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Abstract

We show that it is possible, for every machine universal for Kolmo-
gorov complexity, to enumerate the lexicographically least description
of a length n string in O(n) attempts. In contrast to this positive
result for strings, we find that, in any Kolmogorov numbering, no enu-
merator of nontrivial size can generate a list containing the minimal
index of a given partial-computable function. One cannot even achieve
a laconic enumerator for nearly-minimal indices of partial-computable
functions.

1 Short list approximations for minimal programs

No effective algorithm exists which computes shortest descriptions for strings,
let alone lexicographically least descriptions. Such an algorithm would
contradict the well-known fact that Kolmogorov complexity is not com-
putable [11]. This paper investigates the extent to which one can effectively
enumerate a “short” list of candidate indices which includes the lexicograph-
ically minimal program for a given string or a function.

Definition 1. An enumerator is an algorithm which takes an integer input
and, over time, enumerates a list of integers. For an enumerator f , we let
f(e) denote the set of all elements which f eventually enumerates on input e.

Enumerators with non-trivial list sizes (i.e., of size much smaller than
the length of the string x) fail to list-approximate Kolmogorov complexity.
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Indeed any enumerator f such that f(x) always contains the Kolmogorov
complexity of x must, for all but finitely many n, for some string x of
length n, include in the list f(x) at least a fixed fraction of the lengths
below n+O(1) [4]. One might expect a similar result for enumerators whose
enumerations always include the minimal index for a desired string — that is,
one might expect the enumerators to enumerate all but a constant fraction
of indices with length at most n. However in Theorem 3 below we show
that for every universal machine for Kolmogorov complexity, there exists
an enumerator f such that for all x, |f(x)| = O(|x|) and f contains the
minimal program for x. In contrast, we show that enumerators with short
lists (of sublinear size) fail to list minimal indices for functions and that even
enumerators containing nearly-minimal indices have large list sizes.

Prior investigations on short list-approximations of minimal indices for
strings and functions have focused on computable functions. Bauwens,
Makhlin, Vereshchagin, and Zimand [2] proved the optimal result that for
any universal machine one can compute a quadratic-length list containing
a description for a given string which is no more than O(1) bits longer
than that string’s minimal description length. Teutsch [14] showed that
one can do the same thing in polynomial-time if one relaxes the size of the
list-approximation from quadratic to polynomial-length; see [18] for an al-
ternative construction and a slightly shorter list. Bauwens and Zimand [3]
showed that a randomized procedure can even achieve a linear-length list
which, with high probability, contains a minimal description of the given
string which is within O(log n) bits of optimal. Most recently, Vereshchagin
[17] solved a problem posed in a preliminary version of [15] by showing that
short computable list-approximations of minimal indices for functions do
not exist. See [16] for a survey of related results.

We now introduce the notation and key definitions for this manuscript.
A numbering ϕ is a partial-computable function 〈e, x〉 7→ ϕe(x). We say ϕ
is a Gödel numbering if for any further numbering ψ, there exists a com-
putable translator function t such that ϕt(e) = ψe. If in addition t satisfies
t(e) ≤ c · e + c for some constant c (depending on ψ), then ϕ is called a
Kolmogorov numbering, and we call such a computable, linearly-bounded t
a Kolmogorov translator from ψ to ϕ. Similar to universal machines for Kol-
mogorov complexity, which we define below, Kolmogorov numberings admit
incoming translations which produce at most O(1)-bits increase in program
size.

Kolmogorov himself introduced the notion of Kolmogorov numberings
under the name “asymptotically optimal” [9]. Schnorr [12] later shortened
this to “optimal numberings” and proved the following fundamental result.
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Schnorr’s Linear Isomorphism Theorem ([12]). For every pair of Kol-
mogorov numberings ϕ and ψ, there exist a computable, bijective function t
such that

(i) t and t−1 are both bounded by some linear function, and

(ii) ψt(e) = ϕe for all e.

(It follows that also ψe = ϕt−1(e) for all e.)

We thank the anonymous referee who pointed us to the above valuable
result which simplified and improved theorems from an earlier version of
this manuscript.

For a Turing machine M , we let CM (x) = min{|p| : M(p) = x} denote
the Kolmogorov complexity of x with respect to M . A machine U is called
universal if for any further machine M , CU (x) ≤ CM (x) +O(1). Universal
machines exist [11].

Definition 2. For two partial-computable functions f and g, we say f =∗ g
if f and g agree everywhere except on a finite set. For any numbering ϕ,

(i) let minϕ(e) denote the least index j such that ϕj = ϕe, and

(ii) let min∗ϕ(e) denote the least index j such that ϕj =∗ ϕe.

Similarly, for any universal machine U ,

(iii) let minU (x) denote the length lexicographically least program p such
that U(p) = x, and

(iv) let minU (x | y) denote the length lexicographically least program p
such that U(〈p, y〉) = x.

Let “p.c.” stand for partial-computable, and let K denote the halting
set for some fixed Gödel numbering. Let 〈·, ·〉 denote a canonical, com-
putable pairing function, and extend 〈·, ·〉 to pairing of n-tuples by taking
〈x1, x2, . . . , xn〉 = 〈x1, 〈x2, . . . , xn〉〉. Finally, let |x| = dlog(x + 1)e be the
size of the string x in binary. dom η denotes the set of values on which the
partial function η is defined.
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2 Strings

For any string x and any universal machine U , one can generate a list of
length |x|+O(1) containing a minimal-length program for x by enumerating
the first program found for x at each length. We can even enumerate the
length lexicographically least program.

Theorem 3. For every universal machine U , there exists an enumerator f
such that for all strings x, |f(x)| = O(|x|) and minU (x) ∈ f(x).

Proof. Let U be a universal machine, and let a be a constant such that for
each string x there exists a program p of size at most |x| + a such that
U(p) = x. We define a further machine M as follows. Let Tb,n be the set of
all x such that U(q) = x for at least 2b many different values q of length n.

Let rb,n = b2n/2bc, and note that |Tb,n| ≤ rb,n. On input 〈b, k〉, ma-
chine M first identifies the unique integer n such that rb,n ≤ k < rb,n+1 and
then sets M(〈b, k〉) to be the (k+ 1− rb,n)-th element enumerated into Tb,n.
For each x ∈ Tb,n, there exists k < rb,n+1 such that M(〈b, k〉) = x, and so
by universality of U , for such k,

CU (x) ≤ CU (〈b, k〉)+c ≤ 2 log b+log(rb,n+1)+c+d ≤ 2 log b+(n+1)−b+c+d

for some constants c and d.
Fix b such that b > 2 log b+c+d+1. Then for all x ∈ Tb,n, there exists a

program of length less than n which computes x. We define f(x) as follows:
for each length 0 ≤ n ≤ |x| + a, output the first 2b U -programs (found in
some algorithmic search) of length n which compute x. It follows from the
definition of Tb,n that either f(x) enumerates all the U -programs of length
n which compute x, or there exists a program of length less than n which
computes x. By induction, minU (x) ∈ f(x) and |f(x)| ≤ 2b · (|x|+ 1 + a) =
O(|x|).

The size of the list in Theorem 3 is optimal. This follows from Improved
Gács’s Theorem [1], which states that there exist infinitely many strings x
such that CU (CU (x) | x) ≥ log |x| − O(1). Indeed, as noted in [2], for any
enumerator f which yields the complexity of its input, we have for infinitely
many x

log |x| −O(1) ≤ CU (CU (x) | x) ≤ log |f(x)|+O(1),

hence |f(x)| = Ω(|x|). [4, Theorem 3.1] gives the same conclusion. As
one can effectively deduce the value CU (x) from minU (x), the optimality of
Theorem 3 follows.
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Remark 4. The enumeration algorithm in Theorem 3 simply enumerates
(up to) constant many descriptions for x at each length below |x| + O(1).
Alternatively, one can verify the correctness of this algorithm by appealing to
a theorem of Chaitin [5] [6, Lemma 3.4.2] which says that, for any universal
machine, the number of minimal-length descriptions of any given string is
bounded by some constant.

3 Functions

The following theorem and corollary extend a result of Vereshchagin [17],
who showed that minimal indices for functions do not admit computable
(short) list approximations. We show that not only are short, computable
list approximations of minimal indices for functions impossible, but p.c.
enumerators fail to exist as well (Theorem 5). Our approach is similar
to Vereshchagin’s, but since we now have enumerator list approximation
instead of computable ones, we must “clear the board” and begin the game
anew each time the enumerator enumerates a new element.

The function h(|e|) in Theorem 5 below approximates the length of the
minimal index for program e. One can take h to be the function h(`) = `/c
for any constant c > 1, or even the near identity function h(`) = ` − 4;
Theorem 5(iii) is vacuous for h(`) ≥ `− 3.

Theorem 5. Suppose h is a non-decreasing, unbounded computable function
such that h(`) < ` − 3 for all ` > 4. Then there exists a Kolmogorov
numbering ϕ such that for any enumerator function f satisfying |f(e)| ≤
2h(|e|)−1 for all e, there exist infinitely many e such that

(i) minϕ(e) /∈ f(e),

(ii) min∗ϕ(e) /∈ f(e), and

(iii) 2h(|e|) ≤ min∗ϕ(e) = minϕ(e) < 8 · 2h(|e|).

Proof. Let h be as in the hypothesis and, using the fact that h is unbounded
and computable, let w be an increasing computable function such that for
all `,

h(3w(`) + 2) + 3 < h(3w(`+ 1) + 2).

Let f0, f1, . . . be an effective enumeration of all enumerator functions. We
assume without loss of generality that |fn(e)| ≤ 2h(|e|)−1 for all n and e
since we can just ignore extra elements enumerated into fn(e). The overall
goal when building ϕ is to ensure that, for each n, there exist infinitely
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many pairs of strings (σ, τ) such that τ = minϕ(σ) = min∗ϕ(σ) has length
approximately h(|σ|) and τ /∈ f(σ).

We construct the Kolmogorov numbering ϕ as follows. We will use
indices of length 0 mod 3 to ensure that ϕ is a Kolmogorov numbering and
indices of lengths 1 mod 3 and 2 mod 3 for diagonalization against various
fn’s. The given function w will prevent distinct parts of the diagonalization
from interfering with each other.

Fix a Kolmogorov numbering ψ in which at least half of the indices of
each length compute the everywhere undefined function. Let

ϕ001ξ = ψξ if |ξ| ≡ 0 mod 3,

ϕ01ξ = ψξ if |ξ| ≡ 1 mod 3,

ϕ1ξ = ψξ if |ξ| ≡ 2 mod 3.

For any z of the form 3w(`) + 2, let g(z) = h(z) + d, where d ∈ {0, 1, 2}
is such that g(z) ≡ 1 mod 3. The programs computed by ϕ-indices which
are not explicitly defined either above or below will code the everywhere
divergent function.

Fix an enumerator function fn. Let q be the (n+1)-th prime number, and
u be a positive integer. Set p = 3w(qu) + 2. Primality ensures that qu11 and
qu22 are distinct whenever either q1 6= q2 or u1 6= u2. Thus diagonalizations
of distinct fn’s don’t disrupt each other, and for each n, we can achieve the
diagonalization for infinitely many e by using infinitely many values u.

By construction, g(p) does not collide with any numbers of the form
3w(`) + 2, and it follows from our assumption on h that g(p) < p. The
ϕ-indices of lengths p and g(p) (for different values of u) as defined above
will be used to diagonalize against fn. Let τ1, τ2, . . . , τ2g(p) be the strings of
length g(p), and let σ1, σ2, . . . , σ2p be the strings of length p. For the rest of
the proof, the indices i will range from 1 to 2g(p) and the indices j will range
from 1 to 2p, representing the τi’s and σj ’s respectively. Our construction
will have the property that each ϕτi(x) and each ϕσj (x) either converges to
1 or is undefined.

For every s ≥ 0, stage s proceeds in two phases. First, we initialize
the s-th stage of each function ϕτi and ϕσj by clearing all the information
from previous stages as follows. If some ϕτi or some ϕσj converged on some
input x prior to stage s, then at the beginning of stage s we set all of these
functions to converge on input x. We add these convergences in a minimal
way so that if none of these functions converged on the input x prior to
stage s, then at the beginning of stage s still none of the functions converge
on input x. Finally, we make the τi’s pairwise infinitely different by setting
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ϕτi(〈p, i, s, t〉) equal to 1 for all t.
Next, the stage s of the construction splits into two threads. Let fn,s(σj)

denote the set of elements enumerated into fn(σj) after s steps. The first
thread searches for a j such that fn(σj) properly extends fn,s(σj). If such
a j is found, then we terminate stage s and begin stage s + 1. While this
thread is still searching, the following is done.

for j = 1 to 2g(p)−1 do
Search for the least natural number k such that

• τk /∈ fn,s(σj) and
• k was not already chosen in a previous iteration of the for loop

in stage s.
Set ϕσj to follow ϕτk .

end for

Let us verify that the search in the for loop above succeeds for all j.
The set of unfollowed indices among τ1, . . . τg(p) at the beginning of the j-th
iteration of the for loop above includes all indices which haven’t been used
in this stage’s prior loop iterations, and there are at least

2g(p) − (j − 1) ≥ 2g(p)−1 + 1 > |fn(σj)|

distinct such indices. Therefore at least one of the τi’s is not spoiled by any
of the indices in fn,s(σj), and ϕσj can follow it.

As |fn(σj)| is finite for 1 ≤ j ≤ 2g(p), there are only finitely many stages.
Thus some stage s starts but does not end. By the following counting
argument, there exists a j such that 1 ≤ j ≤ 2g(p)−1 and ϕσj 6=∗ ϕξ for all ξ
with |ξ| < g(p). Any ξ with |ξ| < g(p) and |ξ| 6≡ 0 mod 3 is not an index for
ϕσj by construction, and at least half of ξ with |ξ| < g(p) and |ξ| ≡ 0 mod 3
are ϕ-indices for the everywhere divergent function by definition of ψ. Hence
for this value of j, |minϕ(σj)| =

∣∣min∗ϕ(σj)
∣∣ = g(p). It follows that

• fn(σj) enumerates neither min∗ϕ(σj) nor minϕ(σj), and

• minϕ(σj) < 2g(p)+1 ≤ 8h(|σj |).

Since the above construction simultaneously diagonalizes against fn for all n,
for all u > 0, the theorem follows.

Theorem 5 carries over to all Kolmogorov numberings with a couple
minor adjustments: in the hypothesis, change the exponent “h(|e|)− 1 ” to
“h(|e| −O(1))− 1,” and in conclusion (iii), change the exponent “h(|e|)” to
“h(|e|+O(1))+O(1).” The hidden constants here depend on the underlying
Kolmogorov numbering; the next proof illustrates the role of these constants.
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Corollary 6. For any Kolmogorov numbering ψ, there exists a constant d
such that for any enumerator g, |g(e)| < e/d for all e > 0 implies minψ(e) /∈
g(e) for infinitely many e. The conclusion also holds with “minψ(e)” replaced
with “min∗ψ(e).”

Proof. Let ϕ be the special Kolmogorov numbering constructed in Theo-
rem 5, and let ψ be an arbitrary Kolmogorov numbering. By Schnorr’s
Linear Isomorphism Theorem, there exists a bijective translator t from ϕ
to ψ such that for some constant c > 0 and for all indices e > 0, t(e) and
t−1(e) are both bounded above by c · e. Fix a function h(`) = ` − 4 as
in the hypothesis of Theorem 5. Then taking the enumerator f in Theo-
rem 5 to be t−1 ◦ g ◦ t, we derive the existence of infinitely many e satisfying
minϕ(e) /∈ t−1(g(t(e))). It follows that for all such e, minψ(t(e)) /∈ g(t(e)),
and since t is injective, all of the infinitely many t(e) give distinct val-
ues. Finally, note that this conclusion holds for any enumerator g satisfying
|g(e)| < e/32c. Indeed such enumerators satisfy the necessary hypothesis of
Theorem 5:

|f(e)| =
∣∣t−1(g(t(e)))

∣∣ = |g(t(e))| ≤ t(e)/32c ≤ e/32 ≤ 2h(|e|)−1.

Our proof of Corollary 6 crucially relies on the fact that the transla-
tors for the underlying Kolmogorov numbering are computable. In contrast,
Theorem 3 holds for any universal machine. At present it is open whether
some numbering, which admits linearly bounded but noncomputable trans-
lators from every other numbering, can have an enumerator with nontrivial
output size which always contains a minimal index for its given input.

For numberings which do not satisfy the Kolmogorov property, sublog-
arithmic list approximations of minimal indices are possible for trivial rea-
sons. Indeed one can code all the p.c. functions inside a Gödel numbering so
sparsely that all smaller indices for non-empty functions can be enumerated
while the enumerator list stays small, see [15]. Nevertheless, we can show
that constant-size enumerators for minimal indices of functions do not exist.
Theorem 7 below extends to enumerations a result in [15] which rules out
constant-size computable list approximations for function minimal indices.
Our proof of Theorem 7 makes use of the combinatorial result below.

Kummer Cardinality Theorem ([7],[10]). Let B be a set of non-negative
integers, and let k be a positive integer. Suppose that there exists an algo-
rithm which, on any input x1, . . . , xk enumerates at most k integers among
{0, 1, . . . , k} such that one of these integers equals |B ∩ {x1, . . . , xk}|. Then
B is computable.
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The Kummer Cardinality Theorem has appeared previously in the liter-
ature in conjunction with applications for minimal indices [8, 13].

Theorem 7. Let ϕ be a Gödel numbering, and let k ≥ 1 be a constant.
There is no enumerator f satisfying |f(e)| ≤ k and |minϕ(e)| ∈ f(e) for
all e.

Proof. Fix ϕ and k, and suppose such an f exists. Let m0,m1, . . . ,mk be
such that for all i < k:

ϕmi ( ϕmi+1 and |mi| < |mi+1| and minϕ(mi) = mi.

Let A0, A1, . . . be an effective listing of all finite sets of cardinality k, and
define a numbering ψ by ψe =

⋃
{i:|K∩Ae|≥i} ϕmi . Let g be a computable

function such that ϕg(e) = ψe for all e. Now it must be the case that
minϕ(g(e)) ∈ {m0, . . . ,mk}, as |K ∩Ae| ≤ k for all e. On the other hand,
f(g(e)) enumerates at most k of these indices. Let h be a computable
function satisfying h(mn) = n for all n ≤ k. Then applying h to each of the
outputs of f(g(e)) yields a subset of {0, 1, . . . , k} of size at most k containing
|K ∩Ae|, whence by the Kummer Cardinality Theorem, K is computable.
However, as K is not computable, this contradiction proves the theorem.

4 Nearly-minimal indices

If one relaxes the enumerator requirements so as only to include a small
index rather than the absolute minimal one, then the size of the enumerator
output can be reduced. Theorem 8 suggests a quantitative trade-off between
the enumerator’s output size |f(e)| and the difference between minϕ(e) and
ϕe’s smallest index in f(e).

Theorem 8. Suppose h is a non-decreasing, unbounded computable function
such that h(`) < ` − 3 for all ` > 4. Then there exists a Kolmogorov
numbering ϕ such that for any enumerator function f satisfying |f(e)| ≤
2h(|e|)−1, there exist infinitely many indices e such that

(i) every j ∈ f(e) with |j| < |e| satisfies ϕj 6= ϕe, and

(ii) minϕ(e) < 8 · 2h(|e|).

Proof. The initialization part of this proof is similar to the proof of The-
orem 5, but the construction changes when we reach the for loop. Let h,
w, ψ, g, q, u, p, σj , τi, and fn,s(σj) be as in Theorem 5. We remark that
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an arbitrary Kolmogorov numbering ψ would suffice here, and that the τi’s
in this argument need only pairwise differ on single inputs rather than in-
finitely often (that is, we only define ϕτi(〈p, i, s, t〉) for t = 0, rather than for
all values of t as in Theorem 5).

As before, the construction splits into two threads. The first thread
searches for a j such that fn(σj) properly extends fn,s(σj). If such a j is
found, then we terminate stage s and begin stage s + 1. While this thread
is still searching, the following is done with initial condition t = s. Let ϕξ,t
denote ϕξ computed within t steps, that is, ϕξ,t(x) = ϕξ(x), if ϕξ(x) halts
within t steps; otherwise ϕξ,t(x) is undefined.
for j = 1 to 2p do:

1. Let k be the least natural number less than 2g(p) such that every
ξ ∈ fn,s(σj) of length less than p satisfies ϕξ,t 6= ϕτk defined up
to now. Such a k must exist because there are 2g(p) distinct ϕτi ’s
while, by assumption, |fn(σj)| < 2g(p)−1. Define ϕσj to be ϕτk
defined up to now.

2. Search for a t′ > t and ξ ∈ fn,s(σj) of length less than p such
that ϕξ,t′ = ϕτk defined up to now. If found, proceed to the next
iteration of the for loop with t = t′.

end for
Observe that if the for loop gets stuck in some iteration j, then the

corresponding σj witnesses both of the conclusions of the theorem. By the
first step of the loop, we have ϕσj = ϕτk , whence by definition of τk and g,

minϕ(σj) = minϕ(τk) < 2g(|σj |)+1 ≤ 2h(|σj |)+3.

This gives conclusion (ii). Since the search in the second step of the loop
failed to terminate, we obtain that for all ξ ∈ f(σj) with |ξ| < |σj |, ϕξ 6= ϕσj
which gives conclusion (i).

Finally we verify that the for loop does not terminate for some j ≤ 2p.
Each iteration of the loop commits, at the end of its second step, at least
one index of length less than p to forever follow at most one of the pairwise
incomparable ϕτk . Since there are 2p loop iterations and only 2p− 1 strings
of length less than p, at least one of these iterations must not terminate.

The following corollary presents an example of parameters achievable in
an arbitrary Kolmogorov numbering.

Corollary 9. Let ψ be a Kolmogorov numbering. Let g be an enumerator
with |g(e)| <

√
e for all e > 0. Then for infinitely many indices e, any
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index y ∈ g(e) such that ψy = ψe satisfies |y| − |minψ(e)| = Ω(|e|). The
hidden constant depends on the numbering ψ.

Proof. The present proof roughly follows the argument from Corollary 6.
Let ϕ be the special Kolmogorov numbering from Theorem 8, let ψ be an
arbitrary Kolmogorov numbering, and let g be an enumerator with |g(e)| <√
e for all e. By Schnorr’s Linear Isomorphism Theorem, there exists a

bijective translator t from ϕ to ψ such that for some constant c > 0 and for
all indices e > 0, t(e) and t−1(e) are both bounded above by c · e.

Fix a function h(`) = log
√
c+ `/2 + 1 and an enumerator f = t−1 ◦ g ◦ t

so that f satisfies the necessary hypothesis of Theorem 8:

|f(e)| =
∣∣t−1(g(t(e)))

∣∣ = |g(t(e))| <
√
c · e ≤ 2

(
log
√
c+
|e|
2
+1

)
−1

= 2h(|e|)−1.

(Note that we may need minor adjustment of the above h, f to make sure
that h(`) < `− 3 for small values of `).

Now there exist infinitely many e such that the least index for ϕe in
f(e) = t−1(g(t(e)), if it exists, is at least e/2, and therefore the least index
for ψt(e) in g(t(e)), if it exists, is at least t(e)/(2c2). Moreover

minψ(t(e)) < 8c · 2h(|e|) = 16c ·
√
c · e ≤ 16c2 ·

√
t(e).

This gives a difference of t(e)/(2c2) − 16c2 ·
√
t(e) = Ω(e). Taking the

difference between the logarithm of this minuend and subtrahend also yields
the gap promised in the statement of the corollary in terms of program
lengths.

We wonder whether or not the results in this section carry over to
*-minimal indices.

Question 10. Can we replace “=” with “=∗” and “min” with “min∗” in
the statement of Corollary 9?

Acknowledgement. We thank the anonymous referee for bringing
Schnorr’s Linear Isomorphism Theorem to our attention. This result per-
mitted us to solve an open problem in an earlier draft of this work and
simplify the proofs of the corollaries.
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Meer, editors, Proceedings 10th CiE, Budapest, Hungary, Language,
Life, Limits, volume 8493 of Lecture Notes in Computer Science, pages
403–408. Springer International Publishing, 2014.

13


	Short list approximations for minimal programs
	Strings
	Functions
	Nearly-minimal indices

