
Control Structures in Hypothesis Spaces: The

Influence on Learning

John Case a, Sanjay Jain b, Mandayam Suraj a

aDepartment of Computer and Information Sciences, University of Delaware,
Newark, DE 19716, USA. Email: {case,suraj}@cis.udel.edu

bSchool of Computing, National University of Singapore, Singapore 117543,
Republic of Singapore. Email: sanjay@comp.nus.edu.sg

Abstract

In any learnability setting, hypotheses are conjectured from some hypothesis space.
Studied herein are the influence on learnability of the presence or absence of cer-
tain control structures in the hypothesis space. First presented are control struc-
ture characterizations of some rather specific but illustrative learnability results.
The presence of these control structures is thereby shown essential to maintain full
learning power. Then presented are the main theorems. Each of these non-trivially
characterizes the invariance of a learning class over hypothesis space V and the
presence of a particular projection control structure, called proj, in V as: V has
suitable instances of all denotational control structures. In a sense, then, proj epito-
mizes the control structures whose presence needn’t help and whose absence needn’t
hinder learning power.

Keywords: Computational Learning Theory, Inductive Inference, R.E. Lan-
guages, Numberings, Control Structures.

1 Introduction

In any learnability setting, hypotheses are conjectured from some hypothe-
sis space, for example, in [17] from general purpose programming systems,
in [34,32] from subrecursive systems, and in [22] from very simple classes of
classificatory decision trees. For example, with the latter one can, nonetheless,
train an autopilot from flight simulator data on real pilots [29]. Much is known
theoretically about the restrictions on learning power resulting from restricted
hypothesis spaces [34].

Preprint submitted to Elsevier 24 May 2010

In the present paper we begin to study the influence on learnability of the
presence or absence of certain control structures in the hypothesis space. We
consider herein general purpose systems V for the entire class of r.e. languages,
which systems may or may not have available particular control structures.
[4] considered, in effect, whether a particular learnability result P character-
ized the general purpose hypothesis spaces having available all possible control
structures; they discovered their particular P failed very badly to do so. We
began our study with the idea in mind of seeing if certain control structures
(in general purpose systems) were necessary and sufficient to maintain the
invariance (compared with a system with all possible control structures avail-
able) of standard learning classes. We haven’t quite achieved that, and our
paper is an initial progress report on the endeavor. ([33] quite interestingly
characterizes learning criteria invariances, but as in [32,12], not in terms of
control structures.)

In Section 2.1 we present the basics of the sorts of general purpose recognizing
systems we consider. We treat (see Section 2.2) mostly the standard learn-
ing criteria of learning in the limit and learning in one-shot, recognizers (or
grammars [16,31]) for r.e. languages — from text (or positive information). In
Section 2.3 we provide sufficient background material from [23,24,27] about
control structures in general purpose programming systems.

In Section 3 we first present control structure characterizations of some rather
specific but illustrative learnability results. The presence of these control struc-
tures is thereby shown essential to maintain full learning power. In the remain-
der of this section we consider, for the control structures involved, whether or
not they are available in any hypothesis space.

In Section 4 we present our two main characterization theorems, Theorems 39
and 40. Each, essentially, non-trivially characterizes the invariance of a learn-
ing class over hypothesis space V and the presence of a particular projection
control structure, called proj, in V as: V has suitable instances of all de-
notational control structures. In a sense, then, proj epitomizes the control
structures whose presence needn’t help and whose absence needn’t hinder
learning power. Some parts of these theorems are the most difficult in the
paper, namely, the independence of the presence of proj from the learning
class invariances.

Lastly in Section 5 we present some conclusions, problems, and future direc-
tions.

2

2 Notations and Definitions

We let N denote the set of natural numbers, i.e., {0, 1, 2, 3, . . .}. We let lower
case math font letters (except d, f, g, h, t), with or without decorations (deco-
rations are the subscripts, superscripts, and the like), range over N . ∅ denotes
the empty set. 2N denotes the set of all subsets of N . ∈, 6∈,⊆,⊂ respectively
denote ‘is a member of’, ‘is not a member of’, ‘is a subset of’ and ‘is a proper
subset of’. For sets A and B, A⊕B = ({2 ·x | x ∈ A}∪{2 ·x+1 | x ∈ B}) [26].
When iterating the ⊕ operator, we will assume left-associativity (to avoid ex-
cessive parenthesization). For S, a subset of N , card(S) denotes the cardinality
of S. max(S) and min(S) denote, respectively, the maximum and minimum
of the set S, where max(∅) = 0 and min(∅) = ∞. Dx denotes the finite set
with canonical index x [26]. 〈·, ·〉 denotes a fixed pairing function [26], a com-
putable, surjective and injective mapping from N × N into N . 〈·, ·〉 is useful,
for example, for speaking of two inputs to a one-input program. d, f, g, h and
t with or without decorations range over total (not necessarily computable)
functions with arguments and values from N .

Let ϕp be the partial computable function: N → N computed (according
to some standard I/O conventions) by Turing machine number p in some
standard numbering of Turing machines [25,26,23,24,27]. Let Wp denote the
domain of ϕp. Then Wp is the set recognized [16,31] by Turing machine number
p, i.e., the set of natural number inputs on which Turing machine p halts. Let
Φ denote a step-counting Blum complexity measure for ϕp [6,8]. We let

ϕp,s(x) =
{

ϕp(x) if x ≤ s and Φp(x) ≤ s;
undefined otherwise.

We then let Wp,s be the domain of ϕp,s.

The set of all recursively enumerable languages is denoted by E . L and S, with
or without decorations, range over E . L denotes the complement of L. L, with
or without decorations, ranges over subsets of E . For a set L, we use χL to
denote the characteristic function of L, the function which is 1 on L and 0 off
L. L denotes complement of L, i.e., N − L.

The quantifiers ‘
∞
∀’, and ‘

∞
∃’ essentially from [6], mean ‘for all but finitely many’

and ‘there exist infinitely many’, respectively.

We next define a limiting-computable function. For this, we first define

limt→∞h(x, t) =

{
y if (

∞
∀ t)[h(x, t) = y];

undefined otherwise.

We write h(x,∞) for limt→∞h(x, t). Function g : N → N is limiting-

3

computable iff (∃ computable h : (N ×N) → N)(∀x)[g(x) = h(x,∞)].

Intuitively, h(x, t) is the output at discrete time t of a mind changing algorithm
for g (acting on input x); hence, for g limiting computable as just above, for all
x, for all but finitely many times t, the output of the mind changing algorithm
on input x is g(x).

In this paper we freely use Church’s lambda notation [7,26,1] to define
functions: N → N . For example, λx x + 1 denotes the function that maps
each x ∈ N to x + 1.

2.1 Computable Recognizing Systems

As we noted in Section 1, in any learnability setting, hypotheses are conjec-
tured from some hypothesis space. Furthermore, we noted that in the present
paper we focus our attention on hypothesis spaces for recognizing the entire
class of r.e. sets. The collection of Turing machines (or their code numbers)
defining the sets Wp, p = 0, 1, 2, . . . (from Section 2 above) forms such an
hypothesis space. We write W as the name of this particular hypothesis space.
Of course Turing machines have a universal interpreter which is also a Turing
machine. We are also interested in the present paper in focusing our atten-
tion on hypothesis spaces containing a universal interpreter for the hypothesis
space. Formally this can be handled as follows, where for mappings V in this
definition, we write Vp for the value of the mapping V at p.

Definition 1 V is a computable recognizing system (abbreviated: c.r.s.) iff

V : N
onto→ E such that for some computable t, for every p, Vp = Wt(p)

Intuitively, for a c.r.s. V , each r.e. set is some Vp, and we have some uni-
form computable way to map any V -recognizer p into a corresponding Turing
machine recognizer t(p) which recognizes the set Vp.

Definition 2 Suppose V is a c.r.s. For L r.e., MinGramV (L) denotes min({p |
Vp = L}).

We define next some interesting senses in which one can translate from one
c.r.s. into another. Part (b) of this definition is based on a definition in [25].
[34] notes the relevance to learning theory of the sense in part (c).

Definition 3 Suppose V 1 and V 2 are c.r.s.’s

(a) We say that t translates V 1 into V 2 (written: t : V 1 ≤ V 2) iff (∀p)[V 2
t(p) =

V 1
p], i.e, for each p, t(p), the translation of V 1-recognizer p, is a V 2-recognizer

equivalent to p.

4

(b) V 1 computably translates into V 2 (written: V 1 ≤ V 2) iff (∃ computable
t)[t : V 1 ≤ V 2].

(c) V 1 limiting-computably translates into V 2 (written: V 1 ≤lim V 2) iff (∃
limiting-computable t)[t : V 1 ≤ V 2].

The next definition is also based on a definition in [25].

Definition 4 (a) V is an acceptable recognizing system (abbreviated a.r.s.)
iff V is a c.r.s. and (∀ c.r.s. U)[U ≤ V].

(b) V is a limiting-acceptable recognizing system (abbreviated lim-a.r.s.) iff V
is a c.r.s. and (∀ c.r.s. U)[U ≤lim V].

Clearly, W is an acceptable system (intuitively, a system in which one can
interpret an arbitrary c.r.s.). The acceptable systems are the ones maximal
with respect to ≤, the limiting-acceptable systems are the ones maximal with
respect to ≤lim.

Definition 5 Vp,s = Wt(p),s, where t is some arbitrary but fixed computable
function such that t: V ≤ W .

Definition 6 Friedberg computable recognizing systems are c.r.s.’s in which
there exists exactly one recognizer for each r.e. set.

Such systems were first shown to exist by Friedberg [13], and they are useful
in providing counterexamples. U and V , with or without superscripts, range
over c.r.s.’s.

2.2 Learning Theory Definitions

A sequence σ is a mapping from an initial segment of N into (N ∪ {#}). The
content of a sequence σ, denoted content(σ), is the set of natural numbers in
the range of σ. The length of σ, denoted by |σ|, is the number of elements in
σ. Λ denotes an empty sequence. SEQ denotes the set of all finite sequences.
The set of all finite sequences of natural numbers and #’s, SEQ, can be coded
onto N . This latter fact will be used implicitly in some of our proofs.

A text T for a language L is a mapping from N into (N ∪{#}) such that L is
the set of natural numbers in the range of T . The content of a text T , denoted
content(T), is the set of natural numbers in the range of T . Intuitively, a text
for a language is an enumeration or sequential presentation of all the objects
in the language with the #’s representing pauses in the listing or presentation
of such objects. For example, the only text for the empty language is just

5

an infinite sequence of #’s. We let T , with or without superscripts, range
over texts. T [n] denotes the finite initial sequence of T with length n. Hence,
domain(T [n]) = {x | x < n}.

A language learning machine is an algorithmic device that maps SEQ into N∪
{?}. Intuitively, the output ?’s represent the machine not yet committing to an
output program. The reason we allow the ?’s is so that a learning machine can
wait until it has seen a long enough input before it outputs its first numerical
output, if at all. M ranges over language learning machines. In this paper we
assume, without loss of generality, that for all σ ⊆ τ , [M(σ) 6=?] ⇒ [M(τ) 6=?].

Suppose M is a learning machine and T is a text. M(T)↓ (read: M(T) con-

verges) iff (∃i)(
∞
∀ n) [M(T [n]) = i]. If M(T)↓, then M(T) is defined = the

unique i such that (
∞
∀ n)[M(T [n]) = i].

We now introduce a criterion for a learning machine to be considered successful
on languages.

Definition 7 Suppose V is a c.r.s.

(a) M TxtExV -identifies L iff (∀ texts T for L)(∃i | Vi = L)[M(T)↓ = i].

(b) M TxtExV -identifies L, iff M TxtExV -identifies each L ∈ L.

(c) For all M , TxtExV (M) = {L | M TxtExV -identifies L}.

(d) TxtExV = {L | (∃M)[L ⊆ TxtExV (M)]}.

Gold [15] introduced the criterion we call TxtExW .

We next introduce one-shot language identification for which the first program
conjectured must be correct.

Definition 8 Suppose V is a c.r.s.

(a) M TxtFinV -identifies L iff (∀ texts T for L)(∃i | Vi = L)(∃n)[(∀n′ ≥
n)[M(T [n′]) = i] ∧ (∀n′ < n)[M(T [n′]) =?]].

(b) M TxtFinV -identifies L, iff M TxtFinV -identifies each L ∈ L.

(c) For all M , TxtFinV (M) = {L | M TxtFinV -identifies L}.

(d) TxtFinV = {L | (∃M)[L ⊆ TxtFinV (M)]}.

Definition 9 Suppose V is a c.r.s.

(a) M TxtMinExV -identifies L iff (∀ texts T for L)[M(T)↓ =

6

MinGramV (L)].

(b) M TxtMinExV -identifies L iff M TxtMinEx-identifies each L ∈ L.

(c) For all M , TxtMinExV (M) = {L | M TxtMinExV -identifies L}.

(d) TxtMinExV = {L | (∃M)[L ⊆ TxtMinExV (M)]}.

We sometimes write TxtEx for TxtExW and similarly for the other criteria
just discussed.

The following lemma allows us to work with a computable enumeration of
learning machines.

Lemma 10 (Lemma 4.2.2B of [17]) There exists a computable enumera-
tion M0, M1, . . . of (total) learning machines such that, for each learning cri-
terion I used in the present paper, for every L ∈ I, L is I-identified by some
machine in this enumeration. Moreover, this enumeration satisfies an S-m-n
property: given a description, computable in x, of the behavior of a machine
M , one can computably find a machine Mf(x) whose I-identification behavior
is identical to that of M .

2.3 Control Structures in C.R.S.’s

[23,24,27] show how to define control structures in the context of programming
systems (effective numberings) for the partial computable functions [25]. These
ideas can be straightforwardly adapted to the context of c.r.s.’s. We will omit
some of the details of this adaptation, but Definition 13 below will provide all
that is really essential to the present paper.

Of course, while-loop and if-then-else are natural (intuitive) example con-
trol structures for systems for the partial computable functions. We exhibit in
the next definition two natural example control structures in the context of
c.r.s.’s. Later we present formal notions about control structures in general.

Definition 11

(a) An instance of the control structure union in V is a function f such that,
for all p and q,

Vf(p,q) = {x | x ∈ Vp ∨ x ∈ Vq}.

(b) An instance of the control structure intersect in V is a function g such

7

that, for all p and q,

Vg(p,q) = {x | x ∈ Vp ∧ x ∈ Vq}.

Intuitively, for example, an instance g of intersect in V applied to constituent
V -programs p and q, produces g(p, q), a composite V -program for recognizing
the intersection of the respective sets recognized by p and q.

In the present paper, it will suffice for us to consider the extensional [27] (syn-
onym: denotational [30]) control structures. Instances of extensional control
structures provide a means of forming a composite program from given con-
stituent programs (and/or data), where the I/O behavior of that composite
program depends only on the I/O behavior of the constituent programs (and
on the data). So, for example, when applying extensional control structures,
the I/O behavior of a composite program cannot generally depend on the
number of symbols in or the run-time complexity of a constituent program.
Clearly, in the context of c.r.s.’s, union and intersect from Definition 11
above are extensional. Also, instances of each combine two programs (and no
data) to form a third (composite) recognizer program. [23,24,27] provide an
even more general type of control structure called intensional (synonym: con-
notational). Also, the extensional control structures, as rigorously defined in
[27], include ([27, Theorem 2.3.3]) the recursive extensional control structures
under minimal fixed point semantics.

Definition 12 [26] An enumeration operator Θ is a mapping from 2N to 2N ,
such that for some recursively enumerable set X,

for all A, Θ(A) = {i | (∃j)[〈i, j〉 ∈ X ∧ Dj ⊆ A}.

Intuitively, an enumeration operator Θ is a mapping from all sets of natural
numbers into the same such that some algorithm transforms arbitrary enumer-
ations of any set A into correspondings enumerations of Θ(A). [26] provides
an excellent discussion of enumeration operators.

Formally, each control structure for c.r.s.’s is determined by an enumeration
operator Θ. In [23,24,27] we see that control structures in the context of pro-
gramming systems for the partial computable functions are determined instead
by recursive operators [26]. As noted earlier, we provide below the definition
of extensional (or denotational) control structures only since that is all that
is really essential to the present paper. Also, as noted above, this definition is
the obvious analog for c.r.s.’s of the corresponding concepts in [27].

Definition 13

(a) Suppose n > 0. Suppose 0 ≤ m ≤ n. Suppose Θ is an enumeration
operator. Suppose V is a c.r.s.

8

f : Nn → N is an instance of the extensional control structure in V
determined by (m, n, Θ) iff (∀p1, . . . , pm, x1, . . . , xn−m)[Vf(p1,...,pm,x1,...,xn−m) =
Θ(Vp1 ⊕ . . .⊕Vpm)(x1, . . . , xn−m)].

(b) Suppose n > 0. Suppose 0 ≤ m ≤ n. Suppose Θ is an enumeration
operator.

The extensional control structure determined by (m, n, Θ) is {(V, f) | V is a
c.r.s. ∧ f : Nn → N is an instance of the extensional control structure in V
determined by (m, n, Θ)}.

(c) s is an extensional control structure iff (∃n > 0)(∃m | 0 ≤ m ≤ n)(∃
enumeration operator Θ)[s is the extensional control structure determined by
(m, n, Θ)].

In Definition 13(a) above p1, . . . , pm are program arguments, and x1, . . . , xn−m

are data arguments. f(p1, . . . , pm, x1, . . . , xn−m) is the resultant composite V -
program whose I/O behavior depends on that of the program arguments and
which also depends on the data arguments. It is easy to argue that all the
examples in the present paper of instances of control structures in a c.r.s. V
satisfy Definition 13(a) for suitably chosen (m, n, Θ). In these examples we
suppress explicit mention of the (m, n, Θ).

If f is an instance of a control structure in V , then f may or may not be
computable or even limiting-computable. In the c.r.s. W , one has, of course,
computable instances of union and intersect. Similarly, in typical, practical
programming languages, one has instances of while-loop and if-then-else
which are not only computable, but, since they can be realized by simple
substitution of the constituent programs into some fixed template, they are
computable in linear-time [27,20].

The learning criteria we consider in Section 3 below feature converging to a
correct hypothesis in the limit. Hence, it is not surprising that only limiting-
computable instances of the control structures are relevant there. However, in
Section 4 further below, computable instances are sometimes relevant.

Case showed [23,27] that the acceptable programming systems (for the partial
computable functions) are characterized by having a computable instance of
each control structure. This result easily carries over to a corresponding control
structure characterization of acceptable c.r.s.’s. It is a straightforward lift to
show the following

Theorem 14 A c.r.s. is limiting-acceptable ⇔ it has a limiting-computable
instance of each extensional control structure.

It is currently open whether in Theorem 14 just above, the word ‘exten-

9

sional’ can be removed. It is straightforward to show that ‘extensional’ can
be added (before ‘control structure’) with no problem in the characterization
of acceptable c.r.s.’s. These control structure characterizations of acceptability
and limiting-acceptability motivate their partly learning-theoretic characteri-
zations in Section 4 below.

Definition 15 We write V |= s to mean there is a computable instance of
the control structure s in V , and we write V |= lim-s to mean that there is a
limiting-computable instance of s in V .

We present next, examples of (extensional) control structures of relevance to
the sections which follow. In the remainder of the paper, for convenience, we
will many times drop the modifier ‘extensional’ in discussions of extensional
control structures.

The first example, s-1-1, is a control structure intuitively for storing a datum
x in a recognizing program p, more specifically, for replacing the first of two
(coded) input parameters to p by the constant x. In the c.r.s. W , Kleene’s
S-m-n function [26] essentially provides a computable instance.

Definition 16 An instance of the control structure s-1-1 in V is a function
f such that, for all p and x, Vf(p,x) = {y | 〈x, y〉 ∈ Vp}.

[25] characterized acceptability for programming systems (numberings) of the
partial recursive functions in terms of Kleene’s S-m-n Theorem. His proof
straightforwardly adapts to show the following

Theorem 17

(a) For all c.r.s.’s V , V is acceptable ⇔ V |= s-1-1.

(b) For all c.r.s.’s V , V is limiting-acceptable ⇔ V |= lim-s-1-1.

The next example, fin, is a control structure which has no program arguments
and one data argument x. Its instances, applied to x, return a recognizer for
the canonical finite set Dx.

Definition 18 An instance of the control structure fin in V is a function f
such that, for all x, Vf(x) = Dx.

The next example, coinit, is a control structure which has no program argu-
ments and one data argument x. Its instances, applied to x, return a recognizer
for the set of all integers ≥ x.

Definition 19 An instance of the control structure coinit in V is a function
f such that, for all x, Vf(x) = {y | y ≥ x}.

10

The next example, cosingle, is a control structure which has no program
arguments and one data argument x. Its instances, applied to x, return a
recognizer for the set of all natural numbers 6= x.

Definition 20 An instance of the control structure cosingle in V is a func-
tion f such that, for all x, Vf(x) = {y | y 6= x}.

The next example, proj, is a control structure which has one program ar-
gument p and no data arguments. For proj, it is useful to think of Vp as a
(coded) set of ordered pairs. Then an instance of proj, applied to p, returns
a recognizer for the first (or x-axis) projection of Vp.

Definition 21 An instance of the control structure proj in V is a function f
such that, for all p, Vf(p) = {x | (∃y)[〈x, y〉 ∈ Vp]}.

3 Control Structure Characterizations of Learnability Results

As we noted in Section 1, in any learnability setting, hypotheses are conjec-
tured from some hypothesis space. Furthermore, we noted that in the present
paper we focus our attention on hypothesis spaces for recognizing the entire
class of r.e. sets, and any such hypothesis space will have available some control
structures but perhaps not others. The presence of certain control structures
is, as we will see in this section, essential to certain learnability results. In the
present section we first present control structure characterizations of some
rather specific but illustrative learnability results. In the remainder of this
section we consider, for the control structures involved, whether or not they
are available in any hypothesis space (of the sort we consider herein). As we
will see, some are always available and some are not.

In Definition 22 below, we list some standard classes in TxtEx.

Definition 22

(a) FiniteSets = {Di | i ∈ N}.

(b) Co-Init = {L | (∃i)[L = {j | j ≥ i}]}.

(c) Co-Single = {L | (∃i)[L = {i}]}.

For each class from Definition 22 just above, Theorem 23 just below provides
a characterization of its being in TxtExV . Each such characterization fea-
tures the presence of a particular limiting-computable control structure in the
hypothesis space V .

11

Theorem 23 Suppose V is a c.r.s.. Then,

(a) FiniteSets ∈ TxtExV ⇔ V |= lim-fin.

(b) Co-Init ∈ TxtExV ⇔ V |= lim-coinit.

(c) Co-Single ∈ TxtExV ⇔ V |= lim-cosingle.

Proof. We only prove part (b). Rest of the parts can be proved similarly.
Suppose V is a c.r.s.

(⇒): Suppose Co-Init ∈ TxtExV as witnessed by M . We define f2(·, ·) as
follows.

Given any i, it is possible to compute a text Ti for the language {n |
n ≥ i} uniformly in i. For all i, n, let f2(i, n) = M(Ti[n]). Further, let
f = λi limn→∞f2(i, n).

It is straightforward to show that f is an instance of lim-coinit in V .

(⇐): Suppose V |= lim-coinit as witnessed by limiting computable f . Suppose
f is limiting-computable as witnessed by computable f2(·, ·). We define M as
follows.

M(σ) = f2(min(content(σ)∪{|σ|}), |σ|). It is straightforward to show that M
TxtExV -identifies Co-Init.

We next prepare to generalize Theorem 23.

Definition 24 A class L of languages is uniformly decidable iff L can be
written as {L0, L1, . . .}, where (∃ computable d)(∀i)[λx d(i, x) = χLi

].

For example, FiniteSets is uniformly decidable: let

d(i, x) =
{

1 if x ∈ Di;
0 otherwise;

then d is computable, and, with Li = Di, d witnesses that FiniteSets is a uni-
formly decidable class. Similarly, we see that Co-Init and Co-Single are also
uniformly decidable classes. Of course all these classes are in TxtEx. Actu-
ally, uniformly decidable classes of languages are ubiquitous in computational
learning theory [34] and are many times also called indexed families of recur-
sive languages. Important further examples of such classes are the class of all
pattern languages [3,2] and the class of all context free languages [16]. The
former is in TxtEx [3,2], but the latter is not [15].

12

Next, we define a class of control structures useful for uniformly decidable
classes. Just after that we provide Theorem 26 which generalizes Theorem 23
above.

Let L = {Li | i ∈ N} be a uniformly decidable class of recursive languages,
where (∃ computable d)(∀i)[λx d(i, x) = χLi

]. We associate with L (and the
listing of L as L0, L1, . . .) a control structure csL which has no program ar-
guments and one data argument i. An instance of csL, applied to i, returns a
recognizer for the language Li. N.B. The parameter i here within the system V
does serve as a datum; however, within the subrecursive system 〈Li | i ∈ N〉
it can be construed as a program (for deciding Li).

Definition 25 For L as just above, an instance of the control structure csL
in V is a function f such that, for all i,

Vf(i) = Li.

For example, if L = FiniteSets and Li = Di, then csL = fin.

Theorem 23 generalizes as follows.

Theorem 26 Suppose L ∈ TxtEx is a uniformly decidable class. Then,
(∀V)[L ∈ TxtExV ⇔ V |= lim-csL].

In the remainder of this section we present (among other things) results show-
ing that some of the necessary control structures featured above in this section
are present in every c.r.s. and some are not.

From Theorem 27 and Theorem 29 below, we will see that FiniteSets can
be TxtEx-identified in all c.r.s.’s, but that there is a c.r.s. in which Co-Init
cannot be TxtEx-identified. From this perspective, then, FiniteSets is eas-
ier than Co-Init. By contrast, with respect to an intrinsic complexity notion
from [10,18], FiniteSets is harder than Co-Init for TxtEx-identification.

Theorem 27 For all c.r.s.’s V , FiniteSets ∈ TxtExV .

Proof. Suppose V is a c.r.s. We define a machine M such that M TxtExV -
identifies FiniteSets.

Let M(σ) = i, where i is the least j ≤ |σ| = n such that Vj,n = content(σ), if
any; 0, otherwise.

Clearly, given a text for a finite set, M converges in the limit to the minimum
recognizer for that set.

From Theorem 23 and Theorem 27, we have the following

13

Corollary 28 For all c.r.s.’s V , V |= lim-fin.

For the class Co-Init, however, we get the following result. Its proof is tech-
nically interesting since it involves a pleasing, subtle non-constructivity in
the way the entire class of r.e. sets is embedded in the example c.r.s. of the
Theorem.

Theorem 29 There exists a c.r.s. V such that V 6|= lim-coinit (and hence
Co-Init 6∈ TxtExV).

Proof. We use the symbol ↓ to denote that a computation halts. We define
V in stages below. Go to stage 0.

Begin stage n
For all i ≤ n, do the following steps. For all i, let si = max({s ≤ n |

ϕi,n(i, s)↓}); let pi = ϕi(i, si), if si 6= 0 (recall that max(∅) = 0); other-
wise, pi is undefined.

1. For all q ∈ {pi | i ≤ n}, let ClaimSetq = {i ≤ n | pi = q}; for all other
q, let ClaimSetq = ∅.

2. If min(Wi,n) 6∈ ClaimSet2i, then enumerate Wi,n into V2i.
3. If min(Wi,n) 6∈ ClaimSet2i+1, then enumerate Wi,n into V2i+1.
4. Go to stage n + 1.

End stage n.

Claim 30 V 6|= lim-coinit (and hence Co-Init 6∈ TxtExV).

Proof of Claim 30. It suffices to show that there is no limiting-computable
function f such that, for all i, Vf(i) = {x | x ≥ i}. Suppose f is limiting-
computable as witnessed by computable f2(·, ·). Let ϕi = f2. ϕi(i,∞)↓ = p,
say. Therefore, Vp = {x | x ≥ i}. Hence, from the construction, Vp = Wq,

where q = bp/2c. Thus, i = min(Wq). Therefore, (
∞
∀ n)[i ∈ Wq,n]. Also,

(
∞
∀ n)[i ∈ ClaimSetp at stage n]. Hence, by the construction above, Vp is a

finite set, a contradiction. 2 (Claim 30)

Claim 31 For all p, there exists an i such that Vi = Wp.

Proof of Claim 31. Let j = min(Wp). From the construction, at any stage
s, either j 6∈ ClaimSet2p or j 6∈ ClaimSet2p+1. Hence, at least one of V2p and
V2p+1 is the set Wp. 2 (Claim 31)

It follows from the above claims that V is a c.r.s., V 6|= lim-coinit, and
Co-Init 6∈ TxtExV . (Theorem 29)

14

The proof of Theorem 29, can be easily generalized to uniformly decidable
classes of infinite recursive languages to give

Theorem 32 Suppose L ∈ TxtEx is a infinite uniformly decidable class con-
taining only infinite (recursive) languages. Then, (∃ a c.r.s. V)[L 6∈ TxtExV].

We then have the following

Corollary 33 There exists a c.r.s. V such that V 6|= lim-cosingle (and
Co-Single 6∈ TxtExV).

In another vein, Theorem 27 gives us the following

Corollary 34 (∃L | card(L) infinite)(∀ c.r.s. V)[L ∈ TxtExV].

The immediately above corollary contrasts with [9, Lemmas 25 & 26] which
yield programming systems (for the partial computable functions) with respect
to which one cannot learn in the limit any infinite class of (total) computable
functions. An explanation for this and the next contrasting result is that, in
learning computable functions, there are no finite objects to be learned.

As an even more contrasting result, an easy generalization of the proof of
Theorem 27 gives,

Theorem 35 Suppose L ∈ TxtEx contains at most finitely many infi-
nite sets (with no restriction on how many finite sets it contains). Then (∀
c.r.s. V)[L ∈ TxtExV].

From Theorems 26 and 35 we have, then, the following

Corollary 36 Suppose uniformly decidable L = {L0, L1, . . .} ∈ TxtEx
contains at most finitely many infinite sets, where (∃ computable
d)(∀i)[λx d(i, x) = χLi

]. Then (∀ c.r.s. V)[V |= lim-csL]

4 Partly Learning-Theoretic Characterizations of Having “All”
Control Structures

In this section we present our two main characterization theorems, The-
orems 39 and 40. The first characterizes TxtFinV being = TxtFin and
the presence of a computable instance of proj, in V as: V has computable
instances of all (extensional) control structures. The second characterizes
TxtExV being = TxtEx and the presence of a limiting-computable instance
of proj, in V as: V has limiting-computable instances of all extensional control
structures. Of course, by remarks in Section 2.3 above, these are just char-

15

acterizations of acceptability and limiting-acceptability, respectively; hence,
we express them in such terms. In a sense, then, proj epitomizes the con-
trol structures whose presence or absence is not relevant for invariance of the
learning classes. As we will see, the hardest part of each of these theorems is
its crucial furthermore clause. After our main theorems we consider a number
of related matters and consequences.

The following Theorem is useful in proving part of our first main theorem and
is of interest in its own right. Essentially, it implies that there is a c.r.s. V
which: has limiting-computable instances of all extensional control structures,
is missing any computable instance of some extensional control structure, but,
nonetheless, the missing computable instance does not lessen learning power.
By Theorem 17, V has a limiting-computable instance of the extensional con-
trol structure s-1-1, but V does not have a computable instance of s-1-1.

Efim Kinber suggested the c.r.s. used in the particular proof we give of this
theorem.

Theorem 37 There exists a limiting-acceptable c.r.s. V that is not accept-
able, such that TxtExV = TxtEx and TxtFinV = TxtFin.

Proof. We define a c.r.s. V as follows.

Vi =

{0} if i = 0;
∅ if i > 0 and Wi = {0};
Wi otherwise.

Clearly, V is a c.r.s. Also, it is straightforward to see that TxtExV = TxtEx,
TxtFinV = TxtFin and that V is limiting-acceptable. Suppose by way of
contradiction that V is an a.r.s. Then, from the definition of a.r.s. (Def-
inition 4), W ≤ V . Suppose t computable such that t : W ≤ V . Then,
Wi = {0} ⇔ t(i) = 0, and, hence, {i | Wi = {0}} is recursive, a contradiction
to Rice’s Theorem [26,8].

By replacing {0} in the above proof to {j}, for arbitrary j ∈ N , we obtain

Theorem 38 There exists infinitely many pairwise ≤-incomparable non-
acceptable c.r.s.’s V1, V2, . . ., such that TxtExV1 = TxtExV2 = . . . = TxtEx.

Here is our first main

Theorem 39 V is acceptable ⇔ [TxtFinV = TxtFin ∧ V |= proj].
Furthermore, the clauses in the right hand side are independent of each other.

The proof of the ⇔ part of Theorem 39 is a straightforward variant of the

16

proof of the ⇔ part of Theorem 40 below. For the furthermore part: (∃V)[V |=
proj 6⇒ TxtFinV = TxtFin] follows from the ⇔ part of Theorem 39 and
Theorem 41 below; (∃V)[TxtFinV = TxtFin 6⇒ V |= proj] follows from the
⇔ part of Theorem 39 and Theorem 37 above.

Our second main theorem is next.

Theorem 40 V is limiting-acceptable ⇔ [TxtExV = TxtEx ∧ V |= lim-
proj].
Furthermore, the clauses in the right hand side are independent of each other.

We first prove the ⇔ part of this theorem. Then the furthermore part will
follow from this ⇔ part together with Theorems 41 and 42 below.

Proof of the ⇔ part of Theorem 40.
(⇒): Suppose V is limiting-acceptable. Let f : W ≤lim V . Let f be limiting-
computable as witnessed by computable f2(·, ·) (i.e., f = λx limn→∞f2(x, n)).

Suppose L ∈ TxtExW as witnessed by M . We show that L ∈ TxtExV .

We define a learning machine M ′ thus: For all texts T , for all n, let M ′(T [n]) =
f2(M(T [n]), n). Clearly, for all T , M(T)↓ = p ⇒ M ′(T)↓ = f(p). Hence, M ′

TxtExV -identifies L.

Also, clearly, W |= proj. Let g be a computable instance of proj in W . So,
for all i, Wg(i) = {x | (∃y)[〈x, y〉 ∈ Wi]}.

We next define computable h2(·, ·) such that h = λi limn→∞h2(i, n) is a
limiting-computable instance of proj in V . Let t be a computable function
such that t : V ≤ W . Clearly, such a t exists.

Let h2(i, n) = f2(g(t(i)), n). For all i, h(i) = limn→∞h2(i, n) =
limn→∞f2(g(t(i)), n) = f(g(t(i))). Therefore, Vh(i) = Vf(g(t(i))) = Wg(t(i)).
But Wg(t(i)) = {x | (∃y)[〈x, y〉 ∈ Wt(i)]}. Since Wt(i) = Vi, h is a limiting-
computable instance of proj in V . So, V |= lim-proj.

(⇐): Suppose TxtExV = TxtExW and h is a limiting-computable instance
of proj in V (as witnessed by computable h2(·, ·)).

We use the class LTxtEx from [18], which we describe below. This class LTxtEx

is shown to be in TxtExW in [18].

Let Sj
L = {〈x, j〉 | x ∈ L}. Then, LTxtEx = {Sj

L | L ∈ TxtEx(Mj)}.

Let M be a learning machine that TxtExV -identifies LTxtEx. Also, there exists
a computable f such that for each i, Mf(i)TxtExW -identifies Wi. Hence, for

17

all i, the language S
f(i)
Wi

in LTxtEx is TxtExV -identified by M .

For each language, S
f(i)
Wi

, let Ti be a text for this language, that can be computed
uniformly in i.

We next define computable t2 such that t = λi limn→∞t2(i, n) is such that
t : W ≤lim V .

Let t2(i, n) = h2(M(Ti[n]), n).

Now, for each i, t(i) = limn→∞t2(i, n) = limn→∞h2(M(Ti[n]), n) =
limn→∞h2(M(Ti), n) = h(M(Ti)).

Hence, Vt(i) = Vh(M(Ti)) = Wi.

Therefore, W ≤lim V , i.e., V is limiting-acceptable. (⇔ part of

Theorem 40)

Theorem 41 (∃V)[V |= proj and TxtFin 6⊆ TxtExV].

(Thus, the above V is not limiting-acceptable and V |= lim-proj.)

Proof. Let Lj = {〈j, x〉 | x ∈ N}. Let L = {Lj | j ∈ N}. Clearly, L ∈
TxtFin. We will construct a c.r.s. V such that V |= proj but L 6∈ TxtExV .
This will prove the theorem.

For a language L, let Proj(L) = {x | (∃y)[〈x, y〉 ∈ L]}. Let Proj0(L) denote
L, and Proji+1(L) denote Proj(Proji(L)).

Let ProjSet(L) = {L′ | (∃i)[L′ = Proji(L)]}.

Without loss of generality assume that W is an a.r.s. such that, for all j, which
are not powers of 2, Wj = Lj. Note that this implies, there exist infinitely many
j such that (1) MinGram(Lj) = j and (2) (∀i < j)[Lj 6∈ ProjSet(Wi)]. This is
what we will utilize in our construction.

We now define V . For all x, y, let V〈x,y+1〉 = Proj(V〈x,y〉). (Note that this ensures
V |= proj.)

We now only need to define V〈x,0〉 for each x. We do so next. Let h be defined
as follows:

For all i, for all j ≤ (i + 1)2, h(i, j) = Σi−1
k=0((k + 1)2 + 1) + j.

Note that Si = {h(i, j) | j ≤ (i + 1)2} is a disjoint partition of N and
card(Si) = (i + 1)2 + 1.

18

We define, for each i and j ≤ (i + 1)2, V〈h(i,j),0〉, as follows. V〈h(i,j),0〉 will either
be Wi or a finite subset of Wi.

Let Ti denote some standard (effective in i) text for Wi.

Definition of V〈h(i,j),0〉.
Go to stage 0.
Stage s.
1. If {〈h(i′, j), k〉 | i′, k ∈ N} ∩ {Mv(Tw[s]) | v ≤ i ∧ w ≤ i} = ∅, then

Enumerate Wi,s.
2. Go to stage s + 1.
End stage s

It is straightforward to verify that V〈h(i,j),0〉 = Wi, or a finite subset of Wi.
Also, for each i, there exists a j such that V〈h(i,j),k〉 = Wi. Thus V is a c.r.s.
Moreover, if Mv on Ww converges to 〈h(i′, j′), k′〉, then, for all i ≥ max({v, w}),
V〈h(i,j′),0〉 is finite.

Suppose by way of contradiction that Mv TxtExV -identifies L. Let i be large
enough such that i > v, MinGramW (Li) = i, (∀i′ < i)[Li 6∈ ProjSet(Wi′)].
Note that there exists such an i, by the assumption on W . We claim that Mv

cannot TxtExV -identify Li.

So suppose Mv(Li)↓ = 〈h(i′, j′), k′〉. If i′ ≥ i, then by construction above
V〈h(i′,j′),0〉 is finite. Thus V〈h(i′,j′),k′〉 6= Li. If i′ < i, then either V〈h(i′,j′),k′〉 is finite
or a member of ProjSet(Wi′). But Li 6∈ ProjSet(Wi′). Thus V〈h(i′,j′),k′〉 6= Li.

It follows that L 6∈ TxtExV . Thus, by the ⇔ part of Theorem 40, we have
that V is not limiting-acceptable.

Theorem 42 (∃V)[V is not limiting-acceptable and TxtExV = TxtEx].

The proof of this theorem proceeds employing a series of lemmas and propo-
sitions.

Let Init = {L | (∃j)[L = {i | i < j}]}.

Lemma 43 Suppose V is a c.r.s. such that V0 = N . Then one can effectively
(in algorithmic description of V) obtain a Friedberg c.r.s. U and a limiting
recursive function f such that,

(∀i | Vi 6∈ ({N} ∪ Init) ∧ i = MinGramV (Vi))[Uf(i) = Vi].

Proof. Odifreddi’s construction ([21, Theorem II.5.22, Page 230]) proves this
lemma. (Lemma 43)

19

Proposition 44 Suppose L′ is finite, U is a c.r.s., L ∪ L′ ∈ TxtEx, and
L ∈ TxtExU . Then L ∪ L′ ∈ TxtExU .

Proof of Proposition 44. Suppose the hypothesis. Let M be such that
L ∪ L′ ⊆ TxtEx(M). Let M ′ be such that L ⊆ TxtExU(M ′). Let S =
{M(L) | L ∈ L′}. For each i ∈ S and L ∈ L′, such that M(L) = i, let ji be
such that Uji

= L.

Define M ′′ as follows:

M ′′(σ) =
{

jM(σ), if M(σ) ∈ S;
M ′(σ), otherwise.

It is straightforward to verify that M ′′ TxtExU -identifies,
L ∪ L′. (Proposition 44)

As a corollary to Theorem 27 and its proof we have,

Corollary 45 For all c.r.s.’s U , Init ∈ TxtMinExU .

The following Lemma is proved using Lemma 43, Proposition 44, and Corol-
lary 45.

Lemma 46 Suppose V is a c.r.s. Then one can effectively (in algorithmic
description of V) construct a Friedberg c.r.s. U such that TxtMinExV ⊆
TxtExU = TxtMinExU .

Proof of Lemma 46. Without loss of generality assume that V0 = N .
We assume this property of V just for ease of notation, since one can effec-
tively transform V into a c.r.s. V ′ such that V ′

0 = N and TxtMinExV ⊆
TxtMinExV ′ (to do this, let V ′

0 = N , and V ′
i+1 = Vi).

Let U be the Friedberg c.r.s. which we get by using Lemma 43.

Suppose L ∈ TxtMinExV . Clearly, L− ({N}∪ Init) ∈ TxtExU (since, using
f as in Lemma 43, we can convert, in the limit, minimal V -recognizer for
L 6∈ ({N} ∪ Init), to U -recognizer for L). Let L′ = L ∩ ({N} ∪ Init).

We now consider two cases:

Case 1: N ∈ L.

In this case, clearly, L′ must be finite. Hence we get L ∈ TxtExU by
Proposition 44.

20

Case 2: N 6∈ L.

In this case, clearly L′ ⊆ Init. Let M be a machine which witnesses that
L − ({N} ∪ Init) ∈ TxtExU . Let M ′ be a machine which witnesses that
Init ∈ TxtExU .

Define M ′′ as follows:

M ′′(σ) =
{

M ′(σ), if content(σ) ∈ Init;
M(σ), otherwise.

It is straightforward to verify that M ′′ TxtExU -identifies
L. (Lemma 46)

For proving Lemma 49 below, we need the notion of order independence.

Definition 47 ([5,14]) A machine M is order independent iff, for all texts
T and T ′, if content(T) = content(T ′) and M(T)↓, then M(T ′)↓ = M(T).

Lemma 48 ([5,14]) Suppose M is given. Then one can effectively (from
M) construct an order independent machine M ′ such that, for all c.r.s.’s V ,
TxtExV (M) ⊆ TxtExV (M ′).

For an order independent machine M we often use M(L) to denote M(T),
for any text T for L. Note that this notion of M(L) is well defined for order
independent machines M .

Lemma 49 Suppose M is given. Let L = TxtEx(M). Then one can effec-
tively construct a c.r.s. V and a machine M ′ such that
(a) L ⊆ TxtExV (M ′), and
(b) For infinite L ∈ L, M ′ TxtMinExV -identifies L.

Proof of Lemma 49. By Lemma 48 one can, effectively from M , construct
an order independent machine M ′ such that TxtEx(M) ⊆ TxtEx(M ′).

Let Tj denote a text for Wj, which can be obtained effectively from j. Vi is
defined in stages as follows.

Definition of Vi.
Go to stage 0.
Stage s.
1. If [M ′(Ti[s]) 6= M ′(Ti[s + 1])] or [M ′(Ti[s]) ≤ i], then

Enumerate Wi,s.
2. Go to stage s + 1.
End stage s

21

We now prove that V satisfies the requirements of the theorem.

V is a c.r.s.: Consider any language L. If M ′(L)↑, then clearly Wi = L ⇒ Vi =
L. If M ′(L)↓ = j, then for any i > j, such that Wi = L, we have Vi = L. Thus
V is a c.r.s.

M ′ TxtExV -identifies L: For L ∈ L, M ′(L)↓ = j, such that L = Wj. Thus
M ′(Tj) = j. Thus, by construction Vj = Wj = L.

For infinite L ∈ L, M ′ TxtMinExV -identifies L: First note that, for all j,
either Vj is finite or Vj = Wj. Thus it suffices to show that for every infinite L ∈
L, for all i such that Wi = L and i < M ′(L), Vi is finite. But this immediately
follows from the construction, since the if condition (in construction of Vi)
holds only for finitely many stages. (Lemma 49)

Lemma 50 Suppose V is a c.r.s. Further suppose M and L are such that
(a) M TxtExV -identifies L, and
(b) For all infinite L ∈ L, M TxtMinExV -identifies L.
Then, L ∈ TxtMinExV .

Proof of Lemma 50. Suppose the hypothesis. We construct M ′ which
TxtMinExV -identifies L. Let M ′ be defined as follows:

M ′(T [n]) = min({k ≤ n | VM(T [n]),n = Vk,n})

Now suppose T is a text for L ∈ L.

If L is infinite, then, for all but finitely many n, M(T [n]) = MinGramV (L).
Thus, for all but finitely many n, M ′(T [n]) = MinGramV (L).

If L is finite, then, for all but finitely many n, VM(T [n]),n = L. Thus, for all
but finitely many n, min({k ≤ n | VM(T [n]),n = Vk,n}) = MinGramV (L). Thus
M ′(T) = MinGramV (L).

This proves that L ∈ TxtMinExV . (Lemma 50)

We get the following corollary from Lemmas 49 and 50.

Corollary 51 For any inductive inference machine M , one can effectively (in
M) construct a c.r.s. V such that TxtEx(M) ∈ TxtMinExV .

As a corollary to Corollary 51 and Lemma 46 we get

Corollary 52 For any inductive inference machine M , one can effectively (in
M) construct a Friedberg c.r.s U such that TxtEx(M) ∈ TxtExU .

22

A sequence of c.r.s.’s V 0, V 1, . . . is an an r.e. sequence of c.r.s.’s just in case
the set {〈〈i, j〉, x〉 | x ∈ V i

j } is recursively enumerable. The direct sum of an
r.e. sequence of c.r.s.’s, V 0, V 1, . . . is defined to be the c.r.s. V such that for
all i, j, V〈i,j〉 = V i

j .

Finally, by an straightforward modification of the proof of the main theorem
in [19], we get the following

Lemma 53 The direct sum of an r.e. sequence of Friedberg c.r.s.’s is never
limiting-acceptable.

Proof of Theorem 42. For each i, let U i be a Friedberg c.r.s. obtained
effectively from i such that TxtEx(Mi) ∈ TxtExU i (the effectiveness is
from Corollary 52). Let U be a direct sum of U0, U1, It follows that
TxtEx = TxtExU . Also, by Lemma 53, U is not limiting-acceptable. The
theorem follows. (Theorem 42)

We earlier showed the ⇔ part of Theorem 40. This together with Theorems 41
and 42 give us the furthermore part of Theorem 40. (Theorem 40)

It is straightforward to show that a single Friedberg c.r.s. is not limiting-
acceptable, yet Theorem 54 just below implies no single Friedberg c.r.s. can
witness the truth of Theorem 42 above. Theorem 54 is a consequence of a
straightforward modification of the proof of Theorem 4 from [11].

Theorem 54 For all Friedberg c.r.s.’s U , TxtExU ⊂ TxtEx.

The next result shows us that a c.r.s. V is limiting-acceptable just in case
one can computably (or equivalently, limiting-computably) translate TxtEx-
identifying machines to TxtExV -identifying machines.

Theorem 55 The following three clauses are equivalent

(1) V is limiting–acceptable
(2) (∃ computable g)(∀M)[TxtEx(M) ⊆ TxtExV (g(M))]
(3) (∃ limiting-computable h)(∀M)[TxtEx(M) ⊆ TxtExV (h(M))] .

Proof. ((1) ⇒ (2)): Let t be a limiting computable translator as witnessed
by t2(·, ·) from W to V . For all M , define g(M) as follows. For all T , n, let
g(M)(T [n]) = t2(M(T [n]), n). Clearly, TxtEx(M) ⊆ TxtExV (g(M)).

((2) ⇒ (3)): Follows easily.

((3)⇒ (1)): Suppose h is limiting-computable as in the hypothesis. Suppose h2

witness that h is limiting-computable. There exists a computable f such that,

23

for all i, for all σ, a finite initial segment of a text, Mf(i)(σ) = i. Therefore,
Wi ∈ TxtExW (Mf(i)). Hence Wi ∈ TxtExV (h(Mf(i))).

Given any recognizer i, it is possible to computably generate a text Ti for
the language Wi uniformly in i. V is limiting-acceptable as witnessed by the
limiting-computable translator t below.

Let t2(i, n) = h2(Mf(i), n)(Ti[n]). Let t(i) = limn→∞t2(i, n). Then, for all i,
Vt(i) = Vh(Mf(i))(Ti) = Wi.

Using Theorem 55 and Theorem 42, we get

Corollary 56 (∃V)[TxtExV = TxtEx 6⇒ (∃ computable
g)(∀M)[TxtEx(M) ⊆ TxtExV (g(M))]].

5 Conclusions, Problems, and Future Directions

Theorem 23 and its generalization, Theorem 26, present control structures
whose presence is needed for full learning power. Some of these necessary
control structures are present in any c.r.s. (Corollaries 28 and 36). That some
are not follows from Theorems 23, 26, 29 and 32 and Corollary 33.

Theorem 17 together with Theorems 37 and 42 show that the presence of
neither a computable instance of s-1-1 nor a limiting-computable one is needed
for full learning power.

By Theorem 41, there is a c.r.s. V where a computable instance of the control
structure proj is available, but learning in the limit with V as the hypothesis
space is, nonetheless, extremely weakened. The main theorems (Theorems 39
and 40) more generally indicate that proj epitomizes the control structures
whose presence needn’t help and whose absence needn’t hinder learning power.
We do not yet know how to otherwise insightfully characterize the control
structures similarly irrelevant for learning class invariance.

It would be interesting to get learnability results about control structures
in subrecursive hypothesis spaces [27,34,28]. Subrecursive systems have no
analog of acceptability [27]; however, back in the general recursive setting, it
would be nice to investigate whether there exist pure learning-theoretic results
completely characterizing each of acceptability and limiting-acceptability .

What we originally set out to do (for the principal learning criteria of this
paper) was to

24

(1) find a set of control structures S such that TxtFinV = TxtFin ⇔ (∀s ∈
S)[V |= s]; and

(2) find a set of control structures S such that TxtExV = TxtEx ⇔ (∀s ∈
S)[V |= lim-s].

This remains to be done.

Acknowledgements

We would like to thank Ganesh Baliga for helpful discussions, encouragement,
and for suggesting some lines of research that, in part, led to the present
paper. We would also like to thank each of Efim Kinber and Rolf Wiehagen
for helpful discussions and examples. Sanjay Jain was supported in part by
NUS grant number RP3992710.

References

[1] J. Allen. Anatomy of Lisp. McGraw-Hill, New York, NY, 1978.

[2] D. Angluin. Finding patterns common to a set of strings. Journal of Computer
and System Sciences, 21:46–62, 1980.

[3] D. Angluin. Inductive inference of formal languages from positive data.
Information and Control, 45:117–135, 1980.

[4] G. Baliga and A. Shende. Learning-theoretic perspectives of acceptable
numberings. In Third International Symposium on Artificial Intelligence and
Mathematics, 1994.

[5] L. Blum and M. Blum. Toward a mathematical theory of inductive inference.
Information and Control, 28:125–155, 1975.

[6] M. Blum. A machine-independent theory of the complexity of recursive
functions. Journal of the ACM, 14:322–336, 1967.

[7] A. Church. The Calculi of Lambda Conversion. Princeton Univ. Press, 1941.

[8] M. Davis, R. Sigal, and E. Weyuker. Computability, Complexity, and Languages.
Academic Press, second edition, 1994.

[9] R. Freivalds, M. Karpinski, and C. Smith. Co-learning of total recursive
functions. In Proceedings of the Seventh Annual Conference on Computational
Learning Theory, pages 190–197. ACM Press, 1994.

[10] R. Freivalds, E. Kinber, and C. Smith. On the intrinsic complexity of learning.
Information and Computation, 123(1):64–71, 1995.

25

[11] R. Freivalds, E. Kinber, and R. Wiehagen. Inductive inference and computable
one-one numberings. Zeitschr. j. math. Logik und Grundlagen d. Math. Bd.,
28:463–479, 1982.

[12] R. Freivalds, E. Kinber, and R. Wiehagen. Connections between identifying
functionals, standardizing operations, and computable numberings. Zeitschr. j.
math. Logik und Grundlagen d. Math. Bd., 30:145–164, 1984.

[13] R. Friedberg. Three theorems on recursive enumeration. Journal of Symbolic
Logic, 23(3):309–316, 1958.

[14] M. Fulk. Prudence and other conditions on formal language learning.
Information and Computation, 85:1–11, 1990.

[15] E. M. Gold. Language identification in the limit. Information and Control,
10:447–474, 1967.

[16] J. Hopcroft and J. Ullman. Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, 1979.

[17] S. Jain, D. Osherson, J. Royer, and A. Sharma. Systems that Learn: An
Introduction to Learning Theory. MIT Press, Cambridge, Mass., second edition,
1999.

[18] S. Jain and A. Sharma. The intrinsic complexity of language identification.
Journal of Computer and System Sciences, 52:393–402, 1996.

[19] M. Kummer. A note on direct sums of Friedbergnumberings. Journal of
Symbolic Logic, 54(3):1009–1010, September 1989.

[20] Y. Marcoux. Composition is almost as good as s-1-1. In Proceedings, Structure
in Complexity Theory–Fourth Annual Conference. IEEE Computer Society
Press, 1989.

[21] P. Odifreddi. Classical Recursion Theory. North-Holland, Amsterdam, 1989.

[22] J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann
Publishers, San Mateo, CA, 1993.

[23] G. Riccardi. The Independence of Control Structures in Abstract Programming
Systems. PhD thesis, SUNY/Buffalo, 1980.

[24] G. Riccardi. The independence of control structures in abstract programming
systems. Journal of Computer and System Sciences, 22:107–143, 1981.

[25] H. Rogers. Gödel numberings of partial recursive functions. Journal of Symbolic
Logic, 23:331–341, 1958.

[26] H. Rogers. Theory of Recursive Functions and Effective Computability.
McGraw-Hill, 1967. Reprinted by MIT Press in 1987.

[27] J. Royer. A Connotational Theory of Program Structure, volume 273 of Lecture
Notes in Computer Science. Springer-Verlag, 1987.

26

[28] J. Royer and J. Case. Subrecursive programming systems: Complexity &
succinctness. Birkhäuser, 1994.

[29] C. Sammut, S. Hurst, D. Kedzier, and D. Michie. Learning to fly. In D. Sleeman
and P. Edwards, editors, Proceedings of the Ninth International Conference on
Machine Learning, pages 385–393. Morgan Kaufmann, 1992.

[30] J. Stoy. Denotational Semantics: The Scott-Strachey Approach to Programming
Language Theory. MIT Press, 1977.

[31] K. Weihrauch. Computability. Springer-Verlag, 1987.

[32] R. Wiehagen. Characterization problems in the theory of inductive inference.
In G. Ausiello and C. Böhm, editors, Proceedings of the 5th International
Colloquium on Automata, Languages and Programming, volume 62 of Lecture
Notes in Computer Science, pages 494–508. Springer-Verlag, 1978.

[33] R. Wiehagen. Characterizations of learnability in various hypothesis spaces.
Private communication, 1996.

[34] T. Zeugmann and S. Lange. A guided tour across the boundaries of learning
recursive languages. In K. Jantke and S. Lange, editors, Algorithmic Learning
for Knowledge-Based Systems, volume 961 of Lecture Notes in Artificial
Intelligence, pages 190–258. Springer-Verlag, 1995.

27

