
Complexity Issues for Vacillatory Function Identification 1

John Case

Department of Computer and Information Sciences

University of Delaware

Newark, DE 19716, USA

Email: case@cis.udel.edu

Sanjay Jain

Institute of Systems Science

National University of Singapore

Singapore 0511

Republic of Singapore

Email: sanjay@iss.nus.sg

Arun Sharma

School of Computer Science and Engineering

The University of New South Wales

Sydney, NSW 2033, Australia

Email: arun@spectrum.cs.unsw.oz.au

1Work supported by NSF grant CCR 871-3846 and a grant from Siemen’s Corporation to MIT.

Preliminary version of this paper appeared in the Proceedings of the Foundations of Software Technology

and Theoretical Computer Science, Eleventh Conference, New Delhi, India, December 1991. Part of the

work was done while the second author was at the University of Delaware and the third author was

at the Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge,

MA, USA.

Abstract

It was previously shown by Barzdin and Podnieks that one does not increase the power of

learning programs for functions by allowing learning algorithms to converge to a finite set of

correct programs instead of requiring them to converge to a single correct program. In this

paper we define some new, subtle, but natural concepts of mind change complexity for function

learning and show that, if one bounds this complexity for learning algorithms, then, by contrast

with Barzdin and Podnieks result, there are interesting and sometimes complicated tradeoffs

between these complexity bounds, bounds on the number of final correct programs, and learning

power.

CR Classification Number: I.2.6 (Learning – Induction).

1 Introduction

Let N = {0, 1, 2, . . .}, the set of natural numbers. Let f be any function : N → N . For

any n ∈ N , we let f [n] denote {(x, f(x)) | x < n}, the finite initial segment of f consisting

of the first n data points in the graph of f . ∈, ⊆, and ⊂ denote, respectively, membership,

containment, and proper containment for sets. The quantifier ‘
∞
∀ ’ means ‘for all but finitely

many natural numbers’.

A function learning machine M is an algorithmic device which, on any input f [n], returns

either ? or a program, where, if it returns a program on a segment, it returns a program on

all extensions of that segment. We write M(f [n]) for the output of M on f [n]. If M(f [n])

is a program, we think of that program as M’s conjecture, based on the data f [n], as to how

to compute all of f ; M(f [n]) =? then represents the situation where M does not conjecture a

program based on the data f [n]. The restriction that M must continue to conjecture programs

once it has done so is essentially without loss of generality since, intuitively, a machine which

hasn’t had enough time to think of a new conjecture can be thought of re-outputting its previous

conjecture.

As is by now well known, there are various senses in which M can be thought of as suc-

cessfully learning or inferring a program for f . Let oi = M(f [i]). The criterion of success

known as Ex-identification (Gold (1967), Blum and Blum (1975), and Case and Smith (1983))

requires that the sequence o0, o1, o2, . . . contains a program p for f such that (
∞
∀ i)[oi = p]. In

this case one speaks of p as being the final program output by M on f . Barzdin and Podnieks

(1973) (see also Case and Smith (1983)) considered a vacillatory criterion of success (called

Fex-identification in Case and Smith (1983)) which requires that on f but finitely many dis-

tinct programs are output and that the set P of programs appearing in o0, o1, o2, . . . infinitely

often be non-empty (and finite) and, furthermore, that each program in P computes f . In

this case P is spoken of as the set of final programs output by M on f . It was shown by

Barzdin and Podnieks (1973) that, in spite of Fex being a pleasantly more liberal criterion of

1

success, one can translate any function learning machine Fex-identifying a class of functions

into one Ex-identifying the same class of functions.1 An examination of the translation given

by Case and Smith (1983) shows that the function learning machine output by the translation

will ostensibly take more “time” to reach its final program than the input function learning

machine does to reach its final programs.

In this paper we show, then, that there are some interesting effects on learning power, for

vacillatory function learning, wrought by bounding suitably sensitive measures of the computa-

tional complexity of the learning machines themselves. Our suitably sensitive measures need to

be pleasingly more subtle than ordinary mind change complexity (Barzdin and Freivalds (1974),

Case and Smith (1983)) (Proposition 1); however, our measures are much closer to ordinary

mind change complexity than to the more comprehensive complexity measures in Wiehagen

(1986), Angluin (1980), Gold (1978), Daley and Smith (1986). It intriguingly remains to

be investigated whether there is also an effect on learning power that also occurs for more

comprehensive measures.

Suppose o0, o1, o2, . . . is the sequence of outputs of M on f . The first, not very subtle, com-

plexity measure one might think of for vacillatory function learning is to count the number of

changes of conjecture beyond the first program in o0, o1, o2, . . . up until nothing but the final suc-

cessful programs appear in o0, o1, o2, It is very straightforward to show (Proposition 10) that

vacillatory function identification subjected to a bound on this complexity measure yields no

more learning power than bounding the number of mind changes for Ex-identification. Hence,

we will look to somewhat more sophisticated measures of complexity: just as the custom of

pressing a flower in a book teases apart the petals, so does a harder conceptual perspective tease

apart concepts that weren’t apart from a weaker perspective.2 As will be seen, our perspectives

on mind change-like complexity reveal a deeper structure than the usual perspectives.

Suppose we are given an a priori bound b on the cardinality of the set of final programs.

Suppose, for example, that b = 2 and M on f outputs the sequence

?, p1, p2, p1, p3, p1, p2, p1, p4, p3, p4, . . . , (A)

where the pi’s are all programs and the continuation of the sequence is an infinite alternation

between p3 and p4. Suppose, with an eye to eventually “finding” the non-empty, finite set of

final programs P output (if it exists), at each new output of M on f we non-deterministically

choose a candidate for P (“rationally” based on the value of b and the outputs so far). For

example, based on b = 2 and the sequence (A), we might choose the succession of candidates

∅, {p1}, {p1, p2}, {p1, p2}, {p2, p3}, {p1, p3}, {p1, p2}, {p1, p2}, {p4}, {p3, p4}, {p3, p4}, . . . , (B)

1Interestingly, in the context of machine learning of grammars for languages, vacillatory criteria do yield more

learning power (Osherson and Weinstein (1982)). In fact in this context increasing by one a constant bound on

the number of final grammars leads to an increase in learning power (Case (1988)). See also Case, Jain and

Sharma (1989).
2This metaphor was suggested by Mark Fulk.

2

where the sequence continues with endless repetitions of {p3, p4}. This choice is rational because

no candidate has cardinality exceeding 2 and, if a new candidate is chosen differing from the

just previous candidate, the only addition is the latest program conjectured; furthermore, each

choice contains the current output program (if any). If, as in this example, the sequence of

sets chosen stabilizes to the actual (non-empty, finite) final set of programs, we measure the

number of set mind changes as the number of changes of candidate chosen beyond the first

non-empty candidate. For the choice sequence (B), the number of set mind changes is 6. A

different “rational” choice sequence of candidates for the output sequence (A), might yield a

different number of set mind changes. For example,

∅, {p1}, {p1, p2}, {p1, p2}, {p1, p3}, {p1, p3}, {p1, p2}, {p1, p2}, {p4}, {p3, p4}, {p3, p4}, (C)

where the sequence continues with endless repetitions of {p3, p4}, is also rational, but involves

but 5 set mind changes. We measure the set mind change complexity by the smallest number

of set mind changes available among the rational, non-deterministic choices. For the value of

b = 2 and output sequence (A), 5 is the measure of set mind change complexity.

Sfexa
b,c-identification, introduced formally below in Definitions 11 and 12, is a vacillatory

function identification criterion requiring that

(a) the cardinality of the non-empty, finite set of final programs be ≤ b,

(b) the set mind change complexity is ≤ c, and

(c) each of the final programs computes the input function with mistakes (anomalies) at ≤ a

arguments.

Sfexa
b,c is the class of sets C of functions such that some function learning machine Sfexa

b,c-

identifies C. We usually drop the superscript in Sfexa
b,c (and Qfexa

b,c defined below) when the

superscript is 0.

By Corollary 42 below we have that

Sfex1,c ⊂ Sfex2,c ⊂ . . . ⊂ Sfexc,c = Sfexc+1,c = (D)

Therefore, in the context of function learning, for a constant set mind change bound, increasing

the bound on the size of the final set of programs (up to the set mind change bound) strictly

increases learning power.

For c > 1, Theorems 16 and 18 below imply, for example, that

Sfex2,c ⊂ Sfex1,2c−1. (E)

Hence, from (D) there is a set of functions C which, for a set mind change bound of c, requires a

vacillation bound of at least 2 on the cardinality of the set of final programs, but by (E), one can

reduce the vacillation bound to 1 by increasing the set mind change bound to 2c−1. Therefore,

3

there are cases in the context of function learning in which an increase in the vacillation bound

results in a strict set mind change complexity savings!

A special case of our hardest simulation result (Theorem 18 below) yields that3

Sfex3,3 ⊆ Sfex2,4. (F)

Hence, an increase in set mind change complexity (from 3 to 4) can in all cases allow a decrement

in vacillation bound (from 3 to 2). The most general tradeoff formula of this sort we have so

far, in Theorem 18, is fairly complex.

We also define a variant of Sfexa
b,c-identification, called Qfexa

b,c-identification (Definitions 13

and 14), in which the non-deterministic choices for the non-empty, finite set of final programs P

are naturally replaced by choices of queues whose corresponding sets of elements are candidates

for P . Complexity tradeoff results for Qfexa
b,c-identification hold which are quite similar to

those for Sfexa
b,c-identification. Many of our theorems in Sections 3.2 and 3.3 specify what we

know of the complicated relationship between these set and queue based mind change vacillatory

function learning criteria.

It is also interesting to consider the complexity of final programs. In the prior literature

there are two basic measures of the complexity of final programs:

(a) program size (Kinber (1977), Kinber (1974), Freivalds (1975), Chen (1981), Chen (1982),

Jain and Sharma (1990), Case, Jain and Sharma (1989)) and

(b) program speed (Sipser cited in Chen (1981) and Zeugmann (1983)).

We consider the first case and answer an open question in Chen (1981) (Theorem 48 below)

for Mfex-identification, i.e., Fex-identification with no bound on the finite size of the non-

empty set of final programs but with the requirement that the final programs be of size within

some pre-assigned computable function of minimal size. Mex-identification is the special case

of Mfex-identification in which the set of final programs is required to be a singleton. The

result is that there is a translation of any function learning machine Mfex-identifying a class

of functions into one Mex-identifying the same class of functions.

2 Preliminaries

Recursion-theoretic concepts not explained below are treated in Rogers (1967). N+ denotes

the set of positive integers, {1, 2, 3, . . .}.

∗ denotes a non-member of N and is assumed to satisfy (∀n)[n < ∗ < ∞].

d, e, i, j, k, l, m, n, o, q, r, s, t, w, x, y, z, with or without decorations range over N . a, b, c,

with or without decorations range over N ∪ {∗}. In some contexts, p, with or without decora-

tions, ranges over N , being construed as program for a (partial) function. In other contexts,

3By Theorem 16 the inclusion in (F) is actually proper.

4

p, ranges over total function, with the range of p being construed as programs for (partial)

functions.

We let P, S, with or without decorations, range over subsets of N and we let D range

over finite subsets of N . Dx denotes the finite set with canonical index x (Rogers (1967)).

We often identify finite sets with their canonical indices. This is usually done for notational

convenience when (canonical indices of) finite sets are input parameters for programs. 〈·, ·〉

denotes a 1-1 mapping from pairs of natural numbers onto natural numbers. π1, π2 are the

corresponding projection functions. 〈·, ·〉 is extended to n-tuples in a natural way. card(P)

denotes the cardinality of P . So then, ‘card(P) ≤ ∗’ means that card(P) is finite. min(P) and

max(P) respectively denote the minimum and maximum element in P . We take min(∅) to be

∞ and max(∅) to be 0.

η, with or without decorations, ranges over partial functions. For a ∈ (N ∪ {∗}), η1 =a η2

means that card({x | η1(x) 6= η2(x)}) ≤ a. domain(η) and range(η) respectively denote the

domain and range of partial function η. In some contexts s, with or without decorations, ranges

over finite sequences. For finite sequences s1 and s2, s1 �s2 denotes the concatenation of s1 and

s2.

R denotes the class of all recursive functions, i.e., total computable functions with arguments

and values from N . f, g, h, with or without decorations, range over R. C and S, with or without

decorations, range over subsets of R.

ϕ denotes a fixed acceptable programming system for the partial computable functions: N →

N (Rogers (1958), Rogers (1967), Machtey and Young (1978)). (Case showed the acceptable

systems are characterized as those in which every control structure can be constructed; Royer

and later Marcoux examined complexity analogs of this characterization (Riccardi (1980),

Riccardi (1981), Royer (1987), Marcoux (1989).) ϕi denotes the partial computable function

computed by program i in the ϕ-system. We let Φ be an arbitrary Blum complexity measure

(Blum (1967)) associated with acceptable programming system ϕ; such measures exist for any

acceptable programming system (Blum (1967)). We let pad be a 1-1 total function such that

(∀i, j)[ϕpad(〈i,j〉) = ϕi]. For a given total computable function f , we define MinProg(f) to

denote min({i | ϕi = f}). For an integer u, ABS(u) denotes the absolute value of u.

The quantifiers ‘
∞
∃ ’ and ‘∃!’ mean ‘there exist infinitely many,’ and ‘there exists a unique’

respectively.

Hereinafter we refer to function learning machines as learning machines. SEG denotes the

set of all finite initial segments. We let σ, τ, γ and ξ, with or without decorations, range over

SEG. We let M, with or without decorations, range over learning machines.

In Definition 1 below we spell out what it means for a learning machine on a function to

converge in the limit.

Definition 1 Suppose M is a learning machine and f is a computable function. M(f)↓ (read:

M(f) converges) just in case (∃i)(
∞
∀ n) [M(f [n]) = i]. If M(f)↓, then M(f) is defined = the

5

unique i such that (
∞
∀ n)[M(f [n]) = i], otherwise we say that M(f) diverges (written: M(f)↑).

We now introduce a criteria for a learning machine to successfully infer a function.

Definition 2 (Gold (1967), Blum and Blum (1975), Case and Smith (1983)) Let a ∈ N ∪ {∗}.

(i) M Exa-identifies f (written: f ∈ Exa(M)) just in case (∃i | ϕi =a f)[M(f)↓ = i].

(ii) Exa = {S | (∃M)[S ⊆ Exa(M)]}.

Note that Ex0 is the same as the class Ex defined in the introduction.

Theorem 3 For all a ∈ N ,

(a) (Case and Smith (1983)) Exa ⊂ Exa+1.

(b) (Case and Smith (1983))
⋃

a∈N Exa ⊂ Ex∗.

(c) R 6∈ Ex∗.

The notion of Ex∗ identification is due to Blum and Blum (1975). Gold’s (Gold (1967))

proof for R 6∈ Ex also shows that R 6∈ Ex∗. Case and Smith (1983) (see also Barzdin and

Freivalds (1974)) introduce a refinement of the above notion of Ex-identification by bounding

the number of times a learning machine is allowed to change its mind before converging to a

correct program for the function being learned. Definition 4 below describes this notion.

Definition 4 (Case and Smith (1983)) Suppose a, c ∈ N ∪ {∗}.

(i) M Exa
c -identifies f (written: f ∈ Exa

c (M)) just in case [(∃i | ϕi =a f)(
∞
∀ n)[M(f [n]) =

i]∧card({n |? 6= M(f [n])6= M(f [n + 1])}) ≤ c].

(ii) Exa
c = {C | (∃M)[C ⊆ Exa

c (M)]}.

Clearly, Gold’s notion of Ex-identification is the same as Ex0
∗-identification. We usually

drop the superscript in Exa
b when the superscript is 0.

In Definition 5 just below we spell out what it means for a learning machine on a function

to converge in the limit to a finite set of programs.

Definition 5 Suppose M is a learning machine and f ∈ R. M(f)⇓ (read: M(f) finitely-

converges) just in case {M(f [n]) | n ∈ N} is finite. If M(f)⇓, then we say that M(f)⇓ = D,

where D = {i | (
∞
∃ n)[M(f [n]) = i]}; otherwise, for no D is M(f)⇓ = D.

Definition 6 Suppose a ∈ N ∪ {∗} and b ∈ N+ ∪ {∗}.

(i) A learning machine, M, is said to Fexa
b -identify a function f (written: f ∈ Fexa

b (M)) just

in case (∃D | card(D) ≤ b)[M(f)⇓ = D ∧ (∀i ∈ D)[ϕi =a f]].

(ii) Fexa
b = {C | (∃M)[C ⊆ Fexa

b (M)]}.

6

In Fexa
b -identification, the b is a “bound” on the number of final programs and the a is

a “bound” on the number of anomalies allowed in these final programs. A “bound” of ∗ just

means unbounded, but finite. We usually drop the superscript in Fexa
b when the superscript is

0.

Following result due to Case and Smith (1983) says that vacillatory function identification

does not give any extra inferring power over Ex-identification. In the following theorem a = 0

case was done by Barzdin and Podnieks (1973).

Theorem 7 (Case and Smith (1983)) (∀a ∈ N)[Fexa
∗ = Exa].

3 Mind Changes for Vacillatory Function Identification

3.1 Definitions

We now formally define criteria for vacillatory identification with mind changes, which were

informally discussed in the introduction.

Definition 8 Let b ∈ N+ ∪ {∗}. Then n is a Fexb-stabilizing point for M on f just in case

the following hold:

(1) card({M(f [m]) | m ≥ n}) ≤ b.

(2) (∀m ≥ n)(
∞
∃ i)[M(f [m]) = M(f [i])].

Definition 9 Let a, c ∈ N ∪ {∗}. Let b ∈ N+ ∪ {∗}.

(1) A machine M Fexa
b,c-identifies f (written: f ∈ Fexa

b,c(M)) just in case M Fexa
b -identifies f

and card({i < n |? 6= M(f [i]) 6= M(f [i + 1])}) ≤ c, where n is the least Fexb stabilizing point

for M on f .

(2) Fexa
b,c = {C | (∃M)[C ⊆ Fexa

b,c(M)]}.

Proposition 10 For all a, c, Fexa
∗,c = Exa

c .

We now formally define Sfexa
b,c-identification.

Definition 11 Let b ∈ N+ ∪ {∗}. A sequence of sets S0, S1, . . . is Fexb-valid for M on f just

in case, for all i ∈ N , the following five conditions hold.

(1) card(Si) ≤ b.

(2) S0 = {M(f [0])} − {?}.

(3) Si+1 − Si ⊆ {M(f [i + 1])}.

(4) M(f [i]) ∈ Si ∪ {?} .

(5) limj→∞ Sj exists and is = {p | (
∞
∃ k)[M(f [k]) = p]}.

7

Definition 12 Let a, c ∈ N ∪ {∗}. Let b ∈ N+ ∪ {∗}.

(1) A machine M Sfexa
b,c-identifies f (written: f ∈ Sfexa

b,c(M)) just in case M Fexa
b -identifies

f and there exists a Fexb-valid sequence of sets S0, S1, . . . for M on f such that card({i | ∅ 6=

Si 6= Si+1}) ≤ c.

We usually call, min({card({i | ∅ 6= Si 6= Si+1}) | S0, S1, . . . is an Fexb-valid sequence for M

on f}), as the number of setb mind changes by M on f ; we often drop b from setb, if b is clear

from context.

(2) Sfexa
b,c = {C | (∃M)[C ⊆ Sfexa

b,c(M)]}.

We now formally define Qfex-identification.

A queue is an ordered sequence of elements (not necessarily distinct). Let Q = q0q1 . . . qn−1

be a queue of length n. q0 is called the front of the queue. () denotes the empty queue. Q � q

is the queue q0q1 . . . qn−1q. A tail of a queue is a queue obtained by deleting some (possibly

none) of the elements from the front of the queue. Thus () and qiqi+1 . . . qn−1, i < n are all

tails of the queue Q. Set(Q) is the set of elements in the queue Q.

Definition 13 Let b ∈ N+ ∪ {∗}. A sequence of queues Q0, Q1, . . . is Fexb-valid for M on f

just in case, for all i ∈ N , the following five conditions hold.

(1) card(Qi) ≤ b.

(2) Q0 = () or Q0 = (M(f [0])).

(3) Qi+1 is a tail of either Qi or Qi � (M(f [i + 1])).

(4) M(f [i]) ∈ Set(Qi) ∨M(f [i]) =?.

(5) limj→∞ Qj exists and Set(limj→∞ Qj) = {p | (
∞
∃ k)[M(f [k]) = p]}.

Definition 14 Let a, c ∈ N ∪ {∗}. Let b ∈ N+ ∪ {∗}.

(1) A machine M Qfexa
b,c-identifies f (written: f ∈ Qfexa

b,c(M)) just in case M Fexa
b -identifies

f and there exists a Fexb-valid sequence of queues Q0, Q1, . . . for M on f such that card({i |

() 6= Qi 6= Qi+1}) ≤ c.

We usually call, min({card({i | () 6= Qi 6= Qi+1}) | Q0, Q1, . . . is an Fexb-valid sequence for

M on f}), as the number of queueb mind changes by M on f ; we often drop b from queueb if b

is clear from context.

(2) Qfexa
b,c = {C | (∃M)[C ⊆ Qfexa

b,c(M)]}.

We usually drop the superscript in Sfexa
b,c (Qfexa

b,c) when the superscript is 0.

3.2 Simulation Results

Proposition 15 For all a, b, c ∈ N ∪ {∗}, Qfexa
b,c ⊆ Sfexa

b,c ⊆ Exa.

Theorem 16 (∀c ∈ N)[Ex0
c+1 − Sfex∗

∗,c 6= ∅].

8

Proof. Consider the class of functions C = {f | card({x | f(x) 6= f(x + 1)}) ≤ c + 1}. It is

easy to see that C ∈ Ex0
c+1. It can be shown that C 6∈ Sfex∗

∗,c using a proof analogous to the

proof of C 6∈ Ex∗
c in Case and Smith (1983).

Theorem 17 (∀a ∈ N)[Exa+1
0 − Sfexa

∗,∗ 6= ∅].

Proof. Follows from Proposition 15 and Theorem 3.

Theorem 18 For 1 ≤ b ≤ c, c ∈ N , Sfex∗,c ⊆ Qfexb,2c−b.

The proof of the above theorem requires a very complicated simulation.4 Before we give a

proof of Theorem 18, we state the following technical Lemma 19 which will facilitate some of

our proofs. The proof of Lemma 19 is straightforward.

Lemma 19 If S ∈ Sfexb,c, then there exists a learning machine M which Sfexb,c-identifies S

and, for each f ∈ S, M satisfies the four conditions given below. If S ∈ Qfexb,c, then there

exists a learning machine M which Qfexb,c-identifies S and, for each f ∈ S, M satisfies the

conditions, (b) to (d).

(a) (∀n)[M(f [n]) 6= M(f [n + 1]) ⇒ f [1 + max({x ≤ n | M(f [x]) 6= M(f [n])})] ⊆ ϕM(f [n+1])];

(b) (∀n)[(∀x < n)[M(f [n]) 6= M(f [x])] ⇒ f [n] ⊆ ϕM(f [n]) ∧ π2(pad−1(M(f [n]))) = f [n]];

(c) all programs ever emitted by M on f have domain either N or an initial segment of N ;

(d) M, fed f , does not emit more than c + 1 distinct programs.

Proof of Theorem 18. Suppose learning machine M is given. We construct a machine

M′ which behaves as follows. If M Sfex∗,c-identifies f , then M′ will Qfexb,2c−b-identify f .

Without loss of generality, we assume that

M satisfies all the four properties stated in Lemma 19 above (G)

We say useful(τ), or sometimes τ is useful, iff [M(τ) 6=? ∧ (∀τ ′ ⊂ τ)[M(τ) 6= M(τ ′)]]. Let

UseSeg = {σ ∈ SEG | useful(σ)}. Let UseProg = {M(σ) | useful(σ)}. UseSeg is clearly a

recursive set, and, since M satisfies the second condition from Lemma 19, so is UseProg.

Let

4An interesting fact about the simulation is that the number of distinct programs output by the simulating

machine on any input function, f , is not more than the number of distinct programs output by the machine

being simulated on f .

9

W [0] = ∅;

W [〈p, x, l〉 + 1] =











W [〈p, x, l〉] ∪ {〈p, x〉} if p ∈ UseProg

∧[(∀w < x)[〈p,w〉 ∈ W [〈p, x, l〉]] ∧ Φp(x) ≤ l];

W [〈p, x, l〉] otherwise.

Remark 20 Clearly W [i]’s satisfy the following properties:

W [0] = ∅,

for all i, W [i] is finite,

for all i, W [i] ⊆ W [i + 1],

for all i, card(W [i + 1] − W [i]) ≤ 1,

for all i, p, x, [〈p, x + 1〉 ∈ W [i] ⇒ 〈p, x〉 ∈ W [i]],

for all p, x, i, [p 6∈ UseProg ⇒ 〈p, x〉 6∈ W [i]],

for all p, x, [[p ∈ UseProg ∧ (∀w ≤ x)[ϕp(w)↓]] ⇒ (∃i)[〈p, x〉 ∈ W [i]]],

for all i, p, x, [〈p, x〉 ∈ W [i] ⇒ ϕp(x)↓] and

the canonical index of W [i] can be found effectively from i.

For each σ ∈ SEG such that σ is useful we define a program Proc(σ). M′ will only output

programs of the form Proc(σ). We define the i/o behavior of all the programs Proc(σ) in

stages below. For the rest of the proof only, let σ, τ and γ with or without decorations range

over UseSeg.

We first describe some of the important variables and then provide a pointer to many invariants

maintained by the construction.

Variables:

Sσ
j , a finite subset of UseSeg, for each j and σ;

P σ
j , a finite subset of UseProg, for each j and σ;

ξσ
j , a member of SEG, for each j and σ.

The ξσ
j ’s, once defined, never get changed. We use ξσ

j ↓ to denote the fact that ξσ
j gets

defined and ambiguously also for the value of ξσ
j . The Sσ

j ’s and P σ
j ’s may change value during

the execution of stages.

Let S
σ,s
j denote the value of Sσ

j at the beginning of stage s. Let P
σ,s
j denote the value of P σ

j

at the beginning of stage s. Let

FirstEntry(σ, τ, j) = min({s | σ ∈ S
τ,s
j }) (H)

10

Let ϕs
Proc(σ) denote the finite initial segment of ϕProc(σ) defined by the beginning of stage s.

Let rσ
s denote the least element not in domain(ϕs

Proc(σ)). Clearly, by (G), σ can be, uniquely

and algorithmically, extracted from M(σ), so we may and do let

ms
M(σ) = max({|σ|} ∪ {1 + x | 〈M(σ), x〉 ∈ W [s]}) (I)

Some of the important invariants which are maintained by the construction are mentioned

in Lemmas 21 and 23. The reader may verify that these invariants indeed hold. Intuitively, at

any stage s, if the construction can maintain the invariants mentioned in Lemma 21-(a) to (g)

without changing the Sτ
j ’s and P τ

j ’s, then it does so. If the construction cannot maintain the

above invariants without changing the Sτ
j ’s and P τ

j ’s, then it changes Sτ
j ’s and P τ

j ’s in such a

way that the invariants in Lemma 21-(h) to (j) and Lemma 23 are also maintained. The reader

may find it helpful to refer to at least Lemma 21 while going through the construction.

The definition of the i/o behavior of all the programs Proc(σ) immediately follows.

Initialization:

Let iσ = card({M(τ) | τ ⊆ σ}).

Let

Sσ
iσ

= {σ};

P σ
iσ

= {M(σ)};

Sσ
j = ∅ for j 6= iσ;

P σ
j = ∅ for j 6= iσ;

ξσ
iσ

= σ;

for all x < |σ|, let ϕProc(σ)(x) = σ(x);

for all j 6= iσ, ξσ
j is undefined at this point.

Go to stage 0;

Begin stage s

if W [s + 1] − W [s] = ∅ (1)

then Go to stage s + 1 (2)

else (3)

(∗ By Remark 20, card(W [s + 1] − W [s]) ≤ 1. ∗)

Let 〈p, x〉 be the unique elment of W [s + 1] − W [s]; (4)

Let j, σ be such that p ∈ P
σ,s
j ; (5)

(∗ By Lemma 21 such j, σ exist and are unique ∗)

(∗ Note that ms
p ≥ x. Thus by Lemma 21-(f), card({M(τ) | τ ⊆ ϕp[x]}) ≤

j. Also by Lemma 21-(d) and (g), if x < |ξσ
j | then ϕp(x) = ϕProc(σ)(x).

Moreover, by Lemma 21-(d) and (f), if x ≥ |ξσ
j | then card({M(τ) | τ ⊆

ϕp[x]}) = j. ∗)

if card({M(τ) | τ ⊆ ϕp[x + 1]}) > j (6)

11

then (7)

if σ 6∈ S
σ,s
j

∨

x < rσ
s (8)

then (9)

Let τ be the element of largest length in (Sσ,s
j − {σ}); (10)

(∗ We selected the element of largest length so that the in-

variants in Lemma 22 hold. This merely makes it easier to

prove other lemmas. ∗)

Let ϕProc(τ)(w) = ϕp(w) for rτ
s ≤ w ≤ x; (11)

Let S
ϕp[x+1]
j+1 = S

ϕp[x+1]
j+1 ∪ {τ}; (12)

Let P
ϕp[x+1]
j+1 = P

ϕp[x+1]
j+1 ∪ {p}; (13)

Let Sσ
j = Sσ

j − {τ}; (14)

Let P σ
j = P σ

j − {p}; (15)

Go to stage s + 1; (16)

else (17)

Let ϕProc(σ)(w) = ϕp(w) for rσ
s ≤ w ≤ x; (18)

Let S
ϕp[x+1]
j+1 = S

ϕp[x+1]
j+1 ∪ {σ}; (19)

Let P
ϕp[x+1]
j+1 = P

ϕp[x+1]
j+1 ∪ {p}; (20)

Let Sσ
j = Sσ

j − {σ}; (21)

Let P σ
j = P σ

j − {p}; (22)

Go to stage s + 1; (23)

endif

elseif x < rσ
s

∧

ϕp(x) 6= ϕProc(σ)(x) (24)

then (25)

Let τ be the element of largest length in (Sσ,s
j − {σ}); (26)

(∗ We selected the element of largest length so that the invariants in

Lemma 22 hold. This merely makes it easier to prove other lemmas.

∗)

Let ϕProc(τ)(w) = ϕp(w) for rτ
s ≤ w ≤ x; (27)

if there exist j, γ such that ξ
γ
j is already defined and

ξ
γ
j = ϕp[x + 1] (28)

(∗ By Lemma 21-(e) there is at most one such j, γ ∗)

(∗ Note that by Lemma 21-(d) ξτ
j has not been defined until now ∗)

then (29)

(∗ Note that by Lemma 21-(f), γ cannot be the same as σ ∗)

Let S
γ
j = S

γ
j ∪ {τ}; (30)

Let P
γ
j = P

γ
j ∪ {p}; (31)

else (32)

Let Sτ
j = Sτ

j ∪ {τ}; (33)

12

Let P τ
j = P τ

j ∪ {p}; (34)

Let ξτ
j = ϕp[x + 1]; (35)

endif (36)

Let Sσ
j = Sσ

j − {τ}; (37)

Let P σ
j = P σ

j − {p}; (38)

Go to stage s + 1; (39)

elseif x = rσ
s then (40)

Let ϕProc(σ)(x) = ϕp(x); (41)

Go to stage s + 1; (42)

endif (43)

endif (44)

End stage s

Now consider the following set of lemmas.

Lemma 21 The following invariants are maintained by the construction.

(a) (∀s, j, σ)[card(Sσ,s
j) = card(P σ,s

j)].

(b) (∀p ∈ UseProg)(∀s)(∃!〈τ, j〉)[p ∈ P
τ,s
j].

(c) (∀σ)(∀s)(∃!〈τ ′, j′〉)[σ ∈ S
τ ′,s
j′].

(d) (∀j, σ, s′)

(i) [[ξσ
j remains undefined before stage s′] ⇔ (∀s ≤ s′)[Sσ,s

j = ∅]], and

(ii) [[ξσ
j gets defined in Initialization] ⇒ S

σ,0
j = {σ}], and

(iii) [[ξσ
j gets defined in stage s] ⇒ [

ξσ
j = ϕs+1

Proc(σ)∧

(∀s′ ≤ s)[Sσ,s′

j = ∅]∧

S
σ,s+1
j = {σ}∧

[σ ∈ S
τ,s
j′ ⇒

[(∀x < |ξσ
j | − 1)[ξσ

j (x) = ϕs
Proc(τ)(x)↓]∧

ξσ
j (|ξσ

j | − 1) 6= ϕs
Proc(τ)(|ξ

σ
j | − 1)↓∧

j′ = j]]

]], and

(iv) [ξσ
j gets defined ⇒ card({M(τ) | τ ⊆ ξσ

j }) = j], and

(v) [σ ∈ ξ
τ,s
j ∧ τ 6= σ ⇒ ξσ

j does not get defined before stage s], and

(vi) [σ ∈ ξ
τ,s
j ⇒ (∀j′ > j)[ξσ

j′ does not get defined before stage s]].

13

(e) (∀j, j′, σ, σ′)[ξσ
j = ξσ′

j′ ⇒ [j = j′ ∧ σ = σ′]].

(f) (∀j, s, σ)(∀p ∈ P
σ,s
j)

(i) ξσ
j ↓∧

(ii) ξσ
j ⊆ ϕp[m

s
p] ⊆ ϕs

Proc(σ)∧

(iii) card({M(τ) | τ ⊆ ϕp[m
s
p]}) = j.

(g) (∀s, j, σ)

(i) (∀τ ∈ S
σ,s
j − {σ})[ξσ

j = ϕs
Proc(τ)].

(ii) σ ∈ S
σ,s
j ⇒ [ϕs

Proc(σ) =
⋃

p∈P
σ,s
j

ϕp[m
s
p]].

(h) (∀s)

(i) [card({σ | (∃j, τ)[σ ∈ S
τ,s
j − S

τ,s+1
j]}) ≤ 1].

(ii) [card({p ∈ UseProg | (∃j, τ)[p ∈ P
τ,s
j − P

τ,s+1
j]}) ≤ 1].

(i) (∀p, σ, τ, τ ′, j, j′, s)[[[σ ∈ S
τ,s
j ∧ σ ∈ S

τ ′,s+1
j′]

∨

[p ∈ P
τ,s
j ∧ p ∈ P

τ ′,s+1
j′]] ⇒ j′ ∈ {j, j + 1}].

(j) (∀σ, τ, τ ′, j, s)[[σ ∈ S
τ,s
j ∧ σ ∈ S

τ ′,s+1
j ∧ τ 6= τ ′] ⇒ τ 6= σ].

Proof.

(a), (b), (c): By induction on s. Clearly, invariants (a), (b), (c) hold for s = 0 (by Initialization).

Also each stage s clearly maintains the invariants (the only changes to Sσ
j , P σ

j are done via steps,

(12)-(15), (19)-(22), (30)-(38), which maintain the invariants).

(h), (i), (j): By construction (see steps, (12)-(15), (19)-(22), (30)-(38)).

(d) parts (v), (vi): Follows by induction on stage number and using Lemma 21-(i) and (j).

(Note that this implies that at step (35) in the construction, ξτ
j was not previously defined.)

(d) parts (i), (ii): Whenever ξσ
j is defined, the construction makes Sσ

j = {σ}.

(e) Follows using Lemma 21-(d) part (v), and the test at step (28).

(d) part (iv), (f) and (g): The proof is by induction on s, where for (d) part (iv), we consider

those ξσ
j ’s which are defined before stage s.

Clearly, these invariants hold for s = 0. (f) part (i) follows from (a) and (d) part (i).

Assume by induction that these invariants hold for s = s′. If we add τ to Sσ
j at stage s′, then

the construction makes ϕs′+1
Proc(τ) = ξσ

j . Thus (g) part (i) holds for s = s′ + 1. Also p is added

to P σ
j at stage s′, only if, ξσ

j = ϕp[m
s+1
p]. This along with the fact that, if for some p ∈ P

σ,s′

j ,

ϕp[m
s′

p] ⊂ ϕp[m
s′+1
p], then, either ϕp[m

s′+1
p] ⊆ ϕs′

Proc(σ), or one of tests at steps (6), (24) and

14

(40) succeeds. In either case, it is easy to see that the invariants (d) part (iv), (g) part (ii) and

(f) parts (ii) and (iii) hold for s = s′ + 1.

(d) part (iii): If ξσ
j is defined at stage s then the construction makes S

σ,s+1
j = {σ} and ϕs+1

Proc(σ) =

ξσ
j . Suppose ξσ

j gets defined in stage s and σ ∈ S
τ,s
j′ (such a τ, j′ exist and are unique by part

(a)). Then, j′ = j, τ 6= σ. Also by (g), (∀x < |ξσ
j | − 1)[ξσ

j (x) = ϕs
Proc(τ)(x)↓]. Moreover by the

test at step (24), ξσ
j (|ξσ

j | − 1) 6= ϕs
Proc(τ)(|ξ

σ
j | − 1)↓.

Lemma 22 (a) Suppose ξσ
j gets defined in stage s. Let T = {(j, τ) | ξτ

j ↓ ⊂ ξσ
j }. Let (j, τ) ∈ T

be such that |ξτ
j | is maximized. Then σ ∈ S

τ,s
j .

(b) (∀s)(∀j, σ, τ)[τ ∈ S
σ,s
j ⇒ τ ⊆ σ].

(c) (∀j, σ)(∀σ′)[[ξσ
j and ξσ′

j are both defined ∧ ξσ
j ⊂ ξσ′

j] ⇒ σ′ ⊆ σ].

(d) (∀σ, τ, γ, γ′, j, j′ | j 6= j′ ∨ γ 6= γ′)[(∃s, s′)[σ ∈ S
γ,s
j ∧ σ ∈ S

γ′,s+1
j′ ∧ τ ∈ S

γ,s′

j ∧ τ ∈

S
γ′,s′+1
j′ ∧ FirstEntry(σ, γ, j) > FirstEntry(τ, γ, j) ∧ σ ⊂ τ] ⇒ [FirstEntry(σ, γ ′, j′) >

FirstEntry(τ, γ′, j′)]].

(e) (∀j, σ, τ)[ξσ
j ↓ ⊂ ξτ

j ↓ ⇒ ξτ
j is convergently different from ϕProc(σ)].

Proof.

(a) Suppose by way of contradiction that (a) does not hold. Let ξσ
j , be of least length, such

that (a) does not hold for ξσ
j , and ξσ

j gets defined in stage s. Let τ be as in (a) for ξσ
j . Let j′, τ ′

be such that σ ∈ S
τ ′,s
j′ (such j′, τ ′ exist and are unique by Lemma 21-(c)). By Lemma 21-(d),

j′ = j. We claim that τ = τ ′, contradicting the fact that ξσ
j does not satisfy (a). Suppose by

way of contradiction that there exists a γ such that ξτ ′

j ⊂ ξ
γ
j ↓ ⊂ ξσ

j . Choose ξ
γ
j , minimizing

|ξγ
j |, such that ξτ ′

j ⊂ ξ
γ
j ↓ ⊂ ξσ

j . Then by Lemma 21-(d), for x = |ξγ
j | − 1, ξ

γ
j (x) 6= ϕProc(τ ′)(x)↓,

but, again by Lemma 21-(d), ξσ
j (x) = ϕProc(τ ′)(x), a contradiction.

As a corollary to (a) we have that if ξσ
j ↓ ⊂ ξτ

j ↓ then ξσ
j gets defined before ξτ

j does.

(b) Using Lemma 21-(d)-(iii), Lemma 21-(g) we have that τ ⊆ ϕ0
Proc(τ) ⊆ ϕs

Proc(τ) ⊆ ϕs
Proc(σ)

and σ ⊆ ϕs
Proc(σ). Thus σ ⊆ τ or τ ⊆ σ. (b) now follows using Lemma 25.

(c) If ξσ
j ⊂ ξσ′

j , then ξσ′

j could not have been defined at Initialization (see the corollary mentioned

after the proof of part (a)). (c) now follows using parts (a) and (b).

(d) Note that by Lemma 21 parts (d)-(iii), (e), and (g), (∀σ, γ, t, t′, t′′ | t < t′ < t′′)[[σ ∈

S
γ,t
j ∧ σ 6∈ S

γ,t′

j] ⇒ σ 6∈ S
γ,t′′

j]. (d) now follows by the choice of τ at steps (10) and (26) in the

construction.

(e) Follows using part (a) and Lemma 21-(d).

15

By Lemma 21-(a) and (h), given, τ, τ ′, j, j′ such that τ 6= τ ′ or j 6= j′,

(∃σ)[σ ∈ S
τ,s
j ∧ σ ∈ S

τ ′,s+1
j′] ⇔ (∃p)[p ∈ P

τ,s
j ∧ p ∈ P

τ ′,s+1
j′]

Also, τ, τ ′, j, j′, if any, such that [τ 6= τ ′ or j 6= j′], and (∃σ)[σ ∈ S
τ,s
j ∧ σ ∈ S

τ ′,s+1
j′] and

(∃p)[p ∈ P
τ,s
j ∧ p ∈ P

τ ′,s+1
j′], are unique.

Thus in the statement just below of Lemma 23, for any s, if the supposition is true for

τ, τ ′, j, j′, σ, p, then τ, τ ′, j, j′, σ, p are unique.

Lemma 23 Given s, suppose τ, τ ′, j, j′, σ, p are such that [τ 6= τ ′ ∨ j 6= j′] ∧ [σ ∈ (Sτ,s
j ∩

S
τ ′,s+1
j′)∧p ∈ (Sτ,s

j ∩S
τ ′,s+1
j′)], then the following invariants are maintained by the construction.

(a) If j = j′, then

(i) σ 6= τ , and

(ii) ξτ ′

j = ϕs+1
Proc(σ) = ϕp[m

s+1
p], and

(iii) For x = |ξτ ′

j′ | − 1, [ξτ ′

j (x)↓ 6= ϕs
Proc(τ)(x)↓], and

(iv) τ ′ ⊂ τ .

(b) If j′ = j + 1, then

(i) σ 6= τ ′, and

(ii) ξτ ′

j′ = ϕs+1
Proc(σ) = ϕp[m

s+1
p], and

(iii) For x = |ξτ ′

j′ | − 1, [σ 6= τ ⇒ [ξτ ′

j′ (x)↓ 6= ϕs
Proc(τ)(x)↓]].

Proof. Parts (a) (i)-(iii) and (b), are easy to prove using Lemma 21 and construction steps

(6)-(41). Part (a)-(iv) follows using Lemma 22-(c).

Lemma 24 For all j, σ, τ such that σ 6= τ

(a) [ξσ
j is defined ∧ τ ⊆ ξσ

j ⊆ ϕM(τ)] ⇒ (∃s)[M(τ) ∈ P
σ,s
j], and

(b) [ξσ
j is defined ∧ τ ⊆ ξσ

j ⊆ ϕProc(τ)] ⇒ (∃s)[τ ∈ S
σ,s
j], and

(c) [ξτ
j and ξσ

j are defined ∧ ξτ
j ⊂ ξσ

j] ⇒ (∃x < |ξσ
j |)[ξ

σ
j (x) 6= ϕProc(τ)(x)↓].

Proof.

(a) Let Err = {(j, σ, τ) | [ξσ
j is defined ∧ τ ⊆ ξσ

j ⊆ ϕM(τ)] ∧ ¬(∃s)[M(τ) ∈ P
σ,s
j]}. Suppose by

way of contradiction that Err is not empty. Choose j, σ, minimizing the length of ξσ
j , such that

there exists a τ , (j, σ, τ) ∈ Err. Choose τ such that (j, σ, τ) ∈ Err and max({|ξγ
j′| : (∃s)[M(τ) ∈

P
γ,s
j′] ∧ ξ

γ
j′ ⊆ ξσ

j }) is maximized. Let γ, j′ be such that (∃s)[M(τ) ∈ P
γ,s
j′], ξ

γ
j′ ⊂ ξσ

j , and |ξγ
j′|

is maximized. Let s be such that 〈M(τ), |ξσ
j | − 1〉 ∈ W [s + 1] − W [s]. If j > j ′, then by the if

16

clause at step (6) of the construction in stage s, M(τ) would be removed from P
γ
j′ and added

to P σ
j . If j′ = j, then by the test at step (24) and by Lemma 21-(d) and 22-(a), M(τ) must be

removed from P
γ
j′ and added to P σ

j in stage s.

(b) Proof is similar to that of (a).

(c) Follows using Lemma 21-(d) and Lemma 22-(a).

Lemma 25 (∀σ, τ, γ | σ ⊂ τ)[(∃s, s′)[σ ∈ S
γ,s
j ∧ τ ∈ S

γ,s′

j] ⇒ FirstEntry(τ, γ, j) <

FirstEntry(σ, γ, j)].

Proof. Follows by induction on the length of ξ
γ
j , using, Lemmas 22-(d) and 24-(b).

Lemma 26

(a) For all j > c + 1, for all σ, ξσ
j remains undefined forever.

(b) For all σ, there exists an s, j, τ such that (∀s′ ≥ s)[σ ∈ S
τ,s′

j].

(c) For all p ∈ UseProg, there exists an s, j, τ such that (∀s′ ≥ s)[p ∈ P
τ,s′

j].

Proof. (a) follows from Lemma 21-(d) and the fact that M satisfies clause 4 in Lemma 19.

(b) and (c) now follow from Lemma 23.

Lemma 27 (∀σ, τ | σ ⊂ τ)[[τ ⊆ ϕProc(σ)] ⇒ [(∃x)[ϕProc(σ)(x)↓ 6= ϕProc(τ)(x)↓]
∨

[ϕProc(σ) ⊆

ϕProc(τ) ∧ ϕProc(σ) is a finite initial segment]]].

Proof. Let σ, τ be given. Let j, γ be such that ξ
γ
j ⊆ ϕProc(τ)∩ϕProc(σ), and |ξγ

j | is maximized.

Now, by Lemma 25, FirstEntry(τ, γ, j) < FirstEntry(σ, γ, j).

By Lemmas 24, 21-(g) and 22-(e), if γ = τ then, either ϕProc(σ) is convergently different

from ϕProc(τ) or ϕProc(σ) = ξτ
j .

Suppose γ 6= τ . Clearly, since |σ| < |τ |, (
∞
∀ s)[τ ∈ S

γ
j] ⇒ (

∞
∀ s)[σ ∈ S

γ
j]. If (

∞
∀ s)[τ ∈ S

γ
j],

then, clearly, ϕProc(σ) = ξ
γ
j , which satisfies the claim in the lemma. Otherwise, let j ′, γ′ be such

that (
∞
∀ s)[τ ∈ S

γ′,s
j′] (there exists such a j′, γ′ by Lemma 26). Hence, ξ

γ′

j′ 6⊆ ϕProc(σ).

We now continue with the rest of the proof of Theorem 18. From Lemmas 21-(g), (h), 24,

and 26, it follows that, for all f such that M Sfex∗,c-identifies f , there exists a σ ⊆ f , such

that ϕProc(σ) = f . Moreover, by Lemma 27 (∀τ | σ ⊂ τ)[ϕProc(τ) 6⊆ f].

Define M′ as follows.

17

If M(f [n]) =?, then let M′(f [n]) =?; if card({M(f [i]) | i ≤ n}) ≥ c+1, then let M′(f [n]) =

M(f [m]), where m = min({j | card({M(f [i]) | i ≤ j}) ≥ c + 1}); otherwise, let n0 < n1 <

n2 < . . . < nj ≤ n be such that the f [ni]’s are useful and are the only useful segments of that

form. Let M′(f [n]) = Proc(f [ni]), where i = max({k ≤ j | card({x < n | ΦProc(f [nk])(x) ≤

n∧ ϕProc(f [nk])(x) 6= f(x)}) = 0}). From the remarks just before the definition of M′ it is easy

to see that M′, Qfexb,2c−b-identifies f .

Theorem 28 Let b ≤ b′ ≤ c, c ∈ N . Let c′ = (d c−b′

b′−b+1e + 1) ∗ (b − 1) + c. Then Sfexa
b,c ⊆

Qfexa
b′,c′ .

Proof. Fix a, b, c and b′. For a given M, let FM be a machine which on input f [n], behaves as

follows. For a given f , j ≥ 1, let Sat(j) be true iff there exists a sequence of sets S0, S1, . . . , Sj

such that, for all i < j, the following five conditions are satisfied.

(1) card(Si) ≤ b.

(2) S0 = {M(f [0])} − {?}.

(3) Si+1 − Si ⊆ {M(f [i + 1])}.

(4) M(f [i]) ∈ Si ∪ {?}.

(5) card({i < j | ∅ 6= Si 6= Si+1}) < c.

If Sat(n), then let FM(f [n]) = M(f [n]). Otherwise, let m = max({j | Sat(j)}) and then let

FM(f [n]) = M(f [m + 1]). Now consider the following cases.

Case 1: For all n, Sat(n).

In this case, clearly, FM Qfexa
b′,∗-identifies f .

Case 2: (∃j)[¬Sat(j)].

Let n be the least j such that ¬Sat(j). Note that, since M Sfexa
b,c-identifies f , it must be

the case that ϕM(f [n]) =a f . Thus, FM Qfexa
b′,∗-identifies f .

From the above two cases it follows that FM Qfexa
b′,∗-identifies f .

We now wish to prove an upper bound on the number of queue mind changes for FM on

functions Sfexa
b,c-identified by M. To ease the proof of the bound, we will shortly consider some

transformations on the behavior of M on function, f , which is Sfexa
b,c-identified by M. These

transformations depend both on the machine M and the function f . Let us first consider some

of the invariants, maintained by the transformations. Suppose f , which is Sfexa
b,c-identified by

M is given. Let M
f

before
and M

f

after
denote M before and after a transformation.

The following invariants would be maintained.

(a) M
f

after
Sfexa

b,c-identifies f .

(b) Number of queue mind changes of F
M

f

after
on f is not less than the number of queue

mind changes of F
M

f

before
on f .

18

Let M
f

final denote M after all the transformations are done.

We will later prove an upper bound on the number of mind changes of F
M

f

final
on f , for f

Sfexa
b,c-identified by M. Clearly, by the invariants mentioned above, this upper bound would

also be an upper bound on the number of queue mind changes of FM on functions Sfexa
b,c-

identified by M.

We now proceed to describe our transformations. It will be easy to see that the invariants

mentioned above are maintained. Let M, and f , Sfexa
b,c-identified by M be given. Let Sat be

defined as above.

(a) If there exists a j such that ¬Sat(j), then let n be the least such j. For all n′ > n let

M(f [n′]) = M(f [n]).

(Using argument similar to that in Case 2 above, it can be seen that M, after the above

transformation still Sfexa
b,c-identifies f . Moreover the above transformation does not

change the behavior of FM on f . Thus the invariants are maintained.)

(b) Let S0, S1, . . . be a sequence of sets witnessing that M, Sfexa
b,c-identifies f (in the sense

of Definition 12). We do not perform this transformation unless there exists a pair (p, i)

such that

(∃k > i)[p ∈ Si − Si+1 ∧ p ∈ Sk] (J)

Suppose (J) holds for some (p, i). Let l be such that (∀j)[pad(p, l) 6∈ Sj]. Note that such

an l must exist since there are only finitely many distinct sets in the sequence, S0, S1,

For each k > i, if M(f [k]) = p, change M(f [k]) to pad(p, l) and replace p by pad(p, l) in Sk

(K)

When this is done see if there are now any new pair (p, i) such that, for the new Sj ’s, (J)

is true. If so, pick one and repeat (K) (with l such that (∀j)[pad(p, l) 6∈ Sj]). Continue

in this fashion until no new (p, i) exist. This process must terminate since M on f has

atmost c mind changes.

It is easy to see that the above transformations preserve the invariants mentioned above.

Note that, due to the first transformation, for all j, M
f

final(f [j]) = F
M

f

final
(f [j]). Let nM,f

denote the least value of j such that for all j ′ > j, Sj′ = Sj , where Sj ’s are as defined in the

beginning of the second transformation above.

We now prove a bound on the number of queue mind changes by F
f
Mfinal

on f , for f

Sfexa
b,c-identified by M.

We now define the queue sequence (in the sense of Definition 14) which will help us prove

the upper bound on the number of mind changes of F
M

f

final
on f .

19

Q
M,f
i =



















































































() if i = 0 and F
M

f

final
(f [0]) =?;

(F
M

f

final
(f [0])) if i = 0 and F

M
f

final
(f [0]) 6=?;

(F
M

f

final
(f [i])) if i = nM,f ;

Q
M,f
i−1 � (F

M
f

final
(f [i])) if i 6= nM,f ∧ i 6= 0 ∧ F

M
f

final
(f [i]) 6∈ Set(QM,f

i−1)∧

card(Set(QM,f
i)) < b′;

(F
M

f

final
(f [i])) i 6= nM,f ∧ i 6= 0 ∧ F

M
f

final
(f [i]) 6∈ Set(QM,f

i−1)∧

card(Set(QM,f
i)) = b′;

Q
M,f
i−1 otherwise.

Let pbf(M, f) = card({M(f [j]) | j < nM,f ∧ M(f [j]) 6=?}). (pbf(M, f) is the number of

distinct programs output by M on initial segments of f of length less than nM,f).

Let g(l) = max({card({i | () 6= Q
M,f
i 6= Q

M,f
i+1 ∧ i < nM,f}) | pbf(Mf

final, f) ≤ l}). It is easy

to see that the number of mind changes of F
M

f

final
on f , Sfexa

b,c-identified by M, is bounded by

g(c)+ b−1. We now calculate a bound on, g(l) (for l ≤ c). If l ≤ b′, then clearly g(l) = l. Also,

g(r+ b′) ≤ b′ +g(r+ b−1), for r ≥ 1. Solving the recurrence we get g(c) ≤ d c−b′

b′−b+1e · (b−1)+ c.

Thus the number of queue mind changes of M′ on f is bounded by g(c) + b − 1 ≤ c′.

3.3 Separation Results

In this section we prove our separation results of the form, Qfexb′,c′ − Sfexb,c 6= ∅, Sfexb′,c′ −

Sfexb,c 6= ∅ and Sfexb′,c′ −Qfexb,c 6= ∅. To this end, we prove Claim 29 below. It’s proof is long

and involves several lemmas; however, once Claim 29 is available the proof of the separation

results are short. Intuitively, Claim 29 extracts out the common part of the diagonalization

proofs in these separation results.

But first we define a useful notion of stacklike sequence. Consider a finite sequence of push,

pop and top operations being performed on a stack, where the i-th push operation, if any, pushes

i on the stack. Assume that no two top operations occur one immediately after the other, and

a push operation is always followed by a top operation. Further assume that, top and pop

operations are performed only if the stack is non-empty. In the above, the possible sequences

formed using the answers to the top operation are characterized by what we refer to as stacklike

sequences just below.

A sequence (n1, n2, . . . , nk) is called stacklike just in case the following four conditions hold:

1. {ni | 1 ≤ i ≤ k} forms an initial segment of N+.

2. For 1 ≤ i < j < l ≤ k, if ni > nj , then ni 6= nl.

3. For 1 ≤ i < j ≤ k, if ni > nj , then there exists an l, 1 ≤ l < i such that nl = nj .

4. For 1 ≤ i < k, ni 6= ni+1.

20

Note that any non-empty stacklike sequence starts with a 1. We say that the sequence

(n1, n2, . . . , nm) matches the stacklike sequence s iff there is a 1-1 mapping g from {ni | 1 ≤

i ≤ m} into N such that (g(n1), g(n2), . . . , g(nm)) forms a prefix of s; we say (n1, n2, . . . , nm)

exactly matches s iff (g(n1), g(n2), . . . , g(nm)) is the same as s.

For each stacklike sequence s, we define a class of functions, Cs, as follows. We let

proj(η) be the largest subsequence (π2◦η(i0), π2◦η(i1), . . . ,) of (π2◦η(0), π2◦η(1), . . .) such that

(∀j)[π1◦η(ij) = 1].

Cs = {f ∈ R | proj(f) matches s ∧ ϕπ2(f(max({x|π1(f(x))=1}))) = f}.

For a sequence s = (n1, n2, n3, . . .), let reduce(s) = be the largest subsequence of s, such

that no two consecutive elements in the sequence are the same.

Claim 29 Given a non-empty stacklike sequence s = (n1, n2, . . . , nk) and an M, there exists a

function f ∈ Cs, such that, if M Sfexb,∗ (respectively, Qfexb,∗)-identifies f , then, the associated

number of mind changes of M is lower bounded by that of a device, M′, which merely outputs

programs such that, reduce((M′(f [0]),M′(f [1]), . . .)) exactly matches s.

Proof. This proof is very complicated and requires finitary versions of the operator recursion

theorem (Case (1974)). Fix b. In the rest of the proof any reference to set (queue) mind changes

by a machine, refers to setb (queueb) mind changes by the machine. Note that, for f ∈ Cs, a

device, M′, which merely outputs programs such that reduce((M′(f [0]),M′(f [1]), . . .)) exactly

matches s, does at most k− 1 set (queue) mind changes. Thus, if for some f ∈ Cs, M makes at

least k mind changes, then the claim is trivially satisfied. We therefore assume, without loss of

generality, that M satisfies Lemma 19 (b) – (d) in the case that c = k − 1.

Given a non-empty stacklike sequence s and a machine M, by the operator recursion theorem

there exists a 1-1 recursive function p such that the following holds. We will pick one of the

ϕp(i)’s to be the diagonalizing function, f .

The diagonalization procedure works in stages. The following are some of the important

variables maintained by the diagonalization procedure (the value of these variables may change

during the execution of the stages).

curpos: The value of curpos, at the beginning of any stage t denotes the position in the

sequence s which is being handled at stage t. Let curpost denote the value of curpos at

the beginning of stage t.

leastunused denotes a number such that, for all i ≥ leastunused, program p(i) is available

for possible use in further steps of the diagonalization.

A[·] (an array of programs): A[i]’s are certain members of the range of p. Let M′ be a

machine such that, for all g and m, M′(g[m]) = π2◦g(max({x < m | π1◦g(x) = 1})).

Informally, the ultimate aim of the diagonalization procedure is to construct a function f

such that, if M Sfexa
b,∗(Qfexa

b,∗)-identifies f , then the set (queue) mind change complexity

21

of M on f is at least as much as that of M′. Eventually, the function computed by the

final value of one of the A[i]’s will be such an f . Each program A[ni] extends the part

of the candidate for f already constructed by A[n1], A[n2], . . . , A[ni−1]. The goal of A[ni]

is to compute an extension such that the programs output by M, on this extension, are

sufficient to guarantee that M does no better (with respect to the set (queue) mind change

complexity) than M′. However, while A[ni] is trying to achieve its goal, it might discover

that, based on the extension it has computed so far, it may not be able to achieve its goal.

If this happens, then, for some selected j, 1 ≤ j < i, A[nj] will try to find a new extension,

of the part of the function already constructed by A[nj′′], j
′′ ≤ j. Also, it will then be the

case that A[nj] can be successful in making one more of the programs output by M on the

initial segment constructed so far by A[n1], . . . , A[nj] convergently wrong. This may spoil

the current programs assigned to A[nj′′], j′′ > j. The selected j, will have the property

that, {n1, . . . , nj} ∩ {nj+1, . . . , ni} = ∅, and thus the programs, A[n1], . . . , A[nj] will not

be spoiled yet. (From this point on, whenever A[nj′′], j′′ > j, tries to achieve its goal, as

above, it will be assigned a new program). An A[ni] tries to compute its extension, as

described above, in stages at the beginning of which curpos = i.

We say that n is active at stage t iff (∃l, l′ | 1 ≤ l < curpost < l′ ≤ k)[nl = nl′ = n ∧ n <

ncurpost
].

Prog[·] (an array of finite sets of programs): Intuitively Prog[i], at any time, denotes the set

of programs output by M, on the extension constructed by A[i], which are not in Prog[j]

for some active j, and are not already known to be convergently wrong.

(∗ Given t, let D = {n | n = ncurpost
∨ n is active at stage t}. Then during the

execution of stage t, for each pair, n1, n2 ∈ D, n1 6= n2, Prog[n1] and Prog[n2] will

be disjoint. ∗)

Wrong[·] (an array of finite sets of programs): Intuitively, at stage t, Wrong[curpost] denotes

the set of programs which have been diagonalized against (some diagonalization may be

undone if, at some later stage t′, curpost′ becomes less than curpost).

initseq is a boolean such that the current candidate for f is to be defined at its next argument

to have π1 of its value = 1 iff initseq is true.

maxcontr denotes a value ≥ the maximum number which has already been used for contra-

dicting programs in Wrong[·].

I0, I1, . . .: These numerical values are used to make it easier to claim the invariants main-

tained by the diagonalization procedure.

It may help the reader to look at the invariants in Lemma 30 while going through the

diagonalization procedure.

Initially, let Prog[1] = ∅, A[1] = p(0), leastunused = 1, Wrong[1] = ∅, curpos = 1,

maxcontr = 0 and initseq = TRUE. Let ϕt
p(i) denote ϕp(i) defined before the beginning of stage

22

t. Let ϕ
t,t′

p(i) denote ϕp(i) defined by the end of step 3.1 in substage t′ (if executed) in stage t.

Go to stage 0.

Begin stage t

1. Let y = xt = min({x | x 6∈ domain(ϕt
A[ncurpos]

)}).

Let maxcontr = maxcontr + 1.

2. Go to substage 0.

3. Substage t′

3.1 if initseq then

let ϕA[ncurpos](y) = 〈1, A[ncurpos]〉, initseq = FALSE, y = y + 1.

else

let ϕA[ncurpos](y) = 〈0,maxcontr〉, y = y + 1.

endif

3.2 Let Active = {i | i < ncurpos ∧ (∃j ≥ curpos)[nj = i]}.

if (∃i ∈ Active)[M(ϕA[ncurpos][y]) ∈ Prog[i] − Wrong[curpos]] then

Let i be such that [M(ϕA[ncurpos][y]) ∈ Prog[i] − Wrong[curpos] ∧ i ∈ Active].

Let l < curpos be the largest number such that nl = i.

Let d = min({x | x 6∈ domain(ϕt
A[i])}).

if [ϕM(ϕA[ncurpos][y])(d)↓ = ϕA[ncurpos](d) in ≤ t′ steps] then

(∗ In this case A[ncurpos] may not be able to achieve its goal as stated

in the informal description before the diagonalization procedure. ∗)

(∗ ϕA[i](d) will be defined to be 〈0,maxcontr+1〉 in the next stage. Thus

M(ϕA[ncurpos][y]) would be a convergently wrong program output by

M on some initial segment of ϕA[i][d]. ∗)

Let Wrong[l] = Wrong[l] ∪ {M(ϕA[ncurpos][y])}.

Let curpos = l.

Go to stage t + 1.

else Go to substage t′ + 1.

endif

endif

3.3 if M(ϕA[ncurpos][y]) 6∈ Wrong[curpos] ∪ {?} then

Let Prog[ncurpos] = Prog[ncurpos] ∪ {M(ϕA[ncurpos][y])}.

Let z = min({w | xt < w ≤ y)[M(ϕA[ncurpos][w]) = M(ϕA[ncurpos][y])]}).

if [[ϕM(ϕA[ncurpos][y])(z)↓ = 〈0,maxcontr〉 in ≤ t′ steps] ∧ (∀x < z)

[ϕM(ϕA[ncurpos][y])(x)↓ = ϕA[ncurpos](x)] ∧ [length of s is greater than curpos]]

(∗ Note that, if ϕM(ϕA[ncurpos][y])(z)↓, then (∀x < z)[ϕM(ϕA[ncurpos][y])(x)↓]. ∗)

then Go to step 4.

23

(∗ here A[ncurpos] is successful in achieving its goal, as mentioned in the informal

description before the diagonalization procedure ∗).

endif

endif

3.4 Go to substage t′ + 1.

End substage t′

4. if ncurpos+1 > ncurpos then

let A[ncurpos+1] = p(leastunused). Let leastunused = leastunused + 1.

Let Prog[ncurpos+1] = ∅.

endif

5. if ncurpos 6= ni, for all i such that curpos < i ≤ k then

Let Wrong[curpos + 1] = Wrong[curpos] ∪ {M(ϕA[ncurpos][y])}.

Let z be as in step 3.3.

Let ϕA[ncurpos+1](x) = ϕA[ncurpos](x) for each x < z such that ϕA[ncurpos+1](x) has not

been defined till now.

Let Icurpos = z.

else

For each x < y, such that ϕA[ncurpos+1](x) has not been defined till now,

let ϕA[ncurpos+1](x) = ϕA[ncurpos](x).

Let Wrong[curpos + 1] = Wrong[curpos].

Let Icurpos = y.

endif

6. Let curpos = curpos + 1.

Let initseq = TRUE.

Go to stage t + 1.

End stage t

Let Progt[n] denote the value of Prog[n] at the beginning of stage t. For i such that

1 ≤ i ≤ k, let lastt
i denote the highest numbered stage, t′ ≤ t, if any, such that curpost′ = i.

Let I0 = −1. Let Wrongt[i] denote the value of Wrong[i] at the beginning of stage t.

Lemma 30 For all t, t′ such that, substage t′ of stage t is executed, the following holds at the

end of step 3.1 in substage t′ of stage t.

(a) For each i < curpost − 1, Ii < Ii+1.

(b) For each i such that 1 ≤ i < curpost, Wrong[i] ⊆ Wrong[i + 1].

(c) For each i such that 1 ≤ i < curpost − 1, ϕA[ni][Ii] ⊆ ϕA[ni+1][Ii+1]. Also, if curpost > 1,

then ϕA[ncurpost−1][Icurpost−1] ⊆ ϕA[ncurpost]
.

24

(d) For n such that n is active at stage t, let ln = max({i | i ≤ curpost ∧ ni = n}). Then

domain(ϕt
A[n]) = {x | x < Iln}.

(e) For each i such that 1 ≤ i < curpost, there exists an x ∈ {Ii−1 + 1, . . . , Ii} such that

M(ϕA[curpost]
[x]) ∈ Prog1+lastt

i [ni] − Wrongt[i].

(f) For each i such that 1 ≤ i < curpost and ni 6= ncurpost
, if ni is not active at stage

t, then M(ϕA[ncurpost]
[Ii]) ∈ (Prog1+lastt

i [ni] − Wrongt[i]) and ϕM(ϕA[ncurpost][Ii])(Ii)↓ 6=

ϕA[ncurpost]
(Ii)↓ and M(ϕA[ncurpost]

[Ii]) ∈ Wrongt[i + 1].

(g) For each i and i′ such that [1 ≤ i ≤ i′ ≤ curpost ∧ ni < ni′], if there exists an i′′ ≥ i′ such

that ni = ni′′ , then Proglast
t

i′+1[ni] ∩ Prog[ni′] = ∅.

(h) For each n < ncurpost
, such that n is active at stage t, ϕt

A[n] ⊆ ϕt
A[ncurpost]

.

(i) For n active at stage t, let ln = max({i | i ≤ curpost ∧ ni = n}). For n active at stage

t, proj(ϕt
A[ln]) exactly matches (n1, . . . , nln). Moreover, proj(ϕt,t′

A[curpost]
) exactly matches

(n1, . . . , ncurpost
).

(j) For each i such that 1 ≤ i < curpost − 1, {M(ϕA[ncurpost]
[x]) | Ii < x ≤ Ii+1} ⊆

{Prog1+lastt

i+1 [nj] | 1 ≤ j ≤ i + 1 ∧ (∃j′ | i + 1 ≤ j′ ≤ k)[nj′ = nj]} ∪ Wrongt[i + 1].

Proof.

We will prove the invariants by induction on the stages/substages which are executed.

Clearly, the invariants hold at the end of step 3.1 of substage 0 in stage 0. Suppose the

invariants in the lemma hold after step 3.1 in substage t′1 of stage t1. Suppose that the next

substage executed after substage t′1 of stage t1 is substage t′2 of stage t2. We show that the

invariants of the lemma hold after step 3.1 of substage t′2 of stage t2.

Case 1: In substage t′1 of stage t1, the first and second if statements of step 3.2 succeed.

In this case clearly, t2 = t1 + 1, t′2 = 0 and curpost2
< curpost1

. Let l be as in step 3.2

of substage t′1 of stage t1. Also, since nl was active at stage t1 and for all j such that

l < j ≤ curpost1
, nj 6= nl, we have {nj | 1 ≤ j ≤ l} ∩ {nj | l < j ≤ curpost1

} = ∅. Thus

the elements in {nj | 1 ≤ j ≤ l} − {nl} which are active at stage t1 would exactly be the

same as the nj ’s which are active at stage t2.

From the above observations, it is easy to see that (a)-(j) hold after step 3.1 in substage t′2

of stage t2.

Case 2: In substage t′1 of stage t1, the first if statement of step 3.2 fails and the first and second

if statements of step 3.3 succeed.

In this case t2 = t1 + 1 and curpost2 = curpost1 + 1. After step 3.1 in substage t′2 of stage

t2:

25

(a), (b), (c), (d) and (h) hold because of the definition of Icurpost1
, Wrong[curpost2

] and

ϕA[ncurpost2
] in step 5 of substage t′1 in stage t1 and the fact that the invariants were

satisfied after step 3.1 of substage t′1 of stage t1.

(f) holds because of the first assignment statement in step 3.3 of substage t′1 in stage t1, the

value assigned to Icurpost1
and Wrong[curpost2

], in step 5 (of stage t1) and the fact that

invariants were satisfied after step 3.1 of substage t′1 of stage t1.

(e) and (j) hold because of the first assignment statement in step 3.3 of substage t′1 in stage

t1, and the fact that the invariants were satisfied after step 3.1 of substage t′1 of stage t1.

(g) holds because of step 4, the check at the first if statement in step 3.1 of substage t′1

in stage t1, and the fact that the invariants were satisfied after step 3.1 of substage t′1 of

stage t1.

(i) holds because of the fact that initseq is made true in step 6 of stage t1, and the fact that

the invariants were satisfied after step 3.1 of substage t′1 of stage t1.

Case 3: Not case 1 or 2.

It is easy to see that (a)-(j) will hold after step 3.1 in substage t′2 of stage t2.

Lemma 31 For all i ≤ k, the number of stages at the beginning of which curpos = i is finite.

Proof. By induction on i. The number of stages for which curpos = 1 is at most k + 1, since

each time a new stage with curpos = 1 is started (except possibly the first time) the number

of programs in Wrong[1] is increased by 1. Since the number of programs output by M on any

initial sequence is bounded by k, the cardinality of Wrong[i] is bounded by k. Thus the number

of stages with curpos = 1 is bounded by k + 1. Similarly it can be shown that, if after stage

t curpos is always > i, then the number of stages > t for which curpos = i + 1 is bounded by

k + 1. The lemma follows.

As a corollary to above lemma we have that

Lemma 32 The number of stages which are executed is finite.

Let the last stage which is executed be t.

Let f = ϕA[ncurpost]
. Clearly f is total and in Cs (using Lemma 30-(i)). Suppose M

Sfexb,∗(Qfexb,∗)-identifies f . We give an argument for lower bounding the number of set

(queue) mind changes by M on f ,

Now, if curpost 6= k, then M does not Fex∗ identify f (otherwise one of step 3.2 or 3.3

would eventually force a change of stage). Thus curpost = k.

26

For i ∈ {1, · · · , k − 1}, let

ti denote the last stage at the beginning of which curpos = i,

Pi be the value of Prog[ni] at the end of stage ti, and

Wi denote the value of Wrong[i] at the end of stage ti.

Let tk = t, Pk = the limiting value of Prog[nk] and Wk = the limiting value of Wrong[k].

Let I1, I2, . . . , Ik−1 be as in stage t.

Note that Pk is non-empty and for all but finitely many j, M(f [j]) ∈ Pk − Wk (otherwise,

either, one of step 3.2 or 3.3 would eventually force a stage change, or, M does not Sfexb,∗

(Qfexb,∗)-identify f). Let I0 = −1 and Ik = ∞.

We will now argue that the number of set (queue) mind changes for M on f is lower

bounded by that of the machine M′, which just outputs a sequence of programs such that

reduce(M′(f [0]),M′(f [1]), . . .) = s. For this purpose it is convenient to consider set (queue)

mind change complexity of infinite sequences. Let α range over infinite sequences over N ∪{?}.

We let α(i) denote the i-th element of α. For each α, let Mα be such that Mα(f [j]) =

α(j) (here Mα may not be an algorithmic device; however, for the definition below this is

not significant). We define the set (queue) mind change complexity of α = the set (queue)

mind change complexity of Mα on f . When we say “let S0, S1, . . . (Q0, Q1, . . .) be the sets

(queues) witnessing that set (queue) mind change complexity of α is X (≤ X)” we mean

“let S0, S1, . . . (Q0, Q1, . . .) be the sets (queues) witnessing that the set (queue) mind change

complexity of Mα on f is X (≤ X), in the sense of Definition 12 (Definition 14).”

Let α = (M(f [0]),M(f [1]), . . .). Below we will successively change α, each change not

increasing the set (queue) mind change complexity of α, such that, for the final α obtained,

reduce(α) = s. This implies that the set (queue) mind change complexity of M on f is lower

bounded by that of M′, and thus proves the claim.

Note that by Lemma 30 the following holds.

Lemma 33

(a) For each i < k, Ii < Ii+1.

(b) For each i, such that 1 ≤ i < k, Wi ⊆ Wi+1.

(c) For each i, 1 ≤ i ≤ k, there exists an x ∈ {Ii−1 + 1, . . . , Ii}, such that α(x) ∈ Pi − Wi.

(d) For each i such that 1 ≤ i < k, if, for all j > i, nj 6= ni, then α(Ii) ∈ Pi ∩ Wi+1.

(e) For all j, j′ such that [1 ≤ j ≤ j′ ≤ k ∧ nj < nj′], if there exists a j′′ ≥ j′ such that

nj = nj′′ , then Pj ∩ Pj′ = ∅.

(f) For i < k − 1, {α(Ii + 1), . . . , α(Ii)} ⊆
⋃

{j|1≤j≤i+1∧(∃j′≥i+1)[nj=nj′]}
Pj ∪ Wi+1.

27

(g) (
∞
∀ x)[α(x) 6∈ Wk].

(h) (∀i, j | 1 ≤ i < j ≤ k)[ni = nj ⇒ Pi ⊆ Pj].

We will now consider four successive transformations of α. The reader will see that each of

these transformations does not increase the number of set (queue) mind changes of α.

Begin transformation T1

Let x > Ik−1 be such that α(x) ∈ Pk − Wk (there exists such an x by Lemma 33-(c)). For

each y > Ik−1, let α(y) = α(x).

(* Since, for all but finitely many z, α(z) 6= α(Ik−1), this does not increase the number of

set (queue) mind changes of α. *)

End transformation T1

It is easy to see that,

Lemma 34 After transformation T1, α, in addition to satisfying Lemma 33, also satisfies:

for each x > Ik−1, α(x) = α(Ik−1 + 1) ∈ Pk.

Begin transformation T2

For each pair i, x, such that

1 ≤ i ≤ k − 1 ∧ Ii < x ≤ Ii+1 ∧ α(x) ∈ Wi, (L)

let yi,x be such that Ii < yi,x ≤ Ii+1 ∧ α(yi,x) 6∈ Wi and ABS(yi,x − x) is minimized,

and, then, let α(x) = α(yi,x) (note that by Lemma 33-(c) there exists a y such that

Ii < y ≤ Ii+1 ∧ α(y) 6∈ Wi).

(* Note that this does not increase the set (queue) mind change complexity of α. *)

End transformation T2

It is easy to see that,

Lemma 35 After transformation T2, α, in addition to satisfying Lemma 33, also satisfies

(i) for each x > Ik−1, α(x) = α(Ik−1 + 1) ∈ Pk, and

(ii) for all i, x such that 1 ≤ i ≤ k − 1 and x > Ii, α(x) 6∈ Wi.

For n ∈ {n1, . . . , nk}, let finaln = max({i | 1 ≤ i ≤ k∧ni = n}). For n ∈ max({n1, . . . , nk}−

{nk}), let En = α(Ifinaln); note that En ∈ Wfinaln+1. Let Enk
= α(Ik−1 + 1).

Note that, by aid of Lemma 33-(d), Enr = Enr′
iff nr = nr′ . Also note that by Lemma 35,

for each j, 1 ≤ j < k, Enj
= α(Ifinalnj

), and for all x > Ifinalnj
, α(x) 6= Enj

.

For i ∈ {1, . . . , k − 1}, the following seven invariants will be true, in transformation T3

below, after the execution of the iteration of the for loop with j = i. For i = 0 the invariants

are true before the start of the transformation T3.

28

The invariants:

(i) For each i′ such that 1 ≤ i′ ≤ i, Eni′
∈ {α(x) | Ii′−1 < x ≤ Ii′}.

(ii) (∀i′ | 1 ≤ i′ ≤ k)[Eni′
∈ {α(x) | Ifinaln

i′
−1 < x ≤ Ifinaln

i′
}].

(iii) (∀j, j′, j′′ | 1 ≤ j < j′ < j′′ ≤ k)[[nj = nj′′ 6= nj′] ⇒ [En′

j
6∈ {α(x) | Ij−1 < x ≤ Ij}]].

(iv) For each i′ such that i < i′ ≤ k, there exists an x ∈ {Ii′−1 + 1, . . . , Ii′} such that

α(x) ∈ Pi − Wi.

(v) Lemma 33 (a), (b), (d), (e), (g) and (h) are satisfied.

(vi) For each x > Ik−1, α(x) = α(Ik−1 + 1) ∈ Pk.

(vii) For all i, x such that 1 ≤ i ≤ k − 1 and x > Ii, α(x) 6∈ Wi.

In transformation T3 and T4

“Insert q after x in α” means perform the following operations in sequence:

for each y ≤ x, let α′(y) = α(x);

let α′(x + 1) = q;

for each y > x, let α′(y + 1) = α(y);

let α = α′;

for each j, 1 ≤ j ≤ k, if Ij > x, then let Ij = Ij + 1.

Begin transformation T3

for j = 1 to k − 1 do

if Enj
6∈ {α(x) | Ij−1 < x ≤ Ij} then perform the transformation given below (which

ensures that after the transformation Enj
∈ {α(x) | Ij−1 < x ≤ Ij}).

Let Si’s (Qi’s) be such that the number of set (queue) mind changes of α is minimized.

Let Ri = Si (respectively, Set(Qi)) below.

Case 1: For some x, Ij−1 < x ≤ Ij , Enj
∈ Rx.

Let x be such that Ij−1 < x ≤ Ij and Enj
∈ Rx. Insert Enj

after x − 1 in α.

(* Note that this does not increase the number of set (queue) mind changes for

α. *)

Case 2: Not case 1.

Let w ∈ Pnj
be such that w ∈ {α(x) | Ij−1 < x ≤ Ij}. Let xw be such that

Ij−1 < x ≤ Ij and w = α(xw).

Case 2.1: There does not exist a y > Ifinalnj
such that w = α(y) or there exists

an x such that xw < x ≤ Ifinalnj
and either w 6∈ Rx or we are dealing with

queue mind changes, Qx = Qx−1 � α(x), and α(x) = w.

Select such an x. For all y < x, such that α(y) = w, let α(y) = Enj
.

29

(* Note that this does not increase the number of set (queue) mind

changes of α. *)

Case 2.2: Not case 2.1.

Note that in this case, there exist x and y such that x ≤ Ij < y ≤ Ifinalj
and

(∀z | x ≤ z ≤ y)[w ∈ Rz] ∧ (∀z | x ≤ z < y)[Enj
6∈ Rz] ∧ α(y) = Enj

.

(M)

Let x, y be such that they satisfy (M). For all z < y such that

α(z) = w, let α(z) = Enj
, and, then, insert w after y in α.

(* Note that this does not increase the number of set mind changes of

α. For queue mind change complexity note that the above transfor-

mation interchanges the position of w and Enj
in Qy, which does not

increase the number of queue mind changes, since, for all z > Ifinalj ,

Eny 6= α(z). *)

endif

endfor

End transformation T3.

It is easy to see that the seven invariants stated just before the transformation hold. The

following lemma follows from these invariants holding.

Lemma 36 After transformation T3, α satisfies each of the following.

(a) For each j, 1 ≤ j ≤ k, Enj
∈ {α(x) | Ij−1 < x ≤ Ij}.

(b) (∀j, j′, j′′ | 1 ≤ j < j′ < j′′ ≤ k)[[nj = nj′′ 6= nj′] ⇒ [En′

j
6∈ {α(x) | Ij−1 < x ≤ Ij}]].

(c) (∀j | 1 ≤ j ≤ k)[Enj
6∈ {α(x) | Ifinalnj

< x}].

Note that the above lemmas establish Claim 29 for set mind change. This is so because

there exists a subsequence α′ of α such that reduce(α) = s. For the queue mind change case

we need some more transformations.

We assume, from now on, that {α(x) | x ∈ N} consists only of elements from

{En1 , En2 , . . . , Enk
, ?} (the other elements in α can be deleted, without increasing the queue

mind change complexity of α). In transformation T4 below

“delete x-th element of α” means perform the following operations in sequence:

for each y < x, let α′(y) = α(x);

for each y ≥ x, let α′(y) = α(y + 1);

let α = α′;

for each j, 1 ≤ j ≤ k, if Ij ≥ x, then let Ij = Ij − 1.

30

Let Prop(i) be the property:

(∃x | Ii−1 < x ≤ Ii)[α(x) 6= Eni
]. (N)

Begin transformation T4

while there exists an i such that Prop(i) do

(* Note that {Efinaln′

j

| j′ ≤ k ∧ finaln′

j
≤ finalni

} ∩ {α(x) | x > Ifinalni
} = ∅. *)

Let i be such that Prop(i) holds with finalni
minimized.

Let Q0, Q1, . . . witness that the queue mind change complexity of α is X, where X is

the queue mind change complexity of α.

Let Ql = QIfinalni

.

For all x such that there exists a i′, ni′ = ni, Ii′−1 < x ≤ Ii′ and α(x) 6= Eni
delete the

x-th element of α (in decreasing order of such x’s).

Let S = {x | x-th element is deleted in the previous step and Qx−1 6= Qx}. Let

i1 < i2 < . . . < icard(S) be such that S = {i1, i2, . . . , icard(S)}. For each i ∈ S, let

ei = the last element in the queue Qi. Let Q′ = (ei1 , ei2 , . . . , eicard(S)
).

(* Q′ is formed from the deleted elements of α which caused a “mind change” in the

sequence of queues Q0, Q1, . . . *)

if ni 6= nk then,

Insert, after Ifinalni
in α, all the elements of Q′ starting from the rear end and

proceeding to the front.

endif

(* Using the note mentioned at the beginning of the body of this while loop, it is easy

to see that the body of the while loop does not increase the number of mind changes.

*)

endwhile

End transformation T4

Lemma 37 After transformation T4, α satisfies:

for each i, x such that 1 ≤ i ≤ k and Ii−1 < x ≤ Ii, [Ii−1 < Ii ∧ α(x) = Eni
].

Note that the above lemma implies that after the transformations reduce(α) = s. Thus the

requirements for satisfying Claim 29 are achieved.

Theorem 38 Suppose 2 ≤ i ≤ c, 1 ≤ j ≤ c and c ∈ N .

Sfexi,c − Qfexj,(b c−1
j+i−2

c∗(i−1)+c−1+([c−b c−1
j+i−2

c∗(j+i−2)]
.
−j)) 6= ∅.

31

Proof. We prove the theorem by using Claim 29. Let Seq(l, i, j) be the sequence (1, l, l +

1, . . . , l+i−3, l+i−2, . . . , l+j+i−3, l+i−3, l+i−4, . . . , l). This sequence consists of 1, followed

by a sequence of i−2 numbers, followed by a sequence of j numbers, followed by the reverse of the

first sequence of i−2 numbers. Let r = b c−1
j+i−2c. Let m = ([c−b c−1

j+i−2c∗(j+i−2)] .− j). If m > 0,

then let s′ = Seq(b c−1
j+i−2c∗(j+i−2)+2,m+1, j)�(1, c+1); else, let s′ = (1, b c−1

j+i−2c∗(j+i−2)+

2, . . . , c+1). Let s = Seq(2, i, j)�Seq(2+1∗(j+i−2), i, j)�. . .�Seq(2+(r−1)∗(j+i−2), i, j)�s′.

The theorem follows by observing that Cs ∈ Sfexi,c and the fact that any machine which

Qfexj,∗-identifies Cs can do no better, with respect to queue mind changes, on some f ∈ Cs,

than outputting a sequence exactly matching s.

Theorem 39 Suppose 1 ≤ j ≤ i ≤ c, c ∈ N . Sfexi,c−Sfexj,(b c−1
i−1

c∗(i−j)+c−1+([c−b c−1
i−1

c∗(i−1)]
.
−j)) 6=

∅.

Proof. We prove the theorem by using Claim 29. Let Seq(l, i) be the sequence (1, l, l +

1, . . . , l + i − 3, l + i − 2, l + i − 3 . . . , l) This sequence consists of 1, followed by a sequence

of i − 2 numbers, followed by a number, followed by the reverse of the sequence of i − 2

numbers. Let r = b c−1
i−1 c. Let m = ([c − b c−1

i−1 c ∗ (i − 1)] .− j). If m > 0, then let s′ =

Seq(b c−1
i−1 c ∗ (i − 1) + 2,m + j) � (1, c + 1); else, let s′ = (1, b c−1

i−1c ∗ (i − 1) + 2, . . . , c + 1). Let

s = Seq(2, i) � Seq(2 + 1 ∗ (i− 1), i) � . . . � Seq(2 + (r − 1) ∗ (i− 1), i) � s′. The theorem follows

by observing that Cs ∈ Sfexi,c and the fact that any machine which Sfexj,∗-identifies Cs can

do no better, with respect to set mind changes, on some f ∈ Cs, than outputting a sequence

exactly matching s.

A complicated modification of the diagonalization in the proof of Claim 29 also gives the

following:

Theorem 40 Let 1 ≤ j < i ≤ c, c ∈ N . Qfexi,c − Sfexj,(b c−1
i−1

c∗(i−j)+c−1+([c−b c−1
i−1

c∗(i−1)]
.
−j)) 6=

∅.

As corollaries to the above theorems we have:

Corollary 41 For all c ∈ N, c ≥ 1, Qfex1,c ⊂ Qfex2,c ⊂ . . . ⊂ Qfexc,c = Qfexc+1,c =

Corollary 42 For all c ∈ N, c ≥ 1, Sfex1,c ⊂ Sfex2,c ⊂ . . . ⊂ Sfexc,c = Sfexc+1,c =

Corollary 43 For all b, c ∈ N , 2 ≤ b < c, Qfexb,c ⊂ Sfexb,c.

Corollary 44 For c ∈ N+, Qfex2,c − Ex2c−2 6= ∅.

32

4 Program Size Restrictions on Vacillatory Function Identifi-

cation

Definition 45 Suppose a ∈ N ∪ {∗} and b ∈ N+ ∪ {∗}.

(i) A learning machine, M, Mfexa
b -identifies a class of functions S just in case (∃h ∈ R)(∀f ∈

S)(∃D | card(D) ≤ b)[M(f)⇓ = D ∧ (∀i ∈ D)[ϕi =a f ∧ i ≤ h(MinProgϕ(f))]].

(ii) Mfexa
b = {S | (∃M)[M Mfexa

b -identifies S]}.

h in Definition 45 plays the role of a computable amount by which the final programs can

be larger than minimal size. This size restriction of course does not hold in general, but it is

not as severe as requiring that the final programs be strictly minimal size. Mathematically,

Mfexa
b -identification is well-behaved. For example, it is independent of the choice of acceptable

programming system used to interpret a machine’s conjectures. We also denote Mfexa
1 by

Mexa.

Definition 46 Suppose a ∈ N ∪ {∗}.

(i) A learning machine, M, Mbca-identifies a class of functions S just in case (∃h ∈ R)(∀f ∈

S)(
∞
∀ n)[ϕM(f [n]) =a f ∧ M(f [n]) ≤ h(MinProg(f))].

(ii) Mbca = {S | (∃M)[M Mbca-identifies S]}.

Proposition 47 (∀a ∈ N)[Mfexa
∗ = Mbca].

Proof. Follows from the fact that for each h, f ∈ R there are only finitely many programs

≤ h(MinProg(f)).

As promised, the next theorem answers an open question in Chen (1981).

Theorem 48 (∀a ∈ N)[Mfexa
∗ = Mexa].

Proof of Theorem 48.

Suppose M Mfexa
∗-identifies S. Let h, computable, be such that (∀f ∈ S)[M(f) ≤

h(MinProg(f))]. We assume without loss of generality that h is monotone increasing. We

first construct an M′ which on each f ∈ S, converges to a “small” enough program, with

“small” number of errors.

Let P range over finite sets of programs. By the s-m-n theorem (Rogers (1967)) there exists

a recursive function Unify, mapping finite sets of programs to programs, such that ϕUnify(·) can

be defined as follows.

Begin Unify(P)

On input x,

search for i ∈ P such that ϕi(x)↓.

33

If and when such an i is found output ϕi(x) (for the first such i found).

End

Let GOOD(f, k) be true iff the following three properties are satisfied.

(i) For each i ∈ Dπ2(k), card({x | ϕi(x)↓ 6= f(x)}) ≤ a.

(ii) For each m ≥ k, M(f [m]) ∈ Dπ2(k).

(iii) (∀i | h(i) < max(Dπ2(k)))(∃x ≤ k)[ϕi(x) 6= f(x)].

Note that, for f ∈ S, there exists a k such that GOOD(f, k). Let PROG(f) =

D
π2(min({k|GOOD(f,k)})). We construct M′ such that, for all f , M′(f) = Unify(PROG(f)).

Let MAYBEGOOD(f [n], k) be true iff the following three properties are satisfied.

(i) For all i ∈ Dπ2(k), card({x < n | Φi(x) ≤ n ∧ ϕi(x)↓ 6= f(x)}) ≤ a.

(ii) For all m such that k ≤ m ≤ n, M(f [m]) ∈ Dπ2(k).

(iii) (∀i | h(i) < max(Dπ2(k)))(∃x ≤ k)[Φi(x) > n ∨ ϕi(x) 6= f(x)].

Let M′(f [n]) = Unify(D
π2(min({n}∪{k′≤n|MAYBEGOOD(f [n],k′)}))).

Let h1(j) = max({Unify(P) | P ⊆ {x | x ≤ h(j)}}).

Claim 49 For all f ∈ S, there exists an i such that, M′(f)↓ = i and the following three

conditions are satisfied.

(i) i ≤ h1(MinProg(f)).

(ii) card({x | ϕi(x)↑}) ≤ a.

(iii) card({x | ϕi(x)↓ 6= f(x)}) ≤ a ∗ (1 + h(MinProg(f))).

Proof. (i) holds since PROG(f) ⊆ {j | j ≤ h(MinProg(f))}.

(ii) holds since the number of errors committed by the final programs, output by M on f ,

is bounded by a.

(iii) holds because card(PROG(f)) ≤ 1+h(MinProg(f)) and for all i ∈ PROG(f), card({x |

ϕi(x)↓ 6= f(x)}) ≤ a (by condition (i) in the definition of GOOD).

Define mindiv, errset,patchset,patch, g as follows.

mindiv(j, n) = min({n} ∪ {x | Φj(x) ≥ n}).

errset(j, n) = {x < mindiv(j, n) | Φ
M′(ϕj [mindiv(j,n)])(x) ≤ n∧ϕ

M′(ϕj [mindiv(j,n)])(x) 6= ϕj(x)}.

patchset(j, n) = {〈x, ϕj(x)〉 | x ∈ errset(j, n)}.

ϕpatch(l,D)(x) =

{

y if (∃z)[〈x, z〉 ∈ D] ∧ [y = min({z | 〈x, z〉 ∈ D})];

ϕl(x) otherwise.

34

g(j, n) =



















patch(M′(ϕj [m]),patchset(j, n)), if card(errset(j, n)) ≤ a · [h(j) + 1]∧

M′(ϕj [mindiv(j, n)]) ≤ h1(j),

and m = mindiv(j, n);

0, otherwise.

mindiv(j, n) finds the minimal apparent divergent point for ϕj (using n as a complex-

ity bound) and errset finds the set of apparent convergent errors (with respect to ϕj) in

ϕ
M(ϕj [mindiv(j,n)]). patchset contains the patches required for the errors in errset. Note that

for ϕj ∈ S, limn→∞ g(j, n) is a program formed by patching the convergent errors in M′(ϕj).

It is easy to see that the following claim holds.

Claim 50 For all j, if ϕj ∈ S, then the following four properties are satisfied.

(i) card({g(j, n) | n ∈ N}) ≤ 1 + (1 + h1(j)) ∗ (1 + a ∗ (1 + h(j))).

(ii) limn→∞ g(j, n)↓ = k such that,

card({x | ϕk(x)↑}) ≤ a∧

card({x | ϕk(x)↓ 6= ϕj(x)}) = 0.

(iii) For all l, if ϕl = ϕj, then limn→∞ g(l, n)↓ = limn→∞ g(j, n).

(iv) limn→∞ g(j, n) = patch(M′(ϕj), {〈x, ϕj(x)〉 | ϕ
M′(ϕj)(x)↓6=ϕj(x)}).

Let M′′ be such that, M′′(f [n]) = patch(M′(f [n]), {〈x, f(x)〉 | x < n ∧ ΦM′(f [n])(x) ≤ n ∧

ϕM′(f [n])(x) 6= f(x)}). It is easy to see that, for ϕj ∈ S, M′′(ϕj) = patch(M′(ϕj), {〈x, ϕj(x)〉 |

ϕ
M′(ϕj)(x)↓6=ϕj(x)}) = limn→∞ g(j, n).

Thus from Theorem 3.3 in Chen (1982) (and using g, M′′ constructed above) we have that

S ∈ Mexa.

Theorem 51 (Chen (1981)) Mex∗ = Mfex∗
∗.

Proof. Case and Smith (1983) showed that Fex∗
∗ = Ex∗. Chen (1981) showed that Ex∗ =

Mex∗. The theorem follows.

5 Future Work

The results in section 3 (Theorems 18, 28, 38, 39 and 40) do not give the complete relation-

ship (even for identification without anomalies) between the criteria of inference introduced.

Methodologically there is a gap between the diagonalization and simulation results. Future

work will concentrate on proving theorems which give the complete relationship between the

inference criteria introduced. In particular we need to much more generally assess the effects

of the presence of anomalies.

35

6 Acknowledgements

We would like to express our gratitude to Professor S. N. Maheshwari of the Department of

Computer Science and Engineering at the Indian Institute of Technology, New Delhi for making

the facilities of his department available to us during the preparation of this manuscript.

References

Angluin, D. (1980). Finding patterns common to a set of strings. Journal of Computer and
System Sciences, 21, 46–62.

Barzdin, J. M. and Freivalds, R. (1974). Prediction and limiting synthesis of recursively enu-
merable classes of functions. Latvijas Valsts Univ. Zimatm. Raksti, 210, 101–111.

Barzdin, J. M. and Podnieks, K. (1973). The theory of inductive inference. In Mathematical
Foundations of Computer Science.

Blum, L. and Blum, M. (1975). Toward a mathematical theory of inductive inference. Infor-
mation and Control, 28, 125–155.

Blum, M. (1967). A machine independent theory of the complexity of recursive functions.
Journal of the ACM, 14, 322–336.

Case, J. (1974). Periodicity in generations of automata. Mathematical Systems Theory, 8,
15–32.

Case, J. (1988). The power of vacillation. In Haussler, D. and Pitt, L. (Eds.), Proceedings
of the Workshop on Computational Learning Theory, (pp. 133–142). Morgan Kaufmann
Publishers, Inc. Expanded in Case (1992).

Case, J. (1992). The power of vacillation in language learning. Technical Report 93-08, Uni-
versity of Delaware. Expands on Case (1988); journal article under review.

Case, J., Jain, S., and Sharma, A. (1989). Convergence to nearly minimal size grammars
by vacillating learning machines. In Rivest, R., Haussler, D., and Warmuth, M. (Eds.),
Proceedings of the Second Annual Workshop on Computational Learning Theory, Santa
Cruz, California, (pp. 189–199). Morgan Kaufmann Publishers, Inc.

Case, J. and Smith, C. (1983). Comparison of identification criteria for machine inductive
inference. Theoretical Computer Science, 25, 193–220.

Chen, K. (1981). Tradeoffs in Machine Inductive Inference. PhD thesis, SUNY at Buffalo.

Chen, K. (1982). Tradeoffs in inductive inference of nearly minimal sized programs. Information
and Control, 52, 68–86.

Daley, R. and Smith, C. (1986). On the complexity of inductive inference. Information and
Control, 69, 12–40.

Freivalds, R. (1975). Minimal Gödel numbers and their identification in the limit. Lecture Notes
in Computer Science, 32, 219–225.

Gold, E. M. (1967). Language identification in the limit. Information and Control, 10, 447–474.

Gold, E. M. (1978). Complexity of automaton identification from given data. Information and
Control, 37, 302–320.

36

Jain, S. and Sharma, A. (1990). Program size restrictions in inductive learning. Technical
Report 90-06, University of Delaware, Newark, Delaware.

Jain, S. and Sharma, A. (1991). Program size restrictions in inductive learning. In Powers,
D. and Reeker, L. (Eds.), Proceedings MLNLO’91, Machine Learning of Natural Language
and Ontology, Stanford University, California, (pp. 87–92). DFKI.

Kinber, E. B. (1974). On the synthesis in the limit of almost minimal Gödel numbers. Theory
Of Algorithms and Programs, LSU, Riga, 1, 221–223.

Kinber, E. B. (1977). On limit identification of minimal Gödel numbers for functions from
enumerable classes. Theory of Algorithms and Programs, Riga 1977, 3, 35–56.

Machtey, M. and Young, P. (1978). An Introduction to the General Theory of Algorithms. North
Holland, New York.

Marcoux, Y. (1989). Composition is almost as good as s-1-1. In Proceedings, Structure in
Complexity Theory–Fourth Annual Conference. IEEE Computer Society Press.

Osherson, D. and Weinstein, S. (1982). Criteria of language learning. Information and Control,
52, 123–138.

Riccardi, G. (1980). The Independence of Control Structures in Abstract Programming Systems.
PhD thesis, SUNY/ Buffalo.

Riccardi, G. (1981). The independence of control structures in abstract programming systems.
Journal of Computer and System Sciences, 22, 107–143.

Rogers, H. (1958). Gödel numberings of partial recursive functions. Journal of Symbolic Logic,
23, 331–341.

Rogers, H. (1967). Theory of Recursive Functions and Effective Computability. McGraw Hill,
New York. Reprinted, MIT Press 1987.

Royer, J. (1987). A Connotational Theory of Program Structure. Lecture Notes in Computer
Science 273. Springer Verlag.

Wiehagen, R. (1986). On the complexity of program synthesis from examples. Electronische
Informationverarbeitung und Kybernetik, 22, 305–323.

Zeugmann, T. (1983). On the synthesis of fastest programs in inductive inference. Electronische
Informationverarbeitung und Kybernetik, 19, 625–642.

37

