
Iterative Learning from Texts and Counterexamples

Using Additional Information

Sanjay Jain?1 and Efim Kinber2

1 School of Computing, National University of Singapore, Singapore 117417, Republic of Singapore. Email:
sanjay@comp.nus.edu.sg

2 Department of Computer Science, Sacred Heart University, Fairfield, CT 06825-1000, U.S.A. Email:
kinbere@sacredheart.edu

Abstract. A variant of iterative learning in the limit (cf. [LZ96]) is studied when
a learner gets negative examples refuting conjectures containing data in excess of
the target language and uses additional information of the following four types: a)
memorizing up to n input elements seen so far; b) up to n feedback memberships
queries (testing if an item is a member of the input seen so far); c) the number of
input elements seen so far; d) the maximal element of the input seen so far. We
explore how additional information available to such learners (defined and studied
in [JK07]) may help. In particular, we show that adding the maximal element or
the number of elements seen so far helps such learners to infer any indexed class of
languages class-preservingly (using a descriptive numbering defining the class) — as
it is proved in [JK07], this is not possible without using additional information. We
also study how, in the given context, different types of additional information fare
against each other, and establish hierarchies of learners memorizing n + 1 versus n
input elements seen and n + 1 versus n feedback membership queries.

Keywords: Inductive Inference, Iterative Learning, Feedback, Memory Limitation.

1 Introduction

In this paper, we study some variants of learning in the limit from positive data and negative
counterexamples to conjectures, with restricted access to input data. The general framework for
study of learning in the limit was introduced in [Gol67]. In Gold’s original model, TxtEx, a
learner is able to hold full input data seen so far in its long-term memory. However, this assump-
tion is apparently too strong for modeling many learning and cognitive processes. Wiehagen in
[Wie76] (see also [LZ96]) suggested a model for learning in the limit where the long-term memory
of the learners is limited to what they can store in their conjectures. These learners are called
iterative learners. This learning model, while strongly limiting long-term memory, still makes
salient an important aspect of learnability in the limit: its incremental character. Some variants
of iterative learning proved to be quite useful in the context of applied machine learning (for

? Supported in part by NUS grant numbers R252-000-308-112 and C-252-000-087-001.

1



example, [LZ06] applies the idea of iterative learning in the context of training Support Vector
Machines).

The iterative learning model has been used for study of learnability from all positive examples
(the corresponding formal model being denoted as TxtIt) as well as all positive and negative
examples (denoted as InfIt, see [LZ92]). One can argue that TxtIt may be too weak (a learner
gets only positive data and can memorize only very limited amount of input), whereas InfIt
may be too strong: it is hard to conceive a realistic learning process, where the learner would be
able to get access to full negative data. For example, children learning languages, while getting
some negative data (in the form of corrections by parents or teachers), never get the full set of
negative data.

In [JK08], the model TxtEx was extended to allow negative counterexamples to conjectures
by a learner. This model is an example of active learning, where a learner communicates with
a teacher (formally, an oracle) making queries and getting responses from the teacher. Active
learning as a general framework for study of learning processes was introduced by D. Angluin
in [Ang88] and has been widely utilized in various studies of theoretical and applied models of
learnability from examples since then. The model of iterative learning from full positive data
and negative counterexamples, NCIt (NC here stands for “negative counterexample”), defined
in [JK07] actually combines two approaches: Gold’s framework (as the learner incrementally gets
access to full positive data) and active learning (the learner, using subset queries, checks with
the teacher if each conjecture does not contain data in excess of the target languages and if the
answer is negative, the learner gets a negative counterexample showing an error). In linguistic
terms, non-grammatical sentences in conjectures are, thus, being corrected. It must be noted
that K. Popper [Pop68] regarded refutation of overgeneralizing conjectures as a vital part of
learning and discovery processes.

In this paper, we extend the NCIt model to incorporate some additional features. Specifi-
cally, we consider the following two extensions of this model: in addition to subset queries (for
conjectures), the learner

a) can ask up to n feedback queries: whether the queried element belongs to the input seen
so far;

b) can store up to n input elements seen so far in its long-term memory (note that when
the long-term memory used by a learner is n-bounded, if the memory is full then, in order to
save a new input datum, the learner must sacrifice at least one element currently stored in the
memory).

In the context of iterative learning of languages from positive data, these two types of “looking
back” (in the context of feedback — using just one query per conjecture) were defined in [LZ96]
(an earlier variant of memory-bounded learning can be found in [OSW86], and the idea of
feedback learning goes back to [Wie76], where it was applied in the context of learning recursive
functions in the limit). Both these concepts were reformalized (the former named n-feedback
learning, and the latter named n-memory learning) and thoroughly studied and discussed in
[CJLZ99]. Motivation for these sorts of learnability models, as discussed in [CJLZ99], comes from
the rapidly developing field of knowledge discovery in databases, which includes, in particular,

2



data mining, knowledge extraction, information discovery, data pattern processing, information
harvesting, etc. Many of these tasks represent interactive incremental iterative processes (cf.,
e.g., [BA96] and [FPSS96]), working on huge data sets, finding regularities, and verifying them
on small samples of the overall data. While the authors in [CJLZ99] explore the aforementioned
formalizations of “looking back” at small (uniformly limited by some upper bound n) portions
of input data in the context of regular iterative learning, we, in this research, allow the learner
to test with the teacher if conjectures do not contain data in excess of the target language. Our
learners may also be allowed to memorize some bounds derived from the input data seen so far
— in the form of the maximal element or the length of input seen so far (the latter type of
additional information for iterative learners was first considered in [CM08]). In this research, we
study how the aforementioned types of additional information can enhance capabilities of the
NCIt-learnability model in general, and how they, while helping a learner, fare against each
other.

Iterative learners from positive data, even with access to limited memory or feedback and/or
additional information (in the form of, say, the maximal element or the number of elements
seen so far) are obviously weaker than the learners being able to store full positive data seen so
far. Our study shows how much extra learning power such iterative learners can obtain from a
teacher in the form of a finite number of negative counterexamples to conjectures. As some of our
results show, such negative counterexamples obtained from the teacher, even with extra help in
the form of some additional information, are not able to compensate for even one extra memory
cell or one feedback query (Theorems 15 and 16). Likewise, such negative examples do not help
in the context of Theorems 17 and 18, which compare memory versus feedback. All these results
significantly strengthen their counterparts in [CJLZ99]. Proving negative parts of these results
required developing new technique utilizing limitations of extra learning power provided by a
finite number of negative counterexamples; classes and proofs used for diagonalization reflect the
advantages of extra feedback/memory, and are somewhat more transparent than the proofs used
in [CJLZ99] for the feedback and memory hierarchy. On the other hand, there are situations in
which negative counterexamples and some additional information (such as the maximal element
or the number of elements in the input seen so far) give advantages to iterative learners over
having bounded feedback (see, for example, details of the proof of Theorem 23; in a weaker
context, advantages of testing conjectures with the teacher are demonstrated by Proposition 20:
provided just some information about positive data seen so far, the iterative learners, at any
moment, can test their conjectures with the teacher to retrieve positive data they are unable to
store).

Specifically, in Section 3, we discover some general effects of additional information on NCIt-
learners. In particular, it was established in [JK07] that iterative learners getting access to full
positive and full negative data are, surprisingly, weaker than NCIt-learners (note that the latter
ones get negative data just in the form of a finite set of negative counterexamples — however,
only when these negative data are really necessary). We show that when the learners getting
full positive and full negative data are allowed to memorize just one input datum or ask just
one feedback membership query, they can sometimes learn more than any learner that gets

3



access to full positive data, that can use negative counterexamples (to conjectures), and that
can store all data seen so far in its long-term memory (see Theorem 10). A known capability
of NCIt-learners (established in [JK07]) is of special importance for many practical classes
of languages: they can learn every indexed class of languages (that is, any class of recursive
languages, where it is decidable, for any index k and any element m, if m is a member of
the language with index k; examples of such classes are the classes of all regular languages
and all pattern languages ([Ang80])). However, as it was established in [JK07], NCIt-learners
sometimes cannot learn an indexed class class-preservingly (cf. [LZZ08])— that is, they cannot
learn by using any descriptive numbering defining just the target class as the hypothesis space.
It turns out that this result regarding NCIt-learners holds even if the NCIt-learners are allowed
to make n-feedback membership queries (see Theorem 14). However, class-preserving learning
becomes possible if an NCIt-learner gets access to either the maximal element or to the number
of elements seen so far (see Theorem 13), and thus by using 1-memory.

In Section 4, we strengthen some results in [CJLZ99], establishing non-trivial hierarchies of
NCIt-learners using n-feedback queries or n-memory based on the number n (see Theorems 15
and 16). Our examples of classes witnessing the hierarchies in question also show that additional
information in the form of the maximal element seen so far and the number of elements seen
so far might not match the help that an NCIt-learner gets in the form of one extra feedback
membership query, or one extra long-term memory cell.

In Section 5, we study tradeoffs between different types of additional information used by
NCIt-learners (the main purpose of this study is to make salient advantages of each type of
additional information for the learners in question). In particular, similarly to corresponding
results in [CJLZ99], we show that one memory cell used by an NCIt-learner can give more
help than any n feedback membership queries (even in presence of the maximal element and
the number of elements seen so far), see Theorem 17, and, conversely, one feedback membership
query can give more help than n-memory (plus the maximal element and the number of elements
seen so far), see Theorem 18. Interestingly, the maximal element seen so far alone can give more
help than any number of feedback membership queries, see Theorem 23. Also, the number of
elements and the maximal element seen so far combined together can provide more help than
any bounded number of memory cells or feedback membership queries, see Theorem 24. We
also show how an extra memory cell can simulate the maximal element seen so far for NCIt-
learners using n memory cells, see Proposition 19. We obtain also some partial results for other
possible tradeoffs. Additionally, in Section 6 we demonstrate that yet another type of additional
information, the length of input seen so far (note that this number may be, apparently, different
from the number of elements in the input seen so far), in the context of NCIt-learning, can be
replaced by the maximal element seen so far, see Theorem 31.

In Section 7, we briefly address the issue of robustness of our results using the maximal
element and/or the number of elements seen so far in the presence of some “noise”. Namely, we
discuss which results hold if the maximal element and the number of elements seen so far are
replaced by upper bounds on these numbers, or by some approximations of these numbers.

4



2 Preliminaries

2.1 Notation

For any unexplained recursion theoretic notation we refer the reader to [Rog67]. The symbol N
denotes the set of natural numbers, {0, 1, 2, 3, . . .}. Languages are subsets of N. Symbols ∅, ⊆,
⊂, ⊇, and ⊃, respectively, denote the empty set, subset, proper subset, superset, and proper
superset. The cardinality of a set S is denoted by card(S). The maximum and the minimum of a
set are denoted by max(·), min(·), respectively, where max(∅) = 0 and min(∅) = ∞. The symbol
∞
∀ denotes ‘for all but finitely many’.

Let Dx denote the finite set with the canonical index x [Rog67]. We let 〈·, ·〉 denote a pairing
function, which is an arbitrary, computable, 1–1 mapping from N×N onto N [Rog67]. We assume
without loss of generality that 〈·, ·〉 is monotonically increasing in both of its arguments. The
corresponding projection functions are π2

1(〈x, y〉) = x and π2
2(〈x, y〉) = y. The pairing function

can be extended to n-tuples in a natural way (for example, by using 〈x, y, z〉 = 〈x, 〈y, z〉〉). The
corresponding projection functions are πn

i (x1, x2, . . . , xn) = xi.
By ϕ we denote a fixed acceptable programming system for the partial computable functions

from N to N [Rog67,HU79]. By ϕi we denote the partial computable function computed by the
program with the number i in the ϕ-system. For a partial function η, η(x)↓ denotes that η(x)
is defined. η(x)↑ denotes that η(x) is undefined.

By Φ we denote an arbitrary fixed Blum complexity measure [Blu67,HU79] for the ϕ-system.
Intuitively, Φi(x) may be thought as the number of steps it takes to compute ϕi(x).

By Wi we denote dom(ϕi). Thus, Wi can be viewed as the recursively enumerable (r.e.)
set/language accepted by the ϕ-program i. We also say that i is a grammar for Wi. By Wi,s we
denote the set {x < s : Φi(x) < s}. The symbol E denotes the set of all r.e. languages. We let L,
with or without decorations3, range over E . Symbol L, with or without decorations, ranges over
subsets of E . The characteristic function of L is denoted by χL. We denote the complement of
L by L, that is, L = N− L.

We often need padding to code some arguments in a hypothesis. To this end, pad(j, ·, ·, . . .)
denotes a 1–1 recursive padding function (of an appropriate number of arguments) such that
Wpad(j,·,·,...) = Wj (such computable functions exist [Rog67]).

A class L is said to be an indexed class iff there exists an indexing L0, L1, . . . of all and only
the languages in L such that for some recursive function f , f(i, x) = χLi

(x).

2.2 Basic Definitions for Learning

A text T is a mapping from N into (N ∪ {#}). T (i) represents the (i + 1)-th element in the
text. We let T , with or without decorations, range over texts. The content of a text T , denoted,
content(T ), is the set of natural numbers in the range of T . A text T is for a language L iff
content(T ) = L. Intuitively, T (i) denotes the element presented to the learner at time i, and #’s

3 Decorations are subscripts, superscripts, primes and the like.

5



represent pauses in the presentation of data. The initial sequence of a text T of the length n is
denoted by T [n], that is T [n] = T (0)T (1) . . . T (n− 1).

Sets of the form {x : x < n}, for some n, are called initial segments of N. A (finite) sequence
σ is a mapping from an initial segment of N into (N∪{#}). The empty sequence is denoted by λ.
The set of all finite sequences is denoted by SEQ. We let σ, τ , and γ, with or without decorations,
range over finite sequences. The length of σ, denoted by |σ|, is the number of elements in σ. For
n ≤ |σ|, σ[n] denotes the initial sequence of σ of the length n. Thus, σ[0] is λ. The content of
σ, denoted content(σ), is the set of natural numbers in the range of σ. We denote the sequence
formed by the concatenation of τ at the end of σ by σ � τ . For simplicity of notation, sometimes
we omit �, when it is clear that concatenation is meant.

An informant [Gol67] I is a mapping from N to (N × {0, 1}) such that for no x ∈ N, both
(x, 0) and (x, 1) are in the range of I. The content of I, denoted content(I), is the set of pairs
in the range of I. We say that I is an informant for L iff content(I) = {(x, χL(x)) : x ∈ N}.
The canonical informant for L is the informant (0, χL(0))(1, χL(1)) . . .. Intuitively, informants
give both all positive and all negative data for the language being learned. By I[n] we denote
the first n elements of the informant I.

An inductive inference machine (IIM) [Gol67] learning from texts is an algorithmic device
which computes a (possibly partial) mapping from SEQ into N. One can similarly define learners
from informants and other modes of input as considered below. We use the term learner or
learning machine as synonyms for inductive inference machines. In this paper we will only be
considering learners which are algorithmic. We let M , with or without decorations, range over
IIMs. We interpret M(T [n]) (or M(I[n])) as the grammar (index for an accepting program)
conjectured by the IIM M on the initial sequence T [n] (or I[n]). We say that M converges on T

to i, (written: M(T )↓= i) iff M(T [n]) is defined for all n and (
∞
∀ n)[M(T [n]) = i]. Convergence

on informants is similarly defined.
There are several criteria for an IIM to be successful on a language. In this paper we will be

mainly concerned with explanatory (abbreviated Ex) criteria of learning. Explanatory learning
is also called learning in the limit.

Definition 1. [Gol67,CL82]
(a) M TxtEx-identifies an r.e. language L (written: L ∈ TxtEx(M)) iff for all texts T for

L, there exists a grammar i such that M(T )↓= i and Wi = L.
(b) M TxtEx-identifies a class L of r.e. languages (written: L ⊆ TxtEx(M)) iff M TxtEx-

identifies each language from L.
(c) TxtEx = {L ⊆ E : (∃M)[L ⊆ TxtEx(M)]}.

As the learner only sees finitely many data before converging to its final hypothesis, some
form of learning must have taken place. Thus, we use the terms identify, infer, and learn as
synonyms.

Definition 2. [Gol67,CL82]
(a) M InfEx-identifies an r.e. language L (written: L ∈ InfEx(L)) iff for all informants I

for L, there exists a grammar i such that M(I)↓= i and Wi = L.

6



(b) M InfEx-identifies a class L of r.e. languages (written: L ⊆ InfEx(M)) iff M InfEx-
identifies each language from L.

(c) InfEx = {L ⊆ E : (∃M)[L ⊆ InfEx(M)]}.

Next we consider iterative learning.

Definition 3. [Wie76,LZ96]
(a) M is iterative, iff there exists a partial recursive function F such that, for all T and n,

M(T [n + 1]) = F (M(T [n]), T (n)). Here M(λ) is viewed as some predefined hypothesis.
(b) M TxtIt-identifies L, iff M is iterative, and M TxtEx-identifies L.
(c) TxtIt = {L : (∃M)[M TxtIt-identifies L]}.

InfIt can be defined similarly. Note that for explanatory learning from informants, learning from
canonical informants is enough to imply learnability from all informants. However, this is not
the case for iterative learning. Thus, we have explicitly required learnability from all informants
in the definitions above.

Intuitively, an iterative learner [Wie76,LZ96] is a learner whose every hypothesis depends
only on its previous conjecture and current input. That is, for some recursive function F , for
n ≥ 0, M(T [n + 1]) = F (M(T [n]), T (n)). Here, note that M(T [0]) is predefined to be some
constant value. We will often identify F above with M (that is, use M(p, x) = F (p, x) to
describe M(T [n + 1]), where p = M(T [n]) and x = T (n)). This is for ease of notation. Context
determines which interpretation of the learner M is meant.

For Ex models of learning (for learning from texts or informants or their variants when
learning from positive data and negative counterexamples, as defined below), one may assume
without loss of generality that the learners are total, that is, defined on all initial segments of all
texts (see, for example [OSW86]). However for iterative learning one cannot assume so. Thus,
we explicitly require in the definition that iterative learners are defined on all inputs which are
initial segments of texts (informants) for a language in the class.

Note that, although it is not stated explicitly, an It-type learner might store some input data
in its conjecture (thus serving as a limited long-term memory). However, the amount of stored
data cannot grow indefinitely, as the learner must converge to one (right) conjecture.

Using a standard coding of Turing machines, one can get a recursive enumeration M0, M1, . . .
of all (iterative) IIMs which learn from texts, informants or negative counterexamples, based on
context. Note that these IIMs might not be total.

Definition 4. (a) [Ful90] σ is said to be a TxtEx-stabilizing sequence for M on L, iff (i)
content(σ) ⊆ L, and (ii) for all τ such that content(τ) ⊆ L, M(στ) = M(σ).

(b) [BB75,Ful90] σ is said to be a TxtEx-locking sequence for M on L, iff (i) σ is a TxtEx-
stabilizing sequence for M on L and (ii) WM(σ) = L.

If M TxtEx-identifies L, then every TxtEx-stabilizing sequence for M on L is a TxtEx-locking
sequence for M on L. Furthermore, one can show that if M TxtEx-identifies L, then for every σ
such that content(σ) ⊆ L, there exists a TxtEx-locking sequence, which extends σ, for M on L

7



(see [BB75,Ful90]). Note that one can search (in the limit) for a stabilizing sequence for a learner
M on a language L — though one may not be able to determine if it is a locking sequence (even
in the limit).

Similar results can be shown for InfEx, TxtIt, InfIt and other criteria of learning discussed
in this paper. We will often drop TxtEx (and other criteria notation) from TxtEx-stabilizing
sequence and TxtEx-locking sequence, when the criterion is clear from context.

Learning with feedback and learning with bounded memory is a generalization of iterative
learning where the learner has access to some past data using queries or via some finite amount of
memory. Thus, in feedback learning an iterative learner is additionally allowed to query whether
some elements were present in the past input data. In bounded memory, an iterative learner is
able to memorize in its memory some (bounded) finite number of data (in addition to its latest
conjecture). Below are the formal definitions.

Definition 5. [CJLZ99]
(a) Suppose M is a learning machine from texts (for a class L of languages). We say that

M is an m-feedback learner iff there exist partial recursive functions F and Q such that for all
L ∈ L, and all texts T for L,

(i) for all n: Q(M(T [n]), T (n))↓∈ Nm, and
(ii) If Q(M(T [n]), T (n)) = (x1, x2, . . . , xm), then M(T [n+1]) = F (M(T [n]), T (n), y1, y2, . . . , ym),

where yi = 1 iff xi ∈ content(T [n + 1]).
(b) We say that M TxtIt-identifies L with m-feedback iff M TxtEx-identifies L and M is

an m-feedback learner. Such learners M are also called TxtIt-learners using m-feedback.

Note that in the above definition, the feedback query on the input T (n) is answered based on
whether the queried element is included in the set content(T [n + 1]). The results of this paper
would not change if we considered answering the queries based on whether the queried element
had been included in the set content(T [n]) (the proofs can be easily modified to handle this).

Definition 6. [LZ96]
(a) Suppose M is a learning machine from texts (for a class L of languages). We say that

M is an m-memory bounded learner iff there exists a partial recursive memory function mem
(mapping finite sequences to finite sets) and partial recursive functions F, F ′ such that for all
L ∈ L, and all texts T for L,

(i) for all n: mem(T [n])↓⊆ content(T [n]) and card(mem(T [n])) ≤ m
(ii) for all n: mem(T [n + 1]) = F ′(M(T [n]), T (n),mem(T [n])) ↓ , and mem(T [n + 1]) −

mem(T [n]) ⊆ {T (n)}.
(iii) M(T [n + 1]) = F (M(T [n]), T (n),mem(T [n]))↓ .
(b) We say that M TxtIt-identifies L with m-memory iff M TxtEx-identifies L and M is

an m-memory bounded learner. Such learners M are also called TxtIt-learner using m-memory
or m-memory bounded TxtIt-learner.

In both the above definitions, M(T [0]) is some fixed initial hypothesis.

8



Again, we often identify the learner M with the function F (along with identifying mem
with F ′) as defined above, and the context determines which interpretation of the learner M is
meant.

One can similarly define feedback and memory bounded learning for learning from informants.
Besides the above models of learning, we sometimes allow the learner access to the maximal

element in the input seen so far, or the number of elements in the input seen so far as an additional
input, besides the input element T (n) together with the latest conjecture and feedback/memory
(and the counterexamples, in the case of NC-type learning defined below). In the sequel, we will
typically refer to the “maximal element in the input seen so far” and the “number of elements
in the input seen so far” as simply the “maximal element” and, respectively, the “number of
elements”. Here note that, on an input text T , when T (n) is presented to the learner, the maximal
element given is max(content(T [n+1])) and the number of elements given is card(content(T [n+
1])) (and not max(content(T [n])) and card(content(T [n])) respectively).

2.3 Learning with Negative Counterexamples

In this section we consider our models of learning from full positive data and negative coun-
terexamples as given by [JK08]. Intuitively, for learning with negative counterexamples, we may
consider the learner being provided a text, one element at a time, along with a negative coun-
terexample to the latest conjecture, if any. (One may view this negative counterexample as a
response of the teacher to the subset query when it is tested if the language generated by the
conjecture is a subset of the target language). One may model the list of negative counterexam-
ples as a second text for negative counterexamples being provided to the learner. Thus the IIMs
get as input two texts T, T ′, one for positive data, and the other for negative counterexamples.

We say that M(T, T ′) converges to a grammar i (written: M(T, T ) ↓= i) iff M(T [n], T ′[n])

is defined for all n and (
∞
∀ n)[M(T [n], T ′[n]) = i].

First, we define the model of learning from positive data and negative counterexamples.
In this model, if a conjecture contains elements not in the target language, then a negative
counterexample is provided to the learner. NC in the definition below stands for negative coun-
terexample.

Definition 7. [JK08]
(a) M NCEx-identifies a language L (written: L ∈ NCEx(M)) iff for all texts T for L, and

for all T ′ satisfying the condition:

(T ′(n) ∈ Sn, if Sn 6= ∅) and (T ′(n) = #, if Sn = ∅),
where Sn = L ∩WM(T [n],T ′[n])

M(T, T ′) converges to a grammar i such that Wi = L.
(b) M NCEx-identifies a class L of languages (written: L ⊆ NCEx(M)), iff M NCEx-

identifies each language in the class.
(c) NCEx = {L : (∃M)[L ⊆ NCEx(M)]}.

9



Intuitively, Sn in the definition above is the set of negative counterexamples for the conjecture
WT [n],T ′[n]) (any of which may be given to the learner). We call the least element of Sn the
least (negative) counterexample (for the conjecture WM(T [n],T ′[n])). As the learner learning from
negative counterexamples also must be able to learn from least negative counterexamples, in
some cases, to simplify the diagonalization proofs we use least negative counterexamples.

For ease of notation, we sometimes define M(T [n], T ′[n]) also as M(T [n]), where we separately
describe how the counterexamples T ′(n) are presented to the conjecture of M on the input T [n].

As an example, L = {N} ∪ {L : card(L) < ∞} is in NCEx but not in TxtEx.
One can similarly define NCIt-learning, where the learner’s output depends only on the

previous conjecture, the latest positive data, and the counterexample provided.

Definition 8. [JK07]
(a) M is iterative (for learning from positive data and negative counterexamples), iff there

exists a partial recursive function F such that, for all T, T ′ and n, M(T [n + 1], T ′[n + 1]) =
F (M(T [n], T ′[n]), T (n), T ′(n)). Here M(λ, λ) is some predefined constant.

(b) M NCIt-identifies L, iff M is iterative, and M NCEx-identifies L.
(c) NCIt = {L : (∃M)[M NCIt-identifies L]}.

We will often identify F above with M (that is, use M(p, x, y) = F (p, x, y) to describe
M(T [n + 1], T ′[n + 1]), where p = M(T [n], T ′[n]) and x = T (n), y = T ′(n)). This is for ease of
notation.

One should also note that the NCIt model is equivalent to allowing finitely many subset
queries (with counterexamples for the answer “no”) in iterative learning.

One can extend the above definition to NCIt-learning with m-feedback or m-memory, by
allowing the learner M up to m queries about whether some element x has appeared in the
previous text or allowing the learner M to remember up to m elements of the past data. The re-
sulting criteria are called NCIt-learning with m-feedback and NCIt-learning with m-memory,
respectively. The resulting learners are called m-feedback NCIt-learner (or NCIt-learner us-
ing m-feedback) and m-memory bounded NCIt-learner (or NCIt-learner using m-memory),
respectively.

It follows from the definition that NCIt-learning is contained in NCIt-learning using m-
feedback and NCIt-learning using m-memory, which, in turn, are contained in NCEx.

To give the reader some intuition regarding how additional information can enhance the
capabilities of NCIt-learners, consider the following example. Let

L1 = {L : Wmin(L) = L, and for all x, {2x, 2x + 1} 6⊆ L}, and
L2 = {L : (∃ a unique x)[{2x, 2x + 1} ⊆ L] and L = Wmin(L) ∪ {2x, 2x + 1} for some x}.
Let L = L1 ∪ L2. The class L can be iteratively learnt using 1-feedback. For the target

language being L, a learner can determine min(L) (iteratively, in the limit) from a text for L.
Furthermore, on an input 2x+b, with b ∈ {0, 1}, the learner can use the feedback query 2x+1−b.
In case the learner ever gets the answer “yes”, it knows that the target language is from L2 and
is Wmin(L) ∪ {2x, 2x + 1}. On the other hand, if the learner never gets the answer “yes” to a
feedback query, then the target language is Wmin(L).

10



Note that our iterative learner using 1-feedback, for L, does not use negative counterexamples
to conjectures. On the other hand, it can be shown that iterative learners, without feedback or
memory, cannot learn the class L even using negative counterexamples.

3 Some General Effects of Additional Information on NCIt-learning

In this section, we look at some known capabilities of NCIt-learners (established in [JK07]) and
explore whether they hold when a learner has access to additional information.

It was shown in [JK07] that the capabilities of NCIt-learners exceed the capabilities of InfIt-
learners. In this section, we show that if an InfIt-learner can store just one element seen so far,
or can use just one feedback query, then it can sometimes learn more than any NCEx-learner
(which can memorize the whole input seen so far!). However, total InfIt-learners having access
to the maximal element seen so far still can be simulated by NCIt-learners having access to the
maximal element seen so far.

An important result established in [JK07] is that NCIt-learners can infer any indexed class
of recursive languages. However, it is also shown in [JK07] that, surprisingly, such NCIt-learners
cannot learn indexed classes class-preservingly (cf.[LZZ08]), that is, using a numbering of lan-
guages containing exactly the target class (and no other languages). Still class-preserving learn-
ability is important, as any natural hypotheses space for an indexed class is class-preserving.
We show that NCIt-learners can learn indexed classes class-preservingly if they have access to
the maximal element or the number of elements seen so far. However, adding the capability of
using m feedback queries might not be enough to help an NCIt-learner to infer an indexed class
class-preservingly.

3.1 Informants Versus Negative Counterexamples

As we already mentioned, NCIt-learners are more powerful than InfIt-learners ([JK07]). How-
ever, InfIt-learners using just one feedback can simulate any NCIt-learner, as the following
theorem shows.

Theorem 9. Any class L ∈ NCIt can be InfIt-learnt using 1-feedback.

Proof. Suppose M is an NCIt-learner for a class L of languages. We define a learner M ′, which
InfIt-learns L using 1-feedback, as follows.

Let σ0, σ1, . . . denote an enumeration of all members of SEQ. Suppose L is the target language.
We first give an informal description of how the learner M ′ works.

The learner M ′ searches for k,m1, m2 such that (i) for j ≤ m1, if Wj∩L 6= ∅, then min(Wj,m2∩
{x : x ≤ m2, x 6∈ L}) = min(Wj ∩ L) (that is, least counterexamples to conjectures j ≤ m1, if
any, can be determined based on simulation of Wj for m2 steps and membership in L for x ≤ m2

(which can be determined using 1-feedback queries)), (ii) content(σk) ⊆ {x : x ≤ m2, x ∈ L},
(iii) M(σk) halts within m2 steps, and M(τ) ≤ m1 for each τ ⊆ σk, where the counterexamples
given to M are the least ones, if any, and (iv) σk is a stabilizing sequence for M on the target
language L, when the counterexamples given to M are the least counterexamples, if any.

11



Note that for such k,m1, m2, the input language (if from the class L) must be WM(σk), where
the counterexamples to the conjectures of M are the least ones, if any. Furthermore, by a locking
sequence argument, such k, m1, m2 exist as the learner M NCIt-learns L (here note that M
learns the target language when it is given arbitrary (and, thus, the least) counterexamples to
its conjectures).

Now, to search for σk, m1, m2 as above, the learner cycles through all triples 〈k,m1, m2〉,
discarding 〈k,m1, m2〉 which are not suitable. To this end, the learner M ′ needs to determine
membership for x ≤ m2 in the target language L (besides checking some other things). The con-
jectures of the learner would be of the form R(〈k,m1, m2〉, S, r, b) and P (i, 〈k,m1, m2〉, S), where
S is a subset of {x : x ≤ m2}, r ≤ m2, b ∈ {0, 1}, and R and P are 1–1 computable functions
with disjoint range such that WP (i,〈k,m1,m2〉,S) = Wi (it doesn’t matter what WR(〈k,m1,m2〉,S,r,b) is;
these conjectures are used only to memorize the parameters). Note that R,P being 1–1 with
disjoint range allows one to determine, from conjectures of M ′, whether R or P was used to form
the conjecture, as well as the corresponding parameters.

When the learner is determining whether the parameters k,m1, m2 satisfy (i)–(iv) above, it
initially conjectures hypotheses of the form R(〈k,m1, m2〉, S, r, b), which denotes that the learner
has already determined membership for x < r (given by S, which is equal to L ∩ {x : x < r}),
and is currently determining membership for r. Feedback queries of the form (r, b), b ∈ {0, 1}
are used repeatedly to determine whether r ∈ L or not. Once the learner has determined the
membership for all x ≤ m2, it checks whether (ii) above holds, and then uses conjectures of the
form P (i, 〈k,m1, m2〉, S) and the later inputs/feedback to check whether (i), (iii) and (iv) above
hold.

We now proceed formally.

Description of M ′

(a) M ′(λ) = R(0, ∅, 0, 0).
(b) On the previous conjecture being R(〈k,m1, m2〉, S, r, b) and the input (y, a), M ′ does the

following:
(* Here the learner is trying to determine membership in the target language for x ≤ m2.

Note that (x, χL(x)), would eventually be answered yes in the feedback query. The exact
value of the input (y, a) is not used by M ′ in this stage. *)

1. Query whether (r, b) has already appeared in the input.
2. If so, then

2.1. If b = 1, then let S = S ∪ {r}.
2.2. If r < m2, then conjecture R(〈k,m1, m2〉, S, r + 1, 0).

(* That is, continue determining membership for x ≤ m2 *).
2.3. If r = m2 and content(σk) ⊆ S, then

conjecture P (0, 〈k,m1, m2〉, S).
(* 0 above is just an arbitrary value; Step 4 below will determine the conjecture

i of M on the input σk (assuming (i)–(iv) above hold). *)
Else, conjecture R(〈k,m1, m2〉+1, ∅, 0, 0) (that is, try the next possible triple 〈k′, m′

1, m
′
2〉 =

〈k,m1, m2〉+ 1).

12



Else, conjecture R(〈k,m1, m2〉, S, r, 1− b) (that is, test whether (r, 1− b) has appeared in the
input).

(* Note that we repeatedly and alternately try to check if (r, 0) or (r, 1) has appeared in the
input, until one of them appears. *)

(c) On the previous conjecture being P (p, 〈k,m1, m2〉, S) and the input (y, a), M ′ does the
following:
(* Note that a is ignored in this step. *)

3. For j ≤ m1, let Cj = min(Wj,m2 ∩ {x : x ≤ m2, x 6∈ S}), where if Wj,m2 ∩ {x : x ≤ m2, x 6∈
S} = ∅, then we take Cj = #.

4. Simulate M on the input σk, where counterexample to a conjecture j of M on a prefix τ of
σk is given as Cj.

If the above simulation does not halt within m2 steps or M(τ) > m1 for some τ ⊆ σk, then
conjecture R(〈k,m1, m2〉+ 1, ∅, 0, 0) (that is try the next possible triple 〈k′, m′

1, m
′
2〉).

Else, let i be the conjecture of M on the input σk and proceed to step 5.
5. Suppose y = 〈y′, b′, n′〉.

Query whether (y′, b′) has appeared in the input before
If yes, then
5.1. If b′ = 0, and for some j ≤ m1, y′ ∈ Wj,n and y′ < Cj (where we take y′ < # for

all y′), then conjecture R(〈k,m1, m2〉+ 1, ∅, 0, 0) (that is, try the next possible triple
〈k′, m′

1, m
′
2〉).

Else, conjecture P (i, 〈k,m1, m2〉, S).
5.2. If b′ = 1, and M(σk � y′) ↓ within n′ steps and M(σk � y′) 6= M(σk) (where the coun-

terexample to a conjecture j is given as Cj), then conjecture R(〈k,m1, m2〉+1, ∅, 0, 0)
(that is, try the next possible triple 〈k′, m′

1, m
′
2〉).

Else, conjecture P (i, 〈k,m1, m2〉, S).
Else (i.e., (y′, b′) has not appeared in the input before), conjecture P (i, 〈k,m1, m2〉, S).

End

It is easy to verify that for any particular triple 〈k,m1, m2〉, the learner initially uses conjec-
tures of the form R(〈k,m1, m2〉, ·, · · · , ·) to eventually correctly determine S = L∩{x : x ≤ m2}
(here note that every pair (x, χL(x)) eventually appears in the input, and thus eventually feed-
back query for (x, χL(x)) of step 1 is answered yes).

Now, for any particular triple 〈k,m1, m2〉, once S = L ∩ {x : x ≤ m2} is determined by the
learner M ′, it computes i = M(σk) in steps 3–4 (assuming (i), (iii) and (iv) hold; note that (ii)
has been checked already in step 2.3). Violation of (i) is checked in step 5.1 (note that, for every
y′ ∈ N, there are arbitrarily large n′ such that (〈y′, χL(y′), n′〉, χL(〈y′, χL(y′), n′〉)) appears in
the input). Violation of (iv) is checked in step 5.2 (again note that, for every y′ ∈ N, there are
arbitrarily large n′ such that (〈y′, χL(y′), n′〉, χL(〈y′, χL(y′), n′〉)) appears in the input). Violation
of (iii) (assuming (i) holds) is detected in steps 3–4.

Thus, all triples which do not satisfy (i)–(iv) are eventually discarded by the learner. A correct
triple which satisfies (i)–(iv) will never be discarded, and eventually the learner will output only
P (i, 〈k,m1, m2〉, S), where S = L ∩ {x : x ≤ m2}, and i is the conjecture of M on the input σk

13



when the negative counterexamples are the least, if they exist. It follows that M ′ InfIt-learns L
using 1-feedback. �

Jain and Kinber [JK08] showed that InfEx − NCEx 6= ∅. We strengthen this result to
show that there exists a class L not in NCEx which can be identified by a NCIt-learner using
1-memory or 1-feedback.

A set X is semi-recursive (see [Joc68]) if there exists a recursive function f such that, (i)
for all x, y, f(x, y) ∈ {x, y} and (ii) if x ∈ X or y ∈ X, then f(x, y) ∈ X. Equivalently, a set
X is semi-recursive iff there exists a total computable ordering <′ on N (which is very different
from the standard ordering of natural numbers) such that x <′ y and y ∈ X implies x ∈ X. It
can be shown that there exist r.e., non-recursive but semi-recursive sets [Joc68]. Note that if a
semi-recursive set X is not recursive, then, for each y 6∈ X, there exist infinitely many z 6∈ X
such that z <′ y. To see this, suppose y 6∈ X. Then y <′ z implies z 6∈ X; thus, if there are only
finitely many z 6∈ X such that z <′ y, then X is recursive.

Theorem 10. There exists a class L such that
(a) L can be InfIt-identified by a 1-memory bounded (or 1-feedback) learner, and
(b) L 6∈ NCEx.

Proof. Let A be a semi-recursive, nonrecursive r.e. set such that for every x ∈ N, either both
2x and 2x + 1 are in A or both 2x and 2x + 1 are not in A. Such a set can be constructed by
taking A = {2x + b : x ∈ B, b ∈ {0, 1}}, for any semi-recursive, r.e. but not recursive set B. Let
L = {A ∪ {y} : y ∈ N}.

We first show that L 6∈ NCEx. Suppose by way of contradiction that a learner M NCEx-
identifies L. Let σ be a locking sequence (for NCEx-learning) for M on A, where counterexam-
ples are provided in some natural way. Then, for infinitely many y 6∈ A, on all initial segments
τ ⊇ σ such that content(τ) ⊆ A∪{y}, M(τ) = M(σ). (This holds as, otherwise, A would be r.e.
(and thus A will be recursive) as, except for finitely many y, y ∈ A iff M(τ) 6= M(σ), for some
τ ⊇ σ such that content(τ) ⊆ A ∪ {y}.) Let y 6∈ A be such that (i) y has not been provided as
counterexample to M on initial segments of σ, and (ii) M(τ) = M(σ) for all τ ⊇ σ such that
content(τ) ⊆ A ∪ {y}. It follows that M does not NCEx-learn A ∪ {y}, and, thus, does not
NCEx-learn L.

L can be iteratively learnt from informant using 1-feedback as follows. Initially the learner
conjectures A. On each input (2x+a, b), with a, b ∈ {0, 1}, the learner queries if (2x+1−a, 1−b)
has been seen in the input. If so, then the learner changes its mind to A∪{2x+a′}, where a′ = a,
if b = 1 and a′ = 1− a, otherwise — and thereafter never changes its mind. It is easy to verify
that the above learner will iteratively learn L from informant using 1-feedback.

Let <′ be a computable total ordering over N witnessing the semi-recursiveness of A. To
iteratively learn from informant using 1-memory, the learner initially conjectures A. The learner
memorizes the largest positive element (with respect to <′) seen in the input. That is, its memory
consists of y such that (y, 1) is in the input, and for all (x, 1) in the input, x <′ y. If and when
the learner sees a negative datum x which is smaller (with respect to <′) than the memorized
element (say y) at that time, it conjectures A ∪ {y}, and then never changes its mind.

14



Now, if the input language is A, then the learner never sees a negative datum x such that
x <′ y, for some positive data y. Thus, the learner converges on the input language A to the
conjecture A. On the other hand, if the input language is A ∪ {y}, then y is the largest datum
with respect to <′ that the learner sees. Thus, the memory of the learner is eventually y. As A
is semi-recursive, but not recursive, there are infinitely many elements x 6∈ A such that x <′ y.
Thus, eventually (after receiving y as positive datum), the learner sees an input x <′ y such that
x it not in the input language. Then, the learner conjectures A∪{y} and never changes its mind
thereafter. �

Still, as the next theorem demonstrates, total InfIt-learners can be simulated by NCIt-
learners if both have access to the maximal element seen so far. Here, total InfIt-learners are
those learners which are defined on all, even, possibly, non-valid inputs — that is, even on data
which does not represent a possible “(previous conjecture, a new input element, or the maximal
element seen so far)”, in a valid learning process for a language in the class being learnt. For
learning from informants, the maximal element seen so far in the input is taken as the maximal
y such that (y, 0) or (y, 1) is present in the input given so far. It is open at present whether the
following result holds if the totality assumption is removed.

Theorem 11. Any class which is InfIt learnable using the maximal element seen so far by a
total learner is also NCIt-learnable using the maximal element seen so far.

Proof. Suppose an InfIt learner M , using the maximal element seen so far, for a class L is
given. Below M(i, (w, b), x) denotes the output of M when the previous hypothesis is i, (w, b) is
the current input, and x is the maximal element such that (x, b), for some b ∈ {0, 1}, has been
in the input provided to M so far.

On an input text T for a language L ∈ L, the aim of the NCIt-learner M ′ (using maximal
element seen so far) is to search for some initial segment σ of the canonical informant (for L)
such that

(A) For all w ∈ L, w ≥ |σ|, M(M(σ), (w, 1), w) = M(σ).
(B) {w ≥ |σ| : M(M(σ), (w, 0), w) 6= M(σ)} ⊆ L.
Note that any such σ would imply that M(σ) is a grammar for the input language L. σ

satisfying (A) and (B) above are called good (for L). Note that such good σ exist for all languages
InfIt learnt by M (using maximal element seen so far as additional information).

The hypothesis of M ′ is of the form P (σ) or R(σ), or Q(w, σ, S, m), where w,m ∈ N, and S is
a finite set. Here, Q(w, σ, S, m) is a grammar for {w}, P (σ) is a grammar for WM(σ), and R(σ) is a
grammar for {w ≥ |σ| : M(M(σ), (w, 0), w) 6= M(σ)}. Furthermore, R,P, Q are 1–1 computable
functions with disjoint range. In all the above conjectures, σ would be some appropriate initial
segment of the canonical informant for the input language. R(σ) is a conjecture of the learner
when it is testing whether clause (B) above holds. P (σ) is the hypothesis which the learner
makes in a situation when it thinks that it has a potentially good σ for the input language
(which satisfies (B) and satisfies (A) for the input seen so far). When the learner does not
have a good σ, it needs to determine the membership of some w in the input language to
extend σ — Q(w, σ, S, m) is used for this purpose, and this phase determines the membership

15



for every x such that |σ| ≤ x ≤ m (thus the lost data is recovered in this phase). During this
membership determining phase, S would be a finite set of elements from the input, which the
learner remembers separately, in order not to forget them due to memory limitation.

Initially, M ′(λ) = R(λ).

For other inputs M ′ behaves as follows.

Suppose the previous conjecture is R(σ). If the new input is w, and the counterexample
is not #, then M ′ outputs Q(|σ|, σ, ∅, max({m, |σ| + 1})), where m is the maximal element
seen so far (note that in this case, (B) did not hold for the current σ). Similarly, if w 6= #
and M(M(σ), (w, 1), w) 6= M(σ), then M ′ outputs Q(|σ|, σ, ∅, max({m, |σ| + 1})), where m is
the maximal element seen so far (note that in this case (A) did not hold for the current σ).
Otherwise, M ′ outputs P (σ).

Suppose the previous conjecture is P (σ). If the new input is w and the counterexample is not
#, then M ′ outputs Q(|σ|, σ, ∅, max({m, |σ|+1})), where m is the maximal element seen so far.
Similarly, if w 6= #, and M(M(σ), (w, 1), w) 6= M(σ), then M ′ outputs Q(|σ|, σ, ∅, max({m, |σ|+
1})), where m is the maximal element seen so far (note that in this case (A) does not hold for
the current σ). Otherwise, M ′ continues with the hypothesis P (σ).

Suppose the previous conjecture is Q(x, σ, S,m). Let b = 1, if the counterexample is #; b = 0
otherwise. (In this case x would be |σ|, and we will extend σ based on membership of x in L). If
the new input is w, and x < m, then M ′ outputs Q(x+1, σ � (x, b), S∪{w}−{#}, m). If x = m,
then M ′ additionally checks if M(σ�(x, b)) 6= M(M(σ�(x, b), (y, 1), y) for some y ∈ S∪{w}−{#},
y > |σ|; if so then M ′ outputs Q(x+1, σ � (x, b), ∅, max(S ∪{w}−{#})+m+1). (The previous
step checked if σ satisfies (A) for all the data stored in S). Otherwise, M ′ outputs R(σ � (x, b)).

Note that all σ used in the hypotheses of the form R(σ), Q(w, σ, S, m), and P (σ) are initial
segments of the canonical informant for the input language. Also note that either the hypotheses
of the learner M ′ converge, or σ (as in the hypotheses) is unbounded in length.

Also note that there exists a good τ which is an initial segment of the canonical informant,
as M identifies the input language on the canonical informant. Fix one such good segment τ for
the input language. Furthermore, all initial segments of the canonical informant, which extend
τ , are also good. It is then easy to verify that once the σ, as in the hypotheses of M ′, extends
τ , M ′ will eventually output P (σ′) for some extension σ′ of σ such that σ′ is an initial segment
of the canonical informant of the input language (for this, note that if the previous hypothesis
of M ′ was R(σ) or P (σ), then it will next output P (σ) and will not change its mind thereafter;
if its previous hypothesis is of the form Q(i, σ, S, m), then once value of i reaches m, the learner
will output R(σ′) for some extension σ′ of σ, where σ′ is an initial segment of the canonical
informant for the input language). It follows that eventually the learner M ′ will output P (σ)
where σ is good, and M ′ then never changes its mind. It thus follows that M ′ identifies L. �

Jain and Kinber [JK07] had shown that NCIt − InfIt 6= ∅. Below, we generalize this to
show that some NCIt-learnable class cannot be InfIt- learnt even if the InfIt-learner uses n-
memory. Intuitively, the reason for this is that if the target language misses out finitely many
elements from a set (such as N used in the proof below), then these finitely many elements
can be determined by using negative counterexamples, even if one has forgotten certain earlier

16



data. However, an InfIt-learner (even with n-memory) cannot determine such elements, if it has
forgotten some earlier data.

Theorem 12. There exists a class L such that

(a) L ∈ NCIt, and

(b) for every n, L cannot be learnt by an n-memory bounded InfIt-learner.

Proof. Let E = {2x : x ∈ N}. Let L = {L : L ⊆ E and Wmin(L)/2 = L} ∪ {L : N− L is finite }.
To show that L can be NCIt-learnt, consider the following learner. Until the learner sees an

element in the input which is not in E, it conjectures i/2 for i being the minimal element seen
so far. If and when the learner sees an element outside E in the input, it starts by outputting a
conjecture for N, and then continues by outputting conjectures for N− S, where S is the set of
negative counterexamples it sees. It is easy to verify that the above learner would NCIt-learn
the class L.

Suppose by way of contradiction that L can be InfIt-learnt using n-memory by a learner M .
Then, by implicit use of Kleene’s recursion theorem [Rog67], there exists an e such that We can
be defined as follows. Note that M is defined on all inputs, as it identifies all cofinite sets. Below
by an “initial information segment” we mean an initial segment of the canonical informant of
some language.

Initially, enumerate 2e into We and let σ0 be an initial information segment such that
content(σ0) = {(x, 0) : x < 2e} ∪ {(2e, 1)}. Go to stage 0.

Stage s

1. Search for an initial information segment σs+1 which extends σs such that {(x, 1) : x ∈
content(σs+1)} ⊆ E and the conjectures of M on σs and σs+1 are different.

2. If and when such a σs+1 is found, enumerate {x : (x, 1) ∈ content(σs+1)} into We and go to
stage s + 1.

End Stage s

Clearly, if there are infinitely many stages then I =
⋃

s σs is an informant for We on which
M diverges. On the other hand, if stage s starts but never ends, then one can find two initial
information segments τ and τ ′ extending σs such that both τ and τ ′ are of same length but
different in content and M has the same conjecture and memory after seeing τ or τ ′. (There are 2m

different possible τ which extend σs and satisfy |τ | = |σs|+2m and {x : (x, 1) ∈ content(τ)} ⊆ E.
However, the memory on such τ has at most (2|σs| + 4m + 1)n many possibilities. Thus, for a
large enough m, one can find τ and τ ′ as required.) It follows that if one considers the cofinite
languages N − {x : (x, 0) ∈ content(τ)} and N − {x : (x, 0) ∈ content(τ ′)}, then both are
in L. However, M would converge to the same conjecture (if any) on both τI and τ ′I, where
content(I) = {(x, 1) : x ≥ |τ |}. It follows that M fails to identify at least one of N−{x : (x, 0) ∈
content(τ)} and N− {x : (x, 0) ∈ content(τ ′)}. �

17



3.2 Indexed Classes

Unlike the case of NCIt-learnability (without access to additional information), class-preserving
learnability of indexed classes can be achieved if an NCIt-learner has access to the maximal
element or the number of elements seen so far. Here a learner is class-preserving (for learning a
class L) if it only conjectures decision procedures for languages in the class L.

Theorem 13. (a) Every indexed class can be NCIt-identified by a class-preserving learner when
it is given the maximal element seen so far as additional information.

(b) Every indexed class can be NCIt-identified by a class-preserving learner when it is given
the number of elements seen so far as additional information.

Proof. (a) Suppose L is an indexed class, and L0, L1, . . . is its listing where x ∈ Li can be
effectively determined in x and i. Let Li[m] denote {x ∈ Li : x ≤ m}. The conjectures of the
learner would be of the form: p(j, S,X), where p(j, S,X) is a decision procedure for Lj, and S,
X are finite sets with some properties.

Suppose T is an input text for a language L, where T (n) = xn. Inductively, if p(jn, Sn, Xn)
is the output after T [n] has been seen, then the following invariants will hold.

(A) For each j ∈ Sn, Lj ⊆ L, and Xn ⊆ L.
(B) content(T [n]) ⊆ Xn ∪

⋃
j∈Sn

Lj,
(C) For all j < jn, Lj 6= L.
(D) If jn 6∈ Sn, then either n = 0 or jn = jn−1 + 1.
(E) Xn ⊆ Xn+1, Sn ⊆ Sn+1, jn ≤ jn+1.
Initially, M(λ) = (0, ∅, ∅). The learner on the input p(jn, Sn, Xn) and the new element xn,

the counterexample yn, and the maximal element m seen so far, does the following:
(i) If yn = #, then Sn+1 = Sn ∪ {jn}; otherwise Sn+1 = Sn.
(ii) If (Xn ∪ {xn} ∪

⋃
j∈Sn

Lj[m]) − {#} ⊆ Ljn , and yn = #, then jn+1 = jn, Xn+1 = Xn.
Otherwise, jn+1 = jn + 1 and Xn+1 = Xn ∪ {xn} − {#}.

It is easy to verify that the invariants are satisfied. Furthermore, jn never goes beyond
the minimal index for L (see invariant (C)). Thus, the sequence of jn converges, as well as
Sn and Xn converge (as Xn+1 6= Xn implies jn+1 6= jn, and Sn ⊆ {j : j ≤ jn}, and using
invariants (D) and (E)). Moreover, the last conjecture is correct by (A) and (B), and using
(Xn∪{xn}∪

⋃
j∈Sn

Lj[m])−{#} ⊆ Ljn from the clause (ii) (as there is no further mind change).
(b) The only change is in (ii) above, which is replaced by: (m below denotes the number of

elements seen so far by the learner)
(ii) If the first m elements in (Xn ∪ {xn} ∪

⋃
j∈Sn

Lj)− {#} are included in Ljn , and y = #,
then jn+1 = jn, Xn+1 = Xn. Otherwise, jn+1 = jn + 1 and Xn+1 = Xn ∪ {xn} − {#}.

The rest of the proof is similar to the part (a), and we omit the details. �
Still, any n feedback queries might not help to achieve class-preserving learnability of indexed

classes by NCIt-learners.
The following result can be proved by using the technique of Theorem 32 in [JK07], where

it is shown that some indexed class cannot be NCIt-learnt with respect to any class preserving

18



hypothesis space. The necessary modification of the proof in [JK07] makes sure that the con-
struction preserves the answers for the feedback queries in building the diagonalizing language.
We omit the details.

Theorem 14. There exists an indexed class which cannot be learnt by a class-preserving NCIt-
learner using n-feedback.

4 Hierarchy of n-Feedback and n-Memory Learners

In this section, we show that, in the context of NCIt-learnability, n + 1 stored input elements
seen and n + 1 feedback queries provide more capability than n stored input elements seen and,
respectively, n feedback queries. Note that, on the negative sides of both results, neither NCIt-
learners storing just up to n elements seen, nor NCIt-learner using just up to n feedback queries
can be helped even if they have access to the maximal element and the number of elements seen
so far. On the other hand, learners witnessing the positive sides of both results do not need
access to negative counterexamples (refuting conjectures containing data in excess of the target
language).

Intuitively, the following technique is used to prove Theorems 15 and 16 below. Consider the
classes

L1 = {We : We ⊆ {〈e, x〉 : x ∈ N}}, and
L2 = {We ∪ {〈e, x〉} : We ∈ L1, We is finite and x > max({x′ : 〈e, x′〉 ∈ We})}.
Then, L = L1 ∪L2 cannot be InfEx-learnt, though each of L1 and L2 can be TxtEx-learnt.

This result can be proven in a way similar to the non-union theorem [BB75]. We then modify
the above class as follows:

L′
1 = {We : We ⊆ {〈e, j, x〉 : x ∈ N} and for each x, there exists at most one j ≥ 1 such that

〈e, j, x〉 ∈ We}, and
L′

2 = {We∪{〈e, j1, x〉, 〈e, j2, x〉} : We ∈ L′
1, We is finite, x > max({x′ : (∃j)[〈e, j, x′〉 ∈ We]}),

and 1 ≤ j1 < j2 ≤ n + 2}.
Then, L′

1 ∪ L′
2 becomes learnable as long as one can “detect” whether there are j1, j2 such

that 1 ≤ j1 < j2 ≤ n + 1, and 〈e, j1, x〉 and 〈e, j2, x〉 are in the target language. This can be
done if one is allowed n + 1 feedback queries (by checking on the input 〈e, j, x〉, 1 ≤ j ≤ n + 2,
whether any of 〈e, j′, x〉 has been seen in the input, for 1 ≤ j′ ≤ n + 2, j′ 6= j). However,
such a check cannot be done by an n-feedback learner. Negative counterexamples, the maximal
element seen so far, and the number of elements seen so far, cause some minor complications. In
the construction below elements of the form 〈e, 0, x〉 are used mainly to handle the additional
information “maximal element seen so far”.

The proof for the memory-bounded hierarchy (Theorem 16) uses a similar idea, but instead
of using one versus two elements of the form 〈e, j, x〉 in L′

1 and L′
2, respectively (for a particular

x), one uses “≤ n+1 elements or n+2 elements satisfying some property” versus “n+2 elements
not satisfying the property” (the particular property chosen is that the sum of such j’s is prime;
however various other similar properties could be used). The complication regarding the special
property being satisfied for n+2 elements (rather than just using “≤ n+1 elements” versus “n+2

19



elements”) was needed to be able to diagonalize against the additional information “number of
elements seen so far”.

Note that our classes used for demonstrating the advantages of extra feedback/memory are
somewhat more transparent than the ones used in [CJLZ99] for the feedback and memory hi-
erarchy; same applies to the corresponding proofs — at least partially, perhaps, due to the fact
that corresponding diagonalizations in [CJLZ99] must work against learners vacillating in the
limit between a finite number of correct conjectures, whereas it is not necessary in our setting.

We now proceed formally.

Theorem 15. Fix n ∈ N. There exists a class L such that
(a) L can be iteratively learnt by an (n + 1)-feedback learner.
(b) L cannot be NCIt-learnt using n-feedback queries even if the maximal element and the

number of elements in the input seen so far is given to the learner as additional information.

Proof. Let

L1 = {L : (∃e)[ ∅ ⊂ L ⊆ {〈e, j, x〉 : j, x ∈ N},
We = L and

for all x, [card({j : 〈e, j, x〉 ∈ L, j ≥ 1}) ≤ 1]

]}

L2 = {L : (∃e, x, j, j′ : 1 ≤ j < j′ ≤ n + 2)[ We ∈ L1,

x > max({x′ : (∃j′ ≥ 1)[〈e, j′, x′〉 ∈ We]}) and

L = We ∪ {〈e, j, x〉, 〈e, j′, x〉}
]}.

Let L = L1 ∪ L2.
It is easy to verify that L can be learnt using n + 1 feedback queries. The learner can easily

determine e such that the input language is a subset of {〈e, j, x〉 : j, x ∈ N}. Initially, on the
first non # input, the learner outputs e (padded so that the learner can recognize that it is in
this phase). For every further input of the form 〈e, j, x〉 such that 1 ≤ j ≤ n + 2, the learner
queries if the earlier data contains any of the elements in {〈e, j′, x〉 : 1 ≤ j′ ≤ n + 2, j 6= j′}.
If so, then the learner outputs a grammar for We ∪ {〈e, j, x〉, 〈e, j′, x〉}, for the j′ 6= j such that
〈e, j′, x〉 belongs to the input seen so far, and does not change its mind any further.

Now suppose, by way of contradiction, that a learner M NCIt-identifies L using n feedback
queries (along with the maximal element as well as the number of elements seen so far). Then,
by implicit use of Kleene’s recursion theorem, there exists an e such that We may be defined as
follows.

Initially, We contains 〈e, 0, 0〉. Let W s
e denote We defined by the beginning of stage s. Let σ0

be a sequence with the content {〈e, 0, 0〉}. Let σs denote the initial segment constructed before
stage s (it will be the case that W s

e = content(σs)). Furthermore, fs(i) will be a function denoting

20



counterexamples given to the learner M on its conjecture i (in the simulation at stage s). It will be
the case that the range of fs (except for #) is a subset of Es — which we will bar from belonging
to We to maintain the validity of any negative counterexamples given. Initially, f0(i) = #, for
all i, and E0 = ∅. Let xs denote the least number such that W s

e ∪ Es ⊆ {〈e, j, x〉 : x < xs}. Go
to stage 0.

Stage s
1. Let m > xs be a large enough number such that 〈e, 0, m〉 > max(content(σs) ∪ {〈e, j, x〉 :

xs ≤ x ≤ xs + 1 and 1 ≤ j ≤ n + 2}).
Enumerate 〈e, 0, m〉 in We, and let τ = σs � 〈e, 0, m〉.

2. Simulate M by giving counterexamples according to fs. Dovetail steps 3 and 4 until one of
them succeeds. If step 3 succeeds before step 4, if ever, then go to step 5. If step 4 succeeds
before step 3, if ever, then go to step 6. Here we assume that step 3 has some priority in
the sense that if it can succeed for t ≤ s, then it succeeds first, with σ being the shortest
one for which such t ≤ s exists.

3. (* This step checks if any of the counterexamples provided, as given by fs, is potentially not
a least counterexample. *).

Search for a σ ⊆ τ and a t such that WM(σ),t−content(τ) 6= ∅ and min(WM(σ),t−content(τ)) 6=
fs(M(σ)).

4. (* This step tries to force a mind change by M . *)
Search for a j, j′, x such that 1 ≤ j, j′ ≤ n + 2, j 6= j′, xs ≤ x ≤ xs + 1 and

(a) M(τ � 〈e, j, x〉)↓ 6= M(τ)↓ or
(b) M(τ � 〈e, j, x〉〈e, j′, x〉)↓ 6= M(τ)↓ , where M on previous conjecture M(τ � 〈e, j, x〉)

and new data 〈e, j′, x〉) did not query 〈e, j, x〉.
5. Let

σs+1 = τ ,
fs+1(M(σ)) = min(WM(σ),t − content(τ)),
fs+1(i) = fs(i), for i 6= M(σ),
W s+1

e = We enumerated until now.
Es+1 = Es ∪ {fs+1(M(σ))}, and
xs+1 = the least number such that W s+1

e ∪ Es+1 ⊆ {〈e, j, x〉 : x < xs+1}.
Go to stage s + 1.

6. In case (a) let σs+1 = τ � 〈e, j, x〉.
In case (b) let σs+1 = τ � 〈e, j′′, x′〉〈e, j′, x〉, where j′′, x′ is such that 1 ≤ j′′ ≤ n + 2 and

x 6= x′, xs ≤ x′ ≤ xs + 1 and 〈e, j′′, x′〉 is not queried by M(τ � 〈e, j, x〉〈e, j′, x〉).
Let W s+1

e = content(σs+1) and update Es+1 = Es, fs+1 = fs and xs+1 = the least number
such that W s+1

e ∪ Es+1 ⊆ {〈e, j, x〉 : x < xs+1}.
Go to stage s + 1

End stage s

Now, if there are infinitely many stages, then We ∈ L1, and T =
⋃

s σs is a text for We. As
M identifies We, M(T ) converges. Thus, for a large enough stage s, step 3 would not succeed

21



anymore (as the least counterexamples would have been found by then). Thus, step 4 succeeds
infinitely often, and M does not converge on T , a contradiction to the assumption that M(T )
converges.

Thus, there are only finitely many stages. Suppose stage s starts but does not end. Hence
the counterexamples as given by fs on initial segments of τ (as in stage s) are correct (and least
ones, whenever they exist). Let 〈e, j′, xs〉, 〈e, j, xs〉, j 6= j′ with 1 ≤ j, j′ ≤ n + 2, be such that
M on the previous conjecture M(τ � 〈e, j, xs〉) and new input 〈e, j′, xs〉, does not query 〈e, j, xs〉.
Note that M(τ) ↓= M(τ � 〈e, j, xs〉) ↓= M(τ � 〈e, j, xs〉〈e, j′, xs〉) ↓ , and WM(τ) either does not
enumerate any element outside content(τ), or the least such element is fs(M(τ)) (by non-success
of steps 3 and 4), where fs(M(τ)) is different from 〈e, j, xs〉, 〈e, j′, xs〉 (by definition of xs). Thus,
M does not NCIt learn with n feedback queries the language We ∪ {〈e, j, xs〉, 〈e, j′, xs〉}, which
belongs to L2. �

Theorem 16. Let n ∈ N. There exists a class L such that
(a) L can be iteratively learnt using (n + 1)-memory.
(b) L cannot be learnt by an NCIt-learner using n-memory, even if the learner is given the

number of elements and the maximal element seen so far as additional information.

Proof. Let

L1 = {L : (∃e)[ ∅ ⊂ L ⊆ {〈e, j, x〉 : j, x ∈ N},
We = L and

for all x[card({j : 〈e, j, x〉 ∈ L, j ≥ 1}) ≤ n + 1 or

[card({j : 〈e, j, x〉 ∈ L, j ≥ 1}) = n + 2 and∑
〈e,j,x〉∈L

j is a prime number ]]

]}

L2 = {L : (∃e, x)[ We ∈ L1,

x > max({x′ : 〈e, j, x′〉 ∈ We, j
′ ≥ 1}),

L = We ∪ {〈e, j, x〉 : j ≥ 1, 〈e, j, x〉 ∈ L} and

[card({j : 〈e, j, x〉 ∈ L, j ≥ 1}) = n + 2 and∑
〈e,j,x〉∈L

j is not a prime number ]

]}

Let L = L1 ∪ L2.
It is easy to verify that L can be learnt using n+1 memory. The learner can easily determine

e such that the input language is a subset of {〈e, j, x〉 : j, x ∈ N}. Initially, on the first non

22



# input, the learner outputs e (padded so that it can recognize that it is in this phase). The
memory of the learner always consists of all elements of the form 〈e, j, x〉 seen so far (unless it
exceeds n + 1), for the maximal x such that, for some j′, 〈e, j′, x〉 is seen in the input so far.
If and when a learner sees an input 〈e, j, x〉, j ≥ 1, such that it has memorized n + 1 distinct
elements from the set {〈e, j′, x〉 : j′ ≥ 1, j′ 6= j}, and j +

∑
〈e,j′,x〉∈memory j′ is not a prime

number, then it outputs We ∪ {〈e, j, x〉} ∪ {〈e, j′, x〉 : 〈e, j′, x〉 in memory }, and never changes
its mind thereafter.

Now suppose, by way of contradiction, that a learner M NCIt-identifies L using n-memory
(along with the maximal element as well as the number of elements seen so far). Then, by implicit
use of Kleene’s recursion theorem, there exists an e such that We may be defined as follows.

Initially, We contains 〈e, 0, 0〉. Let W s
e denote We defined by the beginning of stage s. Let σ0

be a sequence with content {〈e, 0, 0〉}. Let σs denote the initial segment constructed before stage
s (it will be the case that W s

e = content(σs)). Furthermore, fs(i) will be the function denoting
counterexamples given to the learner M on its conjecture i (in the simulation at stage s). It will be
the case that the range of fs (except for #) is a subset of Es — which we will bar from belonging
to We to maintain the validity of any negative counterexample given. Initially, f0(i) = #, for all
i, and E0 = ∅. Let xs denote the least number such that W s

e ∪ Es ⊆ {〈e, j, x〉 : x < xs}. Go to
stage 0.

Stage s
1. Let w > n + 1 be a large enough number such that (w + card(content(σs)) + 2)n <

(
w

n+1

)
.

Let w′ be such that for all distinct c, c′ ≤ (n + 1) ∗ 2w, there exists a p with 2w < p ≤ w′

such that c + p is a prime, but c′ + p is not a prime. Let m > xs be such that 〈e, 0, m〉 >
max(content(σs) ∪ {〈e, j, xs〉 : 1 ≤ j ≤ w′}).

Enumerate 〈e, 0, m〉 in We, and let τ = σs � 〈e, 0, m〉.
2. Simulate M by giving counterexamples according to fs. Dovetail steps 3 and 4 until one of

them succeeds. If step 3 succeeds before step 4, if ever, then go to step 5. If step 4 succeeds
before step 3, if ever, then go to step 6. Here we assume that step 3 has some priority in
the sense that if it can succeed for t ≤ s, then it succeeds first, with σ being the shortest
for which such t ≤ s exists.

3. Search for a σ ⊆ τ and a t such that WM(σ),t−content(τ) 6= ∅ and min(WM(σ),t−content(τ)) 6=
fs(M(σ)).

4. Search for a τ ′ such that either
(a) content(τ ′) − content(τ) ⊆ {〈e, j, xs〉 : 1 ≤ j ≤ w′}, and card(content(τ ′) −

content(τ)) ≤ n + 1, and M(τ ′) 6= M(τ) or
(b) content(τ ′) − content(τ) ⊆ {〈e, j, xs〉 : 1 ≤ j ≤ w′}, and card(content(τ ′) −

content(τ)) = n+2, and
∑

〈e,j,x〉∈content(τ ′)−content(τ) j is a prime number, and M(τ ′) 6=
M(τ).

5. Let
σs+1 = τ ,
fs+1(M(σ)) = min(WM(σ),t − content(τ)),
fs+1(i) = fs(i), for i 6= M(σ),

23



W s+1
e = We enumerated until now.

Es+1 = Es ∪ {fs+1(M(σ))}, and
xs+1 = the least number such that W s+1

e ∪ Es+1 ⊆ {〈e, j, x〉 : x < xs+1}.
Go to stage s + 1.

6. Let σs+1 = τ ′,
Let W s+1

e = content(σs+1) and update Es+1 = Es, fs+1 = fs and xs+1 = the least number
such that W s+1

e ∪ Es+1 ⊆ {〈e, j, x〉 : x < xs+1}.
Go to stage s + 1

End stage s

Now, if there are infinitely many stages, then We ∈ L1, and T =
⋃

s σs is a text for We. As M
identifies We, M(T ) converges. Thus for large enough stage s, step 3 would not succeed anymore
(as the least counterexamples would have been found by then). Thus, step 4 succeeds infinitely
often, and M does not converge on T , a contradiction to the assumption that M(T ) converges.

Thus, there are only finitely many stages. Suppose stage s starts but does not end. Hence the
counterexamples as in fs on initial segments of τ (as in stage s) are correct. Let the parameters
below be as in stage s. For each set S of n + 1 elements in {2j : 1 ≤ j ≤ w}, let τS be such that
τ ⊆ τS and content(τS)− content(τ) = S. Let qS =

∑
〈e,j,x〉∈S j. Let S, S ′ be distinct sets of n+1

elements in {2j : 1 ≤ j ≤ w} such that memory of M(τS) and memory of M(τS′) are same. Note
that there exist such distinct S, S ′ by the hypothesis on w. Furthermore, qS 6= qS′ . Now, let p be
such that 2w < p ≤ w′, and qS + p is a prime number, but qS′ + p is not a prime number. Then,
as M(τ) = M(τS′) = M(τS) = M(τS � 〈e, p, xs〉∞), we also have M(τ) = M(τS′ � 〈e, p, xs〉∞).
Furthermore, WM(τ) either does not enumerate any element outside content(τ), or the least such
element is fs(M(τ)) (by non-success of step 3), which is different from 〈e, p, xs〉 (by the definition
of xs). Thus, M(τS′ � 〈e, p, xs〉∞) does not converge to a grammar for content(τS′) ∪ {〈e, p, xs〉},
which is a member of L2. �

5 Advantages of Different Types of Additional Information Over
Other Types

In this section we study tradeoffs between different types of additional information in the context
of NCIt-learnability.

5.1 Comparison of Feedback and Memory Bounded Learning

Results of this subsection significantly strengthen corresponding results given in [CJLZ99].
Namely, they demonstrate that, in the context of NCIt-learnability, just one stored input ele-
ment can provide more than any n feedback queries (even if, in addition, the learner has access
to the maximal element and the number of elements seen so far), and, conversely, one feedback
query can do more than any n stored input elements seen so far (and, additionally, the maximal
element and the number of elements seen so far). Moreover, the iterative learners witnessing

24



the positive sides of these results do not use negative counterexamples to conjectures containing
extra elements.

Theorem 17. There exists a class L such that
(a) L can be TxtIt-identified by a 1-memory bounded learner, but
(b) L cannot be NCIt-learnt using n-feedback (even if the learner is given the maximal

element and the number of elements seen so far as additional information).

Proof. For each s, let Ls denote the class L used in the proof of Theorem 15. Let S =
⋃

s Ls.
Then, by Theorem 15, S cannot be NCIt-learnt using n-feedback. However, S can be TxtIt-
identified using 1-memory: Initially the learner outputs e (padded), so that 〈e, ·, ·〉 is the first
element in the input. The learner always memorizes 〈e, j′, x〉 for the largest x such that 〈e, j′, x〉
belongs to the input for some j′ ≥ 1 (as long as there is only one such corresponding j′). Now
if some 〈e, j, x〉 appears in the input for some j ≥ 1, with 〈e, j′, x〉 in the memory, where j′ 6= j,
then, the learner outputs the grammar for We ∪ {〈e, j, x〉, 〈e, j′, x〉}, and never changes its mind
thereafter. �

Theorem 18. There exists a class L such that
(a) L can be TxtIt-identified by a 1-feedback learner, but
(b) L cannot be NCIt-learnt by an n-memory bounded learner (even if the learner is given

the maximal element and the number of elements in the input so far as additional information).

Proof. Let

L1 = {L : (∃e)[ ∅ ⊂ L ⊆ {〈e, k, j, x〉 : k, j, x ∈ N},
We = L,

for all k > 0, j > 0, x, [〈e, 1, j, x〉 ∈ L iff 〈e, k, j, x〉 ∈ L] and

for all x, [card({j : j ≥ 1, 〈e, 1, j, x〉 ∈ L}) = 0 or

[〈e, 1, j, x〉 ∈ L for a unique j ≥ 1, and π2
1(j) 6∈ L]]

]}

L2 = {L : (∃e, x)[ We ∈ L1,

x > max({x′ : 〈e, k, j, x′〉 ∈ We, k ∈ N, j ≥ 1}) and

[〈e, 1, j, x〉 ∈ L for a unique j ≥ 1,

π2
1(j) ∈ L,

Dπ2
2(j) ⊆ {〈e, k, 0, x〉 : k, x ∈ N} and

L = We ∪Dπ2
2(j) ∪ {〈e, k, j, x〉 : k ≥ 1}]

]}.

Let L = L1 ∪ L2.

25



Using a proof similar to the proof of Theorem 16, it can be shown that L cannot be NCIt-
learnt using n-memory (even if the learner is given the maximal element and the number of
elements seen so far as additional information). However, the above L is learnable using 1-
feedback query, as initially the learner can output conjecture e (actually, a padded version —
to recognize that it is in this phase), and whenever it receives input of the form 〈e, k, j, x〉, for
j ≥ 1, k ≥ 1, it can query whether π2

1(j) is in the text seen so far. If so, then it can change
its mind to output grammar for We ∪Dπ2

2(j) ∪ {〈e, k′, j, x〉 : k′ ≥ 1}, and never change its mind
thereafter. �

Another class (which is simpler to state), which can be used for a proof of Theorem 18 would
be:

L1 = {L : (∃e)[We = L ⊆ {〈e, x〉 : x ∈ N}] and for all x, card(L∩ {〈e, 2x〉, 〈e, 2x + 1〉}) ≤ 1}.
L2 = {L : (∃e, x)[We ∈ L1, L = We ∪ {〈e, 2x〉, 〈e, 2x + 1〉}]}.
L = L1 ∪ L2.
The diagonalization proof, though similar to the proof of Theorem 16, needs a bit more

modification compared to what we needed for the class used in the current proof of Theorem 18.

5.2 Advantages of Using Maximal Element/Number of Elements

Results of this subsection demonstrate various advantages that NCIt-learners can get while
using the maximal element or/and the number of elements seen so far as additional information.

We begin with two simple useful propositions. The following proposition works if memory,
instead of being a set, is allowed to be a multiset (when updating the memory, if a new input
element is greater than the current maximal one, the learner must replace the old maximal by
the new one, however, the learner may also decide to store a separate copy of the new element
— for reasons different from it being maximal, so that it would not be sacrificed when a new
greater element appeared). It is open at present whether this proposition holds if memory is just
a set, as in the current paper.

Proposition 19. Any n-memory bounded learner with the maximal element seen so far as ad-
ditional information can be simulated by an (n + 1)-memory bounded learner by using the extra
memory for the maximal element seen so far, as long as the memory of the learner is considered
as a multi-set, rather than just a set.

Proposition 20. An NCIt-learner can learn finite sets when given the number of elements
or the maximal element seen so far, and only negative counterexamples (no positive data is
needed). Thus, the learner can, for example, do this even when it forgets some of the elements
it has received due to some earlier phase.

Proof. For the following without loss of generality, assume that the number of elements and
the maximal element seen so far is as in the limit for the input text.

For the case of the number of elements seen so far, the learner tries, one by one, each possible
finite set of cardinality m (where m is the number of elements seen so far), until it gets no
counterexample.

26



For the case of the maximal element seen so far, the learner could just check for each x
smaller than the maximal element whether x belongs to the input language (this can be done
by using the conjecture {x} — x is in the input language iff the conjecture for {x} does not get
a counterexample). That will determine the input language. �

Our next result shows that adding access to the maximal element seen so far increases the
learning capability of NCIt-learners storing up to n input elements seen so far. Moreover, a
learner witnessing the positive side of the result does not need access to negative counterexamples
refuting conjectures containing data in excess of the language to be learned.

The proof of the following theorem uses a modification of the diagonalizing class used in the
proof of Theorem 16, though some of the components of that class are not needed. The class
L1 contains languages which have at most n elements of the form 〈e, 1, j, x〉, for each x, and the
class L2 contains languages which have n+1 elements of the form 〈e, 1, j, x〉, for maximal x such
that 〈e, 1, j′, x〉 is present in the input for some j′ — in the former case, We is the grammar for
the language, and in the latter case the language is finite. This allows for easy learnability using
n-memory and the maximal element seen so far — using n-memory one can check which of the
above cases applies, and using the maximal element seen so far one can learn finite sets, even
if one has forgotten some data. However, n-memory bounded learner cannot learn the class as
it cannot recall some forgotten elements, unless it memorizes some large elements — which in
turn hurts its learning of the class L1.

Theorem 21. There exists a class L such that
(a) L can be TxtIt-identified by an n-memory bounded learner with the maximal element

seen so far as additional input, but
(b) L cannot be NCIt-learnt by an n-memory bounded learner.

Proof. Let

L1 = {L : (∃e)[ We = L,

∅ ⊂ L ⊆ {〈e, d, r, z〉 : r, z ∈ N, d > 0} and

for all x, [card({j : 〈e, 1, j, x〉 ∈ L}) ≤ n]

]}.

L2 = {L : (∃e, x′, y)[ L ⊆ {〈e, d, r, z〉 : d, r, z ∈ N},
L is finite and

[ for all x < x′[card({j : 〈e, 1, j, x〉 ∈ L}) ≤ n,

max({x : 〈e, 1, j, x〉 ∈ L}) = x′ and

card({j : 〈e, 1, j, x′〉 ∈ L}) = n + 1]]

]}.

Let L = L1 ∪ L2.

27



It is easy to verify that L can be learnt using n-memory plus the maximal element seen so
far as additional information. The learner first finds an e such that 〈e, d, y, z〉 is in the input
language. Then the learner remembers the 〈e, 1, j, x〉 in its memory, where x is maximized. The
learner continues to output e, until it discovers that the input language contains n + 1 elements
of the form 〈e, 1, j′, x〉, for the maximal x such that some element of the form 〈e, 1, j, x〉 is in
the input (for this, the learner needs to memorize only first n such elements — when n + 1-th
such element arrives in the input, it would then already know that the target language contains
n + 1 such elements). It then switches to learning finite sets using the maximal element (see
Proposition 20).

Now suppose, by way of contradiction, that a learner M NCIt-identifies L using at most
n-memory. Note that, for all e, M is defined on all inputs σ such that content(σ) ⊆ {〈e, d, r, z〉 :
d, r, z ∈ N}, and for all z, card({j : 〈e, 1, j, z〉 ∈ content(σ)}) ≤ n (as any finite such set can be
extended to be a member of L2 by adding, for a large enough z′, 〈e, 1, j, z′〉, for n + 1 different
j). Now, by implicit use of Kleene’s recursion theorem, there exists an e such that We may be
defined as follows.

Initially, We contains 〈e, 2, 0, 0〉. Let W s
e denote We defined by the beginning of stage s. Let

σ0 be a sequence with content {〈e, 2, 0, 0〉}. Let σs denote the initial segment constructed before
stage s (it will be the case that W s

e = content(σs)). Furthermore, fs(i) will be the function
denoting counterexamples given to the learner M on its conjecture i (in the simulation at stage
s). It will be the case that the range of fs (except for #) is a subset of Es — which we will bar
from belonging to We to maintain the validity of any negative counterexample given.

Initially, f0(i) = #, for all i, and E0 = ∅. Let xs denote the least number such that W s
e ∪Es ⊆

{〈e, d, j, x〉 : d, j ∈ N, x < xs}. Go to stage 0.

Stage s
1. Simulate M by giving counterexamples according to fs. Dovetail steps 2 and 3 until one of

them succeeds. If step 2 succeeds before step 3, if ever, then go to step 4. If step 3 succeeds
before step 2, if ever, then go to step 5. Here we assume that step 2 has some priority in
the sense that if it can succeed for t ≤ s, then it succeeds first, with σ being the shortest
for which such t ≤ s exists.

2. Search for a σ ⊆ σs and a t such that WM(σ),t − content(σs) 6= ∅ and min(WM(σ),t −
content(σs)) 6= fs(M(σ)).

3. Search for a τ ⊇ σs such that (a) content(τ) − content(σs) ⊆ {〈e, d, y, z〉 : y, z ∈ N, d > 0}
and for all x, [card({j : 〈e, 1, j, x〉 ∈ content(τ)}) ≤ n], and (b) M(σs) 6= M(τ).

4. Let
σs+1 = σs,
fs+1(M(σ)) = min(WM(σ),t − content(τ)),
fs+1(i) = fs(i), for i 6= M(σ),
W s+1

e = We enumerated until now.
Es+1 = Es ∪ {fs+1(M(σ))}, and
xs+1 = the least number such that W s+1

e ∪ Es+1 ⊆ {〈e, d, j, x〉 : d, j ∈ N, x < xs+1}.
Go to stage s + 1.

28



5. Let σs+1 = τ ,
Let W s+1

e = content(σs+1), Es+1 = Es, fs+1 = fs, xs+1 = the least number such that
W s+1

e ∪ Es+1 ⊆ {〈e, d, j, x〉 : d, j ∈ N, x < xs+1}.
Go to stage s + 1

End stage s

Now, if there are infinitely many stages, then We ∈ L1, and T =
⋃

s σs is a text for We. As
M identifies We, M(T ) converges. Thus for a large enough stage s, step 2 would not succeed
anymore (as the least counterexamples would have been found by then). Thus, step 3 succeeds
infinitely often, and M does not converge on T , a contradiction to the assumption that M(T )
converges.

Thus, there are only finitely many stages. Suppose stage s starts but does not end. Hence the
counterexamples as in fs on initial segments of τ (as in stage s) are correct. Let the parameters
below be as in stage s. For each set S of n elements, let τS be such that σs ⊆ τS and content(τS)−
content(σs) = {〈e, 1, j, xs〉 : j ∈ S}.

Now, suppose there exists an S (of size n) such that for infinitely many y, M(τS � 〈e, 2, 0, y〉)
has the same memory as M(τS). Let j′ be such that j′ 6∈ S. Then, consider M ’s behaviour on
τS � 〈e, 1, j′, xs〉∞. If it does not converge, then it does not learn content(τS � 〈e, 1, j′, xs〉) from
the text τS � 〈e, 1, j′, xs〉∞ (where the counterexamples provided are the least ones). Otherwise,
let X be the set of counterexamples provided to M on τS � 〈e, 1, j′, xs〉∞, and let y be such that
〈e, 2, 0, y〉 is not in the set of counterexamples provided nor 〈e, 2, 0, y〉 ∈ Es, and M(τS�〈e, 2, 0, y〉)
has same memory as M(τS). Then, M fails to identify at least one of τS � 〈e, 1, j′, xs〉∞ and
τS � 〈e, 2, 0, y〉〈e, 1, j′, xs〉∞, as it converges to the same conjecture on both these texts.

Otherwise, for all S (of size n), for all but finitely many y, M(τS � 〈e, 2, 0, y〉) has different
memory than M(τS).

Thus, by taking such S as a subset of size n of {1, 2, . . . , w}, for a large enough w, we will have
that, for two such S, S ′, for all but finitely many y, memory is the same after seeing τS �〈e, 2, 0, y〉
or after seeing τS′ �〈e, 2, 0, y〉 (as the memory could either be remembering 〈e, 2, 0, y〉 or not, and
some set of the size at most n−1, due to change in memory). Let j ∈ S−S ′ and y be large enough
(satisfying above) such that 〈e, 2, 0, y〉 6∈ Es. Then, M(τS′ � 〈e, 2, 0, y〉〈e, 1, j, xs〉∞) = M(τS �
〈e, 2, 0, y〉〈e, 1, j, xs〉∞) = M(σs), and WM(σs) either enumerates an element in Es, or does not
enumerate any element outside content(σs). Thus, it fails to identify τS′ � 〈e, 2, 0, y〉〈e, 1, j, xs〉∞,
which is a member of L2. �

Our next result demonstrates the advantages of NCIt-learner getting the maximal element
compared to it getting the number of elements seen so far. However, we were not able to achieve
a result of similar strength while faring the number of elements seen so far against the max-
imal element seen so far as additional information. Whether it is possible, remains open. A
partial solution to this problem (for iterative learners — not using negative counterexamples to
conjectures) is given in Theorem 27.

Theorem 22. There exists a class L such that
(a) L can be TxtIt-identified when the learner is provided the maximal element seen so far

as additional information, but

29



(b) L cannot be NCIt-identified when the learner is given the number of elements in the
input as additional information.

Proof. Let

L1 = {L : 0 6∈ L and

[[L is finite and Wπ3
1(max(L)) = L] or

[L is infinite and for some e ∈ N,

for all but finitely many x ∈ L, [π3
1(x) = e and We = L]]

]}.

L2 = {L : 0 ∈ L and

[[L is finite and Wπ3
2(max(L)) = L] or

[L is infinite and for some e ∈ N,

for all but finitely many x ∈ L[π3
2(x) = e, and We = L]]]}.

Let L = L1 ∪ L2.
It is easy to verify that a learner can iteratively learn L using the maximal element seen so

far as additional information.
Now suppose by way of contradiction that M NCIt-identifies L using the number of elements

seen so far. Note that M must converge on all inputs, as every finite data has an extension in
L2. The aim of the construction below is to first try to force infinitely many mind changes for M
on some language We from L1. If this is not possible, then We would be finite, and one chooses
a stabilizing sequence σs for M on {〈e, x, y〉 : x, y ∈ N} − Es, such that content(σs) = We (Es

is a set of elements which we exclude from the target language due to negative counterexamples
provided to M in the construction). Then, the construction tries to see if it can force infinitely
many mind changes by M for some We′ ⊇ We such that We′ ∈ L2: this search is done carefully
so that if infinitely many mind changes cannot be forced, then one obtains an appropriate finite
set extending We′ (the set We′ ∪{d}, with d being of the form 〈e, ·, ·〉, in the construction below)
which is not identified by M . We now proceed formally.

By implicit use of Kleene’s recursion theorem, there exists an e > 0 such that We may be
described as follows. Note that 〈e, x, y〉 > 0, for all x, y by our assumption on pairing functions.
Initially, let We contain 〈e, 0, 0〉. Let W s

e denote We defined by the beginning of stage s. Let σ0 be
a sequence with content {〈e, 0, 0〉}. Go to stage 0. Let σs denote the initial segment constructed
before stage s (it will be the case that W s

e = content(σs)). Furthermore, fs(i) will be the function
denoting counterexamples given to the learner M on its conjecture i (in the simulation at stage
s). It will be the case that the range of fs (except for #) is a subset of Es — which we will bar
from belonging to We to maintain the validity of any negative counterexample given. Initially,
f0(i) = #, for all i, and E0 = ∅. Go to stage 0.

30



Stage s
1. Simulate M by giving counterexamples according to fs. Dovetail steps 2 and 3 until one of

them succeeds. If step 2 succeeds before step 3, if ever, then go to step 4. If step 3 succeeds
before step 2, if ever, then go to step 5. Here we assume that step 2 has some priority in
the sense that if it can succeed for t ≤ s, then it succeeds first, with σ being the shortest
one for which such t ≤ s exists.

2. Search for a σ ⊆ σs and a t ∈ N such that WM(σ),t − content(σs) 6= ∅ and min(WM(σ),t −
content(σs)) 6= fs(M(σ)).

3. Search for a τ ⊇ σs such that content(τ) ⊆ {〈e, x, y〉 : x, y ∈ N} − Es and M(τ) 6= M(σs).
4. Let

σs+1 = σs

fs+1(M(σ)) = min(WM(σ),t − content(σs)),
fs+1(i) = fs(i), for i 6= M(σ),
Es+1 = Es ∪ {fs+1(M(σ))},
W s+1

e be We enumerated upto now,
Go to stage s + 1.

5. Enumerate content(τ) into We.
Let W s+1

e be We enumerated upto now.
Let σs+1 be an extension of τ such that content(σs+1) = W s+1

e .
Let Es+1 = Es, fs+1 = fs.
Go to stage s + 1

End stage s

Now, if there are infinitely many stages, then We ∈ L1, and T =
⋃

s σs is a text for We. As
M identifies We, M(T ) converges. Thus, for a large enough stage s, step 2 would not succeed
anymore (as the least counterexamples would have been found by then). Thus, step 3 succeeds
in all but finitely many stages, and M does not converge on T , a contradiction to the assumption
that M(T ) converges. Hence, M(T ) diverges and thus M does not identify We.

Now consider the case that there are only finitely many stages. Suppose stage s starts but does
not end. Hence the counterexamples as in fs on initial segments of τ (as in stage s) are correct.
Moreover, WM(σs) ⊆ content(σs) or WM(σs) contains an element in Es. Furthermore, M does not
change its mind on any extension τ of σs such that content(τ) ⊆ {〈e, x, y〉 : x, y ∈ N} − Es.

Now, by implicit use of Kleene’s recursion theorem, there exists an e′ > max(content(σs)∪Es)
such that We′ may be described as follows. In the construction below, we will start from stage
s + 1, to maintain variable name consistency with the stages above.

W t
e′ denotes We′ constructed before stage t. Initially, let W s+1

e′ = W s
e ∪ {〈e, e′, 0〉, 0} and let

σs+1 = σs � 〈e, e′, 0〉 �0. We let τs+1 = σs �d�0, where we leave the element d unspecified for now
(it will be the case that π3

1(d) = e). We will assume that d is different from any other element
encountered in the construction below. (This is for the ease of presentation; the analysis later
will ensure that any such properties used would hold). Let fs+1 = fs and Es+1 = Es.

It will be the case that, for t ≥ s + 1, W t
e′ = content(σt). However, we will not necessarily

have that σt ⊆ σt+1. This is because in some cases, we rearrange some elements of σt to form

31



σt+1 (similar rearrangement will apply to τt+1 too). It will, however, be the case that, in the case
of infinitely many stages s, for each n limt→∞ σt(n) would converge. Furthermore, we will have
that τs+1 ⊆ τt and σs+1 ⊆ σt, for all t ≥ s + 1.

σt, τt would satisfy the following invariants (for t ≥ s + 1).
(A) |σt| = |τt|, and card(content(σt)) = card(content(τt)).
(B) For all m ≤ |σt|, M(σt[m]) = M(τt[m]), where the counterexamples given to M are based

on ft.
(C) For all m with |τs+1| ≤ m ≤ |τt|, content(τt[m])− content(σt[m]) = {d}.
(D) For all m with |σs+1| ≤ m < |σt|, either (D1) [σt(m) = τt(m) and card(content(σt[m +

1]))−card(content(τt[m+1])) = 1], or (D2) [τt(m) = #, σt(m) 6∈ (content(σt[m])∪content(τt[m])),
M(σt[m]) = M(τt[m]) = M(σt[m + 1]) = M(τt[m + 1]) (where the counterexamples are given
based on ft), τt(m+1) = σt(m+1), σt(m+1) ∈ content(σt[m])−content(τt[m]), and content(σt[m+
2])− content(τt[m + 2]) = {σt(m)}] (note that in this case we will have that m + 1 < |σt|).

Thus, at all intial segments of σt and τt of the length m ≥ |σs+1|, we maintain that σt[m]
has exactly one extra element compared to τt[m], except that (as in D2) we may temporarily
add a new element to σt (as σt(m)), and then add back the earlier difference between σt[m] and
τt[m] to both σt and τt (as σt(m + 1) and τt(m + 1)). This is done when the learner M does not
seem to make a mind change from input being σt[m] (or τt[m]) to input being either σt[m] � #
or σt[m] � σt(m).

Note that the invariants are clearly satisfied before stage s + 1.
Go to stage s + 1.

Stage t
1. Simulate M by giving counterexamples according to ft. Dovetail steps 2 and 3 until one of

them succeeds. If step 2 succeeds before step 3, if ever, then go to step 4. If step 3 succeeds
before step 2, if ever, then go to step 5. Here we assume that step 2 has some priority in
the sense that if it can succeed for k ≤ t, then it succeeds first, with σ being the shortest
one for which such k ≤ t exists.

2. Search for a σ ⊆ σt and a k ∈ N such that WM(σ),k − content(σt) 6= ∅ and min(WM(σ),k −
content(σt)) 6= ft(M(σ)).

Note that we take the shortest σ which satisfies the search condition (for the k found).
3. Let n be large enough such that 〈e, e′, n〉 > max(content(σt) ∪ Et). Let z be such that

z ∈ content(σt)− content(τt).
Search for a γ ∈ {#, 〈e, e′, n〉, 〈e, e′, n〉 � z, 〈e, e′, n〉 � z �#} such that M(σtγ) 6= M(σt).
Here we take the shortest γ among the above possibilities.

4. Note that we take the shortest σ which satisfies the search condition of step 2 (for the k
found). Thus, by using invariant (D) we have that card(content(σ)− content(τt[|σ|])) = 1.

Let
ft+1(M(σ)) = min(WM(σ),t − content(σt)),
ft+1(i) = ft(i), for i 6= M(σ),
Et+1 = Et ∪ {ft+1(M(σ))},
W t+1

e′ be We′ enumerated upto now.

32



Let α be such that content(α) = W t+1
e′ − content(σ)

Let σt+1 = σ � α.
Let τt+1 = τt[|σ|] � α.
(* Note that we have rearranged σt to form σt+1 to ensure that the new counterexample

given to M(σ), does not violate invariant (D). *)
Go to stage t + 1.

5. Enumerate content(τ) into We′ .
Let W t+1

e′ be We′ enumerated upto now.
Let σt+1 = σt � γ.
Let τt+1 = τt � γ′, where γ′ = γ, if γ ∈ {#, 〈e, e′, n〉}; otherwise, γ′ is obtained by replacing
〈e, e′, n〉 in γ by #.

Let Et+1 = Et, ft+1 = ft.
Go to stage t + 1.

End stage t

Invariants can be shown by induction. It is easy to see that the invariants (B) and (C) are
maintained. We now argue for invariants (A) and (D) for σt+1/τt+1 based on which step succeeds
in stage t.

If step 3 succeeds in stage t, then clearly, (A) holds for σt+1/τt+1, as either content(σt+1) −
content(τt+1) = content(σt) − content(τt) = {z} or content(σt+1) − content(τt+1) = {〈e, e′, n〉},
based on any choice of γ. Furthermore, (D1) clearly holds if γ = # or γ = 〈e, e′, n〉. If γ =
〈e, e′, n〉z (similar argument holds for γ = 〈e, e′, n〉z#) then (D1) holds for m = |σt|, and
m = |σt| + 2 and (D2) holds for m = |σt| + 1, as M(σt) = M(τt), M(σt#) = M(τt#), M(σt �
〈e, e′, n〉) = M(τt � 〈e, e′, n〉), M(σt � 〈e, e′, n〉z) = M(τt � #z) (by M being based only on the
number of elements and the last element seen) and M(σt) = M(σt#) = M(σt � 〈e, e′, n〉), by
choice of γ not being # or 〈e, e′, n〉.

If step 2 succeeds in stage t, then note that σ chosen must be such that for m = |σ| − 1,
(D1) was satisfied for σt/τt, as otherwise by (D2) we would have that M(σ[|σ| − 1]) = M(σ)
(for counterexamples given according to ft), and we would have that σ[|σ| − 1] would have been
chosen at step 2. Thus, (A) holds for σt+1 = σα and τt+1 = τt[|σ|]α, as α only contained elements
not in σ. Similarly, (D1) holds for each m ≥ |σ|, as content(σ)− content(τt[|σ|]) is not a member
of α. Also, clearly for m < |σ| − 1, (D) holds for σt+1/τt+1 as it held for σt/τt.

Thus, all the invariants are maintained.
Now suppose there are infinitely many stages. Then it is easy to argue by induction on m that,

limt→∞ σt(m) and limt→∞ τt(m) converge (since the counterexample provided eventually reaches
the least possible value). Let the texts formed by taking these converged values be respectively
Tσ and Tτ . We first argue that M does not converge on Tσ. If not, then clearly beyond some
stage, only step 3 can succeed, as the counterexamples to conjectures of M on Tσ would have
converged beyond some point. But then, by construction, M(Tσ) would diverge.

Now suppose stage t starts but does not end. But then, M(σt) = M(σt � 〈e, e′, n〉) = M(σt �
#) = M(σt � 〈e, e′, n〉z) = M(σt � 〈e, e′, n〉z#), by non-success of step 3. As, M(σt) = M(τt),
M(σt#) = M(τt#), M(σt � 〈e, e′, n〉z) = M(τt � #z), and M(σt � 〈e, e′, n〉z#) = M(τt � #z#)

33



(which all hold as M depends only on the number of elements and the last element of the
input), we have that M(τt) = M(τt �#) = M(τt �#z) = M(τt �#z#). Furthermore, WM(τt) ⊆
content(σt), or the counterexample as given by ft(M(τt)) does not belong to content(σt). It
follows that M does not identify any language content(σt) ∪ {d}, as long as d ∈ {〈e, x, y〉 :
x, y ∈ N} − (content(σt) ∪ Et). This holds as M(τt#z#∞) converges to M(τt#z) = M(σt), and
WM(σt) ⊆ content(σt). Now, by implicit use of Kleene’s recursion theorem, there exists an e′′

such that, for d = 〈e, e′′, n〉, d > max(content(σt) ∪ Et) and We′′ = content(σt) ∪ {d} ∈ L2.
Theorem follows. �

Note that L1 and L2 used in the proof above are each in NCIt. To see this for L1, note
that a learner can store in its padding all e such that e = π3

1(x), for some x in the input
language L ∈ L1, as there is only a finite number of such values e. Now, the learner can use
unions of the languages We for such values e as its conjectures, excluding from such a union any
We that contains an element in excess of the target language L (provided to the learner as a
counterexample to its conjecture). Obviously, the final union of such languages We will be the
target language L.

Our next result shows the advantages of having the maximal element or the number of
elements seen so far against having n-feedback. It is open at present if one can strengthen the
result to show that there exists a class which can be NCIt-learnt using the maximal element
(respectively, the number of elements) seen so far but cannot be learnt using n-feedback and the
number of elements (respectively maximal element and/or m-memory) seen so far. The main
idea used in the proof of the following result is that, using the maximal element or the number
of elements seen so far, one can learn finite sets using only negative counterexamples, without
using any positive data (thus even when one has forgotten some past data), see Proposition 20.
However, n-feedback cannot be used to recover past data once forgotten.

Theorem 23. There exists a class L such that
(a) L can be NCIt-identified using the maximal element or the number of elements seen so

far as additional information, but,
(b) for all n, L cannot be NCIt-learnt using n-feedback.

Proof. Let L1 = {{〈e + 1, x〉 : x ∈ We} : We 6= ∅},
L2 = {D : D is finite and (∃y)[〈0, y〉 ∈ D]}, and
L = L1 ∪ L2.
It is easy to verify that L can be iteratively learnt using the maximal element or the number

of elements seen so far as additional information. If and when the learner sees 〈0, y〉 in the input,
for some y, the learner would switch to learning finite sets (see Proposition 20). Otherwise, if the
learner sees some input (and only inputs) of the form 〈e + 1, x〉, the learner outputs a grammar
for {〈e + 1, x〉 : x ∈ We}.

To see that the above class L cannot be learnt using n-feedback by NCIt-learner, suppose,
by way of contradiction, that M does so. Then, by implicit use of Kleene’s recursion theorem
[Rog67], there exists an e such that We may be described as follows.

Initially, We contains 0. Let W s
e denote We defined by the beginning of stage s. Let σ0 be a

sequence with content {〈e + 1, 0〉}. Let σs denote the initial segment constructed before stage

34



s (it will be the case that content(σs) = {〈e + 1, x〉 : x ∈ W s
e }). Furthermore, fs(i) will be the

function denoting counterexamples given to the learner M on its conjecture i (in the simulation
at stage s). It will be the case that the range of fs (except for #) is a subset of Es — which
we will bar from belonging to {〈e + 1, x〉 : x ∈ We} to maintain the validity of any negative
counterexample given. Initially, f0(i) = #, for all i, and E0 = ∅. Go to stage 0.

Stage s
1. Simulate M by giving counterexamples according to fs. Dovetail steps 2 and 3 until one of

them succeeds. If step 2 succeeds before step 3, if ever, then go to step 4. If step 3 succeeds
before step 2, if ever, then go to step 5. Here we assume that step 2 has some priority in
the sense that if it can succeed for t ≤ s, then it succeeds first, with σ being the shortest
for which such t ≤ s exists.

2. Search for a σ ⊆ σs and a t such that WM(σ),t − content(σs) 6= ∅ and min(WM(σ),t −
content(σs)) 6= fs(M(σ)).

3. Search for a τ ⊇ σs such that content(τ) ⊆ {〈e + 1, x〉 : x ∈ N} − Es, and M(τ) 6= M(σs),
where the negative counterexamples are given according to fs.

4. Let
σs+1 = σs,
fs+1(M(σ)) = min(WM(σ),t − content(σs)),
fs+1(i) = fs(i), for i 6= M(σ),
W s+1

e = W s
e .

Es+1 = Es ∪ {fs+1(M(σ))}, and
Go to stage s + 1.

5. Let σs+1 = τ ,
Let W s+1

e = content(σs+1), Es+1 = Es, fs+1 = fs and
Go to stage s + 1

End stage s

Now, if there are infinitely many stages, then We ∈ L, and T =
⋃

s σs is a text for We. As
M identifies We, M(T ) converges. Then, for a large enough stage s, step 2 would not succeed
anymore (as the least counterexamples would have been found by then). Thus, step 3 succeeds
infinitely often, and M does not converge on T , a contradiction to the assumption that M(T )
converges.

Thus, there are only finitely many stages. Suppose stage s starts but does not end. Hence
the counterexamples as in fs on initial segments of σs are correct. Let y be such that 〈0, y〉 6∈
Es. Now consider the behaviour of M on σs〈0, y〉∞, where the counterexamples are the least
counterexamples. If the learner does not converge, then it clearly does not identify σs〈0, y〉∞.
Otherwise, let X be the set of counterexamples given, and let Y be the set of feedback queries
asked on initial segments of the text σs〈0, y〉∞. Note that X ∪ Y is finite. Let x be such that
〈e + 1, x〉 does not belong to Es ∪X ∪ Y ∪ content(σs). Then, M does not identify at least one
of σs � 〈0, y〉∞ and σs � 〈e + 1, x〉 � 〈0, y〉∞, as M ’s conjectures converge to the same conjecture
on both these texts. �

35



Note that, obviously, the maximal element can always be memorized by a learner and, thus,
cannot add more to the learning power of iterative learners than even one memory cell for storing
input elements. Therefore, we explore if the number of elements seen so far can give an NCIt-
learner more advantages than n memorized input elements seen so far. We were able to achieve
only a partial solution — showing that the number of elements and the maximal element (or one
memory cell) seen so far together can provide more power to NCIt-learners than n memorized
input elements.

Theorem 24. There exists a class L such that
(a) L can be NCIt-learnt using 1-memory (or the maximal element seen so far) and the

number of elements seen so far, but
(b) L cannot be learnt by a NCIt-learner using n-feedback or n-memory, even if the learner

is given the maximal element seen so far as additional input.

Proof. We say that e is nice, if ∅ ⊂ We ⊆ {〈e, j, x〉 : j, x ∈ N}, and for all x such that
〈e, j, x〉 ∈ We, We ∩ {〈e, j, x′〉 : j ∈ N, x′ < x} ⊆ We,x.

Now let L1 = {L : L = We, e is nice, and for all x, card(We ∩ {j : 〈e, j, x〉 ∈ L} < x)}.
Let L2 = {L : (∃e, x : x > 0)[We ∈ L1, We = We,x and x > max(We) and card({j : 〈e, j, x〉 ∈

L}) = x and L = We,x ∪ {〈e, j, x〉 : 〈e, j, x〉 ∈ L]}}.
Let L = L1 ∪ L2.
It is easy to see that L can be iteratively learnt using the number of elements seen so far and

1-memory. The learner initially conjectures e (with padding) such that the first input element is
〈e, j, x〉 for some j, x. The learner remembers 〈e, j, x〉 for the largest x such that some element
of the form 〈e, j, x〉 is in the input. Then, whenever the learner sees an input 〈e, j′, x′〉 and the
number of elements seen so far as k, it checks whether card(We,max({x,x′})) + max({x, x′}) = k. If
so, then it proceeds to identify the input using the technique of Proposition 20.

L cannot be NCIt-learnt using n-feedback or n-memory, as long as only the maximal ele-
ment in the input is known. This can be shown essentially using the same technique as in the
Theorems 15 and 16.

For n-feedback learning, in the diagonalization part, we do similar to Theorem 15, except
that we do not need the part which was dealing with the “number of elements”. In the stage
s, we choose a large enough x > n + 3, such that We,x contains content(σs). Then, we place
〈e, n + 3 + j, x〉 for j < x− 2 in We (instead of 〈e, 0, m〉 considered in the proof of Theorem 15).
We let τ be an extension of σs such that content(τ) = content(σs)∪{〈e, n+3+j, x〉 : j < x−2}.
In step 4 we check if there exists a j such that M makes a mind change on τ � 〈e, j, x〉, where
1 ≤ j ≤ n+2. If so, then we proceed as in the construction in Theorem 15. Otherwise, we choose
a j, j′ such that 1 ≤ j, j′ ≤ n + 2, j 6= j′ and M on the previous conjecture M(τ) and the new
element 〈e, j, x〉 does not query 〈e, j′, x〉. Then, M fails to learn the input τ � 〈e, j′, x〉〈e, j, x〉∞.

Similar modification can be done for memory-bounded learning. �
Can the maximal element give more power to NCIt-learners than the number of elements

seen so far? The answer to this question is positive — even if the learners using the maximal
element seen so far are just iterative (not using negative counterexamples to conjectures): this

36



is given by Theorem 22. However, we do not know whether the number of elements seen so far
can give more in the context of NCIt-learnability than the maximal element.

Open Problem 25. Is there a class L of languages which can be NCIt-learnt using the num-
ber of elements seen so far as additional information (no memory or feedback) but cannot be
NCIt-learnt using n-memory (or n-feedback with the maximal element seen so far as additional
information or even just the maximal element seen so far as additional information)?

Three following results give partial solutions to the open problems stated above. The first
result shows that, under certain natural (and quite weak) assumptions, in the context of NCIt-
learnability, access to the number of elements seen so far can be replaced by access to the maximal
element seen so far.

Theorem 26. Suppose L can be NCIt-identified using the number of elements seen so far as
additional information, where the learner is total (here the input element would be from the
target language, but the number of elements may sometimes not be valid — we still expect the
learner to converge). Then, L can be NCIt-identified using the maximal element seen so far as
additional information.

Proof. Suppose M is an NCIt-learner using number of elements seen so far as additional
information.

We construct M ′ as follows. Conjectures of M ′ will be of the form P (σ, m, S, f), Q(i, m, S, f),
or R(i, m, S, f), where i, m ∈ N, σ ∈ SEQ, S is a finite set, and f is a finite function (giving
counterexamples to conjectures). Furthermore, P, Q, R are 1–1 computable functions, with dis-
joint range, such that WP (σ,m,S,f) = WM(σ) (where counterexamples are given according to f),
WQ(i,m,S,f) = {i}, and WR(i,m,S,f) = Wi.

Intuitively, conjectures of the form Q(·, m, S, f) aim to find all elements ≤ m in the target
language. Conjectures of the form R(·, m, S, f) find counterexamples, if any, to the conjectures
≤ m. Conjectures of the form P (σ, m, S, f) are for simulating M , as well as checking if σ
seems like a stabilizing sequence for M on the target language, when counterexamples given are
according to f .

The following properties will be satisfied by the construction:
(P1) From one conjecture to the next, the parameters m, S and f will be monotonically

non-decreasing (where, for S, f this is in set-containment sense).
(P2) S ⊆ L. The domain of f is some initial segment (maybe empty) of N. Furthermore,

counterexamples, as given according to f for the target language, are correct for the conjectures
in the domain of f .

(P3) Whenever Q(i, m, S, f) is conjectured, S contains all the elements seen in the input
upto that point, except, possibly, for elements between i and m (both inclusive). Furthermore,
S also contains all the elements in the target language which are < i.

(P4) Whenever R(i, m, S, f) is conjectured, S contains all the elements seen in the input
upto that point. Also, S also contains all the elements in the target language which are ≤ m.
Furthermore, 0, 1, . . . , i− 1, are in the domain of f .

37



(P5) When P (σ, m, S, f) is first conjectured, S contains all the elements seen in the input
upto that point; though later conjectures of the form P (σ, m, S, f) (with same parameter values)
may not satisfy this property. Furthermore, S contains all the elements in the target language
which are ≤ m, and f has domain at least {i : i ≤ m}.

We now proceed to define M ′ formally as follows.

Initially, M ′(λ) = Q(0, 0, ∅, ∅).
(a) Suppose the previous conjecture is Q(i, m, S, f), the new input is x and the counterexample

is y.
(* Here we are trying to find membership in the target language for z ≤ m, with the current

round doing this for z = i *).
If y = #, then let S = S ∪ {x, i} − {#}; Else let S = S ∪ {x} − {#}.
If i < m, then conjecture Q(i + 1, m, S, f); Else conjecture R(i, m, S, f), where i is the least

element not in the domain of f .
(b) Suppose the previous conjecture is R(i, m, S, f), the new input is x, the counterexample is

y, and m′ is the maximal element seen so far.
(* Here we are trying to find counterexamples to conjectures j ≤ m, with the current round

doing so for j = i. *)
Let f(i) = y. Let S = S ∪ {x} − {#}.
If i < m, then conjecture R(i + 1, m, S, f).
Else, if there exists a σ such that,
(i) content(σ) ⊆ S ∩ {z : z ≤ m},
(ii) |σ| ≤ m,
(iii) M (when given counterexamples according to f), on each initial segment of σ outputs

only conjectures ≤ m,
(iv) M(σ � τ) = M(σ), for all τ such that content(τ) ⊆ S and |τ | ≤ card(S) + 1.
Then, conjecture P (σ, m, S, f), for least such σ.
Else, conjecture Q(0, m + m′ + 1, S, f).

(c) Suppose the previous conjecture is P (σ, m, S, f), the new input is x, the counterexample is
y, and maximal element seen so far is m′.
Suppose M(σ) = p, where counterexamples are given according to f . Consider the output of

M when the previous conjecture is p, the new input is x, and the number of elements seen
so far is k, for card(S ∪ {x}) ≤ k ≤ max({m, m′})−m + card(S ∩ {z : z ≤ m}).

(* Intuitively, k takes all possible values for the number of elements seen so far which are
possible for any set Z such that S ⊆ Z ⊆ {z : m < z ≤ m′ or z ∈ S}. In particular, if
m > m′, then k = card(S) – this is useful if the target language is a finite set. *)

If all these conjectures of M are p, then M ′ continues with the conjecture P (σ, m, S, f).
Else, M ′ conjectures Q(0, m + 1 + m′, S, f), where m′ is the maximal element seen so far.

We now argue that if M -identifies the input language, then so does M ′. Suppose L is the
target language and T is the input text for L.

First note that, by induction, the invariants (P1) to (P5) are satisfied. This is easy to see for
(P1) and (P2). For (P3) note that, whenever Q(·, ·, ·, ·) is conjectured in steps (b) or (c) above,

38



the value of m is at least as large as the largest element seen so far. Thus, (P3) also can be
seen to hold by induction, as S is appropriately updated in step (a). Similarly, (P4) also holds,
as conjecture R(·, ·, ·, ·) is made only in step (a) when the previous conjecture was of the form
Q(m, m, S, f), or in step (b), where by induction the property (P4) is maintained. Property (P5)
holds, as the conjecture P (σ, m, S, f) is made only via step (b) when i = m, or it is repeated via
step (c).

Further, note that if a hypothesis of the form Q(·, m, ·, ·) is ever conjectured, then eventually,
S would contain all elements of the target language which are ≤ m and all i ≤ m will be in the
domain of f (via repeating conjectures of the form Q(·, m, ·, ·) and R(·, m, ·, ·) in steps (a) and
(b)).

Also by construction, when a hypothesis of the form P (σ, m, S, f) is first conjectured for a
particular set of parameters (via step (b)), σ seems like a stabilizing sequence for inputs from
S: in particular, M(σ) = M(στ), for all τ such that content(τ) ⊆ S, and |τ | ≤ card(S) + 1 (we
used ‘+1’ to take care of ∅, as well as to handle the input #); here the counterexamples to M are
given via f , and the conjectures of M are all ≤ m. Thus, if on the input text T , the learner M ′

converges to the hypothesis P (σ, m, S, f), then M(σ) must indeed be a grammar for the target
language (as, for all elements in L − S, one checks in step (c) that M does not make a mind
change, whatever the appropriate number of elements seen may be). Thus, M ′ also identifies the
target language.

Also, either M ′ converges on T to some hypothesis of the form P (σ, m, S, f) or a hypothesis
of the form Q(·, ·, ·, ·) is conjectured infinitely often by M ′ on T (as step (b) eventually leads to
a hypothesis of the form P (·, ·, ·, ·) or Q(·, ·, ·, ·), and step (c) eventually leads to hypothesis of
the form Q(·, ·, ·, ·), unless the learner stabilizes on a hypothesis of the form P (·, ·, ·, ·)). We will
argue that the latter case (that is, a hypothesis of the form Q(·, ·, ·, ·) is conjectured infinitely
often) cannot happen.

Note that in the latter case above, m grows unbounded (as both steps (b) and (c) increase
the parameter m in the conjecture Q(·, m, ·, ·)). Thus, the domain of f eventually contains every
element, and S eventually contains all elements of L. Suppose σ is the least stabilizing sequence
for M on L when counterexamples are given according to f . Let n be such that content(σ) ⊆
L ∩ {x : x ≤ n}, all conjectures of M on initial segments of σ are ≤ n (when counterexamples
are given according to f), and in the case that L is finite, max(L) ≤ n. Furthermore, for all σ′

with canonical index smaller than σ such that content(σ′) ⊆ L, there is an x ≤ n, x ∈ L such
that M(σ′) 6= M(σ′x) and all conjectures of M on initial segments of σ′ are ≤ n (where the
counterexamples given are the least ones). Then, once Q(·, m, ·, ·) is conjectured with m ≥ n,
we will have that eventually, R(m, m, S, f) is conjectured for some parameter values S and f .
Then, in step (b) (using invariants (P1) to P5), the stabilizing sequence σ would be chosen, and
M ′ will conjecture P (σ, m, S, f). This conjecture will then never be changed. �

Our next theorem shows that, for iterative learners (not getting negative counterexamples
to conjectures), the additional information regarding the number of elements seen so far can
sometimes give advantage over n feedback queries and access to the maximal element seen so
far. Note that the learner for the part (a) of the following theorem is not total.

39



Theorem 27. There exists a class L such that
(a) L can be iteratively learnt provided the learner is given the number of elements in the

input seen so far as additional information.
(b) For all n, L cannot be iteratively learnt by an n-feedback learner even if it gets the maximal

element seen so far as additional information.

Proof. Let M0, M1, . . . denote a recursive enumeration of feedback query learners using maximal
element seen so far, where the number of queries, per round, used by Mn is at most n.

Intuitively, for each n, we will place in the diagonalizing class some languages constructed
specifically to diagonalize against Mn witnessing n-feedback learning using the maximal element
seen so far as additional information. These languages will have n coded in every element of
the language (so that a learner can obtain it easily). We will take care that the diagonalizing
languages are never of cardinality 3s+1. Furthermore, cardinality of the language being ≥ 3s+2,
implies that either the input language is of size 3s + 2 and contains some “special elements” or
the construction of σn,s+1 below (forcing one extra mind change by Mn) was successful, or some
terminal “diagonalizing condition” holds. The learner is able to determine which of the above
cases holds, and thus output appropriately. We now proceed formally.

Using Operator recursion theorem [Cas74], there exists a recursive 1–1 increasing function
p such that Wp(n) may be defined as given below. Along with Wp(n), we will also try to define
xn,0 < xn,1 < . . . as well as σn,0 ⊆ σn,1 ⊆ . . .. Always, xn,s = 1 + max(content(σn,s)). Note that
xn,s is defined iff σn,s is defined. Wp(n) = union of all content(σn,s), where σn,s gets defined.

Initially, σn,0 = λ and xn,0 = 1.

Definition of σn,s+1:
1. Wait until Mn(σn,s) and Mn(σn,s � 〈n, j, xn,s〉) get defined for each j ≤ 2n + 2.
2. If Mn(σn,s � 〈n, j, xn,s〉)↓ 6= Mn(σn,s)↓ for some j, Then

Choose the least such j. Let j′, j′′ be least such that j 6= j′, j′ 6= j′′, j 6= j′′.
Let σn,s+1 = σn,s � 〈n, j, xn,s〉 � 〈n, j′, xn,s〉 � 〈n, j′′, xn,s〉.
Let xn,s+1 = 1 + max(content(σn,s+1)).

Else Loop forever (σn,s+1 does not get defined in this case).

Note that card(σn,s) = 3s.

The class L will consist of the following languages (for each n),
(i) Wp(n),
(ii) the languages content(σn,s)∪ {〈n, j, xn,s〉, 〈n, 2n + 3 + j, xn,s〉}, for j ≤ 2n + 2, whenever σn,s

is defined.
(iii) In case σn,s is defined and Mn(σn,s � 〈n, j, xn,s〉) ↓= Mn(σn,s) ↓ , for all j ≤ 2n + 2, then L

will additionally contain content(σn,s) ∪ {〈n, j1, xn,s〉, 〈n, 2n + 2, xn,s〉} and content(σn,s) ∪
{〈n, j1, xn,s〉, 〈n, j2, xn,s〉, 〈n, 2n + 2, xn,s〉}, where

j1 < 2n + 2 is maximal such that Mn on previous conjecture M(σn,s) and new input
(〈n, 2n + 2, xn,s〉) does not query 〈n, j1, xn,s〉 and

40



j2 < j1 is maximal such that Mn on previous conjecture (M(σn,s) and new input 〈n, 2n+
2, xn,s〉) or 〈n, j1, xn,s〉 does not query 〈n, j2, xn,s〉 (note that in this case, σn,s+1 does
not get defined, and Wp(n) = content(σn,s)).

Claim 28. L can be iteratively learnt using the number of elements in the input seen so far as
additional information.

Proof. An iterative learner (with the number of elements in the input seen so far as additional
information) can learn L by initially outputting a grammar for ∅. It can determine p(n) when
it first sees 〈n, ·, ·〉. Beyond (and including) this point, if it ever sees an element of the form
〈n, j, x〉, where j > 2n+2, it will make the conjecture content(σn,s)∪{〈n, j, x〉, 〈n, j−2n−3, x〉}
(where s is such that x = xn,s), as in the clause (ii) in the definition of L and never change its
mind thereafter.

Otherwise, if the number of input elements seen so far is 3s + 1, for some s, then the learner
outputs p(n). If the number of elements seen so far is 3s + 2 or 3s + 3, then it finds xn,s and σn,s

(which has 3s number of elements). It then waits until Mn(σn,s) and Mn(σn,s � 〈n, j, xn,s〉) get
defined for each j ≤ 2n+2. If there exists a j ≤ 2n+2, such that Mn(σn,s�〈n, j, xn,s〉) 6= Mn(σn,s),
then it continues to output p(n). Otherwise, it determines the maximal j1 such that Mn on
the previous conjecture Mn(σn,s) and new input 〈n, 2n + 2, xn,s〉 does not query 〈n, j1, xn,s〉
and maximal j2 < j1 such that Mn on the previous conjecture Mn(σn,s) and new input being
〈n, 2n + 2, xn,s〉 or 〈n, j1, xn,s〉 does not query 〈n, j2, xn,s〉. The learner then outputs a grammar
for content(σn,s) ∪ {〈n, j1, xn,s〉, 〈n, j2, xn,s〉, 〈n, 2n + 2, xn,s〉}, if the number of elements seen so
far was 3s + 3; the learner outputs a grammar for content(σn,s)∪ {〈n, j1, xn,s〉, 〈n, 2n + 2, xn,s〉},
if the number of elements seen so far is 3s + 2. It is easy to verify that the above learner will
iteratively learn L using the number of elements seen as additional information. This completes
the proof of the claim.

Claim 29. Mn cannot iteratively learn L using n-feedback queries, even if it is given the maximal
element seen so far as additional information.

Proof. To see this, suppose infinitely many σn,s get defined. Then clearly Mn does not TxtIt
learn Wp(n) using n-feedback from the text

⋃
s σn,s, as there are infinitely many mind changes

by Mn on the text.
On the other hand, if σn,s+1 does not get defined, then if step 1 does not finish, then Mn

does not learn the language content(σn,s) ∪ {〈n, j, xn,s〉, 〈n, 2n + 3 + j, xn,s〉} for the j for which
Mn(σn,s � 〈n, j, xn,s〉) does not converge.

If step 2 does not finish, then Mn(σn,s � 〈n, j, xn,s〉) = Mn(σn,s), for each j ≤ 2n + 2. Let
j1 < 2n + 2 be maximal such that Mn on the previous conjecture Mn(σn,s) and the new input
〈n, 2n + 2, xn,s〉 does not query 〈n, j1, xn,s〉 and let j2 < j1 be maximal such that Mn on the
previous conjecture Mn(σn,s) and the new input being 〈n, 2n + 2, xn,s〉 or 〈n, j1, xn,s〉 does not
query 〈n, j2, xn,s〉. Then, Mn fails to identify at least one of content(σn,s)∪{〈n, j1, xn,s〉, 〈n, 2n+
2, xn,s〉} and content(σn,s) ∪ {〈n, j1, xn,s〉, 〈n, j2, xn,s〉, 〈n, 2n + 2, xn,s〉}, as Mn converges to the

41



same grammar on both σn,s � 〈n, j1, xn,s〉 � 〈n, 2n + 2, xn,s〉∞ and σn,s � 〈n, j2, xn,s〉 � 〈n, j1, xn,s〉 �
〈n, 2n + 2, xn,s〉∞. �

A similar idea can be used to show that, for iterative learners, the number of elements seen
so far can sometimes give more advantage than n stored elements seen of the input.

Note that the learner in part (a) of the following theorem is not total.

Theorem 30. There exists a class L such that
(a) L can be iteratively learnt provided the learner is given the number of elements seen so

far as additional information.
(b) For all n, L cannot be iteratively learnt by an n-memory bounded learner.

6 Using the Length of the Input as Additional Information

The length of the input seen so far can potentially be viewed as an alternative to the number of
elements seen so far as a source of additional information for NCIt-learners. However, we show
in this section that, for NCIt-learners, it can be replaced by access to the maximal element
seen so far. The technique used for the following theorem is similar to that used in the proof of
Theorem 26, with some modifications to handle length.

Theorem 31. Suppose L is NCIt-learnable by a learner using the length of input as additional
information. Then L is NCIt-learnable by a learner using the maximal element seen so far as
additional information.

Proof. Suppose M is an NCIt learner which uses the length of input. We will define M ′ below
which uses the maximal element seen so far and NCIt-identifies the languages which are NCIt-
learnt by M .

Below f will denote a finite partial function such that f(i) is a counterexample (or #) to
conjecture i. The defined part of f will always be correct with respect to the input language L.

Let P be a 1–1 recursive function such that WP (σ,f) = WM(σ), if M(σ) = M(σ#k) for all k
(where counterexamples are provided according to f), and f(M(σ′)) is defined for all prefixes
σ′ of σ; Otherwise WP (σ,f) = N (this condition applies if either f(M(σ′)) is not defined for some
prefix σ′ of σ, or M(σ) 6= M(σ#k) for some k).

We now define M ′. M ′ would be an NCIt-learner using the maximal element seen so far as
additional information. For ease of presentation, we give M ′ repeatedly requesting inputs, the
maximal element seen so far, and making conjectures and receiving counterexamples. Initially,
M ′ outputs a conjecture for N (which we assume without loss of generality not to be syntactically
same as any of the other conjectures used below). If there is no counterexample, then we are done.
Otherwise M ′ goes to stage 0 below. Note that M ′ can remember f , stage number, phase and
which part of the phase (in case of phase 1) it is in, by just padding its conjecture appropriately;
Thus, for phase 1, we essentially describe it as if M ′ can remember all the data it has seen since
the phase started — in phase 1, we are not concerned about converging to a hypothesis, but just
about finding certain σs — thus all new input seen can be padded.

42



Stage s
Phase 1:
1. Suppose m is the maximal element seen so far. Below τ will denote the sequence of

elements seen in the input since this phase started (note that this τ will keep getting
updated with time, based on which step we are executing).

2. Let Y denote the set of elements ≤ m which belong to the input language (this can be
determined using (padded) conjectures for {x}, with x ≤ m). Note here that each
such conjecture would update τ too.

3. Loop for t = 0 to ∞:
3.1 Update f by finding the value of f on the least number on which it is not defined.

This can be done by conjecturing the least input on which f is not defined (τ
correspondingly gets updated).

Suppose t = 〈t′, t′′〉. Let σs be the sequence with the canonical code t′.
Below, in the simulation of M , counterexamples are provided using f .
If
3.2 content(σs) ⊆ Y ∪ content(τ), f(M(σ′)) is defined for each prefix σ′ of

σs and
3.3 f(P (σs, f

′)) = #, where f ′ is restriction of f to the domain being
{M(σ′) : σ′ ⊆ σs}, and

3.4 M(σs#
x · x) = M(σs), for all x ∈ Y ∪ content(τ).

Then go to step 4. Otherwise go to the next iteration of the loop.
End Loop

4. If appropriate σs is found, then M ′ outputs (padded) P (σs, f) and goes to Phase 2.

Phase 2
On the new input x check if M(σs) = M(σs#

xx). If not, then go to stage s+1. Otherwise
repeat P (σs, f) as the conjecture.

End stage s

Now we claim that the above M ′ NCIt-identifies (using the maximal element seen so far as
additional information) any language which is NCIt-learnt by M (using the length of input as
additional information).

Let L be the input language. Values of variables below are as at the corresponding stage/phase.
If the input language is N, then clearly M ′-identifies it.
Now suppose the above learner gets stuck in phase 2 of some stage s. Let T ′ be a text for L

where T ′(x) = x, if x ∈ L, and T ′(x) = # otherwise. Then clearly, when counterexamples are
given according to f as at the beginning of phase 2 in stage s, for all n, M(σsT

′[n]) = M(σs)
(otherwise either P (σs, f) would have generated a counterexample, or a mind change would have
been found on M(σs#

xx) for some x ∈ Y ∪ content(τ) as at step 3.4 of phase 1, or when input
x is received in phase 2; here note that Y contains all the data seen in stages before stage s and

43



(M(σs) = M(σs#
x) and M(σs) = M(σsT

′[x])) implies M(σs#
xx) = M(σsT

′[x+1])). Moreover,
all the answers given by f are correct. Thus, M ′ NCIt-identifies L (using the maximal element
seen so far as additional information).

If M ′ gets stuck at phase 1 of some stage s, then there is no stabilizing sequence for M on
input L (when the counterexamples are given according to f), and thus M does not NCIt-
learn L. (Here note that Y contains all the data seen by M ′ in stages before stage s, and thus
all elements of the input language are eventually in Y ∪ content(τ), as step 3.1 gets executed
infinitely often; moreover f gets defined on all inputs).

We now argue that there cannot be infinitely many stages. Note that if there are infinitely
many stages, then f eventually gets defined on all inputs — for the computation of M below,
we assume that the counterexamples are given according to this f . Let 〈t′, t′′〉 be the least such
that σ with the canonical index t′ satisfies the conditions: (i) content(σ) ⊆ L, (ii) for all x ∈ L,
M(σ#xx) = M(σ) and M(σ#k) = M(σ) for all k. Note that there exists such a σ, as every
stabilizing sequence satisfies these properties.

Let s be large enough so that (i) input text T [s] contains all elements in content(σ), (ii)
for all 〈t′1, t′′1〉 < 〈t′, t′′〉, for γ with the canonical index t′1, either content(γ) 6⊆ content(T ), or
M(γ) 6= M(γ#xx) for some x ∈ content(T [s]), or M(γ#k) 6= M(γ), for some k. (Here, note that
after the execution of step 2 at stage s at least the first s elements of the input text are already
in Y .) Now, in the loop at step 3 in stage s, Phase 1, σs would be defined to be σ, and thus the
learner will not leave stage s (phase 2) anymore. �

7 Robustness of NCIt-learning with Additional Information

In this section we consider whether our results still hold if instead of giving the maximal/number
of elements seen so far as additional information the learner is only given an upper bound on
these values or an approximate value which is within an additive constant c of the actual value.
This would in some sense show robustness of the results against error in the additional informa-
tion. Below we briefly sketch how each of the results relating to the maximal element/number
of elements seen so far is affected when one considers such a modification in the additional
information.

Note that an upper bound on the maximal element seen so far implies an upper bound on
the number of elements seen so far (which means that a bound on the number of elements seen
so far can always be simulated using a bound on the maximal element).

First we note that the maximal element seen so far can be replaced by an upper bound on
the maximal element seen so far in the proof of Theorem 21.

The next question is whether Theorem 22, which shows the strength of NCIt-learners using
the maximal element seen so far against the ones using the number of elements seen so far,
can be extended to the case when only an upper bound for the maximal element seen so far is
available to the learner. We don’t know the answer to this question.

Theorem 24 shows the strength of the maximal element seen so far (or 1-cell memory) and the
number of elements seen so far available to NCIt-learners together. The proof of this theorem

44



does not work if, on the positive side, the learner is given an upper bound on the number of
elements seen so far, or an approximation to the number of elements seen so far within an
additive constant. However, one can modify the proof of Theorem 24 to work for the case when
the positive side is given an approximation to the upper bound on the number of elements seen
so far (within an additive constant c), by replacing L ∈ L by L′, where

x ∈ L iff L′ contains (6c + 3)x + 2c + 2 + j, for 0 ≤ j < 2c + 1.
The idea here is that each x is mapped to a group of 6c + 3 elements, where the least and

the highest 2c + 1 elements are not in the language L′, and the middle 2c + 1 ones are in L′

iff x is in L; this essentially allows a learner, given an approximation within a “constant c” for
the number of elements in the language (in case it is finite), to compute the actual number of
elements in the input language. This is enough for learning the class L as in Theorem 24. The
diagonalization proof as in Theorem 24 also can be adjusted appropriately, as the proof there
worked for all possible n-feedback and n-memory learners. The same idea can be used for similar
cases below.

Also note that Theorem 24 does not work if the upper bound on the number of elements seen
so far is given on the positive side, as the maximal element seen so far also bounds the number of
elements seen so far too. So the diagonalization against n-memory bounded NCIt-learner does
not work in this case.

For Theorem 23, the proof does not work if we are given an upper bound on the number of
elements seen so far (the proof does work when we are given an upper bound on the maximal
element seen so far). However, the proof can be modified to work for the case when an upper
bound on the number of elements seen so far is given to the learner. This is done by first
partitioning N into blocks I0, I1, I2, . . ., where Ik is of size k + 1. The languages in L2, are of the
form {〈e, x〉 : x ∈ Ik, k ∈ D} ∪ {〈0, y〉}, for some finite D. Thus, essentially, the upper bound on
the number of elements seen so far gives away the upper bound on the maximal element for the
languages in L2. This allows one to identify the class L. The diagonalization proof can easily be
modified to use the updated class.

Theorem 26 shows that, for NCIt-learners converging on all inputs, the number of elements
so far can be simulated by the maximal element seen so far. This simulation holds if only an
upper bound on the maximal element seen so far is given.

For Theorem 27, showing advantage of iterative learners using access to the number of el-
ements seen so far over the ones using n-feedback and the maximal element seen so far, the
proof can be modified to handle the case when, on the positive side, the learner is given an
approximation to the number of elements seen so far within an additive constant c (by using
2c + 1 cylinderification). The proof, of course, cannot be modified to work for an upper bound
on the number of elements seen so far, as it is bounded by the upper bound on the maximal
element seen so far.

8 Conclusions

As we have shown, additional information of the types studied in this paper can add interest-
ing new capabilities to iterative learners getting negative examples to conjectures containing

45



data in excess of the target language. Some problems related to comparisons of help provided
by additional information remain open, and solving these problems can offer new (and, possi-
bly, unexpected) insight into advantages of using additional information of certain types for the
learners in question. Influence of noise on additional information has been discussed in Section 7,
however, many questions remain open here as well. Similarly to [JK07], one might also consider
different types of negative examples (refuting conjectures containing extra elements) by iterative
learners and explore how these different types of negative examples may interplay with different
types of additional information. Yet another interesting area of research is studying iterative
learnability with counterexamples and additional information of specific indexed classes of lan-
guages (for example, regular languages or patterns) — as we have shown all such classes are
learnable class-preservingly using the maximal element or the number of elements seen so far
as additional information, and, therefore, one can now study if and when learnability of such
classes may be efficient.

A general open problem for iterative learners of any type using additional (bounded) memory
is whether a multiset type memory (when a learner can store the same input item several times;
for example, the learner may decide to store, say, 10 copies of the next input element) can have
an advantage over a set type memory (where every item is stored just once). We suspect that
no such advantage is possible — however, we have not been able to find a proof.

Acknowledgments. A preliminary version of the paper appeared in [JK09]. The authors are
grateful to the anonymous referees of ALT’2009 and this journal for many useful remarks and
suggestions. We specially thank a referee for a simpler proof of Theorem 10.

References

[Ang80] D. Angluin. Finding patterns common to a set of strings. Journal of Computer and
System Sciences, 21(1):46–62, 1980.

[Ang88] D. Angluin. Queries and concept learning. Machine Learning, 2(4):319–342, 1988.

[BA96] R. Brachman and T. Anand. The process of knowledge discovery in databases: A
human centered approach. In U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and
R. Uthurusam, editors, Advances in Knowledge Discovery and Data Mining, pages
37–58. AAAI Press, 1996.

[BB75] L. Blum and M. Blum. Toward a mathematical theory of inductive inference. Infor-
mation and Control, 28(2):125–155, 1975.

[Blu67] M. Blum. A machine-independent theory of the complexity of recursive functions.
Journal of the ACM, 14(2):322–336, 1967.

[Cas74] J. Case. Periodicity in generations of automata. Mathematical Systems Theory,
8(1):15–32, 1974.

[CJLZ99] J. Case, S. Jain, S. Lange, and T. Zeugmann. Incremental concept learning for
bounded data mining. Information and Computation, 152(1):74–110, July 1999.

46



[CL82] J. Case and C. Lynes. Machine inductive inference and language identification. In
M. Nielsen and E. M. Schmidt, editors, Proceedings of the 9th International Colloquium
on Automata, Languages and Programming, volume 140 of Lecture Notes in Computer
Science, pages 107–115. Springer-Verlag, 1982.

[CM08] J. Case and S. Moelius. U-shaped, iterative, and iterative-with-counter learning. Ma-
chine Learning, 72(1–2):63–88, 2008.

[FPSS96] U. M. Fayyad, G. Piatetsky-Shapiro, and P. Smyth. From data mining to knowledge
discovery. In U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusam,
editors, Advances in Knowledge Discovery and Data Mining, pages 1–34. AAAI Press,
1996.

[Ful90] M. Fulk. Prudence and other conditions on formal language learning. Information and
Computation, 85(1):1–11, 1990.

[Gol67] E. M. Gold. Language identification in the limit. Information and Control, 10(5):447–
474, 1967.

[HU79] J. Hopcroft and J. Ullman. Introduction to Automata Theory, Languages, and Com-
putation. Addison-Wesley, 1979.

[JK07] S. Jain and E. Kinber. Iterative learning from positive data and negative counterex-
amples. Information and Computation, 205(12):1777–1805, 2007.

[JK08] S. Jain and E. Kinber. Learning languages from positive data and negative counterex-
amples. Journal of Computer and System Sciences, 74(4):431–456, 2008. Special Issue:
Carl Smith memorial issue.

[JK09] S. Jain and E. Kinber. Iterative learning from texts and counterexamples using addi-
tional information. In R. Gavaldà, G. Lugosi, T. Zeugmann, and S. Zilles, editors, Al-
gorithmic Learning Theory: 20th International Conference (ALT’ 2009), volume 5809
of Lecture Notes in Artificial Intelligence, pages 308–322. Springer-Verlag, 2009.

[Joc68] C. G. Jockusch. Semirecursive sets and positive reducibility. Transactions of the
American Mathematical Society, 131:420–436, 1968.

[LZ92] S. Lange and T. Zeugmann. Types of monotonic language learning and their charac-
terization. In Proceedings of the Fifth Annual Workshop on Computational Learning
Theory, pages 377–390. ACM Press, 1992.

[LZ96] S. Lange and T. Zeugmann. Incremental learning from positive data. Journal of
Computer and System Sciences, 53(1):88–103, 1996.

[LZ06] Y. Li and W. Zhang. Simplify support vector machines by iterative learning. Neural
Processsing Information - Letters and Reviews, 10(1):11–17, 2006.

[LZZ08] S. Lange, T. Zeugmann, and S. Zilles. Learning indexed families of recursive languages
from positive data: A survey. Theoretical Computer Science, 397(1–3):194–232, 2008.

[OSW86] D. Osherson, M. Stob, and S. Weinstein. Systems that Learn: An Introduction to
Learning Theory for Cognitive and Computer Scientists. MIT Press, 1986.

[Pop68] K. Popper. The Logic of Scientific Discovery. Harper Torch Books, New York, second
edition, 1968.

[Rog67] H. Rogers. Theory of Recursive Functions and Effective Computability. McGraw-Hill,
1967. Reprinted by MIT Press in 1987.

47



[Wie76] R. Wiehagen. Limes-Erkennung rekursiver Funktionen durch spezielle Strategien.
Journal of Information Processing and Cybernetics (EIK), 12(1–2):93–99, 1976.

48


