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Abstract

The approach of ordinal mind change complexity, introduced by Freivalds and
Smith, uses (notations for) constructive ordinals to bound the number of mind
changes made by a learning machine. This approach provides a measure of the ex-
tent to which a learning machine has to keep revising its estimate of the number of
mind changes it will make before converging to a correct hypothesis for languages
in the class being learned. Recently, this notion, which also yields a measure for the
difficulty of learning a class of languages, has been used to analyze the learnability
of rich concept classes.

The present paper further investigates the utility of ordinal mind change com-
plexity. It is shown that for identification from both positive and negative data and
n ≥ 1, the ordinal mind change complexity of the class of languages formed by
unions of up to n + 1 pattern languages is only ω ×O notn(n) (where notn(n) is a
notation for n, ω is a notation for the least limit ordinal and ×O represents ordinal
multiplication). This result nicely extends an observation of Lange and Zeugmann
that pattern languages can be identified from both positive and negative data with
0 mind changes.

Existence of an ordinal mind change bound for a class of learnable languages can
be seen as an indication of its learning “tractability.” Conditions are investigated
under which a class has an ordinal mind change bound for identification from pos-
itive data. It is shown that an indexed family of languages has an ordinal mind
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change bound if it has finite elasticity and can be identified by a conservative ma-
chine. It is also shown that the requirement of conservative identification can be
sacrificed for the purely topological requirement of M -finite thickness. Interaction
between identification by monotonic strategies and existence of ordinal mind change
bound is also investigated.

Key words: Inductive inference, mind change complexity, ordinals

1 Introduction

Natural numbers have been used as counters for bounding the number of mind
changes. However, such bounds do not take into account scenarios in which a
learning machine, after examining an element of the language is in a position
to issue a bound on the number of mind changes it will make before the onset
of convergence. For example, consider the class COINIT = {L | (∃n)[L = {x |
x ≥ n}]}. Intuitively, COINIT is the collection of languages that contain all
natural numbers except a finite initial segment. Clearly, a learning machine
that, at any given time, finds the minimum element n in the data seen so far
and emits a grammar for the language {x | x ≥ n} identifies COINIT in the
limit from positive data. It is also easy to see that the class COINIT cannot
be identified by any machine that is required to converge within a constant
number of mind changes. However, the machine identifying COINIT can, after
examining an element of the language, issue an upper bound on the number of
mind changes. It turns out that the class of pattern languages (PATTERN),
first introduced by Angluin [2] and shown to be identifiable in the limit from
only positive data (texts), displays similar behavior. This is because any string
in a pattern language yields a finite set of patterns that are candidate patterns
for the language being learned. Such scenarios can be modeled by the use of
(notations for) constructive ordinals as mind change counters introduced by
Freivalds and Smith [9]. We illustrate the idea with a few examples; the formal
definition is presented later.

TxtEx denotes the collection of language classes that can be identified in the
limit from texts. TxtExα denotes the collection of language classes that can
be identified in the limit from texts with an ordinal mind change bound α. Let
ω denote a notation for the least limit ordinal. For α ≺ ω, the notion coincides
with the earlier notion of bounded mind change identification [5,7]. For α = ω,
TxtExω denotes learnable classes for which there exists a machine that, after
examining some element(s) of the language, can announce an upper bound
on the number of mind changes it will make before the onset of successful
convergence. Both, COINIT and PATTERN are members of TxtExω. Let
notn(n) denote an ordinal notation for natural number n and let ×O repre-
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sent ordinal multiplication. Proceeding on, the class TxtExω×Onotn(2) contains
classes for which there is a learning machine that after examining some ele-
ment(s) of the language announces an upper bound on the number of mind
changes, but reserves the right to revise this upper bound once. Similarly,
in the case of TxtExω×Onotn(3), the machine reserves the right to revise its
upper bound twice, and so on. TxtExω×Oω contains classes for which the ma-
chine announces an upper bound on the number of times it may revise its
conjectured upper bound on the number of mind changes, and so on.

Shinohara [31] showed that the class of pattern languages is not closed un-
der union and many rich concepts can be represented by unions of pattern
languages; these languages have been applied to knowledge acquisition from
amino acid sequences (see Arikawa et al. [4]). For empirical approaches to
learning unions of simple pattern languages, see Kilpeläinen, Mannila, and
Ukkonen [18]. In [12,14], the ordinal mind change complexity of the classes
of languages formed by taking unions of pattern languages was derived. For
n ≥ 1, it was shown that the class formed by taking unions of up to n pattern
languages, PATTERN

n, is in TxtExωn, where ωn denotes ω×O ω . . .×O ω (ω
is multiplied by itself n times). It was also shown that there are cases for which
the ωn bound is essential because PATTERN

n 6∈ TxtExα, for all α ≺ ωn.

In this paper we investigate the ordinal mind change bounds for identification
in the limit of unions of pattern languages from both positive and negative
data (informants). InfEx denotes the collection of language classes that can
be identified in the limit from informants and InfExα denotes the collection
of those classes identifiable with an ordinal mind change bound of α. Lange
and Zeugmann [20] have observed that PATTERN can be identified from
informants with 0 mind changes. So, it is to be expected that the ordinal
mind change bounds for identification from informants of unions of pattern
languages be lower than those for identification from texts. We show that this
is indeed the case as, for n ≥ 1, PATTERN

n+1 ∈ InfExω×Onotn(n).

It is interesting to note that although the unbounded union of pattern lan-
guages is not identifiable from texts, it is identifiable from informants. Un-
fortunately, there is no ordinal mind change bound for identification from
informants of unbounded unions of pattern languages. This is because this
class contains the class of finite languages, FIN , for which there is no ordi-
nal mind change complexity bound. It may be argued that in terms of mind
change complexity, FIN is a very difficult problem. 1 Since the existence of
ordinal mind change bound for a class is a reflection of its learning “tractabil-
ity”, it is therefore useful to investigate conditions under which an ordinal

1 A similar conclusion can be drawn from the study of intrinsic complexity of FIN

[11,13,15], where it turns out that FIN is a complete class with respect to weak
reduction.
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mind change bound can be guaranteed. We consider a number of possibili-
ties, including identification by conservative strategies, topological properties
like finite thickness, M -finite thickness, and finite elasticity, and monotonicity
requirements. We preview some of our results.

We first establish a useful technical result which states that if a learning ma-
chine makes a finite number of mind changes on any text, then the class of
languages that can be identified by this machine has an ordinal mind change
bound. This result is used to show that if an indexed family of languages has
finite elasticity and can be conservatively identified then there is an ordinal
mind change bound for this class. We also show that the requirement of con-
servative identification can be sacrificed in the previous result for the purely
topological requirement that the class have M -finite thickness in addition
to finite elasticity. Since finite thickness implies finite elasticity and M -finite
thickness, the above results imply that any indexed family of languages with
finite thickness has an ordinal mind change bound.

The results discussed above give general sufficient conditions for identifiability
with ordinal bound on mind changes. However, the mind change bound α
may be arbitrarily large. An interesting question to ask is whether the ordinal
mind change bound remains arbitrarily large if some other constraints such as
monotonicity are added. We show a negative result in this direction as for every
constructive ordinal bound α, there exists an indexed family of languages that
can be identified strong-monotonically and has finite thickness, but cannot be
identified with the ordinal mind change bound of α. A similar result also holds
for dual strong-monotonicity.

We now proceed formally.

2 Preliminaries

N denotes the set of natural numbers, {0, 1, 2, . . .}; Any unexplained recursion
theoretic notation is from [27]. Cardinality of a set S is denoted card(S). The
maximum and minimum of a set are represented by max(·) and min(·), respec-
tively. The symbols ⊆,⊇,⊂,⊃, and ∅ respectively stand for subset, superset,
proper subset, proper superset, and the emptyset. A language is any subset of
N . L is a typical variable for a language. L is the complement of L, that is,
L = N − L.
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2.1 Identification

We first define the notion of texts for languages.

Definition 1 [10]

(a) A text T is a mapping from N into N ∪ {#}.
(b) A text T is for a language L iff L is the set of natural numbers in the

range of T .
(c) content(T ) denotes the set of natural numbers in the range of T .
(d) The initial sequence of text T of length n is denoted T [n].
(e) The set of all finite initial sequences of N and #’s is denoted SEQ.

Members of SEQ are inputs to machines that learn grammars (acceptors) for
r.e. languages. We let σ and τ , with or without decorations 2 , range over SEQ.
Λ denotes the empty sequence. content(σ) denotes the set of natural numbers
in the range of σ and the length of σ is denoted |σ|. We say that σ ⊆ τ (σ ⊆ T )
to denote that σ is an initial sequence of τ (T ).

Definition 2 A language learning machine (from texts) is an algorithmic
mapping from SEQ into N ∪{?}.

A conjecture of “?” by a machine is interpreted as “no guess at this moment.”
This is useful to avoid biasing the number of mind changes of a machine. For
this paper, we assume, without loss of generality, that σ ⊆ τ and M(σ) 6=?
implies M(τ) 6=?.

M denotes a typical variable for a language learning machine (from texts or
informants). We also fix an acceptable programming system [22] and interpret
the output of a language learning machine as the index of a program in this
system. We associate these programs with the domain of the partial functions
computed by them. Then, a program conjectured by a machine in response to
a finite initial sequence may be viewed as a candidate accepting grammar for
the language being learned. We say that M converges on text T to i (written:
M(T ) converges to i or M(T )↓ = i) just in case for all but finitely many n,
M(T [n]) = i. The following definition introduces Gold’s criterion for successful
identification of languages.

Definition 3 [10]

(a) M TxtEx-identifies a text T just in case M(T ) converges to a grammar
for content(T ).

2 Decorations are subscripts, superscripts and the like.
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(b) M TxtEx-identifies an r.e. language L (written: L ∈ TxtEx(M)) just
in case M TxtEx-identifies each text T for L.

(c) M TxtEx-identifies a class L of r.e. langauges, iff M TxtEx-identifies
each L ∈ L.

(d) TxtEx denotes the family of all sets C of r.e. languages such that some
machine TxtEx-identifies each language in C.

The next two definitions describe the notion of informants as a model of both
positive and negative data presentation and identification in the limit from
informants.

Definition 4 [10]

(a) An informant I is an infinite sequence over N ×{0, 1} such that for each
n ∈ N either (n, 1) or (n, 0) (but not both) appear in the sequence.

(b) An informant I is for L iff (n, 1) appears in I if n ∈ L and (n, 0) appears
in I if n 6∈ L.

(c) I[n] denotes the initial sequence of informant I with length n.
(d) content(I) = {(x, y) | (x, y) appears in sequence I}. content(I[n]) is

defined similarly.
(e) PosInfo(I[n]) = {x | (x, 1) ∈ content(I[n])}. NegInfo(I[n]) = {x |

(x, 0) ∈ content(I[n])}.
(f) SEG = {I[n] | I is an informant for some L ⊆ N}.

A language learning machine (from informants) is an algorithmic mapping
from SEG into N∪{?}. We say that M converges on informant I to i (written:
M(I) converges to i or M(I)↓ = i) just in case for all but finitely many n,
M(I[n]) = i.

We now define identification from informants.

Definition 5 [10]

(a) M InfEx-identifies an r.e. language L just in case M, fed any infor-
mant for L, converges to a grammar for L. In this case we say that
L ∈ InfEx(M).

(b) M InfEx-identifies a collection of languages, C, just in case M InfEx-
identifies each language in C.

(c) InfEx denotes the family of all sets C of r.e. languages such that some
machine InfEx-identifies C.

The following proposition describes the relationship between TxtEx and InfEx.

Proposition 6 [10] TxtEx ⊂ InfEx.
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2.2 Ordinals as Mind Change Counters

We assume a fixed notation system, O, and partial ordering of ordinal no-
tations as used by, for example, Kleene [19,27,28]. �,≺,� and � on ordinal
notations below refer to the partial ordering of ordinal notations in this sys-
tem. Similarly, ×O and +O refer to the addition and multiplication of the
ordinal notations in this system. We do not go into the details of the notation
system used, but instead refer the reader to [19,27,28,6,9].

For a natural number n, we let notn(n) denote a notation for n. We let ω
denote a notation for the least limiting ordinal.

Definition 7 F, an algorithmic mapping from SEQ (or SEG) into ordinal
notations, is an ordinal mind change counter function just in case (∀σ ⊆
τ)[F(σ) � F(τ)].

Definition 8 [9] Let α be an ordinal notation.

(a) We say that M, with associated ordinal mind change counter function
F, TxtExα-identifies a text T just in case the following three conditions
hold:
(i) M(T ) converges to a grammar for content(T ),
(ii) F(Λ) = α and
(iii) (∀n)[? 6= M(T [n]) 6= M(T [n + 1]) ⇒ F(T [n]) � F(T [n + 1])].

(b) M, with associated ordinal mind change counter function F, TxtExα-
identifies L (written: L ∈ TxtExα(M,F)) just in case M, with associated
ordinal mind change counter function F, TxtExα-identifies each text for
L.

(c) TxtExα = {C | (∃M,F)[C ⊆ TxtExα(M,F)]}.

Definition 9 [9] Let α be an ordinal notation.

(a) We say that M, with associated ordinal mind change counter function
F, InfExα-identifies an informant I for a language L just in case the
following three conditions hold:
(i) M(I) converges to a grammar for L,
(ii) F(Λ) = α and
(iii) (∀n)[? 6= M(I[n]) 6= M(I[n + 1]) ⇒ F(I[n]) � F(I[n + 1])].

(b) M, with associated ordinal mind change counter function F, InfExα-
identifies L (written: L ∈ InfExα(M,F)) just in case M, with associated
ordinal mind change counter function F, InfExα-identifies each infor-
mant for L.

(c) InfExα = {C | (∃M,F)[C ⊆ InfExα(M,F)]}.

We refer the reader to Ambainis [1] for a discussion on how the learnability
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classes depend on the choice of the ordinal notation.

We now formally show that COINIT ∈ TxtExω. To see this, for n ∈ N , let in
denote a grammar, obtained effectively from n, for the language {x | x ≥ n}.
We define a learning machine M and an ordinal mind change counter function
F on text T as follows.

M(T [n]) =

{

?, if content(T [n]) = ∅;
imin(content(T [n])), otherwise.

F(T [n]) =
{

ω, if content(T [n]) = ∅;
notn(m), if content(T [n]) 6= ∅, and m = min(content(T [n])).

It is easy to verify that COINIT ⊆ TxtEx(M,F).

The following Lemma is useful in proving some of our theorems.

Lemma 10 Fix an ordinal notation α. There exists an r.e. sequence of pairs
of learning machines and corresponding ordinal mind change counter func-
tions, (M0,F0), (M1,F1), . . ., such that

(a) for all C ∈ TxtExα, there exists an i such that C ⊆ TxtExα(Mi,Fi).
(b) for all i, Fi(Λ) = α.
(c) for all i, for all texts T , for all n, Mi(T [n]) 6= Mi(T [n+1]) ⇒ Fi(T [n]) �

Fi(T [n + 1]).

The above lemma can be proved on the lines of the proof of Lemma 4.2.2B in
[25].

3 Ordinal Mind Change Complexity of Unions of Pattern Lan-

guages

Let Σ and X be mutually disjoint sets. Σ is finite and its elements are referred
to as constant symbols. X is countably infinite and its elements are referred
to as variables. For the present section, we let a, b, . . . range over constant
symbols and x, y, z, x1, x2, . . . range over variables. For a set A, let A∗ denote
the set of all the finite strings over A, and A+ denote the set of all non-empty
finite strings over A.

Definition 11 [2] A pattern is an element of (Σ∪X)+. A string is an element
of Σ+.
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A substitution is a homomorphism from patterns to patterns that maps each
symbol a ∈ Σ to itself. The image of a pattern p under a substitution θ is
denoted pθ. We next describe the language defined by a pattern. Note that
there exists a recursive bijective mapping between elements of Σ+ and N .
Thus we can name elements of Σ+ with elements of N . We implicitly assume
such a mapping when we discuss languages defined using subsets of Σ+ below.
(We do not explicitly use such a bijective mapping for ease of notation.)

Definition 12 [2] The language associated with the pattern p is defined as
Lang(p) = {pθ | θ is a substitution and pθ ∈ Σ+}. We define the class
PATTERN = {Lang(p) | p is a pattern}.

Angluin [2] showed that PATTERN ∈ TxtEx. Shinohara [31] showed that
pattern languages are not closed under union, and hence it is useful to study
identification of languages that are unions of more than one pattern language,
as they can be used to represent more expressive concepts. We next define
unions of pattern languages.

Let S be a set of patterns. Then Lang(S) is defined as
⋃

p∈S Lang(p). Intu-
itively, Lang(S) is the language formed by the union of languages associated
with the patterns in S.

Definition 13 [31,33] Let n ∈ N . PATTERN
n = {Lang(S) | 0 < card(S) ≤

n}.

Shinohara [31] and Wright [33] showed that for n > 1, PATTERN
n ∈ TxtEx.

Jain and Sharma [14] showed that PATTERN
n ∈ TxtExωn and PATTERN

n /∈
TxtExα for α ≺ ωn.

We now consider the ordinal mind change complexity of identifying unions of
pattern languages from informants. A pattern is canonical [2] iff it satisfies
the following: if k is the number of variables appearing in a pattern p, then
the variables occurring in p are precisely {x1, x2, . . . , xk}, and, for every i,
1 ≤ i < k, the leftmost occurrence of xi in p, is to the left of the leftmost
occurrence of xi+1 in p. Let PAT denote the set of all canonical patterns. Let
PAT

n = {S | S ⊆ PAT ∧ 0 < card(S) ≤ n}.

Angluin showed that, for p, p′ ∈ PAT, Lang(p) = Lang(p′) iff p = p′. This
result does not hold for elements of PAT

n where n > 1.

Suppose Pos and Neg are disjoint finite sets such that Pos 6= ∅. Then let

XPos,Neg
i = {S ∈ PAT

i | [Pos ⊆ Lang(S)] ∧ [Neg ⊆ Lang(S)]}

Lemma 14 Suppose we are given finite disjoint sets Pos, Neg, where Pos 6= ∅,
and a natural number i, such that (∀j ≤ i)[XPos,Neg

j = ∅]. Then, effectively in
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Pos, Neg, and i, we can determine XPos,Neg
i+1 . (Note that XPos,Neg

i+1 must be finite
in this case!)

PROOF. Suppose Pos, Neg, and i are as given in the hypothesis of the
lemma. Let

P = {p ∈ PAT | [Pos ∩ Lang(p) 6= ∅] ∧ [Neg ∩ Lang(p) = ∅]}

Let
X = {S ∈ PAT

i+1 | [Pos ⊆ Lang(S)] ∧ [S ⊆ P ]}

It is easy to verify that X = XPos,Neg
i+1 . Also note that X can be obtained

effectively from Pos, Neg and i. 2

Corollary 15 Suppose Pos and Neg are disjoint finite sets such that Pos 6= ∅.
Then effectively in Pos, Neg, one can find i, and corresponding XPos,Neg

i (which
must be finite) such that i = min({j | XPos,Neg

j 6= ∅}).

PROOF. Note that PAT
0 is empty. The corollary now follows by repeated

use of Lemma 14, until one finds an i such that XPos,Neg
i 6= ∅. 2

Theorem 16 (a) PATTERN ∈ InfExnotn(0).

(b) (∀i ≥ 1)[PATTERN
i+1 ∈ InfExω×Onotn(i)].

PROOF. (a) Shown by Lange and Zeugmann [20]. Also follows from the
proof of Part (b).
(b) Fix i. For Z, a finite subset of PAT, let GZ denote a grammar (obtained
effectively from Z) for Lang(Z). Let M(I[n]),F(I[n]) be defined as follows.

Let Pos = PosInfo(I[n]) and Neg = NegInfo(I[n]).

If Pos = ∅, then M(I[n]) =? and F(I[n]) = ω ×O notn(i).

If Pos 6= ∅, then let j = min({j ′ | XPos,Neg
j′ 6= ∅}). Note that j (and corre-

sponding XPos,Neg
j ) can be found effectively in I[n], using Corollary 15.

If j = 1 and card(XPos,Neg
j ) > 1, then M(I[n]) =?, and F(I[n]) = ω×Onotn(i).

If j > 1 or card(XPos,Neg
j ) = 1, then M(I[n]) = GZ , where Z is the lexico-

graphically least element in XPos,Neg
j , and F(I[n]) = ω×O notn(k)+O notn(`),

where k = i + 1 − j, and ` = card(XPos,Neg
j ) − 1.

It is easy to verify that M,F witness the theorem. 2
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It is open at this stage whether we can do better than the ω×O notn(i) bound
for PATTERN

i+1. However, if we consider unions of i + 1 simple pattern
languages 3 , then it is easy to see that the mind change bound for identification
from informants is simply i.

4 Ordinal Complexity and Conservativeness

We first establish an important technical result.

Theorem 17 Let M be a learning machine such that for any text T (ir-
respective of whether M identifies T or not), M makes only finitely many
mind changes on T as input. Let C denote the class of all languages TxtEx-
identified by M. Then, for some ordinal mind change counter function F, and
constructive ordinal notation α, C ⊆ TxtExα(M,F).

PROOF. We define a conjecture tree TM for machine M. The root of TM

corresponds to the empty sequence, Λ. Other nodes of the tree correspond to
finite initial sequences of texts, T [n + 1], such that M(T [n]) 6= M(T [n + 1]).
Let S = {Λ} ∪ {T [n + 1] | n ∈ N, T is a text and M(T [n]) 6= M(T [n + 1])}.
For σ ∈ S, we use Vσ to denote the node corresponding to the sequence σ.
Node Vσ1

is a descendent of node Vσ2
iff σ2 ⊂ σ1.

We will now define a constructive ordinal notation, ασ, corresponding to each
σ ∈ S. For σ ∈ S, let Sσ = {τ ∈ S | σ ⊂ τ}. Intuitively, Sσ denotes the
proper descendants of σ in the tree TM. Note that Sσ is recursively enumerable
(effectively in σ). Let Ss

σ denote the finite set enumerated in s steps in some,
effective in σ, enumeration of Sσ.

ασ is defined as follows. ασ is the limit of fσ(0), fσ(1), . . ., where fσ is defined
as follows.

fσ(0) = notn(0). fσ(i + 1) = fσ(i) +O ατ1
+O . . . +O ατk

+O notn(1), where
τ1, τ2, . . . , τk are the elements of Si

σ.

We first need to show that the ασ’s constitute a correct notation.

Lemma 18 (a) Let Vσ be a leaf of TM. Then ασ is a correct ordinal notation.

(b) Suppose σ ∈ S, and ατ is a correct ordinal notation for each τ ∈ Sσ. Then
ασ is a correct ordinal notation.

3 A simple pattern language is formed by substituting, for each variable, strings of
length exactly one.
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(c) For any σ ∈ S, ασ is a correct ordinal notation.

(d) If σ ∈ S and τ ∈ Sσ, then ατ ≺ ασ.

PROOF. (a) If Vσ is a leaf, then Sσ is empty. Hence, fσ(n) = notn(n). It
follows that ασ is a notation for ω.

(b) Since, ασ is a limit of fσ(0), fσ(1), . . ., it suffices to show that each fσ(i)
is a correct ordinal notation. Now, for each τ ∈ Sσ, ατ is a correct notation.
Thus, since fσ(i+1) is defined using fσ(i), ατ , notn(1) and +O operation only,
fσ(i + 1) is a correct ordinal notation.

(c) Suppose by way of contradiction that ασ is not a correct notation. We then
construct an infinite sequence σ0 ⊂ σ1 ⊂ . . . such that, for each i, σi ∈ S and
ασi

is not a correct notation.

Let σ0 = σ. Suppose σi has been defined. Let σi+1 be such that σi+1 ∈ Sσi

and ασi+1
is not a correct notation. The existence of such a σi+1 follows from

parts (a) and (b).

Consider the text T =
⋃

i∈N σi. Now, since each σi ∈ S, we have that M

on T makes infinitely many mind changes (after reading last element of σ1,
after reading last element of σ2, and so on). This yields a contradiction to the
hypothesis of the theorem.

(d) Note that ασ � fσ(i), for each i. Suppose τ ∈ Ss
σ. Then it is easy to see

that fσ(s + 1) � ατ . Thus ατ ≺ ασ. 2

We continue with the proof of the theorem. Let α = αΛ. We now construct an
F such that C ⊆ TxtExα(M,F). F is defined as follows.

F(T [n]) =











αΛ, if T [n] = Λ;
F(T [n] − 1), if n > 0, and M(T [n + 1]) = M(T [n]);
αT [n], otherwise.

From the definition of ασ and Lemma 18, it is easy to verify that TxtEx(M) ⊆
TxtExα(M,F). 2

Theorem 17 allows us to establish several sufficient conditions for the existence
of ordinal bounds on mind changes in the context of identification of indexed
families of languages. We first adapt learnability notions to the context of
indexed families of languages.
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A sequence of nonempty languages L = L0, L1, . . . is an indexed family of
languages (sometimes called just indexed family) if there exists a computable
function f such that for each i ∈ N and for each x ∈ N ,

f(i, x) =
{

1, if x ∈ Li,
0, otherwise.

In other words, there is a uniform decision procedure for languages in the
family. Here, i may be thought of as a grammar for the language Li. In the
sequel, we let L, with or without decorations, range over indexed families.
For an indexed family L = L0, L1, . . . , we let range(L) = {Li | i ∈ N}. For
learning indexed families, usually one considers indexed families as hypothesis
spaces [21]. The next definition adapts Gold’s criterion of identification in the
limit to the identification of indexed families with respect to a given hypothesis
space.

Definition 19 [10,3] Let L be an indexed family and let L′ = L′
0, L

′
1, . . . be a

hypothesis space.

(a) Let L ∈ range(L). A machine M TxtEx-identifies L with respect to
(hypothesis space) L′ just in case for any text T for L, there exists j such
that M(T )↓ = j and L = L′

j.
(b) A machine M TxtEx-identifies L with respect to L′ just in case for each

L ∈ range(L), M TxtEx-identifies L with respect to L′.

There are three kinds of identification that have been studied in the liter-
ature: (a) class comprising; (b) class preserving; and (c) exact. If the in-
dexed family L is identified with respect to a hypothesis space L′ such that
range(L) ⊆ range(L′) then the identification is referred to as class comprising .
However, if it is required that the indexed family be identifiable with respect to
a hypothesis space L′ such that range(L) = range(L′) then the identification
is referred to as class preserving . Finally, if the identification of the indexed
family L is required to be with respect to L itself, then the identification is re-
ferred to as exact . The reader is directed to the excellent survey by Zeugmann
and Lange [34] for discussion of these issues.

We can similarly define TxtExα-identification with respect to hypothesis
space L′. Note that Theorem 17 holds with respect to all hypothesis spaces.

We next describe certain topological conditions on language classes that yield
sufficient conditions for identifiability of indexed families. The following notion
was introduced by Angluin [2].

Definition 20 [2] L has finite thickness just in case for each n ∈ N , card({L ∈
range(L) | n ∈ L}) is finite.
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Angluin [2] showed that if L is an indexed family and L has finite thickness
then L ∈ TxtEx. A more interesting topological notion was introduced by
Wright [33] (see also Motoki, Shinohara, and Wright [23]) described below.

Definition 21 [33,23] L has infinite elasticity just in case there exists an
infinite sequence of pairwise distinct numbers, {wi ∈ N | i ∈ N}, and an
infinite sequence of pairwise distinct languages, {Ai ∈ range(L) | i ∈ N},
such that for each k ∈ N , {wi | i < k} ⊆ Ak, but wk 6∈ Ak. L is said to have
finite elasticity just in case L does not have infinite elasticity.

Wright [33] showed that if L has finite thickness then it has finite elasticity.
He further showed that if L is an indexed family and L has finite elasticity,
then L ∈ TxtEx.

Finite elasticity is a sufficient condition for identification of indexed fami-
lies. Also, the property of finite elasticity is preserved under finite unions.
As already noted, it was shown in [14] that for each n > 0, PATTERN

n ∈
TxtExωn. It would be interesting to investigate whether, for each indexed
family L that has finite elasticity, there is an i such that L ∈ TxtExωi. The
following result established in [14] showed that the answer to this question is
negative.

Theorem 22 [14] There exists an indexed family, L, such that (a) L has
finite elasticity and (b) for each i > 0, L 6∈ TxtExωi.

However, we are able to show that an indexed family with finite elasticity has
an ordinal mind change bound if it can be identified conservatively. The next
definition describes conservative identification.

Definition 23 [3] Let L = L0, L1, . . . be a hypothesis space. M is said to be a
conservative learning machine with respect to the hypothesis space L just in
case for all σ and τ such that σ ⊆ τ and content(τ) ⊆ LM(σ), M(σ) = M(τ).

Intuitively, conservative machines do not change their hypothesis if the input
is contained in the language conjectured.

Theorem 24 Let L′ = L′
0, L

′
1, . . . be an indexed family with finite elasticity.

Assume that L is identifiable by a conservative learning machine with respect
to the hypothesis space L′. Then L ∈ TxtExα with respect to hypothesis space
L′, for some constructive ordinal notation α.

PROOF. Let M be a conservative learning machine which identifies L with
respect to hypothesis space L′. We will describe a machine M′ which identifies
L with respect to L′, and changes its mind at most finitely often on every text.
Theorem 17 will then imply the theorem.

14



For a given text T , n ∈ N , let lmc(M′, T [n]) be defined as follows:

lmc(M′, T [n]) = max({m + 1 | m < n ∧ M′(T [m]) 6= M′(T [m + 1])})

Intuitively, lmc denotes the last point where M′ made a mind change. Note
that if M′(T [0]) = M′(T [1]) = · · · = M′(T [n]), then lmc(M′, T [n]) = 0. M′ is
now defined as follows:

M′(T [n]) =











?, if n = 0 or M(T [n]) =?;
M(T [n]), if content(T [lmc(M′, T [n − 1])]) ⊆ L′

M(T [n]);
M′(T [n − 1]), otherwise.

It is easy to verify that M′ TxtEx-identifies with respect to L′ any language
which M TxtEx-identifies with respect to L′. We prove that M′ makes only
finitely many mind changes on any text T . By Theorem 17, this implies that
L ∈ TxtExα with respect to hypothesis space L′, for some constructive ordinal
notation α.

Suppose by way of contradiction that M′ makes infinitely many mind changes
on a text T . Let n1 < n2 < . . . be such that, for each i, M′(T [ni]) 6= M′(T [ni+
1]). Then, it is easy to verify from the construction of M′ that, for all i,
content(T [ni + 1]) ⊆ L′

M′(T [ni+2]). Moreover, since M is conservative, we have
content(T [ni + 1]) 6⊆ L′

M′(T [ni])
. It follows that L′ has infinite elasticity. A

contradiction. 2

We next introduce an interesting topological property of a class of languages
that is connected to the learnability of the class.

Definition 25 [24] Lj is a minimal concept of L within L just in case L ⊆
Lj, Lj ∈ range(L), and there is no Li ∈ range(L) such that L ⊆ Li and
Li ⊂ Lj.

Definition 26 [29] L satisfies MEF-condition if for each finite set D and for
each Li ∈ range(L) with D ⊆ Li there is a minimal concept Lj of D within L
such that Lj ⊆ Li. L satisfies MFF-condition if for any nonempty finite set
D, the cardinality of {Li ∈ range(L) | Li is a minimal concept of D within
L} is finite. L has M-finite thickness if L satisfies both MEF-condition and
MFF-condition.

Theorem 27 Let L = L0, L1, . . . be an indexed family. Assume that L has
M-finite thickness and finite elasticity. Then L ∈ TxtExα with respect to
hypothesis space L, for some constructive ordinal notation α.
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PROOF. Suppose T is an arbitrary text. We then describe a learning ma-
chine M. Define M(T [n]) as follows. Let L

(n)
i denote Li ∩ {x | x < n}.

If ∅ ∈ L, then let G∅ denote a grammar for ∅ in L; otherwise let G∅ = 0.

M(T [n])
Let Cn = content(T [n]).
If Cn = ∅ then output G∅.
Let Sn = {i ≤ n | Cn ⊆ Li ∧ ¬(∃j ≤ n)[Cn ⊆ Lj ∧ L

(n)
j ⊂ L

(n)
i ]}.

If Sn is not empty then output min(Sn), else output M(T [n − 1]).
End

The above learning machine is a slight modification of the machine of Muk-
ouchi [24].

Let T be an arbitrary text (for a language L). Assume without loss of general-
ity that content(T ) 6= ∅. We will show that M makes only finitely many mind
changes on T . Suppose for contradiction, M changes its mind infinitely often
on T . First note that, if M(T [n]) 6= M(T [n + 1]) then content(T [n + 1]) ⊆
LM(T [n+1]). Consider two cases:

Case 1. card({M(T [n]) | n ∈ N ∧ content(T ) 6⊆ LM(T [n])}) = ∞. (That is, M,
on T , outputs infinitely many distinct conjectures i such that content(T ) 6⊆
Li.)

Let n1 < n2 < n3 < · · · be such that M(T [ni]) 6= M(T [ni+1]), and
content(T [ni+1]) 6⊆ LM(T [ni]). Note that there exist such an ni by the hypoth-
esis of this case. Also, by construction, we have content(T [ni]) ⊆ LM(T [ni+1])

because any new hypothesis output by M is consistent with the input.
It follows that L has infinite elasticity (by considering the languages

LM(T [n2i]), we see that content(T [n2i+1]) ⊆ LM(T [n2i+2]), but content(T [n2i+1]) 6⊆
LM(T [n2i]).) A contradiction.

Case 2. M, on T , issues only finitely many distinct conjectures i such that
content(T ) 6⊆ Li.

Then, for large enough n, LM(T [n]) ⊇ content(T ) = L (since M changes its
hypothesis infinitely often and if M(T [n]) 6= M(T [n+1]) then content(T [n+
1]) ⊆ LM(T [n+1])).

Mukouchi [24] showed the following lemma.
Lemma 28 [24] Let L = L0, L1, . . . be an indexed family. Let L satisfy the
MEF-condition and have finite elasticity. Let L be a nonempty language. If
for some n, L ⊆ Ln, then

(a) there is a minimal concept Lj of L within L such that Lj ⊆ Ln, and
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(b) if Lk is a minimal concept of L within L, then there exists a finite
X ⊆ L such that Lk is a minimal concept of X within L.

Since, we have already shown that for large enough n, LM(T [n]) ⊇ L,
Lemma 28 implies that there is a minimal concept of L within L. Let j be
the minimal number such that Lj is a minimal concept of L within L. Let
X ⊆ L be a finite set such that Lj is a minimal concept of X within L (by
Lemma 28 there exists such an X). Let S = {Lk | Lk is a minimal concept
of X within L}. Note that S is finite, since L satisfies MFF condition.

Let s be so large that for all Lk ∈ S, such that Lk 6= Lj, L
(s)
k − L

(s)
j 6= ∅

(there exists such an s, since S is finite). Note that this implies, for all k, if

X ⊆ Lk, then either Lj ⊆ Lk, or L
(s)
k − L

(s)
j 6= ∅.

Let m ≥ max({s, j}), be such that,
(a) X ⊆ content(T [m]),
(b) for all k < j, either content(T [m]) 6⊆ Lk, or (∃k′ ≤ m)[Lk′ ⊂ Lk ∧

(∃x ≤ m)[L
(x)
k′ ⊂ L

(x)
k ].

Note that there exists such an m — for part (a), existence of such an m
is obvious; for part (b) existence of such an m follows from the fact that
none of Lk, k < j, is a minimal concept for L within L.

Now suppose n ≥ m. Consider Sn as defined in M(T [n]). It follows from
(b) above that for all n ≥ m, Sn does not contain any number < j. Further-

more, Sn contains j, since for all k such that X ⊆ Lk, either L
(s)
k −L

(s)
j 6= ∅,

or Lj ⊆ Lk. It follows that M(T )↓ = j.

Thus, M must make only finitely many mind changes on every text T . Simi-
larly to Case 2, we can show that on any text for a language Lj, M converges
to the smallest index for Lj. So, M makes finitely many mind changes on any
input and TxtEx-identifies L with respect to L. Thus, Theorem 17 implies
that L ∈ TxtExα with respect to L, for some constructive ordinal notation
α. 2

Corollary 29 Let L be an indexed family with finite thickness. Then L ∈
TxtExα with respect to L, for some constructive ordinal notation α.

PROOF. If L has finite thickness, then L has finite elasticity (cf. Wright [33]
and Shinohara [32]) and M-finite thickness (cf. Mukouchi [24]). Hence, by
Theorem 27, L ∈ TxtExα with respect to L, for some constructive ordinal
notation α. 2

A special case of Theorem 27 is the learnability of length-bounded elemen-
tary formal systems with ordinal-bounded mind changes. (Shinohara [32] has
proved that LBEFS

(≤n), the class of languages defined by length-bounded el-
ementary formal systems with at most n axioms, has finite elasticity and Sato
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and Moriyama [29] have proved that LBEFS
(≤n) has M-finite thickness.) The

learnability of LBEFS
(≤n) was shown by Shinohara [32]. Jain and Sharma [14]

proved that LBEFS
(≤n) is learnable with the number of mind changes bounded

by ordinal ωn.

The results discussed in the present paper give general sufficient conditions
for identifiability with ordinal bound on mind changes. However, they do not
give explicit ordinals α. In all these theorems we have “L ∈ TxtExα for some
constructive ordinal notation α.” It appears that ordinal α can be arbitrarily
large. An interesting question to ask is if the ordinal bound α is still arbitrarily
large if attention is restricted to classes that are identifiable by strategies that
are restricted to obeying monotonicity properties. The next result implies that
even if we require that a class L has finite thickness and that it is identifiable
by a strong-monotonic learning machine, the ordinal mind change bound can
be arbitrarily large. The reader should however note that strong-monotonicity
together with finite thickness implies the existence of an ordinal bound because
strong-monotonicity implies conservatism and finite-thickness implies finite
elasticity (see [21]).

5 Ordinal Complexity and Monotonicity

Below we describe the notion of strong-monotonic identification.

Definition 30 [16] Let L′ = L′
0, L

′
1, . . . be a hypothesis space.

(a) A learning machine M is said to be strong monotonic with respect to L′

just in case for all σ and τ such that σ ⊆ τ , L′
M(σ) ⊆ L′

M(τ).
(b) A learning machine M is said to strong-monotonically TxtEx-identify

L with respect to L′ just in case M TxtEx-identifies L with respect to
L′ and M is strong monotonic with respect to L′.

(c) M strong-monotonically TxtEx-identifies L with respect to L′ just in
case, for each L ∈ range(L), M strong-monotonically TxtEx-identifies
L with respect to L′.

Theorem 31 Let α be a constructive ordinal notation. There exists an in-
dexed family L such that L can be TxtEx-identified strong-monotonically with
respect to hypothesis space L, L has finite thickness, and L /∈ TxtExα with
respect to any hypothesis space.

PROOF. Fix constructive ordinal notation α. Let (M0,F0), (M1,F1) . . . be
an enumeration of pairs of learning machines and corresponding ordinal mind
change counter functions as given by Lemma 10. Using an argument similar
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to the one used by [9] for function learning, one can show that, for each i ∈ N ,
and for each text T , Mi makes only finitely many mind changes when fed T .

Let Li = {〈i, x〉 | x ∈ N}. Note that Li is infinite, and for distinct i, j, Li and
Lj are disjoint. Let Ls

i = {〈i, x〉 | x ≤ s}. We now give an algorithm which
receives i and enumerates (effectively in i) a (finite) sequence 4 Li of languages
such that:

(a) if L ∈ range(Li), then L = Ls
i for some s;

(b) range(Li) is finite (note that one can effectively decide the membership
problem for languages in Li);

(c) range(Li) is not TxtEx-identified by Mi with respect to any hypothesis
space;

(d) There exists a machine, effective in i, that strong-monotonically TxtEx-
identifies range(Li) with respect to the hypothesis space Li.

Now define an indexed family L with range(L) =
⋃

i∈N range(Li), such that
for Ls

i ∈ range(L), one can effectively, in i and s, find an index (in L) for Ls
i .

We will show that L establishes the theorem. First, the algorithm enumerating
Li is as follows:

Enumeration of Li.
Initially, let Li consists of just the language L0

i .
Let n = 0 and let σ0 be the least initial sequence such that content(σ0) =

L0
i . Go to Stage 0.

Stage s.
Add the language Ls+1

i to Li.
Search for a sequence γ extending σs, such that content(γ) ⊆ Ls+1

i ,
and Mi(σs) 6= Mi(γ).

If and when such a γ is found, let σs+1 be the least extension of γ
such that content(σs+1) = Ls+1

i .
Go to Stage s + 1.

End Stage s
End Enumeration of Li

We now show that Li, i ∈ N , constructed above satisfy the properties claimed.

Lemma 32 For each i ∈ N , there are only finitely many stages in the enu-
meration procedure for Li. Hence, range(Li) is finite.

4 Strictly speaking, an indexed family is an infinite sequence of languages. For
ease of presentation, the algorithm here describes enumeration of only a finite se-
quence. One can easily obtain an infinite sequence by just repeating the languages
in range(Li).
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PROOF. Suppose by way of contradiction there is an i ∈ N such that there
are infinitely many stages in the constrution of Li. Then Mi on

⋃

s∈N σs makes
infinitely many mind changes, a contradiction. 2

Lemma 33 For each i ∈ N , Mi fails to TxtEx-identify range(Li) with re-
spect to any hypothesis space.

PROOF. Let s be the stage in the enumeration of Li which starts but does
not terminate. Then Mi can TxtEx-identify at most one of Ls

i and Ls+1
i , both

of which are in range(Li). 2

We continue with the proof of the theorem. Now define L such that range(L) =
⋃

i∈N range(Li), and for Ls
i ∈ L, one can effectively, in i and s, find an index (in

L) for Ls
i . It is easy to verify that L can be strong monotonically identified with

respect to hypothesis space L. Also, L 6∈ TxtExα, by Lemma 33. Moreover,
note that Li’s are pairwise disjoint. Thus, since each language in Li is a subset
of Li and Li is finite, we have that L has finite thickness. 2

The reader should note that a similar result in the sense of class-preserving
or exact identification cannot hold for dual strong-monotonicity [17] because
class preserving dual strong monotonic identification is the same as finite
identification (see [20], [34]). However, we can establish a similar result for class
comprising dual strong monotonic identification which is a proper superset of
finite identification (see [21]).

Definition 34 [17] Let L′ = L′
0, L

′
1, . . . be a hypothesis space.

(a) A learning machine M is said to be dual strong-monotonic with respect
to the hypothesis space L′ just in case for all σ and τ such that σ ⊆ τ ,
L′

M(σ) ⊇ L′
M(τ).

(b) A learning machine M is said to dual strong-monotonically TxtEx-identify
L with respect to the hypothesis space L′ just in case M TxtEx-identifies L
with respect to the hypothesis space L′ and M is dual strong monotonic with
respect to L′.

(c) M dual strong-monotonically TxtEx-identifies L with respect to hypoth-
esis space L′ just in case, for each L ∈ range(L), M dual strong-monotonically
TxtEx-identifies L with respect to L′.

Theorem 35 Let α be a constructive ordinal notation. There exists an in-
dexed family L and a hypothesis space L′ such that L can be TxtEx-identified
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dual strong-monotonically with respect to L′, L′ has finite thickness, and L /∈
TxtExα with respect to any hypothesis space.

PROOF. Fix constructive ordinal notation α. Let (M0,F0), (M1,F1) . . . be
an enumeration of pairs of learning machines and corresponding ordinal mind
change counter functions as given by Lemma 10. Using an argument similar
to the one used by [9] for function learning, one can show that, for each i ∈ N ,
and for any text T , Mi makes only finitely many mind changes when fed T .

For each i, we will define a recursive function gi (where a program for gi can
be found effectively in i). gi will satisfy the following properties:

(A) {x | gi(x) = 1} is nonempty and finite. Moreover, {x | gi(x) = 1} ⊆
{〈i, y〉 | y ∈ N}.

(B) Let Li = {2x, 2x + 1 | gi(x) = 1}. Let Ci = {L ⊆ Li | (∀x | gi(x) =
1)(∃!b ∈ {0, 1})[2x + b ∈ L]}. Then, Ci 6⊆ TxtExα(Mi,Fi) (with respect to
any hypothesis space) 5 .

We take L to be an indexed family such that range(L) =
⋃

i Ci (using the fact
that g−1

i (1) is finite, one can easily construct such an indexed family L). From
(B) it follows that L 6∈ TxtExα with respect to any hypothesis space.

We let L′ be an hypothesis space such that range(L′) = {L | (∃i)[L ⊆ Li]},
where an index for Li − D, for any finite set D, can be obtained effectively
from i and D. Note that such an hypothesis space L′ can be easily constructed.
Clearly, L′ has finite thickness.

It remains to construct recursive functions gi as claimed above and to show
that L can be dual strong monotonically identified with respect to hypothesis
space L′.

We now define gi.

Definition of gi

For x < 〈i, 0〉, let gi(x) = 0. Let gi(〈i, 0〉) = 1.
Let x0

i = 〈i, 0〉. Intuitively, xs
i denotes the largest x such that gi(x) is

defined to be 1 before stage s.
Let σ0 = Λ.
Go to Stage 0.
Stage s
1. Dovetail steps 2 and 3, until step 2 succeeds. If and when step 2

succeeds, go to step 4.

5 Notation: ∃! denotes “there exists a unique.”
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2. Search for an extension τ of σs, and z ∈ {2xs
i , 2x

s
i + 1} such that

(a) Mi(τ) 6= Mi(σs), and
(b) content(τ) = content(σs) ∪ {z}.

3. For x = xs
i + 1 to ∞ do

Let gi(x) = 0.
EndFor

4. If and when such τ , z are found, let σs+1 = τ . Let xs+1
i ∈ {〈i, y〉 | y ∈

N} be the least number such that gi(x
s+1
i ) has not been defined

until now.
Let gi(x

s+1
i ) = 1.

For x < xs+1
i such that gi(x) has not been defined until now, let

gi(x) = 0.
End Stage s

End of definition of gi.

Lemma 36 For each i ∈ N , there are only finitely many stages in the con-
struction of gi.

PROOF. Suppose by way of contradiction there are infinitely many stages.
Then, Mi on

⋃

s∈N σs makes infinitely many mind changes, a contradiction. 2

We continue with the proof of the theorem. Fix i. Using the above lemma, it is
easy to verify that gi satisfies (A). We now show that gi satisfies (B). Suppose s
is the stage which starts but does not terminate. Let L′ = content(σs)∪{2xs

i}.
Let L′′ = content(σs)∪{2xs

i +1}. Let T ′, extending σs, be a text for L′. Let T ′′

extending σs be a text for L′′. Since step 2 in stage s did not succeed, we have
that Mi(T

′) = Mi(T
′′) = Mi(σs). It follows that Mi does not TxtEx-identify

Li with respect to any hypothesis space. Thus, (B) is satisfied.

We now give a machine M which, for each L ∈ L, dual strong monotonically
identifies L with respect to hypothesis space L′. Let gram be a recursive func-
tion such that L′

gram(i,D) = Li −D (by construction of L′ such a function gram
clearly exists).

For x ∈ N and b ∈ {0, 1}, let mate(2x + b) = 2x + 1 − b.

M(T [n])
If content(T [n]) = ∅, then let M(T [n]) =?.

1. Let i be such that content(T [n]) ⊆ {2〈i, y〉 + b | y ∈ N ∧ b ∈ {0, 1}}.
(If no such i exists, then let M(T [n]) = M(T [n − 1]).)

2. Let D = {mate(z) | z ∈ content(T [n])}.
3. Output gram(i,D).
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End

It is easy to verify from the definition of Li, Ci, L, L′ that M is dual strong
monotonic and TxtEx-identifies L with respect to hypothesis space L′. The
theorem follows. 2

6 Conclusion

The present paper further illustrated the utility of ordinal mind change bound
as a measure of the difficulty of learning a class of languages. From the ordinal
mind change complexity results for bounded unions of pattern languages, it is
clear that the presence of negative data in addition to positive data makes the
learning task much simpler. The ordinal bounds, in some sense, give a measure
of “how much simpler.” It was argued that the existence of an ordinal mind
change bound can be viewed as a measure of learning “tractability.” Several
sufficient conditions were derived for the existence of such a bound in terms
of various topological properties of language classes.

The techniques presented in the paper yield a useful measure to compare the
complexity of learning of rich classes of concepts which are not very amenable
to analysis by more restricted notions of complexity. This is especially true of
concept classes that go beyond propositional representation, e.g., elementary
formal systems and logic programming systems. For the classes of languages
considered in the present paper, only negative learnability results are possi-
ble with more restricted models like PAC. For example, the class of pattern
languages is not PAC learnable even if both positive and negative data are
available (see Schapire [30]). Hence, models like PAC appear to be too re-
strictive for analyzing learning complexity of unions of pattern langauges or
elementary formal systems. The ordinal mind change complexity model con-
sidered in the present paper gives a measure of the mind change complexity
that a learner makes in learning these classes. At present, this appears to be
one of the very few models that quantitatively analyzes the learning difficulty
of such expressive languages. Other models that attempt the address the com-
plexity of identification in the limit are due to Daley and Smith [8] and due
to Pitt [26].
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