collections of languages that can be identified in the limit

from texts with an ordinal mind change bound α. For α ≺ ω, the notion coincides with

the earlier notion of bounded mind change identification. For α = ω, TxtExω denotes

learnable classes for which there exists a machine that, after examining some element(s) of

the language, can announce an upper bound on the number of mind changes it will make

before the onset of successful convergence. Both, COINIT and PATTERN are members of

TxtExω.

Proceeding on, the class TxtExω·2 contains classes for which there is a learning machine

that after examining some element(s) of the language announces an upper bound on the

number of mind changes, but reserves the right to revise this upper bound once. Similarly,

in the case of TxtExω·3, the machine reserves the right to revise its upper bound twice, and

so on. TxtExω2 contains classes for which the machine announces an upper bound on the

number of times it may revise its conjectured upper bound on the number of mind changes,

and so on. The name “procrastination” derives from the ability of a learning machine to

delay coming up with a correct upper bound on the number of mind changes.

We are able to derive the ordinal mind change complexity of the classes of languages

formed by taking unions of pattern languages. For n > 1, we show that the class formed

by taking unions of up to n pattern languages, PATTERNn, is in TxtExωn . We also show

that there are cases for which the ωn bound is essential because PATTERNn 6∈ TxtExα,

for all α ≺ ωn.3

We also consider the ordinal mind change complexity of languages definable by length

bounded elementary formal systems. Like in the case of unions of pattern languages, we

are able to show that the class of languages definable by length bounded EFS with no more

than n clauses, LBEFSn, is in TxtExωn . Since, the class of unions of n pattern languages

is contained in LBEFSn, it immediately follows that LBEFSn 6∈ TxtExα, for all α ≺ ωn.

3Interestingly, if we consider languages formed by unions of pattern languages such that the patterns in

the union have disjoint alphabet, then it is easy to verify that the ordinal mind change complexity turns out

to be ω · n for language classes containing unions of up to n pattern languages.

5

1.3 EFS and Intrinsic Complexity

Recently, a new approach to the study of “intrinsic” complexity of learning has been pro-

posed for identification in the limit of functions by Freivalds, Kinber, and Smith [FKS95]

and for identification in the limit of languages by Jain and Sharma [JS94, JS96a].

The main idea of the approach is to introduce reductions between learnable classes of

languages. If a collection of languages, L1, can be reduced to another collection of languages,

L2, then the learnability of L1 is no more difficult than that of L2. Moreover, an algorithm

for learning L2 can be transformed into an algorithm for learning L1. Based on these

reductions, one can define the notion of hardness and completeness. These reductions were

used to show that the following three collections of languages, each of which is identifiable,

pose learning problems of increasing difficulty: (a) SINGLE, the collection of singleton

languages; (b) COINIT; and (c) FIN , the collection of finite languages. It was shown that

SINGLE is reducible to COINIT but COINIT is not reducible to SINGLE and COINIT

is reducible to FIN but FIN is not reducible to COINIT. It was discussed in [JS94] that

this reduction captures the intuitive difficulty of learning these classes. SINGLE can be

identified by a learning machine that can confirm its success. COINIT cannot be identified

by any machine that can confirm its success, but can be identified by a machine, that after

inspecting an element of the language, provides an upper bound on the number of mind

changes. FIN , on the other hand, can neither be identified by a machine that confirms its

success nor can it be learned by a machine that provides an upper bound on the number

of mind changes after inspecting an element of the language. In fact according to a version

of the reduction, FIN is complete—it poses the most difficult learning problem. It was also

shown that the class COINIT is equivalent to PATTERN .

In the present paper, we investigate the intrinsic complexity for unions of pattern lan-

guages and languages definable by length-bounded EFS. Now, as mentioned above, since

the ordinal mind change complexity of PATTERN 2 is ω2 and that of PATTERN is ω,

it appears that PATTERN2 is a more difficult learning problem than PATTERN . Once

again, the notion of intrinsic complexity captures this gradation in learning difficulty as can

be seen from the following summary of our results. Let n > 0.

(a) PATTERNn reducible to PATTERNn+1 but PATTERNn+1 not reducible to

PATTERNn.

(b) LBEFSn reducible to LBEFSn+1 but LBEFSn+1 not reducible to LBEFSn.

1.4 Topological Properties of Learnable Classes

Certain topological properties of language classes have been shown to be sufficient for iden-

tification in the limit of indexed families of recursive languages from positive data. In this

6

paper, we also present some results that relate these topological properties to the notion of

intrinsic complexity and ordinal mind change complexity.

For example, Angluin [Ang80] defined a class L to have finite thickness just in case for

each n ∈ N , the cardinality of {L ∈ L | n ∈ L} is finite. She showed that if an indexed

family of recursive languages L has finite thickness then L ∈ TxtEx. It can be shown that

if a class has finite thickness, then it is not complete in terms of any of the reductions for

intrinsic complexity discussed in this paper.

Wright [Wri89] (see also Motoki, Shinohara, and Wright [MSW91]) introduced the no-

tions of finite elasticity and infinite elasticity (to be defined later). Wright [Wri89] showed

that if a class L has finite thickness then it has finite elasticity. He also showed that if

an indexed family of recursive languages L has finite elasticity then L ∈ TxtEx. We can

show that if a class L is complete according to any of the reductions for intrinsic complexity

discussed in this paper, then it has infinite elasticity. We also present some results about

the relationship between finite elasticity and ordinal mind change complexity.

We now proceed formally. In Section 2, we introduce the notation and give formal defini-

tions of EFS, intrinsic complexity, and procrastination. Results are presented in Section 3.

2 Preliminaries

N+ denotes the set of positive integers. Any unexplained recursion theoretic notation is

from [Rog67]. Cardinality of a set S is denoted by card(S). ∅ denotes the empty set.

The maximum and minimum of a set are denoted by max(·),min(·), respectively, where

max(∅) = 0 and min(∅) = ∞. We let 〈·, ·〉 stand for an arbitrary, computable, bijective

mapping from N × N onto N [Rog67]. Similarly, one can define 〈·, . . . , ·〉 for encoding

multiple tuples of natural numbers onto N .

Symbol R denotes the set of all total computable functions. By ϕ we denote a fixed

acceptable programming system for the partial computable functions: N → N [Rog67,

MY78]. By ϕi we denote the partial computable function computed by the program with

number i in the ϕ-system.

By Φ we denote an arbitrary fixed Blum complexity measure [Blu67, HU79] for the

ϕ-system. By Wi we denote domain(ϕi). Wi is, then, the r.e. set/language (⊆ N) accepted

(or equivalently, generated) by the ϕ-program i. We also say that i is a grammar for Wi.

Symbol E will denote the set of all r.e. languages. Symbols L and S range over subsets of

E . We denote by Wi,s the set {x ≤ s | Φi(x) < s}.

2.1 Procrastination: Ordinals as Mind Change Counters

We assume a fixed notation system and partial ordering of constructive ordinals as used

by, for example, Kleene [Kle38, Rog67, Sac90]. �,≺,� and � on ordinals below refer

7

to the partial ordering of ordinals which is provable in the notation system used. We

do not go into the details of the notation system used, but instead refer the reader to

[Kle38, Rog67, Sac90, CJS95, FS93].

Definition 4 F, a mapping from SEQ into constructive ordinals, is an ordinal mind change

counter just in case (∀σ ⊆ τ)[F(σ) � F(τ)].

Definition 5 [FS93] Let α be a constructive ordinal.

(a) We say that M, with associated ordinal mind change counter function F, TxtExα-

identifies a text T just in case the following three conditions hold:

(i) M(T) converges to a grammar for content(T),

(ii) F(Λ) = α and

(iii) (∀n)[? 6= M(T [n]) 6= M(T [n + 1])⇒ F(T [n]) � F(T [n + 1])].

(b) M, with associated ordinal mind change counter function F, TxtExα-identifies L

(written: L ∈ TxtExα(M,F)) just in case M, with associated ordinal mind change

counter function F, TxtExα-identifies each text for L.

(c) TxtExα = {L | (∃M,F)[L ⊆ TxtExα(M,F)]}.

2.2 Preliminaries of Intrinsic Complexity

We write “σ ⊆ τ (σ ⊂ τ)” if σ is an initial sequence (proper initial sequence) of τ . Likewise,

we write σ ⊂ T if σ is an initial finite sequence of text T . Let finite sequences σ0, σ1, σ2, . . .

be given such that σ0 ⊆ σ1 ⊆ σ2 ⊆ · · · and limi→∞ |σ
i| = ∞. Then there is a unique text

T such that for all n ∈ N , σn ⊂ T . This text is denoted
⋃

n σn. Let TEXTS denote the

set of all texts, that is, the set of all infinite sequences over N ∪ {#}.

Definition 6 An enumeration operator , Θ, is an algorithmic mapping from SEQ into SEQ

such that the following two conditions are satisfied

(a) for all σ, τ ∈ SEQ, if σ ⊆ τ , then Θ(σ) ⊆ Θ(τ);

(b) For all texts T , limn→∞ |Θ(T [n])| =∞.

By extension, we think of Θ as also defining a mapping from TEXTS into TEXTS such

that Θ(T) =
⋃

n Θ(T [n]). Furthermore we define Θ(L) = {content(Θ(T)) | T is a text for L}.

Intuitively, Θ(L) denotes the set of languages to whose texts Θ maps texts of L. The reader

should note the overloading of this notation because the type of the argument to Θ could be

a sequence, a text, or a language; it will be clear from the context which usage is intended.

We let Θ and Ψ, with or without decorations, range over enumeration operators. Since we

8

will only be dealing with enumeration operators, we often drop the prefix “enumeration”.

Finally, we say that a sequence of grammars G = g0, g1, g2, . . . is TxtEx-admissible for a

text T just in case this sequence of grammars converges to a grammar for content(T). We

now introduce our first reduction. The reader is referred to [JS94] for a detailed discussion.

Definition 7 Let L ⊆ E and L′ ⊆ E be given. Let T = {T | (∃L ∈ L)[T is a text for L]}.

Let T ′ = {T | (∃L ∈ L′)[T is a text for L]}. We say that L ≤TxtEx

weak L′ just in case there

exist operators Θ and Ψ such that for all T ∈ T and for all infinite sequence of grammars

G = g0, g1, . . ., the following two conditions hold:

(a) Θ(T) ∈ T ′ and

(b) if G is a TxtEx-admissible sequence for Θ(T), then Ψ(G) is a TxtEx-admissible

sequence for T .

In the above case, we also say that Θ and Ψ witness L ≤TxtEx

weak L′. We say that

L ≡TxtEx

weak L′ iff L ≤TxtEx

weak L′ and L′ ≤TxtEx

weak L.

The next definition describes the notions of hardness and completeness for the above

reduction.

Definition 8 Let L ⊆ E be given.

(a) We say that L is ≤TxtEx

weak -hard iff for all L′ ∈ TxtEx, L′ ≤TxtEx

weak L.

(b) We say that L is ≤TxtEx

weak -complete iff L is ≤TxtEx

weak -hard and L ∈ TxtEx.

It should be noted that, in Definition 7, there is no requirement that Θ map every text for

a language in L into texts for a unique language in L′. If we further place such a constraint

on Θ, we get the following stronger notion.

Definition 9 Let L ⊆ E and L′ ⊆ E be given. We say that L ≤TxtEx
strong L

′ just in case there

exist operators Θ,Ψ such that

(a) Θ and Ψ witness that L ≤TxtEx

weak L′, and

(b) for all L ∈ L, Θ(L) contains exactly one language.

In other words, for all L ∈ L, there exists an L′ ∈ L′, such that (∀ texts T for L)[Θ(T) is

a text for L′]. In the above case, we also say that Θ and Ψ witness L ≤TxtEx
strong L

′. We say

that L ≡TxtEx
strong L

′ iff L ≤TxtEx
strong L

′ and L′ ≤TxtEx
strong L.

We can similarly define ≤TxtEx
strong -hardness and ≤TxtEx

strong -completeness.

9

2.3 Elementary Formal Systems

Let Σ, X, and Π be mutually disjoint sets. Σ and Π are finite and their elements are

referred to as constant symbols and as predicate symbols, respectively. Elements of X are

referred to as variables. We let a, b, . . . range over constant symbols; x, y, z, x1, x2, . . . range

over variables; and p, q, p1, p2, . . . range over predicate symbols. Each predicate symbol is

associated with a nonnegative integer called its arity .

Definition 10 A term or a pattern is an element of (Σ∪X)+. A ground term (or a word ,

or a string) is an element of Σ+.

A substitution is a homomorphism from terms to terms that maps each symbol a ∈ Σ to

itself. The image of a term π under a substitution θ is denoted πθ. We next describe

the language defined by a pattern. Note that there exists a recursive bijective mapping

between elements of Σ+ and N . Thus we can identify elements of Σ+ with elements of

N . We implicitly assume such an identification when we discuss languages defined using

subsets of Σ+ below. (We do not explicitly use the bijective mapping for ease of notation).

Definition 11 [Ang80] The language associated with the pattern π is defined as Lang(π) =

{πθ | θ is a substitution and πθ ∈ Σ+}. We define the class PATTERN = {Lang(π) |

π is a pattern}.

Angluin [Ang80] showed that PATTERN ∈ TxtEx. Shinohara [Shi86] showed that pattern

languages are not closed under union, and hence it is useful to study identification of

languages that are unions of more than one pattern language, as they can be used to

represent more expressive concepts.

We next define unions of pattern languages. Let S be a set of patterns. Then Lang(S)

is defined as
⋃

π∈S Lang(π). Intuitively, Lang(S) is the language formed by the union of

languages associated with patterns in S

Definition 12 [Shi86, Wri89] Let n > 1. PATTERNn = {Lang(S) | card(S) ≤ n}.

Shinohara [Shi86] and Wright [Wri89] showed that for n > 1, PATTERNn ∈ TxtEx.

We next consider languages definable by length-bounded elementary formal systems.

For this we first define atoms, definite clauses, and elementary formal systems.

Definition 13 [ASY92]

(a) An atomic formula (or, an atom) is an expression of the form p(π1, π2, . . . , πn), where

the arity of p ∈ Π is n and π1, π2, . . . , πn are terms. An atom p(π1, π2, . . . , πn) is

ground if terms π1, π2, . . . , πn are all ground.

10

(b) A definite clause is a clause of the form A← B1, . . . , Bn, where n ≥ 0 and A,B1, . . . , Bn

are atoms. A is called the head of the clause and the sequence of atoms B1, . . . , Bn is

called the body of the clause.

(c) An elementary formal system (EFS) is a finite set of definite clauses, which are called

axioms.

Let p(π1, . . . , πn) be an atom and let C = A← B1, . . . , Bn be a clause. Then p(π1, . . . , πn)θ

is defined as p(π1θ, . . . , πnθ) and Cθ is defined as Aθ ← B1θ, . . . , Bnθ. We next define what

it means for a clause to be provable from an EFS.

Definition 14 [ASY92] A clause C is provable from an EFS Γ (written: Γ ` C) just in

case C is obtained from Γ by a finite number of applications of substitutions and modus

ponens.

We next define what it means for a language definable by an EFS.

Definition 15 [ASY92] Let Γ be an EFS and let p be a predicate symbol with arity n.

Then Lang(Γ, p) is defined to be {(w1, . . . , wn) ∈ (Σ+)n | Γ ` p(w1, . . . , wn)}. If p is unary

then Lang(Γ, p) is a language over Σ. A language L is definable by EFS or is an EFS

language just in case there exist Γ and p such that Lang(Γ, p) = L.

|π| denotes the length of a term π; the length of an atom p(π1, . . . , πn) is defined as follows:

|p(π1, . . . πn)| = |π1|+ · · ·+ |πn|. We are interested in languages definable by length bounded

elementary formal systems.

Definition 16 [ASY92, Shi94]

(a) A clause A← B1, . . . , Bn is length-bounded just in case |Aθ| ≥ |B1θ|+ · · ·+ |Bnθ| for

any substitution θ.

(b) An EFS Γ is length-bounded just in case each axiom of Γ is length-bounded.

(c) For n ≥ 1, LBEFSn = {Lang(Γ, p) | Γ is length-bounded, p is unary, card(Γ) ≤ n,

Lang(Γ, p) 6= ∅}.

Shinohara [Shi94] showed that for n ≥ 1, LBEFSn ∈ TxtEx.

3 Results

3.1 EFS and Ordinal Mind Change Complexity

In this section we show that the idea of bounding the number of mind changes by construc-

tive ordinals can be used to analyze the mind change complexity of many concrete classes

of languages. It is easy to verify that PATTERN ∈ TxtExω. This means that PATTERN

11

is identifiable by a learning machine that, after examining an element of the language being

identified, can issue an upper bound on the number of mind changes it will make before

converging.

We first consider the identification of unions of pattern languages. The following theorem

says that the ordinal mind change complexity for identification of unions of up to d pattern

languages is ωd. Later, Corollary 1 establishes that there are cases for which ωd bound is

essential because PATTERNd 6∈ TxtExα, for all α ≺ ωd.

Theorem 1 For d ∈ N+, PATTERNd ∈ TxtExωd .

The proof of the above theorem is facilitated by two lemmas, which we present next.

Lemma 1 There exists a recursive function f (from finite sets to N) such that the following

holds. Suppose S is a nonempty finite set of decision procedures and T is a text. Then Mf(S)

satisfies the following properties.

(A) (∀n)[Mf(S)(T [n]) ∈ S];

(B) the number of mind changes by Mf(S) on T is bounded by 2 ∗ card(S); and

(C) if there exists a decision procedure for content(T) in S, then Mf(S)(T) converges to

a decision procedure for content(T).

Proof. Suppose S, a finite set of decision procedures, is given. We will describe Mf(S). It

will be easy to see that the description of Mf(S) is effective in S. (Note that if S is not a

set of decision procedures, then we do not care about the behavior of Mf(S)).

For i ∈ S, let Li denote the language accepted by the decision procedure i. Let Li[n]

denote {x ∈ Li | x < n}.

Begin Mf(S)(T [n])

1. Let Xn = {i ∈ S | content(T [n]) ⊆ Li}.

2. if there exists an i ∈ Xn, such that (∀i′ ∈ Xn)[Li[n] ⊆ Li′ [n]]

2a. then output least such i (say in)

2b. else output Mf(S)(T [n− 1]).

endif

End Mf(S)(T [n])

It is easy to observe that M satisfies (A). We now show (C). Suppose i is the least

decision procedure in S for content(T). Let X = {i′ ∈ S | content(T) ⊆ Li′}. It is easy to

observe that limn→∞ Xn = X. Let n be large enough so that Xn = X. For such n, the if

clause in Step 2 succeeds, Mf(S)(T [n]) = i. Thus (C) holds.

We now show that (B) holds. First note that Xn ⊇ Xn+1. Note that the only interesting

steps for counting mind changes are those in which the if condition in Step 2 succeeds and

Step 2a is executed.

12

Claim 1 Suppose that, for n < n′ < n′′, step 2 succeeds, and in = in′′ but in 6= in′. Then

in′ 6∈ Xn′′.

Proof. Suppose the hypothesis. Then, {in, in′} ⊆ Xn′ . Thus, Li
n′

[n′] ⊆ Lin [n′] and hence

Li
n′

[n] ⊆ Lin [n]. Since in was chosen over in′ in Mf(S)(T [n]), it follows that in < in′ .

However, since in′ was chosen (and thus in was not chosen) in step 2a of Mf(S)(T [n′]), it

follows that Lin [n′] 6⊆ Li
n′

[n′]. Hence, Lin [n′′] 6⊆ Li
n′

[n′′]. Thus since in′′ = in, it follows

that in′ 6∈ Xn′′ . 2

We say that a sequence of hypothesis of M is stacklike if it can be obtained by doing

push/pop/top operations on a stack, where each element of S is pushed on the stack at

most once. It immediately follows from the above claim that the sequence of hypothesis

output by M is stacklike. Also it is easy to see that in any stacklike sequence, the number

of mind changes is bounded by 2 ∗ card(S). Clause (B) and the Lemma follows.

Note that for the above lemma, the grammar can be of any form as long as the mem-

bership in each of them is decidable. Thus they could be pattern languages or unions of

pattern languages, etc.

The next lemma requires the development of some technical machinery.

Definition 17 A Search Tree is a finite labeled rooted tree. We denote the label of node,

v, in search tree H by CH(v).

Intuitively, the label on the nodes are interpreted as decision procedures. We abuse the

notation slightly and by Lang(CH(v)), we mean the language decided by CH(v). We next

introduce a partial order on search trees.

Definition 18 Suppose H1 and H2 are two search trees. We say that H1 � H2 just in case

the following properties are satisfied:

(A) root of H1 has the same label as root of H2;

(B) H1 is a labeled subgraph of H2; and

(C) all nodes of H1, except the leaves, have exactly the same children in both H1 and

H2.

Essentially, H1 � H2 means that H2 is obtained by attaching some (possibly zero) trees

to some of the leaves of the search tree H1. It is helpful to formalize the notion of depth

of a search tree as follows: depth of root is 0; depth of a child is 1 + depth of parent; and

depth of a search tree is depth of the deepest leaf.

Q, a mapping from SEQ to search trees, is called a d-Explorer iff the following properties

are satisfied:

(A) σ ⊆ τ ⇒ Q(σ) � Q(τ);

(B) (∀σ)[depth(Q(σ)) ≤ d]; and

13

(C) for all T , Q(T)↓, i.e., (
∞
∀ n)[Q(T [n]) = Q(T [n + 1])].

(The reader should note that C is actually implied by A and B; C has been included to

emphasize the point.)

Lemma 2 Suppose Q is a d-Explorer. Then there exists a machine M and an associated

ordinal mind change counter F such that the following properties are satisfied:

(A) (∀T)[M(T)↓];

(B) F(Λ) = ωd; and

(C) if there exists a node v in Q(T) such that CQ(T)(v) is a decision procedure for

content(T), then M, with associated mind change counter F, TxtExwd-identifies T .

Proof. The idea is to use the set of labels on the search trees generated by Q along with

Lemma 1. In fact, for clause (C), M constructed below will converge to a decision procedure

for content(T) (which can be easily converted to a grammar if needed).

Let f be as in Lemma 1. M(T [n]) = Mf(Sn)(T [n]), where Sn denotes the set of decision

procedures which are labels of nodes in Q(T [n]). For the mind change function F we do

the following. First we associate an ordinal with each search tree H.

If H is just a root then Ordval(H) = ωd; otherwise, Ordval(H) =
∑d

i=1[ω
d−i · ki] + c,

where ki denotes the number of leaves in H at depth i, and c is 2∗(number of nodes in

H)+2.

We define F(T [n]) as follows. Suppose, n′ ≤ n is the largest number such that Q(T [n′]) =

Q(T [n]) (i.e., the last time Q made a mind change). Let c′ denote the number of mind

changes made by M, between T [n′] and T [n], i.e., c′ = card({n′′ | n′ ≤ n′′ < n ∧M(T [n′′]) 6=

M(T [n′′ + 1])}). Then let F (T [n]) = Ordval(Q(T [n])) − c′. (It is easy to verify, using

Lemma 1, that this subtraction is well defined.)

It is also easy to verify using Lemma 1 that value of F(T [n]) ≥ Ordval(Q(T [n])) − c,

where c is 2∗(number of nodes in H) +1. The reader can easily observe that F is indeed an

ordinal mind change counter. Now, using the convergence of Q, the definition of M, and

Lemma 1, one can immediately verify the clauses (A), (B) and (C) of the lemma.

Proof. (Theorem 1) Using Lemma 2 we just need to show the existence of a d-Explorer

Q with “nice” properties. For ease of presentation, we will use sets of pattern languages as

labels for nodes of search trees. It is easy to convert these labels into decision procedures.

We construct a d-explorer Q as follows.

Let Q(Λ) = just a root with label ∅.

Q(T [n + 1]) is obtained as follows.

For each leaf, v, in Q(T [n]), such that depth(v) < d and content(T [n+1]) 6⊆ Lang(CH(v))

do the following:

For each pattern π, such that length of π is bounded by the maximum length string in

content(T [n + 1]), add a child with label [CH(v) ∪ {π}] to v.

14

It is easy to verify that Q is d-Explorer. Moreover, for any text T for a language

L ∈ PATTERNd, there exists a leaf, v, in Q(T), such that Lang(CQ(T)(v)) = L.

The following corollary to Theorem 4 (presented in the Section 3.2) shows that the

bound of ωd for identification of PATTERNd is essential.

Corollary 1 For each d > 0, PATTERNd 6∈
⋃

α<ωd TxtExα.

Note that in the proof of Theorem 1 we constructed d-Explorers using the following

property of pattern languages: strings of length n can only be generated by patterns of

length ≤ n. LBEFS have a similar property: proof of an atom of length n, can only use

clauses whose head have length bounded by n (and hence the length of the clauses are

bounded).

Thus, another application of Lemma 2 can be used to show ωd is also the ordinal mind

change complexity of the language class definable by length-bounded elementary formal

systems with at most d axioms.

Theorem 2 Let d > 0. LBEFSd ∈ TxtExωd.

Since for each d > 0, PATTERNd ⊂ LBEFSd, the following corollary immediately

follows from Corollary 1.

Corollary 2 For each d > 0, LBEFSd 6∈
⋃

α<ωd TxtExα.

3.2 EFS Subclasses and Intrinsic Complexity

In this section, we compare the intrinsic complexity of unions of pattern languages and

languages of bounded cardinality.

In [JS94, JS96a] it was shown that PATTERN is a strictly more difficult learning prob-

lem than the class of singleton languages, i.e., SINGLE ≤TxtEx
strong PATTERN , but PATTERN

6≤TxtEx

weak SINGLE. Let FIN i = {S | 1 ≤ card(S) ≤ i}. It has also been shown that

PATTERN and FIN i, i > 1, are incomparable. In this section we relate the intrinsic com-

plexity of FIN i, i > 1, to the intrinsic complexity of unions of pattern languages. It is easy

to establish the following proposition.

Proposition 1 (∀i ∈ N+)[FIN i ≤
TxtEx
strong PATTERN i].

Surprisingly, the above result can be strengthened to show the following theorem which

says that the classes of finite languages of bounded cardinality are no more difficult to learn

than class of languages formed by unions of up to two pattern languages.

Theorem 3 (∀k ∈ N+)[FINk ≤
TxtEx
strong PATTERN2].

15

Proof. We give the mappings Θ and Ψ witnessing the theorem.

Suppose y1 < y2 < · · · < yr, and r ≤ k. Let

Θ({y1, y2, · · · , yr}) = Lang(a2(k+1−r)x) ∪ Lang(a2(k+1−r)−1bb〈y1,y2,...,yr〉).

Note that it is easy to construct such a Θ.

Suppose f is a recursive function from finite sets to natural numbers such that

f({y1, y2, · · · , yr}) is a grammar for {y1, y2, · · · , yr}. Let Ψ(g1, g2, · · · , gl) = (g′1, g
′
2, · · · , g

′
l),

where g′i, 1 ≤ i ≤ l, is defined as follows:

g′i =

f({y1, y2, · · · , yr}), if a2(k+1−r)−1bb〈y1,y2,···,yr〉 ∈Wgi,i and

r = max({r′ | (∃x ∈ Σ∗)a2(k+1−r′)−1bx ∈Wgi,i});

0, otherwise.

It is easy to verify that Θ,Ψ witness FIN k ≤
TxtEx
strong PATTERN2.

An immediate consequence of this result is the following corollary.

Corollary 3 PATTERN2 6≤TxtEx

weak PATTERN .

We next present an interesting result which shows that PATTERN d+1 is not reducible

to any class that can be learned with an ordinal mind change complexity of α, α ≺ ωd+1.

We have already noted that this result implies Corollary 1.

Theorem 4 Let d ∈ N+, α ≺ ωd+1. Suppose L ∈ TxtExα. Then PATTERNd+1 6≤TxtEx

weak

L.

Proof. We first prove a lemma regarding existence of pattern languages with certain prop-

erties. For ordinals used in the lemma and the rest of the proof of the theorem we are

concerned with the values of the ordinals and not about the exact notation. Thus for the

purpose of diagonalization, all notation for the same ordinal will be equivalent. The equal-

ity/precedence of ordinals in this proof are based on the values of the ordinals and not on

the exact notation.

Lemma 3 Let d ∈ N+. Then, for each β ≺ ωd+1, we can define pattern languages L1
β, L2

β

such that the following property holds:

(∀β′ ≺ β ≺ ωd+1)[L1
β ⊂ L2

β ⊂ L1
β′].

Proof. Fix d. Let Σ = {a, b}. Suppose β = ωd · j1 + ωd−1 · j2 + . . . + jd+1.

16

Let L1
β =

Lang(a3j1+1ba3j2+1b · · · a3jd+1ba3jd+1+2x) ∪

Lang(a3j1+3x) ∪

Lang(a3j1+1ba3j2+3x) ∪

· · · Lang(a3j1+1ba3j2+1 · · · a3jd+3x).

Let L2
β =

Lang(a3j1+1ba3j2+1b · · · a3jd+1ba3jd+1+1x) ∪

Lang(a3j1+3x) ∪

Lang(a3j1+1ba3j2+3x) ∪

· · · Lang(a3j1+1ba3j2+1 · · · a3jd+3x).

It is easy to verify that the above L1
β, L2

β satisfy the lemma.

We now continue with the proof of the theorem. Fix d and α ≺ ωd+1. Let L ⊆

TxtExα(M,F). Suppose by way of contradiction that Θ,Ψ witness PATTERN d+1 ≤TxtEx

weak

L.

For β ≺ ωd+1, let L1
β, L2

β be as in Lemma 3.

We now construct a text in stages as described below. Let σ0 = Λ. Go to Stage 0.

Begin Stage s

1. Suppose F(Θ(σs)) = β.

2. Search for an extension σs+1 of σs such that F(Θ(σs+1)) ≺ F(Θ(σs)) and content(σs+1) ⊆

L2
β.

3. If such a σs+1 is found, then go to Stage s + 1.

End Stage s

It is easy to verify by induction that content(σs) ⊆ L1
F(Θ(σs))

, and so the search in Step 2

of the construction makes sense. Clearly, there can be only finitely many stages which halt

(due to well orderedness of ordinals). Let s be the stage which starts but does not halt. Let

T1 be a text for L1
F(Θ(σs))

and T2 be a text for L2
F(Θ(σs))

, such that σs ⊆ T1 and σs ⊆ T2.

Since Θ, Ψ witness the reduction of PATTERN d+1 to L, we must have that Θ(T1) and

Θ(T2) are texts for two distinct languages in L. Moreover, since Step 2 does not succeed in

Stage s, we have M(Θ(T1)) = M(Θ(T2)) = M(Θ(σs)). It follows that, L 6⊆ TxtExα(M,F).

A contradiction. Thus PATTERNd+1 6≤TxtEx

weak L.

Now since LBEFSd can be identified with ordinal mind change complexity of ωd, we

immediately have the following corollary to the above theorem which says that learning

17

unions of up to d + 1 pattern languages is not reducible to the problem of learning EFS

languages definable by up to d length-bounded clauses.

Corollary 4 Let d ∈ N+. PATTERNd+1 6≤TxtEx

weak LBEFSd.

The above corollary additionally yields the following pleasing corollary that is very natu-

ral. It is interesting to note that the following result further establishes intrinsic complexity

as a useful measure of the difficulty of learning a class of languages.

Corollary 5 Let d ∈ N+.

(a) PATTERNd+1 6≤TxtEx

weak PATTERNd.

(b) LBEFSd+1 6≤TxtEx

weak LBEFSd.

3.3 Topological Properties, Intrinsic Complexity, and Procrastination

In this section, we consider connections between topological properties of learnable classes

and their intrinsic complexity. The following notion was introduced by Angluin [Ang80].

Definition 19 L has finite thickness just in case for each n ∈ N , card({L ∈ L | n ∈ L}) is

finite.

PATTERN has finite thickness. Angluin [Ang80] showed that if L is an indexed family

of recursive languages and L has finite thickness then L ∈ TxtEx. A more interesting

topological notion was introduced by Wright [Wri89] (see also Motoki, Shinohara, and

Wright [MSW91]) described below.

Definition 20 [Wri89, MSW91] L has infinite elasticity just in case there exists an infinite

sequence of pairwise distinct numbers, {wi ∈ N | i ∈ N}, and an infinite sequence of

pairwise distinct languages, {Ai ∈ L | i ∈ N}, such that for each k ∈ N , {wi | i < k} ⊆ Ak,

but wk 6∈ Ak. L is said to have finite elasticity just in case L does not have infinite elasticity.

Wright [Wri89] showed that if a class L has finite thickness then it has finite elasticity.

He further showed that if a class L is an indexed family of recursive languages and L has

finite elasticity, then L ∈ TxtEx.

Now, language classes that are ≤TxtEx

weak -complete are, in some sense, the most difficult

learning problems. Interestingly, we are able to establish that ≤TxtEx

weak -completeness is also

a sufficient condition for infinite elasticity.

Theorem 5 Suppose L is ≤TxtEx

weak -complete. Then L has infinite elasticity.

Proof. Suppose L is given such that FIN ≤TxtEx

weak L as witnessed by Θ and Ψ. Let

Xi = {x | x ≤ i}.

The following lemma is proved in [JS96b] (Lemma 2(b)).

18

Lemma 4 Suppose Θ is an arbitrary enumeration operator, Y1 ⊆ Y2 ⊆ N and Y ′
1 ∈ Θ(Y1).

Then for every finite subset S of Y ′
1, there exists an Y ′

2 ∈ Θ(Y2) such that S ⊆ Y ′
2.

Thus, we have

(∀i, j | j > i)(∀L ∈ Θ(Xi))(∀ finite S ⊆ L)(∃L′ ∈ Θ(Xj))[S ⊆ L′] (1)

We consider two cases:

Case 1: There exists an i, there exists an L ∈ Θ(Xi), there exists a finite S ⊆ L, such that

(∀j > i)(∀L′ ∈ Θ(Xj))[S ⊆ L′ ⇒ L′ ⊆ L]

In this case let i, L, S be as witnessing above.

Let A0 be an element of Θ(Xi+1) such that S ⊆ A0. Note that such a A0

exists (by (1) above). Define wk, Ak+1 inductively as follows.

Now Ak ⊆ L (by induction and hypothesis of this case) and Ak 6= L (since

Xi and Xi+k+1 are distinct). Let wk be an element of L − Ak. Let Ak+1 be

a member of Θ(Xi+k+2) such that S ∪ {w0, . . . , wk} ⊆ Ak+1. Note that there

exists such a Ak+1, since S ∪ {w0, . . . , wk} ⊆ L, L ∈ Θ(Xi) and Xi ⊆ Xi+k+2

(by (1) above).

It is now easy to observe that Ak, wk witness that L is of infinite elasticity.

Case 2: Not Case 1. Thus, for all i, for all L ∈ Θ(Xi), for all finite S ⊆ L, there exists a

j > i, there exists a L′ ∈ Θ(Xj), such that S ⊆ L′ and L′ 6⊆ L.

Let A0 be a member of Θ(X0). Define wk and Ak+1 inductively as follows.

Let L′ be as witnessing the Case 2, when L = Ak, and S = {w0, . . . , wk−1}.

Let Ak+1 = L′ and wk be a member in L′ −Ak.

It is now easy to observe that Ak, wk witness that L is of infinite elasticity.

From the above cases it follows that L has infinite elasticity.

Classes that have infinite elasticity are not necessarily identifiable. However, it is inter-

esting to ask: Are all identifiable classes that have infinite elasticity also ≤TxtEx

weak -complete ?

The following result answers this question negatively.

Theorem 6 There exist a class L such that L ∈ TxtEx and L has infinite elasticity, but

L is not ≤TxtEx

weak -complete.

Proof. (Sketch) For i ∈ N , consider the language:

Li = {〈0, i〉} ∪ {〈1, x〉 | x ≤ i}

19

Consider the class L = {Li | i ∈ N}. It is easy to verify that L has infinite elasticity. Also,

L cannot be ≤TxtEx

weak -complete since it can be TxtEx-identified using 0 mind changes.

Finite elasticity is a sufficient condition for identification of indexed families of recursive

languages. Also, the property of finite elasticity is preserved under finite unions. We have

seen that for each d > 0, PATTERNd ∈ TxtExωd . It would be interesting to investigate

if for each indexed family of recursive languages L that has finite elasticity, if there is an i

such that L ∈ TxtExωi . The answer to this question turns out to be negative as implied

by the following result.

Theorem 7 There exists a class L such that the following hold:

(a) L is an indexed family of recursive languages;

(b) L has finite elasticity; and

(c) for each i > 0, L 6∈ TxtExωi .

Proof. Let X i
L = {〈i, x〉 | x ∈ L}. Let L = {X i

L | i > 0 ∧ L ∈ PATTERN i}. Since,

for each i, PATTERN i has finite elasticity, it follows that L has finite elasticity. Since

PATTERN i+1 6∈ TxtExωi , it follows that L 6∈ TxtExωi .

4 Conclusion

Interesting connections between three distinct areas of inductive inference, viz., learnability

of EFS subclasses, intrinsic complexity, and ordinal mind change complexity were estab-

lished. These results show that the abstract ideas of intrinsic complexity and ordinal mind

change complexity can be employed to gain an insight into the learnability of concrete lan-

guage classes. Another contribution of the paper is the establishment of some connections

between the topological properties of learnable classes of indexed families and the notion of

intrinsic complexity and ordinal mind change complexity. More results of this nature will

enhance our understanding of identification from positive data. Also, since EFS subclasses

have counterparts in standard logic programming, the results presented in this paper form

a basis for employing inductive inference to analyze identification in the limit results for

inductive logic programming.

References

[AMS+92] S. Arikawa, S. Miyano, A. Shinohara, T. Shinohara, and A. Yamamoto. Algo-

rithmic learning theory with elementary formal systems. IEICE Trans. Inf. and

Syst., E75–D No. 4:405–414, 1992.

20

[Ang80] D. Angluin. Finding patterns common to a set of strings. Journal of Computer

and System Sciences, 21:46–62, 1980.

[Ari70] S. Arikawa. Elementary formal systems and formal languages—simple formal

systems. Memoirs of the Faculty of Science, Kyushu University Seties A, 24:47–

75, 1970.

[Ari89] H. Arimura. Completeness of depth-bounded resolution in logic programming.

In Proceedings of the 6th Conference, Japan Soc. Software Sci. Tech., pages

61–64, 1989.

[AS94] H. Arimura and T. Shinohara. Inductive inference of Prolog programs with

linear data dependency from positive data. In Proc. Information Modelling and

Knowledge Bases V, pages 365–375. IOS Press, 1994.

[ASMS91] S. Arikawa, T. Shinohara, S. Miyano, and A. Shinohara. More about learning

elementary formal systems. In G. Brewka, K. P. Jantke, and P. H. Schmitt,

editors, Nonmonotonic and Inductive Logic, pages 107–117. Springer–Verlag,

1991. Lecture Notes in Artificial Intelligence 659.

[ASY92] S. Arikawa, T. Shinohara, and A. Yamamoto. Learning elementary formal sys-

tems. Theoretical Computer Science, 95:97–113, 1992.

[Blu67] M. Blum. A machine-independent theory of the complexity of recursive func-

tions. Journal of the ACM, 14:322–336, 1967.

[CJS95] J. Case, S. Jain, and M. Suraj. Not-so-nearly-minimal-size program inference. In

Klaus P. Jantke and Steffen Lange, editors, Algorithmic Learning for Knowledge-

Based Systems, volume 961 of Lecture Notes in Artificial Intelligence, pages

77–96. Springer-Verlag, 1995.

[FKS95] R Freivalds, E. Kinber, and C. H. Smith. On the intrinsic complexity of learn-

ing. In Paul Vitanyi, editor, Proceedings of the Second European Conference on

Computational Learning Theory, pages 154–169. Springer-Verlag, March 1995.

Lecture Notes in Artificial Intelligence 904.

[FS92] R. Freivalds and C. Smith. On the role of procrastination for machine learning. In

Proceedings of the Fifth Annual Workshop on Computational Learning Theory,

Pittsburgh, Pennsylvania, pages 363–376. ACM Press, July 1992.

[FS93] R. Freivalds and C. Smith. On the role of procrastination in machine learning.

Information and Computation, pages 237–271, 1993.

21

[Gol67] E. M. Gold. Language identification in the limit. Information and Control,

10:447–474, 1967.

[HU79] J. Hopcroft and J. Ullman. Introduction to Automata Theory, Languages, and

Computation. Addison-Wesley Publishing Company, 1979.

[JS94] S. Jain and A. Sharma. On the intrinsic complexity of language identification.

In Proceedings of the Seventh Annual Conference on Computational Learning

Theory, New Brunswick, New Jersey, pages 278–286. ACM-Press, July 1994.

[JS95] S. Jain and A. Sharma. The structure of intrinsic complexity of learning. In Paul

Vitanyi, editor, Computational Learning Theory, Second European Conference,

EuroCOLT’95, Barcelona, Spain, pages 169–181. Springer-Verlag, March 1995.

Lecture Notes in Artificial Intelligence 904.

[JS96a] S. Jain and A. Sharma. On the intrinsic complexity of language identification.

Journal of Computer and System Sciences, 52(3):393–402, June 1996. Special

issue on Computational Learning Theory, 1994.

[JS96b] S. Jain and A. Sharma. The structure of intrinsic complexity of learning. Journal

of Symbolic Logic, 1996. Accepted. Preliminary version in [JS95].

[Kle38] S. C. Kleene. Notations for ordinal numbers. Journal of Symbolic Logic, 3:150–

155, 1938.

[KR96] M. R. K. Krishna Rao. A class of Prolog programs inferable from positive data.

In A. Arikawa and A. Sharma, editors, Proceedings of the Seventh International

Workshop on Algorithmic Learning Theory, pages 272–284. Lecture Notes in

Artificial Intelligence, No. 1160, Springer-Verlag, 1996.

[MSW91] T. Motoki, T. Shinohara, and K. Wright. The correct definition of finite elas-

ticity: Corrigendum to identification of unions. In L. Valiant and M. Warmuth,

editors, Proceedings of the Fourth Annual Workshop on Computational Learning

Theory, Santa Cruz, California, page 375. Morgan Kaufman, 1991.

[MY78] M. Machtey and P. Young. An Introduction to the General Theory of Algorithms.

North Holland, New York, 1978.

[Rog67] H. Rogers. Theory of Recursive Functions and Effective Computability. McGraw-

Hill, New York, 1967. Reprinted, MIT Press 1987.

[Sac90] G. E. Sacks. Higher Recursion Theory. Springer-Verlag, 1990.

[Shi86] T. Shinohara. Studies on Inductive Inference from Positive Data. PhD thesis,

Kyushu University, Kyushu, Japan, 1986.

22

[Shi91] T. Shinohara. Inductive inference of monotonic formal systems from positive

data. New Generation Computing, 8:371–384, 1991.

[Shi94] T. Shinohara. Rich classes inferable from positive data: Length–bounded ele-

mentary formal systems. Information and Computation, 108:175–186, 1994.

[Smu61] R. Smullyan. Theory of Formal Systems, Annals of Mathematical Studies, No.

47. Princeton, NJ, 1961.

[Wri89] K. Wright. Identification of unions of languages drawn from an identifiable

class. In R. Rivest, D. Haussler, and M. K. Warmuth, editors, Proceedings of

the Second Annual Workshop on Computational Learning Theory, Santa Cruz,

California, pages 328–333. Morgan Kaufmann Publishers, Inc., 1989.

23

