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Abstract

An index for an r.e. class of languages (by definition) is a procedure which generates a sequence of
grammars defining the class. An index for an indexed family of languages (by definition) is a procedure
which generates a sequence of decision procedures defining the family.

Studied is the metaproblem of synthesizing from indices for r.e. classes and for indexed families of
languages various kinds of language-learners for the corresponding classes or families indexed.

Many positive results, as well as some negative results, are presented regarding the existence of
such synthesizers. The negative results essentially provide lower bounds for the positive results. The
proofs of some of the positive results yield, as pleasant corollaries, subset-principle or tell-tale style
characterizations for the learnability of the corresponding classes or families indexed.

For example, the indexed families of recursive languages that can be behaviorally correctly identified
from positive data are surprisingly characterized by Angluin’s (1980b) Condition 2 (the subset principle
for circumventing overgeneralization).

1 Introduction

Ex-learners, when successful on an object input, (by definition) find a final correct program for that object
after at most finitely many trial and error attempts (cf. e.g. Gold (1967), Blum and Blum (1975), Case and
Smith (1983), Case and Lynes (1982)).1

For function learning, there is a learner-synthesizer algorithm lsyn so that, if lsyn is fed any procedure
that lists programs for some (possibly infinite) class S of total functions, then lsyn outputs an Ex-learner
successful on S (Gold (1967)). The learners so synthesized are called enumeration techniques (cf. e.g. Gold
(1967), Blum and Blum (1975), Fulk (1990b)). These enumeration techniques yield many positive learnability
results, for example, that the class of all functions computable in time polynomial in the length of input is

1
Ex is short for explanatory.

1



Ex-learnable. The reader is referred to Jantke (1979) for a discussion of synthesizing learners for classes of
recursive functions that are not necessarily recursively enumerable.

Ex language learning from positive data and with learners outputting grammars is called TxtEx-learning.
Osherson, Stob and Weinstein (1988) provide an amazingly negative result: there is no learner-synthesizer
algorithm lsyn so that, if lsyn is fed a pair of grammars g1, g2 for a language class L = {L1, L2}, then lsyn
outputs an TxtEx-learner successful on L.2 Of course, it follows from this negative result that there is also
no synthesizer algorithm lsyn so that, if lsyn is fed instead a procedure listing a pair of grammars g1, g2 for
a language class L = {L1, L2}, then lsyn outputs an TxtEx-learner successful on L.

In the present paper we show how to circumvent some of the sting of this negative result by resorting
to more general learners than TxtEx. Example more general learners are: TxtBc-learners, which, take
positive data about a language, and, when successful on that language (by definition) find a final (possibly
infinite) sequence of correct grammars for that object after at most finitely many trial and error attempts
(cf. e.g. Bārzdiņš (1974), Case and Smith (1983), Case and Lynes (1982), Osherson and Weinstein (1982a)).3

If a suitable learner-synthesizer algorithm lsyn is fed procedures for listing decision procedures (instead
of mere grammars), one also has more success at synthesizing learners. An indexed family is a language class
defined by an r.e. listing of decision procedures for the languages in the class, and an index for an indexed
family is a procedure for listing decision procedures defining it. Even for synthesis from indices for indexed
families, one has negative results. For example, Kapur (1991) shows that one cannot algorithmically find
an TxtEx-learning machine for an arbitrary TxtEx-learnable indexed family of recursive languages from
an index of that family. This is a bit weaker than a closely related negative result below (Theorem 31 in
Section 3.2 below).

The computational learning theory community has shown considerable interest (spanning from Gold
(1967) to Zeugmann and Lange (1995) to the present) in indexed families (sometimes called uniformly de-
cidable classes). As is essentially pointed out in Angluin (1980b), all of the formal language style example
classes are indexed families.4

One of our main results (Theorem 30 in Section 3.2 below) implies: there is a learner-synthesizer algorithm
lsyn so that, if lsyn is fed any index for any indexed family L of languages which can be TxtBc-learned,
then lsyn outputs a TxtBc-learner successful on L.

The proof of this positive result yields the surprising characterization (Corollary 25 in Section 3.2 below):
if L is an indexed family, then: L can be TxtBc-learned iff

(∀L ∈ L)(∃S ⊆ L | S is finite)(∀L′ ∈ L | S ⊆ L′)[L′ 6⊂ L].

Nicely, whether or not the just above displayed condition holds for an indexed family L is easily checkable!
Furthermore, this condition turns out to be Angluin’s important Condition 2 from Angluin (1980b), and it

2The problem is not that correct grammars for finite classes of languages can’t be learned in the limit; they can (Osherson,
Stob and Weinstein (1986a)), and by an obvious enumeration technique. The problem is how to pass algorithmically from a
list of grammars to a machine which so learns the corresponding languages.

A study of the proof of the result shows that, intuitively, the difficulty, given a pair of grammars g1, g2 for a language class
L = {L1, L2}, to synthesize a TxtEx-learner successful on L is in deciding from g1, g2 whether or not L1 = L2. This equivalence
problem is well-known to be algorithmically unsolvable (Rogers (1967)).

3
Bc is short for behaviorally correct.

4Many example indexed families are known to be learnable (cf. e.g. Angluin (1980a), Angluin (1980b), Angluin (1982);
Shinohara (1983), Wright (1989)). Particularly influential have been pattern languages (Angluin (1980a)) and finite unions
thereof (Shinohara (1983), Wright (1989)). Nix (1983) as well as Shinohara and Arikawa (1995) outline interesting applications
of pattern inference algorithms. For example, pattern language learning algorithms have been successfully applied for solving
problems in molecular biology (see Shimozono, Shinohara, Shinohara, Miyano, Kuhara and Arikawa (1994), Shinohara and
Arikawa (1995)). Pattern languages and finite unions of pattern languages turn out to be subclasses of Smullyan’s (1961)
Elementary Formal Systems (EFSs). Arikawa, Shinohara and Yamamoto (1992) show that the EFSs can also be treated as a
logic programming language over strings. The techniques for learning finite unions of pattern languages have been extended to
show the learnability of various subclasses of EFSs (Shinohara (1991)). Investigations of the learnability of subclasses of EFSs
are important because they yield corresponding results about the learnability of subclasses of logic programs. Arimura and
Shinohara (1994) use the insight gained from the learnability of EFSs subclasses to show that a class of linearly covering logic
programs with local variables is TxtEx-learnable. These results have consequences for Inductive Logic Programming (cf. e.g.
Muggleton and Raedt (1994), Lavarač and Džeroski (1994)).
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is referred to as the subset principle, in general a necessary condition for preventing overgeneralization in
learning from positive data (cf. e.g Angluin (1980b), Berwick (1985), Zeugmann, Lange and Kapur (1995),
Kapur and Bilardi (1992), Case (1998)). Angluin’s Condition 1, also from Angluin (1980b), is a constructive
version of her Condition 2 additionally requiring that a sufficient collection of finite sets S for the displayed
condition above is defined by an r.e. set of grammars. She shows that there are indexed families satisfying
her Condition 2 but not her Condition 1. She also shows that her Condition 1 characterizes the indexed
families in TxtEx! Hence, we have that an indexed family is TxtBc-learnable but not TxtEx-learnable ⇔ it
satisfies Angluin’s Condition 2 but not her Condition 1! Discussion following the proof of Theorem 31 below
clarifies the connection between our learning machine synthesizing algorithm from the proof of Theorem 30
and one implicit in Angluin’s proof (Angluin (1980b)) of her characterization theorem.

Suppose a is a non-negative integer or a ∗. TxtBca-learning (Case and Lynes (1982), Case and Smith
(1983)) is a variant of TxtBc-learning in which the final grammars are each allowed to be incorrect on no
more than a words.5 Theorem 30 below shows more generally that, for each a, there is a learner-synthesizer
algorithm lsyn so that, if lsyn is fed any index for any indexed family L of languages which can be TxtBca-
learned, then lsyn outputs a TxtBca-learner successful on L. Corollary 26 in Section 3.2 below characterizes
the TxtBca-learnable indexed families as exactly those satisfying

(∀L ∈ L)(∃S ⊆ L | S is finite)(∀L′ | S ⊆ L′ ∈ L
∧ L′ ⊆ L)[card(L − L′) ≤ 2a],

another easily checkable condition.
We outline next the principle additional results of the present paper.
Let card(S) denote the cardinality of a set S. We show (Theorem 8 in Section 3.1 below) that there is an

algorithm for translating any listing procedure for a finite set P of grammars into a learning procedure MP

which, given any listing of a language L generated by grammars in P , eventually converges to outputting
over and over no more than card(P ) grammars each of which is correct for L. The requirement for successful
learning, in this case, is loosened from requiring that MP TxtEx-learn L to merely requiring MP to output
eventually ≤ card(P ) grammars correct for L.6 Furthermore, MP does involve an enumeration technique,
a procedure which does matching and elimination based on the grammars in P . Interestingly, too, MP , in
this case, outputs conjectures from the “hypothesis space” P itself (Lange and Zeugmann (1993)).

Suppose x is a procedure for listing an r.e. (possibly infinite) set of grammars P . Let Cx be the set of
languages generated by the grammars in P . In Section 3.1 we explore the problem of synthesizing learning
machines for learnable Cx’s from the corresponding x’s.

One shot language identification (called TxtEx0-identification below7) is just the important case of
TxtEx-identification where the learning procedure makes but one conjecture (which must, then, be correct).
The proof of Theorem 12 below (in Section 3.1) presents an algorithm for transforming any x such that Cx

is TxtEx0-identifiable into a TxtBc-learner for Cx.
For this, as well as for our other results providing the synthesis of a learning machine, each synthesized

learning machine can be construed as implementing a (perhaps complicated) enumeration technique; however,
of necessity, in most cases the conjectures of the synthesized machines go beyond the original hypothesis
space (Lange and Zeugmann (1993)).

Regarding the positive results about Cx’s, we also present corresponding lower bound results showing, in
many cases, the positive results to be best possible. For example, Theorem 14 below shows the necessity of
the cost, from Theorem 12, of passing from no mind changes for the input classes to infinitely many in the
synthesized learning machines.

5This is where, no more than ∗ words means: at most finitely many words. Also, by convention 2∗ = ∗.
6The criterion requiring a machine, on positive data for a language L, to output eventually no more than n distinct grammars

each of which is correct is called TxtFexn-learning (Case (1998)). TxtFex1-learning is just TxtEx-learning, but one can learn
strictly larger classes of languages with TxtFexn+1-learners than with TxtFexn-learners (Case (1998)). One can learn larger
classes of languages with TxtBc-learners than with TxtFexn-learners for any n (Case (1998)); of course this is, then, at a cost
of outputting infinitely many distinct grammars in the limit.

7The 0 in ‘TxtEx0’ has a totally different meaning from the n in ‘TxtFexn’; the former is a bound on mind changes
for convergence to a single final program, the latter is a bound on the number of different programs an associated machine
eventually vacillates between in the limit.
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One might hope to obtain synthesized learning machines with better mind change complexity if one
provided indices for listing decision procedures in place of grammars for the languages to be learned from
positive data. In Section 3.2 below, we see that this is indeed the case. For example, the proof of Theorem 21
below (in Section 3.2) presents an algorithm for transforming any index of any indexed family for a class
of recursive languages L that is TxtEx0-identifiable into a learning procedure which TxtEx-identifies L.
Theorem 24 shows the necessity of the cost, from Theorem 21, of passing from no mind changes for the
input classes to finitely many in the synthesized learning machines. However, the last theorem of Section 3.2
(Theorem 31) shows that the cost of passing from even one mind change in the input indexed family to
infinitely many in the synthesized learning machines is necessary.

2 Preliminaries

2.1 Notation

N is the set of natural numbers, {0, 1, 2, 3, . . .}. Unless otherwise specified, e, i, j, k, m, n, p, s, w, x, y, z, with
or without decorations (decorations are subscripts, superscripts and the like), range over N . ∗ is a non-

member of N and is assumed to satisfy (∀n)[n < ∗ < ∞]. Furthermore, 2∗
def
= ∗. a, b and c with or without

decorations, ranges over N ∪ {∗}. By ∅,∈, ⊆, ⊂, ⊇, ⊃ we mean the empty set, element of, subset, proper
subset, superset and proper superset, respectively. P and S, with or without decorations, range over sets.
We sometimes write card(S) ≤ ∗ to mean S is finite. We use S1∆S2 to denote the symmetric difference of
the sets S1 and S2. S1 =a S2 means that card({x | x ∈ S1∆S2}) ≤ a. ODD = {2x + 1 | x ∈ N}, and
EVEN = {2x | x ∈ N}.

max(·), min(·) denote the maximum and minimum of a set, respectively, where max(∅) = 0 and min(∅)
is undefined. Fix a recursive canonical indexing of the finite sets (Rogers (1967)). The min(·) of a collection
of finite sets is, then, the finite set in the collection with minimal canonical index. Also, when we compare
finite sets by < we are comparing their corresponding canonical indices.

We use the symbol ↓ to mean that a computation converges. f, g and h with or without decorations
range over total functions with arguments and values from N . 〈·, ·〉 stands for an arbitrary, computable,
one-to-one encoding of all pairs of natural numbers onto N (Rogers (1967)).

We fix an acceptable programming system ϕ for the partial computable functions: N → N (cf. e.g.
Rogers (1958), Machtey and Young (1978), Royer (1987)). ϕi is the partial computable function computed
by program i in the ϕ-system. R represents the class of all (total) recursive functions of one variable. R0,1

denotes the class of all (total) recursive 0-1 valued functions.
Wi is domain(ϕi). Wi is, then, the r.e. set/language (⊆ N) accepted (or equivalently, generated (Hopcroft

and Ullman (1979))) by the ϕ-program i. W s
i

def
= {x ≤ s | x appears in Wi in ≤ s steps}. For a language

L ⊆ N , L[x] is {w ≤ x | x ∈ L}, and we use χL to denote the characteristic function of L; L is the
complement of L. L, with or without decorations, ranges over set of subsets of the r.e. sets.

We sometimes consider partial recursive functions with two arguments in the ϕ system. In such cases we
implicitly assume that 〈·, ·〉 is used to code the arguments, so, for example, ϕi(x, y) stands for ϕi(〈x, y〉).

The quantifiers ‘∀∞’, and ‘∃∞’ (essentially from Blum (1967)), mean ‘for all but finitely many’ and ‘there
exist infinitely many’, respectively.

f : N → N is limiting recursive
def
⇔ (∃ recursive g : (N×N) → N)(∀x)[f(x) = limt→∞ g(x, t)]. Intuitively,

g(x, t) is the output at discrete time t of a mind changing algorithm for f (acting on input x); hence, for f

limiting recursive as just above, for all x, for all but finitely many times t, the output of the mind changing
algorithm on input x is f(x). It is easy to show that there is a limiting recursive function h such that
(∀ recursive g)(∀∞x)[h(x) > g(x)]. Hence, the limiting recursive functions go way beyond the recursive
ones; in fact, they have been known since Post (Shapiro (1971)) to characterize the functions recursive in an
oracle for the halting problem. The set of all (total) limiting recursive functions of one variable is LR.

We sometimes use the symbol ‘¬’ for negation.
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2.2 Learning Machines

We now consider language learning machines. We first introduce a notion that facilitates discussion about
elements of a language being fed to a learning machine. A sequence σ is a mapping from an initial segment
of N into (N ∪ {#}). The content of a sequence σ, denoted content(σ), is the set of natural numbers in the
range of σ. The length of σ, written |σ|, is the number of elements in σ. Λ denotes the empty sequence.
Intuitively, #’s represent pauses in the presentation of data. We let σ and τ , with or without decorations,
range over finite sequences. SEQ is the set of all finite sequences. The set of all finite sequences of natural
numbers and #’s, SEQ, can be coded onto N . This latter fact will be used implicitly in some of our proofs.

A language learning machine is an algorithmic device which computes a mapping from SEQ into N ∪{?}.
Intuitively the outputted ?s represent the machine not yet committing to an output program. The reason
we want the ?s is so we can avoid biasing the number of program mind changes before a learning machine
converges: if we allow initial outputs of ?s before, if ever, the first program is output, then we can learn more
things within n mind changes than if we had to begin with a program (numerical) output. In this paper we
assume, without loss of generality, that for all σ ⊆ τ , [M(σ) 6=?] ⇒ [M(τ) 6=?].

M ranges over language learning machines.

2.3 Fundamental Language Identification Paradigms

A text T for a language L is a mapping from N into (N ∪ {#}) such that L is the set of natural numbers
in the range of T . The content of a text T , denoted content(T ), is the set of natural numbers in the range
of T .

Intuitively, a text for a language is an enumeration or sequential presentation of all the objects in the
language with the #’s representing pauses in the listing or presentation of such objects. For example, the
only text for the empty language is just the infinite sequence of #’s.

We let T , with or without superscripts, range over texts. T [n] is the finite initial sequence of T with
length n. Hence, domain(T [n]) = {x | x < n}.

2.3.1 Explanatory Language Identification

Suppose M is a learning machine and T is a text. M(T )↓ (read: M(T ) converges)
def
⇔ (∃i)(∀∞n) [M(T [n]) =

i]. If M(T )↓, then M(T ) is defined = the unique i such that (∀∞n)[M(T [n]) = i].
We now introduce criteria for a learning machine to be considered successful on languages.

Definition 1 Recall that a and b range over N ∪ {∗}.

(1) M TxtExa-identifies L (written: L ∈ TxtExa(M))
def
⇔ (∀ texts T for L)(∃i | Wi =a L)[M(T )↓ = i].

(2) M TxtExa
b -identifies L (written:L ∈ TxtExa

b (M))
def
⇔

[L ∈ TxtExa(M) ∧ (∀ texts T for L)[card({x |? 6= M(T [x]) ∧ M(T [x]) 6= M(T [x + 1])}) ≤ b]].
(3) TxtExa

b = {L | (∃M)[L ⊆ TxtExa
b (M)]}.

Gold (1967) introduced the criteria we call TxtEx0
∗. The generalization to the a > 0 cases in Definition 1

is motivated by the observation that humans rarely learn a language perfectly, where the a represents an
upper bound on the numer of anomalies permitted in final grammars. The a > 0 case is from Case and
Lynes (1982), but Osherson and Weinstein (1982a), independently, introduced the a = ∗ case. For these and
the other success criteria of this paper, we have that tolerating more anomalies leads to being able to learn
larger classes of languages (Case and Lynes (1982), Case (1998), Baliga and Case (1993)). Gold’s model of
language learning from text (positive information) and by machine (Gold (1967)) has been very influential in
contemporary theories of natural language and in mathematical work motivated by its possible connection
to human language learning (cf. e.g. Pinker (1979), Wexler and Culicover (1980), Wexler (1982), Osherson,
Stob and Weinstein (1982), Osherson, Stob and Weinstein (1984), Berwick (1985); Gleitman (1986), Case
(1986), Osherson, Stob and Weinstein (1986b), Osherson, Stob and Weinstein (1986a), Fulk (1985), Fulk
(1990a), Kirsh (1992), Baliga, Case and Jain (1995)).
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We sometimes write TxtEx for TxtEx0
∗ and TxtExa for TxtExa

∗.

2.3.2 Vacillatory and Behaviorally Correct Language Identification

Definition 2 We say M(T ) finitely-converges (written: M(T )⇓)
def
⇔ {M(τ) | τ ⊂ T} is a non-empty finite

subset of N . If M(T )⇓, then M(T ) is defined = {p | (∃∞τ ⊂ T )[M(τ) = p]}; otherwise, M(T ) is undefined.

Definition 3 M, TxtFexa
b -identifies an r.e. language L (written:L ∈ TxtFexa

b (M))
def
⇔ (∀ texts T for

L)[M(T )⇓ = a non-empty set of cardinality ≤ b and (∀p ∈ M(T ))[Wp =a L]]. TxtFexa
b denotes the set of

all classes L of languages such that some learning machine TxtFexa
b -identifies each language in L.

In TxtFexa
b -identification the b is a “bound” on the number of final grammars and the a a “bound” on

the number of anomalies allowed in these final grammars. In general a “bound” of ∗ just means unbounded,

but finite. Intuitively, L ∈ TxtFexa
b

def
⇔ there is an algorithmic procedure p such that, if p is given any

listing of any language L ∈ L, it outputs a sequence of grammars converging in a non-empty set of no more
than b grammars, and each of these grammars makes no more than a mistakes in generating L.

N.B. The b in ‘TxtExa
b ’ has a totally different meaning from the b in ‘TxtFexa

b ’; the former is a bound
on mind changes for convergence to a single final program, the latter is a bound on the number of different
programs an associated machine eventually vacillates between in the limit.

We sometimes write TxtFexb for TxtFex0
b .

TxtFexa
1-identification is clearly equivalent to TxtExa

∗. Osherson and Weinstein (1982a) were the first
to define the notions of TxtFex0

∗ and TxtFex∗
∗, and the other cases of TxtFexa

b -identification are from
Case (1986) and Case (1998).

Definition 4 (1) M TxtBca-identifies L (written: L ∈ TxtBca(M))
def
⇔ (∀ texts T for

L)(∀∞n)[WM(T [n]) =a L].
(2) TxtBca = {L | (∃M)[L ⊆ TxtBca(M)]}.

In a completely computable universe all texts must be recursive (synonym: computable). This motivates
the following

Definition 5 (1) M RecTxtBca-identifies L (written: L ∈ RecTxtBca(M))
def
⇔ (∀ recursive texts T for

L)(∀∞n)[WM(T [n]) =a L].
(2) RecTxtBca = {L | (∃M)[L ⊆ RecTxtBca(M)]}.

Definition 4 is from Case and Lynes (1982). The a ∈ {0, ∗} cases were independently introduced in Os-
herson and Weinstein (1982a) and Osherson and Weinstein (1982b). RecTxtBca 6= TxtBca (Case and
Lynes (1982), Freivalds (1985)); however, the restriction to recursive texts doesn’t affect learning power for
TxtFexa

b -identification (Case (1998)).
We sometimes write TxtBc for TxtBc0, etc.

Definition 6 σ is called a TxtExa-locking sequence for M on L,
def
⇔ content(σ) ⊆ L, WM(σ) =a L, and

(∀τ | σ ⊆ τ ∧ content(τ) ⊆ L)[M(σ) = M(τ)].
σ is called a TxtBca-locking sequence for M on L, iff content(σ) ⊆ L, and (∀τ | σ ⊆ τ ∧ content(τ) ⊆

L)[WM(τ) =a L].

It can be shown (cf. e.g. Blum and Blum (1975), Osherson and Weinstein (1982a), Osherson, Stob and
Weinstein (1986a), Case (1998)) that if M TxtExa-identifies L, then there exists a TxtExa-locking sequence
for M on L. Similarly it can be shown that, if M TxtBca-identifies L, then there exists a TxtBca-locking
sequence for M on L.

Lemma 4.2.2B in Osherson, Stob and Weinstein (1986a) easily generalizes to cover all learning criteria
considered in this paper thereby providing a recursive enumeration M0,M1, . . . of (total) language learning
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machines such that, for any inference criteria I, every L ∈ I is I-identified by some machine in this enumera-
tion. Moreover, this enumeration satisfies the s-m-n property, i.e., given a description, algorithmic in x, of a
behavior of a machine M, one can algorithmically find a machine Mf(x) whose learning behavior is at least
as good as that of M. In the following we fix such an arbitrary enumeration M0,M1, . . . .

3 Results

In Section 3.1 we present our positive and negative results on synthesizing learning machines from grammars.
In Section 3.2 we present such results on synthesizing learning machines from decision procedures.

3.1 Synthesizing From Uniform Grammars

We can formally define the classes Cx from Section 1 as follows.

Definition 7 Cx
def
= {Wp | p ∈ Wx}.

One can think of the x in ‘Cx’ as representing a uniform grammar for generating (accepting) the languages
in Cx.

The following theorem removes some of the sting from the negative result (Osherson, Stob and Weinstein
(1988)) motivating the present paper. It does this by relaxation of the criterion for successful learning.

Theorem 8 (∃ recursive f)(∀x | Wx is finite) [Cx ⊆ TxtFexcard(Wx)(Mf(x))].

Proof. Let match(i, T [n]) = min({n}∪(W n
i ∆content(T [n]))). Intuitively match finds the minimum point of

disagreement between Wi and T [n]. Note that [i is a grammar for content(T ) ⇔ limn→∞ match(i, T [n]) = ∞].
If Wn

x = ∅, then let Mf(x)(T [n]) =?. Otherwise, let

Mf(x)(T [n]) = the least i ∈ W n
x which maximizes match(i, T [n]).

Fix x such that Wx is finite. Let L ∈ Cx and T be a text for L. Since, Wx is finite, it is easy to verify
that, for all but finitely many n, Mf(x)(T [n]) is in Wx and is a grammar for L = content(T ). The theorem

follows.

The above proof also demonstrates that

Corollary 9 (∃ recursive f)(∀n, x | Wx is finite and max({card({i ∈ Wx | Wi = L}) | L ∈ Cx}) = n)[Cx ⊆
TxtFexn(Mf(x))].

This nicely generalizes the special case from Osherson, Stob and Weinstein (1988) presented as Corol-
lary 10 below.

Corollary 10 (Osherson, Stob and Weinstein (1988)) (∃ recursive f)(∀x | Wx is finite ∧ (∀ distinct
i, j ∈ Wx)[Wi 6= Wj ])[Cx ⊆ TxtEx(Mf(x))].

That the bound in Theorem 8 above is tight is witnessed by the following strong lower bound

Theorem 11 For all n ≥ 1, ¬(∃f ∈ LR)(∀i0, i1, . . . , in) [{Wi0 , Wi1 , . . .Win
} ⊆ TxtFex∗

n(Mf(i0,i1,...,in))].

The n = 1 case of Theorem 11 just above, with ‘limiting recursive’ replaced by ‘recursive’ and with the ∗
removed, is just the negative result from Osherson, Stob and Weinstein (1988) that inspired the present
paper, but, of course, Theorem 11 is stronger and more general. Theorem 11 follows by a direct (n +
1)-ary recursion theorem argument and also quickly but indirectly from the fact from Case (1998) that
(TxtFexn+1 − TxtFex∗

n) 6= ∅.

7



The following theorem implies that it is possible to synthesize algorithmically, from uniform grammars,
behaviorally correct learners for classes which can be learned in one-shot (i.e., without any mind changes). As
Theorem 14 further below shows, the cost of passing from no mind changes in the input classes to infinitely
many in the synthesized learning machines is in some cases necessary (but see the second paragraph in
Section 4 below).

Recall that 2∗
def
= ∗.

Theorem 12 (∃ recursive f)(∀x)[Cx ∈ TxtExa
0 ⇒ Cx ⊆ TxtBc2a(Mf(x))].

Proof. Fix x such that Cx ∈ TxtExa
0 .

Claim 13 (∀L ∈ Cx)(∃S ⊆ L)(∀L′ | S ⊆ L′)[L′ ∈ Cx ⇒ L′ =2a L].

Proof. Suppose M TxtExa
0–identifies Cx. Suppose by way of contradiction that L ∈ Cx is such that

(∀S ⊆ L)(∃L′ | S ⊆ L′)[(L′ ∈ Cx) ∧ (L′ 6=2a L)]. Let σ be a TxtExa locking sequence for M on L. Let
L′ ∈ Cx be such that L′ ⊇ content(σ) and L′ 6=2a L. Since WM(σ) =a L, it follows that WM(σ) 6=a L′.
Therefore, L′ 6∈ TxtExa

0(M), a contradiction. 2(Claim 13)
Let g be a recursive function such that for all x and σ, Wg(x,σ) = Wy, where y ∈ Wx is an integer

satisfying content(σ) ⊆ Wy, if such an integer exists; otherwise, Wg(x,σ) = ∅. Let f be a recursive function
such that for all x, Mf(x)(σ) = g(x, σ).

Fix L ∈ Cx and a text T for L. Let S ⊆ L witness that L satisfies the above claim. Let n0 be such that
content(T [n0]) ⊇ S. It follows using Claim 13 that for all n ≥ n0, WMf(x)(T [n]) =2a L. (Theorem 12)

It is open whether, for a > 0, the 2a in Theorem 12 just above is also a lower bound; however, we do
know the following

Theorem 14 ¬(∃f ∈ LR)(∀x)[Cx ∈ TxtEx0 ⇒ Cx ⊆ TxtFex∗
∗(Mf(x))].

Proof. Suppose by way of contradiction that f ∈ LR is such that (∀x | Cx ∈ TxtEx0)[Cx ⊆
TxtFex∗

∗(Mf(x))]. Let g be a recursive function such that, for all x, f(x) = limt→∞ g(x, t). By the Operator
Recursion Theorem (Case (1974)), there exists a recursive function p such that the languages Wp(i), i ≥ 0,
are defined in stages as follows. Initially, the Wp(i)’s are empty and σ1 is the empty sequence. Go to stage 1.

Stage s

1. For each i such that 1 ≤ i ≤ s, enumerate p(i) into Wp(0) and let Wp(i) = content(σs).

2. Let xs = 1 + max({x | content(σs) ∩ {〈x, i〉 | i ≥ 0} 6= ∅}).

3. Dovetail steps 4, 5 and 6. If step 4 succeeds (before step 5, if ever) then go to step 7. If step 5 succeeds
(before step 4, if ever) then go to step 8.

4. Search for σ′ ⊃ σs such that card({Mg(p(0),s)(σ
′′) | σ′′ ⊆ σ′}) ≥ s.

5. Search for a s′ > s, such that g(p(0), s) 6= g(p(0), s′).

6. For each i such that 1 ≤ i ≤ s, enumerate more and more elements of {〈xs + i− 1, j〉 | j ≥ 0} into Wp(i).

7. Let σs+1 ⊃ σ′ be the least sequence such that content(σs+1) ⊇ {j | j ≤ 1 +
max(

⋃
1≤i≤s Wp(i) enumerated until now)}.

Go to stage s + 1.

8. Let σs+1 ⊃ σs be the least sequence such that content(σs+1) ⊇ {j | j ≤ 1 +
max(

⋃
1≤i≤s Wp(i) enumerated until now)}.

Go to stage s + 1.

End stage s
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We consider 2 cases.
Case 1: All stages terminate.

In this case, it can be verified that Wp(0) = {p(i) | i ≥ 1} and for all i ≥ 1, Wp(i) = N . Thus,
Cp(0) ∈ TxtEx0. Since step 5 can succeed in only finitely many stages, step 4 succeeds in almost every
stage. Thus, Mf(p(0)) outputs infinitely many distinct grammars on

⋃∞

s=1 σs, a text for N . Hence Cp(0) 6⊆
TxtFex∗

∗(Mf(p(0))).
Case 2: Stage s starts but does not terminate.

In this case, Wp(0) = {p(i) | 1 ≤ i ≤ s}. From step 6 it is clear that, for all i such that 1 ≤ i ≤ s, Wp(i) =∗

{〈xs + i − 1, j〉 | j ≥ 0}. Hence (∀i ≤ s, j ≤ s | i 6= j)[Wp(i) 6=∗ Wp(j)]. Also, since step 5 did not succeed
in stage s, f(p(0)) = g(p(0), s). Thus, since step 4 did not succeed in stage s, Cp(0) 6⊆ TxtFex∗

∗(Mf(p(0))).
Furthermore, it is clear that Cp(0) is finite and the languages in it are pairwise incomparable (by ⊂). Hence,

Cp(0) ∈ TxtEx0.

In most of the diagonalization results below, we will prove the theorem only for recursive f . Generalization
to limiting recursive f can be obtained by using a trick similar to use of step 5 in the construction above.

It is interesting to generalize Theorem 12 above about synthesis from one-shot learnable Cx’s to the case
of two-shot learnable Cx’s. The next two Theorems (Theorems 15 and 17) provide our best to date upper
and lower bounds, respectively, for the two-shot cases. Other possibilities are open.

Theorem 15 (∃f ∈ R)(∀x)[[Cx ∈ TxtEx1 ∧ (∀ distinct i, j ∈ Wx)[Wi 6= Wj ]] ⇒ Cx ⊆ TxtBc∗(Mf(x))].

Proof. Suppose Cx ∈ TxtEx1 and (∀i, j ∈ Wx)[Wi = Wj ⇒ i = j].

We say that L ∈ Cx satisfies property Prop0
def
⇔ there exists a finite subset SL of L such that (∀L′ ∈

Cx)[SL ⊆ L′ ⇒ L = L′]. Intuitively all L satisfying Prop0 have a finite subset which uniquely determines L

(from Cx).

We say that L ∈ Cx satisfies property Prop1
def
⇔ there exists a finite subset SL of L such that (∀L′ ∈ Cx |

L′ 6= L)[SL ⊆ L′ ⇒ L′ satisfies Prop0].
Note that if L satisfies Prop0, then, trivially, L satisfies Prop1.

Claim 16 All languages L ∈ Cx satisfy Prop1.

Proof. Suppose by way of contradiction L ∈ Cx does not satisfy Prop1. Suppose M TxtEx1-identifies Cx.
Let σ be a TxtEx-locking sequence for M on L. Let L′ ∈ Cx be such that L′ 6= L, L′ does not satisfy Prop0,
and content(σ) ⊆ L′ (such an L′ exists, since L does not satisfy Prop1). Let σ′ be an extension of σ such
that σ′ is a TxtEx-locking sequence for M on L′. Let L′′ ∈ Cx be such that L′′ 6= L′ and content(σ′) ⊆ L′′.
Such an L′′ exists since L′ does not satisfy Prop0.

Now it is easy to see that M does not TxtEx1–identify at least one language in {L, L′, L′′} since, if M
TxtEx1 identifies L and L′, then on a text for L′′ which extends σ′ it needs at least two mind changes. 2

(Claim 16)
Thus, all languages in Cx satisfy Prop1. We will utilize this property in algorithmically synthesizing a

machine for TxtBc∗–identifying Cx. Let f be a recursive function such that for all x and σ, WMf(x)(σ) is
defined in stages as follows:

Stage s

1. Let n = |σ|, X = W n
x and Y = {i ∈ X | content(σ) ⊆ W s

i }.

2. For i ∈ Y , let Zi = W s
i [n].

3. Let p1 = min(Y ) and let p2 = min({i ∈ Y | Zi ⊂ Zp1
}). Intuitively Wp2

is the first language in Cx which
“looks like” a proper subset of Wp1

.

4. If p2↑ (recall that min(∅)↑) then enumerate all the elements of W s
p1

into WMf(x)(σ) and go to stage s+1.

5. Otherwise,

5.1 Let Sp1
= min({S′ | (S′ ⊆ W s

p1
) and (∀i ∈ W s

x | i 6= p1)[S
′ 6⊆ W s

i ]}).
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(* Note that according to our convention, the minimum over a collection of finite sets, is the set
in the collection with the least canonical index. *)

5.2 Let Sp2
= min({S′ | (S′ ⊆ W s

p2
) and (∀i ∈ W s

x | i 6= p2)[S
′ 6⊆ W s

i ]}).
5.3 If Sp1

< Sp2
, then enumerate W s

p2
into WMf(x)(σ). Otherwise enumerate W s

p1
into WMf(x)(σ).

(* Here, if Sp2
(respectively, Sp1

) is undefined but Sp1
(respectively, Sp2

) is defined, then we assume
Sp1

< Sp2
(respectively, Sp2

< Sp1
). *)

5.4 Go to stage s + 1

End stage s

Fix L ∈ Cx and T , a text for L. Let i1 ∈ Wx be the unique grammar such that Wi1 = L. We consider
two cases.
Case 1: L satisfies Prop0.

Let SL witness that L satisfies Prop0. Let n0 ≥ max(SL) be the least value such that SL ⊆ content(T [n0])
and i1 ∈ Wn0

x . Fix n such that n ≥ n0. We claim that WMf(x)(T [n]) =∗ L. Let s0 be the least number such
that content(T [n]) ⊆ W s0

i1
. It is clear that for all stages s ≥ s0, the set Y computed in step 1 (of stage s)

is the singleton set {i1} (since L satisfies Prop0). Thus, for all stages s ≥ s0, step 4 will be executed and
WMf(x)(T [n]) =∗ L.
Case 2: L satisfies Prop1 but not Prop0.

Let SL witness that L satisfies Prop1. Let n0 be so large so that the following are satisfied:
(i) SL ⊆ content(T [n0]); (ii) for i ≤ i1, if content(T [n0]) ⊆ Wi, then L ⊆ Wi; (iii) for i < j < i1, if

Wi 6⊇ Wj , then Wi[n0] 6⊇ Wj [n0]; (iv) Wn0
x ⊇ Wx[i1].

Fix n ≥ n0. We claim that WMf(x)(T [n]) =∗ L. Let s0 be so large that (∀i ∈ W n
x )[W s0

i ⊇ Wi[max({n} ∪
content(T [n]))]]. Thus, values of Y, Zi, p1, p2 as defined in steps 1,2,3 do not change beyond stage s0. Below,
let Y, Zi, p1, p2 be as computed in stage s0 and beyond. There are two possibilities.

Suppose p2 is not defined. In this case, for all stages s′ ≥ s0, step 4 will be executed. Note that i1 ∈ Y

and for any i < i1, if i ∈ Y , then (by (ii) above) L = Wi1 ⊆ Wi. Thus p1 = i1 and WMf(x)(T [n]) =∗ Wi1 = L.
Now suppose p2 is defined. Then in stage s ≥ s0, step 4 will not be executed; instead, step 5 will be

executed. Clearly, i1 ∈ {p1, p2} (otherwise Wi1 ⊂ Wp2
⊂ Wp1

— by condition (ii) and (iii) for choice of n0

— which implies Cx 6∈ TxtEx1). Suppose i1 = p1 (the argument is similar if i1 = p2). Since SL ⊆ Wp2
,

it follows that L′ = Wp2
satisfies Prop0. Now since Wp2

satisfies Prop0 but Wp1
does not, it follows that

for all but finitely many stages s, Sp1
> Sp2

. It thus follows, due to step 5.3, that WMf(x)(T [n]) =∗ Wp1
=

L. (Theorem 15)

Theorem 17 (∀f ∈ LR)(∀n)(∃x | Cx ∈ TxtEx1)[Cx 6⊆ RecTxtBcn(Mf(x))].

Proof. We prove here the following restricted version of the theorem only.

(∀f ∈ R)(∀n)(∃x | Cx ∈ TxtEx1)[Cx 6⊆ RecTxtBcn(Mf(x))].

The lift from R to LR is straightforward.
Fix f ∈ R and n. By the Operator Recursion Theorem there exists a 1-1 increasing recursive function p

such that the languages Wp(i), i ≥ 0, are defined as follows. Enumerate p(1) in Wp(0). Wp(1) will be a subset
of ODD. The construction will use a set O. Initially, let O = ∅. Informally, O is the set of odd numbers we
have decided to keep out of Wp(1). Let σ2 be the empty sequence. Go to stage 2.

Stage s

1. Enumerate p(s) into Wp(0). Dovetail the execution of steps 2 and 3. If and when step 3 succeeds, go to
step 4.

2. Enumerate one-by-one, in increasing order, the elements of ODD − O into Wp(s).

3. Search for σs+1 ⊃ σs and set Ps containing exactly n+1 distinct odd numbers such that content(σs+1) ⊆
ODD − O and Ps ⊆ (WMf(p(0))(σs+1) − content(σs+1)).
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4.

4.1 Enumerate content(σs+1) into Wp(1).
4.2 Enumerate the (even) number 2s into Wp(s).
4.3 Let O = O ∪ Ps, where Ps is the set found above in step 3.
4.5 Go to stage s + 1.

End stage s.

We consider two cases.
Case 1: Stage s starts but does not terminate.

In this case Wp(0) = {p(i) | 1 ≤ i ≤ s}. Observe that for each i such that 2 ≤ i ≤ s−1, 2i is the only even
number in Wp(i). Wp(1) is a finite subset of ODD and Wp(s) = ODD−O, is an infinite subset of ODD. It
is then easy to verify that Cp(0) ∈ TxtEx1.

Let T ⊃ σs be a recursive text for Wp(s). It is clear that for all (σ | σs ⊂ σ ⊂ T )[WMf(p(0))(σ) ∩ ODD is
finite]. Thus, M does not RecTxtBcn-identify Wp(s).
Case 2: All stages terminate.

In this case, clearly, for all i > 1, Wp(i) is finite and contains exactly one even number, namely 2i. Also,
Wp(1) contains only odd numbers. Thus Cp(0) belongs to TxtEx1.

We claim that M does not RecTxtBcn-identify Wp(1). Let T =
⋃

s≥2 σs. Clearly, T is a recursive
text with content exactly Wp(1). Consider any stage s ≥ 2. It is clear by steps 3 and 4 that, for all s,
card(WMf(p(0))(σs) − Wp(1)) ≥ n + 1. Thus, T is a recursive text witnessing that M does not RecTxtBcn–

identify Wp(1).

3.2 Synthesizing From Uniform Decision Procedures

Definition 18
(1) We say that x is a uniform decision procedure for a class L of recursive languages

def
⇔ [ϕx ∈ R0,1 ∧ L =

{L | (∃i)[χL(·) = ϕx(i, ·)]}].
(2) Suppose x is a uniform decision procedure. Then Ux is (by definition) the class of languages for which

x is a uniform decision procedure.

(3) L is a uniformly decidable class of languages
def
⇔ (∃x, a uniform decision procedure)[L = Ux].

(4) When a fixed uniform decision procedure x is understood, we sometimes then write Ui for the language
whose characteristic function is ϕx(i, ·).

(5) By Ui[s] we mean {x ∈ Ui | x ≤ s}.

It is straightforward to show that uniform decision procedures and indexes of indexed families are inter-
compilable and, hence, that the uniformly decidable classes of languages formally defined just above (Defini-
tion 18) are exactly the indexed families of languages. In the formal statements and proofs of our results we
will employ the terminology from Definition 18.

As noted in detail in Section 1, there has been considerable interest in the computational learning theory
community in learnability, from positive data, of uniformly decidable classes of recursive languages (indexed
families) (Angluin (1980b), Zeugmann and Lange (1995)).

Angluin (1980b) deals with so-called exact (Lange and Zeugmann (1993)) learning in which, for each
learnable class, the programs learned derive naturally from the defining uniform decision procedure for that
class.8 Herein, we will synthesize learning machines whose hypothesis spaces in many cases of necessity go
beyond hypothesis spaces naturally associated with the defining uniform decision procedures for the classes
(Lange and Zeugmann (1993)).9

8Typically, in the literature one uses i as a “program” for the Ui from Definition 18 above. The s-m-n in the ϕ-system (
Rogers (1967)) clearly yields corresponding ϕ-decision procedures or grammars as one wishes. See the next footnote.

9For example, if x is a uniform decision procedure (as in Definition 18 above), by s-m-n, there are computable d and g such
that, for all i, ϕd(x,i)(·) = ϕx(i, ·), and Wg(x,i) = ϕ−1

d(x,i)
(1). The hypothesis spaces {d(x, i) | i ∈ N} and {g(x, i) | i ∈ N} are

each naturally associated with x, but, we will, in most cases, need to employ much more general spaces of programs.
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The next two theorems (Theorems 19 and 20) deal with the special case where the uniformly decidable
classes are finite. The first is an even more positive result than its analog for uniformly r.e. classes (Theorem 8
in Section 3.1 above). It’s proof is straightforward, hence, omitted. The second shows the first is best possible.

Theorem 19 (∀n ≥ 1)(∃ recursive f)(∀x | x is a uniform decision procedure and card(Ux) = n)[Ux ⊆
TxtExn−1(Mf(x))].

Theorem 20 For all n ≥ 1, there exists a uniformly decidable class L such that card(L) = n + 1 and
L 6∈ TxtEx∗

n−1.

Proof. Let Lj = {〈x, y〉 | y ∈ N ∧ x ≤ j}. It is easy to verify that {Lj | j ≤ n} is uniformly decidable but
not in TxtEx∗

n−1.

The next two theorems (Theorems 21 and 24) concern synthesis from one-shot learnable uniformly de-
cidable classes, and the first provides a much more positive result than its analog for uniformly r.e. classes
(Theorem 12 in Section 3.1 above). The second shows the first is best possible and that the cost of passing
from no mind changes in the input classes to finitely many in the synthesized learning machines is necessary.

Theorem 21 (∀a ∈ N ∪ {∗})(∃f ∈ R)(∀x | x is a uniform decision procedure)[Ux ∈ TxtExa
0 ⇒ Ux ⊆

TxtExa(Mf(x))].

Proof. Fix a. Let Ux ∈ TxtExa
0 be given. We first show the following Claim.

Claim 22 For all L ∈ Ux, there exist finite sets SL, S1
L and S2

L such that
(a) SL ⊆ L, and
(b) for the least i such that SL ⊆ Ui:

(∀L′ ∈ Ux | SL ⊆ L′)[(Ui − S1
L) ∪ S2

L =a L′]

Proof. Suppose Ux ∈ TxtExa
0(M). Suppose L ∈ Ux. Then there exists a sequence σ, such that

content(σ) ⊆ L and WM(σ) 6=?. This implies that for all L′ ∈ Ux such that content(σ) ⊆ L′, WM(σ) =a L′.
Let SL = content(σ). Let i be the least number such that SL ⊆ Ui. Let S1

L = Ui − WM(σ) and
S2

L = WM(σ) − Ui. It is easy to verify that (a) and (b) are satisfied. 2

Claim 23 Suppose T is a text for L ∈ Ux. Let S1
T , S2

T and ST be such that
(a) ST ⊆ content(T ), and
(b) for the least i such that ST ⊆ Ui:

(∀L′ ∈ Ux | ST ⊆ L′)[(Ui − S1
T ) ∪ S2

T =a L′].

Then, for the least i such that ST ⊆ Ui:

[(Ui − S1
T ) ∪ S2

T ] =a L.

Proof. Since, ST ⊆ L, it follows from clause (b) that [(Ui − S1
T ) ∪ S2

T ] =a L. 2

Since one can verify in the limit, for given S1
T , S2

T and ST , whether clauses (a) and (b) in Claim 23 above
are satisfied, one can algorithmically search for (some lexicographically least) such S1

T , S2
T , ST . This is what

gives us Mf(x) given below.
Let Gram(i, S1, S2) be a grammar obtained algorithmically from i and finite sets S1 and S2, such that

WGram(i,S1,S2) = (Ui − S1) ∪ S2.
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Mf(x)(T [n]):

1. Let Sn, S1
n, S2

n ⊆ {x ≤ n} be (lexicographically least (if any)) finite sets such that

(a) Sn ⊆ content(T [n])

(b) for the least i such that Sn ⊆ Ui:

(∀j ≤ n | Sn ⊆ Uj)[(Ui[n] − S1
n) ∪ S2

n =a Uj [n]]

2. If no such Sn, S1
n, S2

n is found in the search above, then output 0. Else let Sn, S1
n, S2

n be the lexicograph-
ically least such set. For the least i such that Sn ⊆ Ui, output Gram(i, S1

n, S2
n).

End Mf(x)

Using Claim 22, it is easy to verify that, for any T for L ∈ Ux, Sn, S1
n, S2

n as found in step 1 above
converges to ST , S1

T , S2
T , which satisfy (a) and (b) in Claim 23. It thus follows that Mf(x) TxtExa-identifies

Ux.

Theorem 24 (∀n)¬(∃f ∈ LR)(∀x | x is a uniform decision procedure)[Ux ∈ TxtEx0 ⇒ Ux ⊆
TxtEx∗

n(Mf(x))].

Proof. Fix n. For simplicity of presentation, we give the proof only for recursive f . The proof can be
straightforwardly generalized to limiting recursive f . By implicit use of the recursion theorem there exists
an x such that Ux may be described as follows.

Let σ0 be a sequence, if any, such that Mf(x)(σ0) 6=?. For i ≤ n, if σi is defined, then try to define σi+1

as follows: let σi+1 be a sequence, if any, such that σi ⊆ σi+1 and Mf(x)(σi) 6= Mf(x)(σi+1).
Let L0 = {〈0, y〉 | y ∈ N}. For i such that σi is defined in the process above, define L2i+1, L2i+2 as

follows: L2i+1 = content(σi) ∪ {〈2i + 1, y〉 | y ∈ N}. L2i+2 = content(σi) ∪ {〈2i + 2, y〉 | y ∈ N}.
Let Ux = {L0}∪{L2i+1, L2i+2 | σi is defined in the process above}. Since Ux is finite and all languages in

Ux are pairwise incomparable (by ⊂), it follows that Ux ∈ TxtEx0. We claim that Ux 6⊆ TxtEx∗
n(Mf(x)).

If σn+1 is defined then, Mf(x) makes at least n + 1 mind changes on σn+1 and thus does not TxtEx∗
n-

identify L2n+3, L2n+4 ∈ Ux.
If σ0 is not defined, then L0 ∈ Ux, but Mf(x) does not TxtEx∗-identify L0.
If, for some i ≤ n, σi is defined but σi+1 is not defined, then: L2i+1, L2i+2 ∈ Ux, but Mf(x) does not

TxtEx∗-identify at least one of L2i+1, L2i+2 (since content(σi) ⊆ L2i+1 ∩ L2i+2, L2i+1 6=∗ L2i+2 and Mf(x)

on any extension of σi outputs Mf(x)(σi)).

The theorem follows.

Next we present our two Main Corollaries (Corollaries 25 and 26) which completely characterize the
uniformly decidable classes in TxtBca and are easy consequences of Lemmas 27 and 29 following them.10

The first corollary is a very important case of the second which we’ve separated out for special attention.
As we noted in Section 1 above, Angluin (1980b) completely characterized the uniformly decidable classes

in TxtEx.11 Essentially she showed that, for any fixed uniform decision procedure x, Ux ∈ TxtEx ⇔
Condition 1 holds, where Condition 1 states:12

There is an r.e. sequence of (r.e. indices of) finite sets S0, S1, . . . (called tell tales) such that,

(∀i)[Si ⊆ Ui ∧ (∀j | Si ⊆ Uj)[Uj 6⊂ Ui]]. (1)

10It seems pedagogically useful to present the results in this order.
11Mukouchi (1992), Lange and Zeugmann (1992) characterized the uniformly decidable classes in TxtEx0. de Jongh and

Kanazawa (1996) surprisingly characterizes the r.e. classes in TxtEx and presents other interesting results.
12Recall that the Ui’s are defined in Definition 18 above.
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As noted in Section 1 above, she also considered a Condition 2 just like Condition 1 except that the sequence
of finite sets (tell tales) is not required to be r.e. and showed that Condition 2 is not sufficient. Our
characterization of uniformly decidable classes in TxtBc is, surprisingly, just Angluin’s Condition 2! As
mentioned above, it is referred to as the subset principle, a necessary condition preventing overgeneralization
in learning from positive data (cf. e.g. Angluin (1980b), Berwick (1985), Zeugmann, Lange and Kapur (1995),
Kapur and Bilardi (1992), Case (1998)).13

Corollary 25 Ux ∈ TxtBc ⇔ (∀U ∈ Ux)(∃S ⊆ U | S is finite)(∀U ′ ∈ Ux | S ⊆ U ′)[U ′ 6⊂ U ].

It is surprising and important that the subset principle alone (Angluin’s Condition 2) without the added
constructivity conditions of Angluin’s Condition 1 characterizes the uniformly decidable classes Ux ∈ TxtBc.

Osherson, Stob and Weinstein (1986a) notes that a class of r.e. languages U can be learned in the limit
from positive data by a not necessarily algorithmic procedure iff Angluin’s Condition 2 holds for U . Hence,
Corollary 25 together with this observation entails that for uniformly decidable classes U , U can be learned
in the limit from positive data by a not necessarily algorithmic procedure iff U ∈ TxtBc. Therefore, for
uniformly decidable classes, algorithmicity of the learning procedure doesn’t matter for behaviorally correct
identification! It is open whether there are other types of classes U (besides uniformly decidable) for which
algorithmicity of the learning procedure doesn’t matter for behaviorally correct identification.

Suppose x is a uniform decision procedure. Corollary 25, immediately above also provides the following
characterization.

Ux ∈ (TxtBc− TxtEx) ⇔ Ux satisfies Condition 2 but not Condition 1.

Hence, since Angluin (1980b) provided an example Ux satisfying Condition 2 and not Condition 1, her
example is a uniformly decidable class witnessing that (TxtBc− TxtEx) 6= ∅.

Our characterization for TxtBca is next.14

Corollary 26 Ux ∈ TxtBca ⇔ (∀U ∈ Ux)(∃S ⊆ U | S is finite)(∀U ′ | S ⊆ U ′ ∈ Ux ∧ U ′ ⊆ U)[card(U −
U ′) ≤ 2a].

As we will see, our Main Theorem (Theorem 30) below is an immediate consequence of Lemmas 27 and 29
to follow.

Lemma 27 Suppose Ux ∈ TxtBca. Then (∀L ∈ Ux)(∃XL ⊆ L | XL is finite)(∀L′ ∈ Ux | XL ⊆ L′)[L′ 6⊆
L ∨ card(L − L′) ≤ 2a].

Proof. Suppose Ux ∈ TxtBca(M). Suppose L ∈ Ux. Then there exists a TxtBca-locking sequence σ for
M on L. Let XL = content(σ). Note that WM(σ) =a L. Now, for any L′ ∈ Ux such that XL ⊆ L′ ⊆ L, we

must have WM(σ) =a L′ (otherwise, M does not TxtBca-identify L′). It follows that L =2a L′.

Before presenting our Main Lemma (Lemma 29), we present a slightly weaker version of it: in Lemma 29,
the TxtBc2a in Lemma 28, is replaced by just TxtBca.

Lemma 28 There exists an f ∈ R such that the following is satisfied.
Suppose x is a uniform decision procedure. Further suppose (∀L ∈ Ux)(∃XL ⊆ L | XL is finite)(∀L′ ∈

Ux | XL ⊆ L′)[L′ 6⊆ L ∨ card(L − L′) ≤ 2a]. Then, [Ux ⊆ TxtBc2a(Mf(x))].

Proof. Suppose x is a uniform decision procedure satisfying the hypothesis of the theorem. We describe
the construction of Mf(x). It is easy to see that the construction is algorithmic in x.

Mf(x)(T [n]) = Proc(T [n]), where WProc(T [n]) is defined as follows.

13SeeKapur, Lust, Harbert and Martohardjono (1993),Wexler (1993) for discussion regarding the possible connection between
this subset principle and a more traditionally linguistically oriented one in Manzini and Wexler (1987).

14The characterizing condition is a variant of Angluin’s Condition 2.
We also have a variant of Angluin’s characterization above, but for TxtEx

∗ in place of TxtEx, which characterization is
just like hers except that (1) above is replaced by

(∀i)[Si ⊆ Ui ∧ (∀j | Si ⊆ Uj ⊆ Ui)[Uj =∗ Ui]]. (2)
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WProc(T [n])

1. Let Pn = {i ≤ n | content(T [n]) ⊆ Ui}.

2. Go to stage 0.

Begin Stage s

3. Let DelSs
n = {i ∈ Pn | (∃i′ ∈ Pn | i′ < i)[Ui[s] 6⊆ Ui′ [s]]}.

(* Note that DelSs
n ⊆ DelSs+1

n . Intuitively DelSs
n consists of grammars we want to delete from Pn,

since they seem to be bad (see analysis below) *).

4. Let Ss
n = Pn − DelSs

n

(* Note that (∀i, i′ ∈ Ss
n | i′ < i)[Ui[s] ⊆ Ui′ [s]] *)

5. Let isn = max(Ss
n). Enumerate Uis

n
[s].

6. Go to stage s + 1.

End stage s

End WProc(T [n])

Suppose L ∈ Ux and T is a text for L. We claim that for all but finitely many n, WProc(T [n]) =2a L.
This will prove the theorem. Let XL be as given in the hypothesis. It follows that for all L′ ∈ Ux,
[XL ⊆ L′] ⇒ [L′ 6⊂ L ∨ L′ =2a L]. Let j be the minimal number such that Uj = L.

Let n be large enough so that,
(i) For all i < j such that Ui 6⊇ Uj , content(T [n]) 6⊆ Ui.
(ii) j < n.
(iii) XL ⊆ content(T [n]).
We claim that WProc(T [n]) =2a Uj = L. Let Pn, Ss

n, DelSs
n, isn be as defined in Proc(T [n]) above. They

satisfy the following properties:
(a) j ∈ Pn.
(b) (∀i < j)[i ∈ Pn ⇒ Ui ⊃ L].
(c) (∀i > j)[i ∈ Pn ⇒ [Ui 6⊂ L ∨ Ui =2a L]].
(d) for all s: j 6∈ DelSs

n; thus j ∈ Ss
n.

It immediately follows from (d) above and the comment after step (4) that WProc(T [n]) ⊆ Uj .
Now note that, since DelSs

n ⊆ DelSs+1
n , we have Ss

n ⊇ Ss+1
n . Thus lims→∞ isn is defined. Let this limiting

value be in. It follows that Uin
⊆ WProc(T [n]) ⊆ Uj = L. Now since, Uin

⊆ Uj , property (c) above implies

that Uin
=2a Uj . Thus, WProc(T [n]) =2a L. It follows that Mf(x) TxtBc2a-identifies L.

Lemma 29 There exists a recursive f satisfying the following. Suppose x is a uniform decision procedure.
Further suppose (∀L ∈ Ux)(∃XL ⊆ L | XL is finite)(∀L′ ∈ Ux | XL ⊆ L′)[L′ 6⊆ L ∨ card(L − L′) ≤ 2a].
Then, [Ux ⊆ TxtBca(Mf(x))].

Proof. The proof of the lemma is a careful modification of the proof of Lemma 28 to reduce the errors.
The weaker version, Lemma 28, above suffices to obtain the a ∈ {0, ∗} cases. So suppose a ∈ N .

Consider the following machine Mf(x) for Ux. Mf(x)(T [n]) = Proc(T [n]), where WProc(T [n]) is as defined
below.

WProc(T [n]).

Let Pn = {i ≤ n | content(T [n]) ⊆ Ui}.

Go to stage n (* we start from stage n just for ease of writing the proof. *)

Begin stage s

1. Let DelSs
n = {i ∈ Pn | (∃i′ ∈ Pn | i′ < i)[Ui[s] 6⊆ Ui′ [s]]}.

(* Note that DelSs
n ⊆ DelSs+1

n *).
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(* Intuitively DelSs
n consists of grammars we want to delete from Pn, since they seem to be bad (see

analysis below) *).

2. Let Ss
n = Pn − DelSs

n.

(* Note that after the above deletion, we have the following property: (∀i > i′ ∈ Ss
n)[Ui[s] ⊆ Ui′ [s]].

Thus the members of Ss
n form a reverse subset chain (for elements ≤ s) *)

3. Let ks
n = max(Ss

n). (* Note: ks
n is a non-increasing function of s *).

4. Let Cancelsn = {i ∈ Ss
n | card(Ui[n] − Uks

n
[n]) > 2a}.

(* Note: We form Cancelsn looking at enumeration of elements ≤ n. This Cancel set may become smaller
as stages go on! Intuitively Cancel just tries to delete sets which are too big compared to the input.
*)

5. Let Qs
n = Ss

n − Cancelsn.

Let isn = min(Qs
n).

(* Note: since ks
n was a non-increasing function of s; it is easy to see that max(Cancelsn) will be a

non-increasing function of s. It does not necessarily follow that isn is non-increasing function of s.
However it is nearly so — what “nearly” means will be clearer in the proof after the construction*).

Let Ds
n = Uis

n
[n] − Uks

n
[n]. Let As

n ⊆ Ds
n be a set of min(card(Ds

n), a) elements such that the following
property is satisfied:

if z1 ∈ As
n and z2 ∈ Ds

n − As
n, then

(A) max({i ∈ Qs
n | z2 ∈ Ui}) < max({i ∈ Qs

n | z1 ∈ Ui}) OR

(B) max({i ∈ Qs
n | z2 ∈ Ui}) = max({i ∈ Qs

n | z1 ∈ Ui}) and [z2 ∈ As−1
n ⇒ z1 ∈ As−1

n ].

(* Intuitively we select an As
n in the following form: select the a elements of As

n so that elements which
are enumerated by more decision procedures in Qs

n get priority. Breaking of ties is done in a manner
consistent with earlier priority settings. *)

Enumerate (Uis
n
[s] − Ds

n) ∪ As
n.

6. Go to stage s + 1.

End stage s

End

Now fix L ∈ Ux. Let j be the minimal number such that Uj = L.
Let XL be as given in the hypothesis of the Lemma. Fix a text T for L. Assume that n > j is so

large that the following properties (a) to (d) are satisfied. For these big enough n, we will claim below that
WProc(T [n]) =a L.

(a) XL ⊆ content(T [n]).
(b) (∀i < j)[Ui 6⊇ L ⇒ content(T [n]) 6⊆ Ui].
(c) (∀i, i′ ∈ Wx | i < i′ < j)[Ui′ 6⊆ Ui ⇒ Ui′ [n] 6⊆ Ui[n]].

Intuitively, (c) ensures that if i < j, is in
⋃

s DelSs
n, then it is in DelSn

n (note that we started in stage n).
(d) (∀i < j | Ui ⊇ L)[card({y < n | y ∈ Ui − L}) ≥ min({2a + 1, card(Ui − L)})].

Intuitively (d) says that either all elements of Ui − L are below n, or there are at least 2a + 1 elements of
Ui − L below n; This second part ensures that if Ui is too big then i will be in Cancelsn for every stage s.
The earlier part makes sure that all the elements which are in Ui − L have been already noticed and thus
would not be enumerated in step 5 except as part of As

n.
For all of following we assume that n > j is big enough so that (a) to (d) are satisfied. We will consider

what Proc(T [n]) enumerates. So let all the variables below be as in Proc(T [n]).
Let Big = {i < j | Ui ⊇ L ∧ card(Ui − L) ≤ 2a ∧ (∀i′ | i′ < i < j ∧ Ui′ ⊇ L)[Ui ⊆ Ui′ ]}.
Note that for all i < j, if i 6∈ Big, then i 6∈ Qs

n for any s (each i < j in Wx − Big would be either in
DelSn

n (note that we started at stage n) or in Cancelsn for each s). So i < j which are not in Big are never
in Qs

n.
Note the following properties of DelSs

n and Cancelsn.
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(e) j 6∈ DelSs
n for all s (thus j ∈ Ss

n for every s). Note that for finitely many stages s, j maybe in Cancelsn
but that will not hurt us.

(f) DelSs
n ⊆ DelSs+1

n (and thus Ss+1
n ⊆ Ss

n).
(g) Since elements of Ss

n form a reverse subset chain (for elements ≤ s), members of Cancelsn have the
initial segment property within Ss

n, i.e., if i, i′ ∈ Ss
n, i < i′ and i′ ∈ Cancelsn then i ∈ Cancelsn.

(h) Cancels+1
n ⊆ Cancelsn (this follows since ks

n is a non-increasing function of s). Thus max(Cancelsn) is
non-increasing function of s.

Let D = {y | (∃i ∈ Big)[y ∈ Ui − L]}.
What we will first show is that Proc(T [n]) enumerates a subset of L ∪ D. We will then show that what

is enumerated within D has cardinality appropriately bounded; this will complete the proof.
Now consider any stage s:
If in stage s, isn ≥ j, then clearly, whatever is enumerated in stage s is contained in L (since Uis

n
[s] ⊆ Uj [s];

otherwise isn would be in DelSs
n). If isn < j, then clearly, Uis

n
⊆ L ∪ D since isn must be in Big.

We now consider what exactly is the difference between L and the set enumerated by Proc(T [n]). Clearly,
DelSs

n, Cancelsn and Ds
n, isn, ks

n, As
n etc must achieve a limiting value (as s goes to ∞). Let the limiting

values of these variable be DelSn, Canceln, Dn, in, kn, An etc.
Consider the first stage when isn achieves a value ≤ j. (There must exists such a stage: note that

XL ⊆ Ukn
⊆ L; thus, by hypothesis, card(L − Ukn

) ≤ 2a). Since max(Cancelsn) is a non-increasing function
of s, and Ss

n ∩ {i ≤ j} = Sn ∩ {i ≤ j} for all s, we have that, if isn achieves a value ≤ j, it is non-increasing
from that point onwards (this is what we meant by nearly non-increasing in step 5 of the construction above).
Furthermore, since ks

n ≥ j, for all s, it follows that D ∩ Ds
n ⊆ D ∩ Ds+1

n . (To see this note that all elements
of D are ≤ n. Moreover, the elements of Qs

n form a reverse subset chain, with respect to elements ≤ n. Thus
since min({j, is+1

n }) ≤ isn, any elements of D which were in Ds
n would also be in Ds+1

n ). Thus As
n∩D ⊆ As+1

n

(from the way As
n was chosen, since if isn ≥ j, then D ∩ As

n is empty. On the other hand if isn < j, then
isn ≥ is+1

n (due to non-increasing property of isn once it becomes ≤ j) and thus based on the subset chain
property, the above holds (the priority ordering among the elements of Dn does not change!)).

We now have following property:
WProc(T [n]) − L ⊆ An (due to the fact that D ∩ As+1

n ⊆ An). Also L − WProc(T [n]) ⊆ Dn − An, since all
other elements of L are enumerated in the stages beyond the point where An, Dn and in get their limiting
values. Now suppose An ⊆ L. In this case, the difference between L and WProc(T [n]) is subset of Dn − An

which is of size ≤ a.
If An 6⊆ L. Then by the priority ordering selected for chosing elements of An, we know that elements of

Dn − An do not belong to L. Thus the difference in L and WProc(T [n]) is a subset of An which is of size

≤ a.

Next we have our Main Theorem (Theorem 30) which follows immediately from Lemmas 27 and 29 above.
It says that we can synthesize, from uniform decision procedures for classes in TxtBca, TxtBca-learning ma-
chines! Hence, in passing from learnable uniformly decidable classes to algorithmically synthesized learning
machines for them, we get a fixed point, for each a, at TxtBca-identification!

Theorem 30 (∀a ∈ N ∪ {∗})(∃f ∈ R)(∀x | x is a uniform decision procedure)[Ux ∈ TxtBca ⇒ Ux ⊆
TxtBca(Mf(x))].

The next and last theorem of this section contrasts nicely with Theorems 21 and 30 above. It also shows
that the cost of passing from one mind change in the input classes to infinitely many in the synthesized
learning machines is necessary. This is so, as in our other lower bound results above, even if we employed
the stronger limiting recursive procedures for synthesis of learning machines from algorithmic descriptions
of the class to be learned!

Theorem 31 ¬(∃f ∈ LR)(∀x | x is a uniform decision procedure)[Ux ∈ TxtEx1 ⇒ Ux ⊆
TxtFex∗

∗(Mf(x))].

Proof. We prove a simpler version of the theorem:
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¬(∃f ∈ R)(∀x | x is a uniform decision procedure)
[Ux ∈ TxtEx1 ⇒ Ux ⊆ TxtEx∗(Mf(x))].

The proof can be straightforwardly generalized to take care of TxtFex∗
∗ and limiting recursive f .

Suppose by way of contradiction otherwise. Let f be given. By the Operator Recursion Theorem there
exists a 1-1 increasing, p such that the following holds.

We let L = {L | (∃i ≥ 1)[χL = ϕp(i)]}.
It will be easily seen that, for i > 0, ϕp(i) is either a characteristic function or an empty function. Hence, it

follows that a uniform decision procedure for L (defined just above) exists and can be found algorithmically.
Let p(0) be uniform decision procedure for L.

We note that all ϕp(i), i ≥ 1, which are considered in the construction below will be characteristic
functions.

If ϕp(i) is a characteristic function, we will abuse notation slightly and refer to the language for which
it’s a characteristic function as Up(i).

We will have that Up(0) ∈ TxtEx1. Thus Mf(p(0)) TxtEx∗ identifies Up(0). We let Up(1) = ODD.
Furthermore, for all i > 1, Up(i) will be finite. In addition the construction will ensure that at least one

of the following properties (A) and (B) is satisfied.
(A) For i > 1, Up(i) contains exactly one even number. Moreover, for all i > i′ > 1, Up(i)∩Up(i′)∩EVEN =

∅.
(B) There exists a j > 1 such that, B.1, B.2 and B.3 are satisfied.
(B.1) for all i > j, ϕp(i)(0)↑.
(B.2) for all i such that 1 < i < j, Up(i) contains exactly one even number. Moreover, for all i, i′ such

that 1 < i < i′ < j: Wp(i) ∩ Wp(i′) ∩EVEN = ∅.
(B.3) Wp(j) is finite, does not contain any even number, and for all i such that 1 < i < j: Wp(j) 6⊆ Wp(i).
Note that the above properties imply that Cp(0) ∈ TxtEx1. In case (A) clearly, a machine can first

output a grammar for ODD. Then if it sees an even number it can output a grammar for the corresponding
finite set using appropriate p(i). In case (B) Cp(0) is finite and machine can TxtEx1-identify by first waiting
until it gets an even number or sees Wp(j) in the input and then output the corresponding grammar. The
machine now needs to change its conjecture only if the input is for ODD, requiring at most 1 mind change.

We now proceed to define Wp(i) for i > 1. Let σ0 be a sequence such that content(σ) = {1}. Go to stage
0.

Stage s

0. Dovetail steps 1 and 2 until, if ever, step 2 succeeds. If and when step 2 succeeds, go to step 3.

1. Start defining p(s + 2) so that it will be a characteristic function for content(σs), unless step 2 below
succeeds.

2. Search for an extension σ of σs such that content(σ) ⊆ ODD and Mf(p(0))(σ) 6= Mf(p(0))(σs).

3. If and when such a σ (in step 2) is found,

Let e be an even number large enough so that ϕp(s+2)(e) has not yet been defined and e is bigger
than all the even numbers considered in previous stages.

Let ϕp(s+2) be characteristic function for content(σs) ∪ {e}.
Let σs+1 be an extension of σ such that content(σs+1) ⊃ content(σs) ∪ {2x + 1 | x ≤

max(content(σs))}.

4. Go to stage s + 1.

End stage s

Now consider the following cases.
Case 1: All stages terminate.

In this case clearly, for all i > 1, Up(i) is finite, and p(i) satisfy the property (A) above. Moreover,
Mf(p(0)) makes infinitely many mind changes on

⋃
s σs which is a text for ODD.
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Case 2: stage s starts but does not terminate.
In this case clearly, property (B) above is satisfied with j = s+2. Moreover, Mf(p(0)) can TxtEx∗-identify

at most one of Up(s+2) and Up(1) = ODD, since step 2 does not succeed.

This proves the theorem.

N.B. Angluin’s proof of her characterization (by Condition 1) of uniformly decidable classes in TxtEx
essentially provides an algorithm for transforming two things into a learning machine which TxtEx-identifies
L:15

(1) a uniform decision procedure for a class of recursive languages L that is TxtEx-identifiable and

(2) a program for generating an associated r.e. sequence of tell tale sets S0, S1, . . . as featured in Equation
(1) above.

The additional input information of a program for generating the tell tales therefore makes a huge difference
in the mind change complexity of the synthesized learning machine!

4 Future Directions

Bārzdiņš and Freivalds (1972) first considered improvements of archetypal enumeration techniques, involving
a majority vote strategy which has better mind-change complexity. It would be interesting to look into
variants of our algorithms above for synthesizing learning machines with improved mind-change complexity
at least for interesting special cases.

Corollary 9 and 10 above suggest to us ones exploring the relevance to our paper’s topics of r.e. classes of
languages which can be enumerated with ≤ n+1 duplications but not with ≤ n (Pour-El and Howard (1964),
Pour-El and Putnam. (1965)). In this interest we have a preliminary result complementing Theorem 12
above (in Section 3.1) as follows.

Theorem 32 (∃ recursive f)(∀x | Cx ∈ TxtEx0 ∧ (∀ distinct i, j ∈ Wx)[Wi 6= Wj ])[Cx ⊆ TxtEx(Mf(x))].

We also know that, in this result, TxtEx(Mf(x)) cannot be improved to TxtExn(Mf(x)).
It would be interesting to explore extensions of the present paper for the cases of adding small amounts

of negative information to the input data (Baliga, Case and Jain (1995)). In the light of Theorem 22 in
Baliga, Case and Jain (1995) and the discussion following the proof of Theorem 31 above, it is reasonable
to hope for some resultant improvements in mind change complexity for synthesized machines.

Case, Jain and Sharma (1997) present positive and negative results regarding synthesizers of language
learners which tolerate noisy data, where noise is modeled as in Stephan (1995), Case, Jain and Stephan
(1996). Furthermore, the proofs of the positive results provide characterizations of corresponding noise-
tolerantly learnable language classes. It would be interesting to extend the results of Case, Jain and Sharma
(1997) and of this paper to probablistically correct inference (cf. e.g. Freivalds (1979b), Freivalds (1979a),
Pitt (1984), Valiant (1984), Wiehagen, Freivalds and Kinber (1984), Daley (1985), Pitt (1989), Pitt and Smith
(1988), Daley (1988), Kinber and Zeugmann (1991), Viksna (1991), Daley, Pitt, Velauthapillai and Will
(1991), Schapire (1992), Daley, Kalyanasundaram and Velauthapillai (1992), Kearns and Vazirani (1994),
Ambainis (1996), Case, Kaufmann, Kinber and Kummer (1997), Mitchell (1997)).
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Bārzdiņš, J. & Freivalds, R. (1972). On the prediction of general recursive functions. Soviet Mathematics Doklady,
13, 1224–1228.

Berwick, R. (1985). The Acquisition of Syntactic Knowledge. MIT Press.

Blum, L. & Blum, M. (1975). Toward a mathematical theory of inductive inference. Information and Control, 28,
125–155.

Blum, M. (1967). A machine-independent theory of the complexity of recursive functions. Journal of the ACM, 14,
322–336.

Case, J. (1974). Periodicity in generations of automata. Mathematical Systems Theory, 8, 15–32.

Case, J. (1986). Learning machines. In W. Demopoulos & A. Marras (Eds.), Language Learning and Concept
Acquisition. Ablex Publishing Company.

Case, J. (1998). The power of vacillation in language learning. SIAM Journal on Computing. To Appear (Preliminary
Version Appeared in COLT 88).

Case, J., Jain, S., & Sharma, A. (1997). Synthesizing noise-tolerant language learners. In Li, M. & Maruoka, A.
(Eds.), Algorithmic Learning Theory: Eighth International Workshop (ALT ’97), volume 1316 of Lecture Notes
in Artificial Intelligence, (pp. 228–243).

Case, J., Jain, S., & Stephan, F. (1996). Vacillatory and BC learning on noisy data. In Arikawa, S. & Sharma, A.
(Eds.), Algorithmic Learning Theory: Seventh International Workshop (ALT ’96), volume 1160 of Lecture Notes
in Artificial Intelligence, (pp. 285– 298). Springer-Verlag.

Case, J., Kaufmann, S., Kinber, E., & Kummer, M. (1997). Learning recursive functions from approximations.
Journal of Computer and System Sciences, 55, 183–196. Special Issue for EuroCOLT’95.

Case, J. & Lynes, C. (1982). Machine inductive inference and language identification. In Nielsen, M. & Schmidt, E. M.
(Eds.), Proceedings of the 9th International Colloquium on Automata, Languages and Programming, volume 140
of Lecture Notes in Computer Science, (pp. 107–115). Springer-Verlag.

Case, J. & Smith, C. (1983). Comparison of identification criteria for machine inductive inference. Theoretical
Computer Science, 25, 193–220.

Daley, R. (1985). Inductive inference hierarchies: Probabilistic vs. pluralistic. In Bibel, W. & Jantke, K. (Eds.),
Mathematical Methods of Specification and Synthesis of Software Systems, Wendisch-Rietz, GDR, volume 215
of Lecture Notes in Computer Science, (pp. 73–82). Springer-Verlag.

20



Daley, R. (1988). Transformation of probabilistic learning strategies into deterministic learning strategies. In Haussler,
D. & Pitt, L. (Eds.), Proceedings of the Workshop on Computational Learning Theory, (pp. 157–163). Morgan
Kaufmann.

Daley, R., Kalyanasundaram, B., & Velauthapillai, M. (1992). Breaking the probability 1/2 barrier in FIN-type
learning. In Proceedings of the Fifth Annual Workshop on Computational Learning Theory, (pp. 203–217). ACM
Press.

Daley, R., Pitt, L., Velauthapillai, M., & Will, T. (1991). Relations between probabilistic and team one-shot learners.
In Valiant, L. & Warmuth, M. (Eds.), Proceedings of the Fourth Annual Workshop on Computational Learning
Theory, (pp. 228–239). Morgan Kaufmann.

de Jongh, D. & Kanazawa, M. (1996). Angluin’s thoerem for indexed families of r.e. sets and applications. In
Proceedings of the Ninth Annual Conference on Computational Learning Theory, (pp. 193–204). ACM Press.

Freivalds, R. (1979a). Finite identification of general recursive functions by probabilistic strategies. In Proceedings of
the Conference on Fundamentals of Computation Theory (pp. 138–145). Akademie-Verlag, Berlin.

Freivalds, R. (1979b). On the principle capabilities of probabilistic algorithms in inductive inference. Semiotika
Inform, 12, 137–140.

Freivalds, R. (1985). Recursiveness of the enumerating functions increases the inferrability of recursively enumerable
sets. Bulletin of the European Association for Theoretical Computer Science, 27, 35–40.

Fulk, M. (1985). A Study of Inductive Inference Machines. PhD thesis, SUNY/Buffalo.

Fulk, M. (1990a). Prudence and other conditions on formal language learning. Information and Computation, 85,
1–11.

Fulk, M. (1990b). Robust separations in inductive inference. In 31st Annual IEEE Symposium on Foundations of
Computer Science, (pp. 405–410). IEEE Computer Society Press.

Gleitman, L. (1986). Biological dispositions to learn language. In W. Demopoulos & A. Marras (Eds.), Language
Learning and Concept Acquisition. Ablex Publ. Co.

Gold, E. M. (1967). Language identification in the limit. Information and Control, 10, 447–474.

Hopcroft, J. & Ullman, J. (1979). Introduction to Automata Theory, Languages, and Computation. Addison-Wesley.

Jantke, K. (1979). Automatic synthesis of programs and inductive inference of functions. In Int. Conf. Fundamentals
of Computations Theory, (pp. 219–225). Akademie-Verlag, Berlin.

Kapur, S. (1991). Computational Learning of Languages. PhD thesis, Cornell University.

Kapur, S. & Bilardi, G. (1992). Language learning without overgeneralization. In Finkel, A. & Jantzen, M. (Eds.),
Proceedings of the Ninth Annual Symposium on Theoretical Aspects of Computer Science, volume 577 of Lecture
Notes in Computer Science, (pp. 245–256). Springer-Verlag.

Kapur, S., Lust, B., Harbert, W., & Martohardjono, G. (1993). Universal grammar and learnability theory: The case
of binding domains and the ‘subset principle’. In E. Reuland & W. Abraham (Eds.), Knowledge and Language,
Volume I (pp. 185–216). Kluwer.

Kearns, M. & Vazirani, U. (1994). An Introduction to Computational Learning Theory. MIT Press, Cambridge, MA.

Kinber, E. & Zeugmann, T. (1991). One-sided error probabilistic inductive inference and reliable frequency identifi-
cation. Information and Computation, 92, 253–284.

Kirsh, D. (1992). PDP learnability and innate knowledge of language. In S. Davis (Ed.), Connectionism: Theory and
Practice (pp. 297–322). Oxford University Press, NY.

Lange, S. & Zeugmann, T. (1992). Types of monotonic language learning and their characterization. In Proceedings
of the Fifth Annual Workshop on Computational Learning Theory, (pp. 377–390). ACM Press.

Lange, S. & Zeugmann, T. (1993). Language learning in dependence on the space of hypotheses. In Proceedings of
the Sixth Annual Conference on Computational Learning Theory, (pp. 127–136). ACM Press.
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