
Learning in the Presence of Inaccurate Information

Mark Fulk ∗ Sanjay Jain †

Abstract

The present paper considers the effects of introducing inaccuracies in a learner’s environ-

ment in Gold’s learning model of identification in the limit. Three kinds of inaccuracies are

considered: presence of spurious data is modeled as learning from a noisy environment, miss-

ing data is modeled as learning from incomplete environment, and the presence of a mixture

of both spurious and missing data is modeled as learning from imperfect environment.

Two learning domains are considered, namely, identification of programs from graphs of

computable functions and identification of grammars from positive data about recursively

enumerable languages. Many hierarchies and tradeoffs resulting from the interplay between

the number of errors allowed in the final hypotheses, the number of inaccuracies in the data,

the types of inaccuracies, and the type of success criteria are derived.

An interesting result is that in the context of function learning, incomplete data is strictly

worse for learning than noisy data.

1 Introduction

Consider the scenario in which a subject is attempting to learn its environment. At any given

time, the subject receives a finite piece of data about its environment, and based on this

finite information, conjectures an explanation about the environment. The subject is said to

learn its environment just in case the explanations conjectured by the subject become fixed

over time, and this fixed explanation is a correct representation of the subject’s environment.

Computational learning theory provides a framework for the study of the above scenario when

the subject is an algorithmic device. The above model of learning is based on the work initiated

by Gold [Gol67] and has been used in inductive inference of both functions and languages. We

refer the reader to [AS83, BB75, CS83, OSW86, KW80] for background material in this field.

∗Genesee Valley Software, 92 Monteroy Road, Brighton, NY 14618, USA
†Department of Information Systems and Computer Science, National University of Singapore, Singapore

0511, Republic of Singapore. Email: sanjay@iscs.nus.sg

1

In this paper we consider the effect of inaccuracies in the data presented to the learner. In

the context of linguistic development, children likely receive ungrammatical sentences and may

not receive some sentences. However, these inaccuracies do not seem to influence the outcome

of linguistic development. Similarly, in the context of scientific discovery, the business of science

progresses despite experimental errors and unfeasibility of performing certain experiments.

In this paper, both for identification of functions and languages, we consider the effects of

having inaccuracies in the input data. We show a hierarchy based on the number of inaccuracies

present in the input data. We also show tradeoff results based on the amount and type of

inaccuracies present. Osherson, Stob and Weinstein [OSW86] and Schäfer-Richter [SR86] have

also considered inaccurate information in the above model of learning.

We consider three kinds of inaccuracies that could creep into natural environments of learn-

ers.

• Noisy data: Ungrammatical intrusions into the language presented to a child is a very

reasonable assumption about a child’s environment. Similarly, experimental error caused

by a faulty equipment could result in spurious data that is not representative of the reality

under investigation.

• Incomplete data: Natural linguistic environments may omit sentences from the am-

bient language, and it is possible that a child’s learning function can identify a natural

language despite the systematic omission of sentences from its environment. Similarly,

some experiments cannot be performed either due to technological limitations or due to

ethical considerations.

• Imperfect data: Most natural linguistic environments are likely to be victims of both

ungrammatical intrusions and omission of sentences from the ambient language. Such

environments that contain a mixture of noisy and incomplete inaccuracies are referred to

as environments with imperfect data. Similarly, in most experimental investigations, the

inaccuracies are a mixture of both noisy and incomplete data.

The three kinds of inaccuracies discussed above yield three kind of information sequences—

noisy, incomplete, and imperfect. However, a further distinction is made based on whether the

number of inaccuracies in the input is finite or infinite. In this paper we only examine the case

where inaccuracies are finite in number.

It should be noted that the inaccuracies discussed here model spurious data and unavail-

ability of data; they don’t say anything about situations like “data is correct within 10% of

actual value.”

2

2 Preliminaries

2.1 Notation

Recursion-theoretic concepts not explained below are treated in [Rog67]. N denotes the set

of natural numbers, {0, 1, 2, 3, . . .}, and N+ denotes the set of positive integers, {1, 2, 3, . . .}.

The symbols ∅, ∈, ⊆, ⊂, ⊇, ⊃ respectively denote, emptyset, member of, subset, proper subset,

superset and proper superset.

Unless otherwise specified, e, i, j, k, l,m, n, r, s, t, w, x, y, z, with or without decorations1,

range over N . ∗ is a non-member of N satisfying (∀n ∈ N)[n < ∗ < ∞]. a and b, with

or without decorations, range over N ∪ {∗}.

A,S, P,X, with or without decorations, range over subsets of N . D ranges over finite subsets

of N . card(P) denotes the cardinality of P . So then, ‘card(P) ≤ ∗’ means that card(P) is finite.

min(P) and max(P) respectively denote the minimum and maximum element in P . We take

min(∅) to be ∞ and max(∅) to be 0.

Let λx, y 〈x, y〉 denote a fixed pairing function (a recursive, bijective mapping: N × N →

N) [Rog67]. λx, y 〈x, y〉 and its inverses are useful to simulate the effect of having multiple

argument functions. π1 and π2 are corresponding projection functions, i.e., (∀x, y)[π1(〈x, y〉) =

x ∧ π2(〈x, y〉) = y]. 〈·, ·〉 can be extended to n-tuple 〈·, · · · , ·〉 in a natural way.

η and ξ range over partial functions. For a ∈ N ∪ {∗}, η1 =a η2 means that card({x |

η1(x) 6= η2(x)}) ≤ a. In this case we also say that η1 is an a-variant of η2. domain(η) and

range(η) respectively denote the domain and range of partial function η. graph(η) denotes the

set {(x, η(x)) | x ∈ domain(η)}.

R denotes the class of all recursive functions, i.e., total computable functions with arguments

and values from N . f, h and F , with or without decorations, range over R. S, C, with or without

decorations, range over subsets of R.

We fix ϕ to be an acceptable programming system [Rog58, Rog67, MY78] for the partial

recursive functions: N → N . By ϕi we denote the partial recursive function computed by

ϕ-program i. In some contexts p ranges over programs. In other contexts, p ranges over total

functions, with its range being construed as programs. MinProg(f) = min({j | ϕj = f}), the

minimum program for f in the ϕ system. We let Wi denote domain(ϕi). Wi is, then, the r.e.

set/language (⊆ N) accepted (or equivalently, generated) by the ϕ-program i. We let Φ be an

arbitrary Blum complexity measure [Blu67] associated with acceptable programming system ϕ;

such measures exist for any acceptable programming system [Blu67]. Then, Wi,s denotes the

1Decorations are subscripts, superscripts and the like.

3

set {x | x < s ∧ Φi(x) ≤ s}.

L, with or without decorations, ranges over recursively enumerable (r.e.) subsets of N ,

which subsets are usually construed as codings of formal languages. E denotes the class of

all recursively enumerable languages ⊆ N . We let L, with or without decorations, range over

subsets of E . L1∆L2 denotes (L1−L2)∪ (L2 −L1), the symmetric difference of L1 and L2. For

a ∈ (N ∪ {∗}), L1 =a L2 means that card(L1∆L2) ≤ a. In this case we also say that L1 is an

a-variant of L2. Let FIN = {L | card(L) < ∞}.

The quantifiers ‘
∞
∀ ’ and ‘

∞
∃ ’ mean ‘for all but finitely many’ and ‘there exist infinitely many,’

respectively. The quantifier ‘∃!’ means ‘there exists a unique.’

We concern ourselves with formally investigating learning of two kinds of objects: com-

putable functions and recursively enumerable languages.

2.2 Learning Machines

An information sequence for functions is a mapping from N (or an initial segment of N) to

N × N ∪ {#}. An information sequence for languages is a mapping from N (or an initial

segment of N) to N ∪ {#}. Intuitively, # denotes the pauses in the presentation of data.

We often drop “for functions” and “for languages” from “information sequences for functions”

and “information sequences for languages” respectively; context determines which information

sequence we are dealing with. We often refer to infinite information sequences for languages as

texts. SEG denotes the set of all finite function information sequences, and SEQ denotes the

set of all finite language information sequences.

We let G and T , with or without decorations, range over infinite information sequences (i.e.

information sequences with domain N). We let σ and τ , with or without decorations, range

over finite information sequences (i.e. information sequences with domain an initial segment of

N). We let content(G) denote the set range(G) − {#}. Similarly, content(σ) denotes the set

range(σ) − {#}.

Suppose G is an infinite information sequence. Then G[n] denotes the finite initial segment

of G with length n. For finite information sequence σ of length ≥ n, σ[n], denotes the initial

segment of σ with length n. |σ| denotes the length of the finite information sequence σ. σ ⊆ G

means that σ is an initial sequence of G. Similarly, σ ⊆ τ , means that σ is an initial sequence

of τ . We often identify a total function f , with its canonical information sequence G, defined

as

G(k) = (k, f(k))

4

Thus f [n], is same as the finite information sequence, σ defined as follows:

σ(k) =

{

(k, f(k)), if k < n;

↑, otherwise.

For a finite information sequence σ for languages, σ � y denotes the concatenation of y at

the end of the sequence σ. Formally, σ′ = σ � y is defined as follows:

σ′(k) =











σ(k), if k < |σ|;

y, if k = |σ|;

↑, otherwise.

Similarly, for a finite information sequence σ for functions, σ � (y, z) denotes the concatenation

of (y, z) at the end of the sequence σ.

Definition 1 A learning machine is an algorithmic mapping from finite information sequences

to N .

We let M, with or without decorations, range over learning machines.

A machine, M, converges on an information sequence G (denoted by M(G)↓) iff there

exists an i, such that (
∞
∀ n)[M(G[n]) = i]. Otherwise we say that M diverges on G (denoted by

M(G)↑). If M converges on G, then we define M(G) as the unique i such that (
∞
∀ n)[M(G[n]) =

i]. Otherwise M(G) is undefined.

Definition 2 A machine M is rearrangement independent if (∀σ, τ | content(σ) =

content(τ) ∧ |σ| = |τ |)[M(σ) = M(τ)].

Thus the output of a rearrangement independent machine depends only on the content

and length of its input. For all the explanatory identification criteria considered in this paper

we can assume without loss of generality that the machine is rearrangement independent (see

[Ful90, Ful85]). In some of our proofs, when we assume that the machine is rearrangement

independent, we often consider the learning machine as taking two arguments, a set representing

the content of its input and a number representing the length of its input.

2.3 Fundamental Function Identification Paradigms

We now introduce two different criteria for a learning machine to successfully infer a function

(from perfect input data).

5

2.3.1 Explanatory Function Identification

Definition 3 [Gol67, BB75, CS83] Let a ∈ N ∪ {∗}.

(a) M Exa-identifies f (written: f ∈ Exa(M)) ⇐⇒ (∃i | ϕi =a f)[M(f)↓ = i].

(b) Exa = {S | (∃M)[S ⊆ Exa(M)]}.

Case and Smith [CS83] motivate anomalies (or, mistakes) in the final programs in Defini-

tion 3 from the fact that physicists sometimes do employ explanations with anomalies. The

a = ∗ case was introduced by L. Blum and M. Blum [BB75] and the other a > 0 cases were

first considered by Case and Smith [CS83].

2.3.2 Behaviorally Correct Function Identification

Case and Smith [CS83] introduced another infinite hierarchy of identification criteria which we

describe below. “Bc” stands for behaviorally correct . Barzdin [Bar74] essentially introduced

Bc0.

Definition 4 [CS83] Let a ∈ N ∪ {∗}.

(i) M Bca-identifies f (written: f ∈ Bca(M)) ⇐⇒ (
∞
∀ n)[ϕM(f [n]) =a f].

(ii) Bca = {S | (∃M)[S ⊆ Bca(M)]}.

We usually write Ex for Ex0 and Bc for Bc0. Theorem 5 below describes some of the basic

results about the two kinds of function identification criteria described above.

Theorem 5 For all a ∈ N ,

(a) Exa ⊂ Exa+1.

(b)
⋃

a∈N Exa ⊂ Ex∗.

(c) Ex∗ ⊂ Bc.

(d) Bca ⊂ Bca+1.

(e)
⋃

a∈N Bca ⊂ Bc∗.

(f) R ∈ Bc∗.

Parts (a), (b), (d), and (e) are due to Case and Smith [CS83]. John Steel first observed

that Ex∗ ⊆ Bc and the diagonalization in part (c) is due to Harrington and Case [CS83]. Part

(f) is due to Harrington [CS83]. Blum and Blum [BB75] first showed that Ex ⊂ Ex∗. Barzdin

[Bar74] independently showed Ex ⊂ Bc.

Let AEZ = {f ∈ R | card({x | f(x) 6= 0}) < ∞}. Let SELFREF = {f ∈ R | ϕf(0) =

f ∧ card({x | f(x) 6= 0}) = ∞}. We will be using the above classes and their variants in several

6

of our proofs. The following Theorem from [BB75] shows that Ex is not closed under union as

witnessed by AEZ and SELFREF.

Theorem 6 [BB75] AEZ ∈ Ex, SELFREF ∈ Ex, but AEZ ∪ SELFREF 6∈ Ex∗ ∪
⋃

i Bci.

2.4 Fundamental Language Identification Paradigms

Definition 7 A text T is for a language L iff content(T) = L.

Intuitively, a text for a language is an enumeration or sequential presentation of all the objects

in the language with the #’s representing pauses in the listing or presentation of such objects.

For example, the only text for the empty language is just an infinite sequence of #’s.

2.4.1 Explanatory Language Identification

We now introduce criteria for a learning machine to be successful on a language.

Definition 8 [Gol67, CL82, OW82a] Let a ∈ N ∪ {∗}.

(a) M TxtExa-identifies L (written: L ∈ TxtExa(M)) ⇐⇒ (∀ texts T for L)(∃i | Wi =a

L)[M(T)↓ = i].

(b) TxtExa = {L | (∃M)[L ⊆ TxtExa(M)]}.

We usually write TxtEx for TxtEx0. The generalization of Gold’s paradigm to the a > 0

case above was motivated by the observation that humans rarely learn a language perfectly.

The a > 0 case in Definition 8 is due to Case and Lynes [CL82]. Osherson and Weinstein

[OW82a], independently of Case and Lynes, introduced the a = ∗ case. The influence of Gold’s

paradigm to human language learning is discussed by Pinker [Pin79], Wexler and Culicover

[WC80], Wexler [Wex82], and Osherson, Stob, and Weinstein [OSW82, OSW84, OSW86].

Definition 9 [Ful85, Ful90] σ is a TxtEx-stabilizing sequence for M on L ⇐⇒ content(σ) ⊆

L and (∀σ′ | content(σ′) ⊆ L ∧ σ ⊆ σ′)[M(σ′) = M(σ)].

Definition 10 [BB75, OW82b] Let a ∈ N ∪ {∗}. σ is a TxtExa-locking sequence for M on L

⇐⇒ σ is a TxtEx-stabilizing sequence for M on L and WM(σ) =a L.

For rearrangement independent machines, we often refer to a stabilizing (locking) sequence

σ by 〈content(σ), |σ|〉.

We now present a very important lemma in learning theory due to L. Blum and M. Blum

[BB75].

Lemma 11 [BB75, OW82b] If M TxtExa-identifies L, then there is a TxtExa-locking se-

quence for M on L.

7

2.4.2 Vacillatory Language Identification

Case [Cas88], as a refinement of a result by Osherson and Weinstein [OW82a], considered the

question whether humans converge to more than one distinct, but equivalent, correct gram-

mar. He captured this notion through a new criterion of language learning, viz., TxtFex-

identification—a more general criteria than Gold’s TxtEx-identification.

Before we describe TxtFex-identification, we first consider in Definition 12 just below what

it means for a learning machine to converge on a text to a finite set of grammars.

Definition 12 [Cas88] Suppose M is a learning machine and T is a text. Then, M(T) finitely-

converges (written: M(T)⇓) ⇐⇒ {M(σ) | σ ⊂ T} is finite. If M(T)⇓, then we say that

M(T)⇓ = {i | (
∞
∃ σ ⊂ T)[M(σ) = i]}, otherwise we say that M(T) finitely-diverges (written:

M(T)⇑).

Definition 13 [Cas88] Let a ∈ N ∪ {∗} and b ∈ N+ ∪ {∗}.

(i) M TxtFexa
b -identifies L (written: L ∈ TxtFexa

b (M)) ⇐⇒ (∀ texts T for L)(∃D |

card(D) ≤ b ∧ (∀i ∈ D)[Wi =a L])[M(T)⇓ = D].

(ii) TxtFexa
b = {L | (∃M)[L ⊆ TxtFexa

b (M)]}.

In TxtFexa
b -identification, the b is a “bound” on the number of final grammars and the a

is a “bound” on the number of anomalies allowed in these final grammars. A “bound” of ∗

just means unbounded, but finite. We sometimes refer to TxtFex0
b as TxtFexb. TxtFex∗-

identification was first studied by Osherson and Weinstein [OW82a].

2.4.3 Behaviorally Correct Language Identification

Definition 14 [CL82] Let a ∈ N ∪ {∗}.

(i) M TxtBca-identifies L (written: L ∈ TxtBca(M)) ⇐⇒ (∀ texts T for L)(
∞
∀

n)[WM(T [n]) =a L].

(ii) TxtBca = {L | (∃M)[L ⊆ TxtBca(M)]}.

We usually write TxtBc for TxtBc0.

The following definition is an analogue of Definition 10 for TxtBc-identification.

Definition 15 (Based on [BB75, CL82]) Let a ∈ N ∪ {∗}. σ is a TxtBca-locking sequence for

M on L ⇐⇒ content(σ) ⊆ L and (∀σ′ | [σ ⊆ σ′] ∧ [content(σ′) ⊆ L])[WM(σ′) =a L].

There is an analogue of Lemma 11 for TxtBc-identification [CL82].

8

Lemma 16 (Based on [BB75, CL82]) If M TxtBca-identifies L, then there is a TxtBca-

locking sequence for M on L.

Theorem 17 below states some of the basic results about the three kinds of language iden-

tification criteria just described.

Theorem 17 For all a, b ∈ N ,

(a) TxtExa+1 −TxtFexa
∗ 6= ∅.

(b) TxtEx2a+1 − TxtBca 6= ∅.

(c) TxtFex2a
∗ ⊂ TxtBca.

(d) TxtFex0
b+1 −TxtFex∗

b 6= ∅.

(e) TxtFex∗ −
⋃

b∈N TxtFex∗
b 6= ∅.

(f) TxtEx∗ −
⋃

a∈N TxtBca 6= ∅.

(g) TxtBc −TxtFex∗
∗ 6= ∅.

(h)
⋃

a∈N TxtBca ⊂ TxtBc∗.

Parts (a), (d), (e) and (g) are due to Case [Cas88]. Part (b) and (f) are due to Case and

Lynes [CL82] and part (c) is based on the techniques of Case and Lynes [CL82]. Part (h) follows

from part (e) in Theorem 5. Osherson and Weinstein [OW82a] have independently shown that

TxtEx ⊂ TxtFex∗.

We will need the following Theorem from [CL82]

Theorem 18 [CL82] {N} ∪ FIN 6∈ TxtBc∗.

Corollary 19 For L, define L′ = {〈j, x〉 | j ≥ 1 ∧ x ∈ L}. Let L′ = {L′ | L ∈ FIN ∪ {N}}.

Then L′ 6∈ TxtBc∗.

Theorem 20 (based on the techniques used to prove Theorem 18) Let L = {L | card(N−L) =

1} ∪ FIN. Then L 6∈ TxtBc∗.

3 Inaccurate Data

3.1 Information Sequences with Finite Number of Inaccuracies

Pursuant to the classification of inaccuracies, we define three kinds of inaccurate texts for

languages. ∗-noisy, ∗-incomplete and ∗-imperfect texts and the corresponding identification

criteria were first considered by [OSW86]. [SR86] considered a slight variant of noisy information

sequences.

9

Definition 21 Let a ∈ N ∪ {∗}.

(a) A text T is a-noisy for L ⇐⇒ L ⊆ content(T) and card(content(T) − L) ≤ a.

(b) A text T is a-incomplete for L ⇐⇒ content(T) ⊆ L and card(L − content(T)) ≤ a.

(c) A text T is a-imperfect for L ⇐⇒ card(L∆content(T)) ≤ a.

An a-noisy text T for a language L can be pictured as a text for L into which elements from

a finite set of cardinality at most a have been inserted. Note that any single such intrusion

may occur arbitrarily often in T . An a-incomplete text T for L can be pictured as a text for L

from which all occurrences of a given finite set of cardinality at most a have been removed. An

a-imperfect text T for L could be viewed as a text for L into which elements from a set S1 have

been inserted and elements from a set S2 have been deleted, where card(S1) + card(S2) ≤ a.

Note that in the above three definitions, a = ∗ case implies that the number of inaccuracies

is any finite number. The other a ∈ N cases model situations when a scientist may be aware,

a priori, of an upper bound on the number of inaccuracies infesting its environment; possible

sources of such information could be previous experience and nature of instruments used.

We now turn our attention to defining inaccurate information sequences for functions.

Definition 22 Let a ∈ N ∪ {∗}.

(a) An information sequence G is a-noisy for f ⇐⇒ graph(f) ⊆ content(G) and

card(content(G) − graph(f)) ≤ a.

(b) An information sequence G is a-incomplete for f ⇐⇒ content(G) ⊆ graph(f) and

card(graph(f) − content(G)) ≤ a.

(c) An information sequence G is a-imperfect for f ⇐⇒ card(graph(f)∆content(G)) ≤ a.

Note that in the case of noisy information sequences for functions, two incorrect values for

f(n) count as two distinct noise points, i.e., if the correct value of f(n) = x and both (n, y)

and (n, z), where x, y and z are distinct, are present in an inaccurate information sequence for

f , then the data points (n, y) and (n, z) contribute towards two distinct noise points. Also, if

the actual value of f(n) = y, but (n, y) doesn’t appear in an information sequence and instead

(n, z), y 6= z, appears, then these contribute two to the imperfection count.

We now introduce the learning criteria when there may be inaccuracies in the input data.

Definition 23 Let a, b ∈ N ∪ {∗}.

(a.1) M NaTxtExb-identifies L (written: L ∈ NaTxtExb(M)) ⇐⇒

(∀ a-noisy texts T for L)[M(T)↓ ∧ WM(T) =b L].

(a.2) NaTxtExb = {L | (∃M)[L ⊆ NaTxtExb(M)]}.

(b.1) M InaTxtExb-identifies L (written: L ∈ InaTxtExb(M)) ⇐⇒

10

(∀ a-incomplete texts T for L)[M(T)↓ ∧ WM(T) =b L].

(b.2) InaTxtExb = {L | (∃M)[L ⊆ InaTxtExb(M)]}.

(c.1) M ImaTxtExb-identifies L (written: L ∈ ImaTxtExb(M)) ⇐⇒

(∀ a-imperfect texts T for L)[M(T)↓ ∧ WM(T) =b L].

(c.2) ImaTxtExb = {L | (∃M)[L ⊆ ImaTxtExb(M)]}.

Definition 24 Let a, b ∈ N ∪ {∗}.

(a.1) M NaExb-identifies f (written: f ∈ NaExb(M)) ⇐⇒

(∀ a-noisy information sequences G for f)[M(G)↓ ∧ ϕM(G) =b f].

(a.2) NaExb = {C | (∃M)[C ⊆ NaExb(M)]}.

(b.1) M InaExb-identifies f (written: f ∈ InaExb(M)) ⇐⇒

(∀ a-incomplete information sequences G for f)[M(G)↓ ∧ ϕM(G) =b f].

(b.2) InaExb = {C | (∃M)[C ⊆ InaExb(M)]}.

(c.1) M ImaExb-identifies f (written: f ∈ ImaExb(M)) ⇐⇒

(∀ a-imperfect information sequences G for f)[M(G)↓ ∧ ϕM(G) =b f].

(c.2) ImaExb = {C | (∃M)[C ⊆ ImaExb(M)]}.

Similarly, we can define the language identification paradigms: NaTxtFexb
c, InaTxtFexb

c,

ImaTxtFexb
c, N

aTxtBcb, InaTxtBcb, ImaTxtBcb, and the function identification paradigms:

NaBcb, InaBcb, ImaBcb.

Analogue of Lemma 11 holds for identification from inaccurate information sequences also

(for both function learning and language learning). We state as an example the lemma for

NaTxtExb-identification.

Lemma 25 If M NaTxtExb-identifies L, then for every L′ such that L ⊆ L′ and card(L′ −

L) ≤ a, there exists a stabilizing sequence σ for M on L′ such that WM(σ) =b L.

3.2 Hierarchy Results

Theorem 26 below is about comparing extra anomalies in the final program inferred in the

presence of inaccuracies. Theorem 26 strengthens Theorem 5 to consider inaccuracies in the

input data. Theorem 26(a), for example, says that there are classes of functions for which

an (i + 1)-error program can be identified from information sequences with an arbitrary but

finite number of imperfections, but for which an i-error program cannot be identified even from

accurate information sequences. Theorem 26(d) is a similar result about Bc-identification.

It is also interesting to note that there is a machine that can Bc∗-identify every computable

function even from information sequences with an unbounded finite number of imperfections.

Theorem 26 yields a hierarchy exhibited in Corollary 27.

11

Theorem 26 For all i ∈ N

(a) Im∗Exi+1 − Exi 6= ∅.

(b) Im∗Ex∗ −
⋃

i Exi 6= ∅.

(c) Im∗Bc− Ex∗ 6= ∅.

(d) Im∗Bci+1 − Bci 6= ∅.

(e) R ∈ Im∗Bc∗.

Proof. (a) Let C = {f | ϕf(0) =i+1 f ∧ (∀x)[f(2x) = f(0)]}. It is easy to see that C ∈

Im∗Exi+1. An easy modification of the proof of Exi+1 − Exi 6= ∅ in [CS83] can be used to

show that C 6∈ Exi. We omit the details.

(b), (c) and (d) can be shown by similar modifications of the proofs in [CS83]. We leave the

details to the reader.

(e) Let S(σ, n) = {n}∪{j ≤ n | (∀(x, y) ∈ content(σ))[Φj(x) ≤ n ∧ (x, ϕj(x)) ∈ content(σ)]}.

Let M(σ) = p such that (∀x)[ϕp(x) = ϕmin(S(σ,x))(x)]. We now claim that M Im∗Bc∗-identifies

R. To see this suppose f ∈ R. Suppose G is a ∗-imperfect information sequence for f . Let j

be minimum program such that

(a) graph(ϕj) ⊆ content(G), and

(b) (∀x | (∃y)[(x, y) ∈ content(G)])[ϕj(x)↓].

(Note that for any j satisfying the above two properties, we have ϕj =∗ f).

It is easy to verify that (
∞
∀ n)(

∞
∀ m)[min(S(T [n],m)) = j]. It thus follows that M Im∗Bc∗-

identifies f .

Corollary 27 Let a ∈ N ∪ {∗}. Then

(a) NaEx0 ⊂ NaEx1 ⊂ · · · ⊂ NaEx∗.

(b) NaBc0 ⊂ NaBc1 ⊂ · · · ⊂ NaBc∗ = 2R.

(c) InaEx0 ⊂ InaEx1 ⊂ · · · ⊂ InaEx∗.

(d) InaBc0 ⊂ InaBc1 ⊂ · · · ⊂ InaBc∗ = 2R.

(e) ImaEx0 ⊂ ImaEx1 ⊂ · · · ⊂ ImaEx∗.

(f) ImaBc0 ⊂ ImaBc1 ⊂ · · · ⊂ ImaBc∗ = 2R.

Corollary 27 thus shows that the hierarchies given by Theorem 5 hold even in presence of

inaccuracies in the input data.

We now turn our attention to investigating if a price is being paid for learning from infor-

mation sequences for which the number of inaccuracies is higher. Theorem 28 below answers

this question in the affirmative.

12

Theorem 28 (∀j ∈ N)[ImjEx− [Nj+1Ex∗∪ Inj+1Ex∗∪ (
⋃

i In
j+1Bci)∪ (

⋃

i N
j+1Bci)] 6= ∅].

Proof. Fix j. For f ∈ R, define f ′ and f ′′ as follows.

For all i > 0 and for all x, let f ′(〈i, x〉) = f ′′(〈i, x〉) = f(x).

For all x ≤ j, let f ′(〈0, x〉) = 0; f ′′(〈0, x〉) = 1.

For all x > j, let f ′(〈0, x〉) = f ′′(〈0, x〉) = 0.

Now consider the following collections of functions:

S ′ = {f ′ | f ∈ AEZ}.

S ′′ = {f ′′ | f ∈ SELFREF}.

C = S ′ ∪ S ′′.

It is easy to verify that S ′ ∈ ImjEx and S ′′ ∈ ImjEx.

Note that for a j-imperfect information sequence G for f ∈ C, card({x ≤ j | (〈0, x〉, 0) ∈

content(G)}) ≥ card({x ≤ j | (〈0, x〉, 1) ∈ content(G)}) ⇔ f(〈0, 0〉) = 0 ⇔ f ∈ S ′. This along

with the fact that S ′ ∈ ImjEx,S ′′ ∈ ImjEx implies that C ∈ ImjEx.

We show that C 6∈ Nj+1Ex∗∪ [
⋃

i N
j+1Bci]. It can similarly be shown that C 6∈ Inj+1Ex∗∪

[
⋃

i In
j+1Bci].

Suppose I is either Ex∗ or Bci for some i. Suppose by way of contradiction, machine M

Nj+1I-identifies C. Then, using M, we show how to construct a machine M′ which I-identifies

AEZ ∪ SELFREF contradicting Theorem 6.

Let twit be a recursive function (by s-m-n theorem such a recursive function exists) such

that, for all σ, τ ∈ SEG

σ ⊆ τ ⇒ twit(σ) ⊆ twit(τ), and

content(twit(σ)) = {(〈r, x〉, y) | (x, y) ∈ content(σ) ∧ 1 ≤ r ≤ |σ|} ∪ {(〈0, x〉, 1) | x ≤

j} ∪ {(〈0, r〉, 0) | r ≤ |σ|}.

Let untwit be a recursive function (by s-m-n theorem such a recursive function exists) such

that, for all i and x, ϕuntwit(i)(x) = ϕi(〈1, x〉).

Now, let M′(σ) = untwit(M(twit(σ))). It is easy to see that if M Nj+1I-identifies C, then

M′ I-identifies AEZ∪SELFREF. But, this is not possible (Theorem 6). Thus, C 6∈ Nj+1I.

Theorem 28 yields several corollaries which highlight the loss in learning ability as a result

of an increase in the bound on inaccuracies allowed in the information sequence.

Corollary 29 Let a ∈ N ∪ {∗}. Then

(a) N0Exa ⊃ N1Exa ⊃ N2Exa ⊃ · · ·.

(b) In0Exa ⊃ In1Exa ⊃ In2Exa ⊃ · · ·.

(c) Im0Exa ⊃ Im1Exa ⊃ Im2Exa ⊃ · · ·.

13

However, the above result does not say anything about relative learning abilities between

situations in which a preassigned bound on the finite number of inaccuracies is available and

when such a bound is not available. Theorem 30 below answers this question.

Theorem 30 There exists a class of functions, C such that (a) (∀i)[C ∈ ImiEx], and (b)

C 6∈ (In∗Ex∗ ∪N∗Ex∗ ∪
⋃

j [N
∗Bcj ∪ In∗Bcj]).

Proof. For f ∈ R define f ′, f ′′ as follows.

For j > 0, let f ′(〈j, x〉) = f ′′(〈j, x〉) = f(x).

For x > f(0), let f ′(〈0, x〉) = f ′′(〈0, x〉) = 0.

For x ≤ f(0), let f ′(〈0, x〉) = 0, f ′′(〈0, x〉) = 1.

Now consider the following class of functions:

S ′ = {f ′ | f ∈ AEZ}.

S ′′ = {f ′′ | f ∈ SELFREF}.

C = S ′ ∪ S ′′.

It is easy to extend the proof of Theorem 28 to prove that C 6∈ N∗Ex∗∪In∗Ex∗∪
⋃

j N∗Bcj∪
⋃

j In∗Bcj .

Fix i. We now show that C ∈ ImiEx. Let Si = {j ≤ i | ϕj(0) = j ∧ ϕj ∈ SELFREF}. We

describe a machine M which ImiEx∗-identifies C. Let F ′ be a recursive mapping from finite

sets to N such that the following holds (note that by s-m-n theorem such a function exists).

Below A denotes a finite set.

ϕF ′(A)(〈i, x〉) =























0, if i = 0;

y, if i > 0 ∧

[(∃z)[(x, z) ∈ A] ∧ y = min({z | (x, z) ∈ A})];

0, otherwise.

Let F ′′ be a recursive function such that the following holds (note that by s-m-n theorem

such a function exists).

ϕF ′′(e)(〈i, x〉) =











0, if i = 0, x > e;

ϕe(x), if i > 0;

1, otherwise.

M(σ)

1. Let mσ(x) = max({j | (∃y)[(〈j, x〉, y) ∈ content(σ)]}).

Let Aσ = {(x, y) | mσ(x) > 0 ∧ (〈mσ(x), x〉, y) ∈ content(σ)}.

Let A′
σ = {(x, y) ∈ Aσ | y 6= 0}.

14

2. Let eσ = min({|σ|} ∪ {y | (0, y) ∈ Aσ}).

3. if eσ ≤ i

then

3a. if [eσ ∈ Si ∧ (∀(x, y) ∈ Aσ)[ϕeσ(x) = y]]

then output F ′′(eσ).

else output F ′(A′
σ).

endif

else

3b. if [card({x ≤ eσ | (〈0, x〉, 0) ∈ content(σ)}) ≥ card({x ≤ eσ | (〈0, x〉, 1) ∈ content(σ)})]

then output F ′(A′
σ).

else output F ′′(eσ).

endif

endif

end

Consider any g ∈ C and an i-imperfect information sequence G for g. Let f be such that

g = f ′, if g ∈ S ′ and g = f ′′, if g ∈ S ′′. It is easy to verify that, for large enough initial segment

σ of G, the following properties are satisfied.

(P1) Aσ ⊆ graph(f).

(P2) eσ = f(0).

(P3) (∀x ≤ f(0))[(〈0, x〉, y) ∈ content(G) ⇔ (〈0, x〉, y) ∈ content(σ)].

(P4) f ∈ AEZ ⇒ A′
σ = {(x, y) | f(x) 6= 0}

(P5) [f(0) ∈ Si ∧ f ∈ AEZ] ⇒ [(∃(x, y) ∈ Aσ)[ϕf(0)(x) 6= y]].

For the following suppose that σ is large enough so that the above properties hold.

Case 1: f(0) ≤ i ∧ f ∈ SELFREF.

In this case “if clause of step (3a)” will succeed (by properties (P1) and (P2)) and thus M

outputs F ′′(eσ), which is a program for g.

Case 2: f(0) ≤ i ∧ f 6∈ SELFREF

In this case “if clause of step (3a)” will fail (by properties (P1), (P2), and (P5)). Thus M

outputs F ′(A′
σ), which is a program for g (by property (P4)).

Case 3: f(0) > i ∧ f ∈ AEZ.

In this case by property (P3) “if clause in step 3b” will succeed (due to bound on the imper-

fection of G). Thus M outputs F ′(A′
σ), which by property (P4) is a program for g.

15

Case 4: f(0) > i ∧ f ∈ SELFREF.

In this case by property (P3) and the bound on imperfection, “if clause in step 3b” will fail.

Thus M outputs F ′′(eσ), which is a program for g.

From the above cases we have that M ImiEx-identifies C.

We now briefly turn our attention to identification of languages from inaccurate information

sequences. Theorem 31 below is the language identification counterpart of Theorem 26 and can

be shown using techniques similar to Theorem 26 and results from [CL82, Cas88]. We omit the

details.

Theorem 31 For all i ∈ N

(a) Im∗TxtExi+1 − TxtFexi
∗ 6= ∅.

(b) Im∗TxtEx∗ −
⋃

i TxtBci 6= ∅.

(c) Im∗TxtFexi+1 − TxtFex∗
i 6= ∅.

(d) Im∗TxtFex∗ −
⋃

i∈N TxtFex∗
i 6= ∅.

(e) Im∗TxtEx2i+1 − TxtBci 6= ∅.

(f) Im∗TxtBc − TxtFex∗
∗ 6= ∅.

(g) Im∗TxtBci+1 −TxtBci 6= ∅.

Theorem 32 (∀i ∈ N)[ImiTxtEx − [Ni+1TxtBc∗ ∪ Ini+1TxtBc∗] 6= ∅].

Proof. For any finite language L, let L′ = {〈j, x〉 | j ≥ 1 ∧ x ∈ L} ∪ {〈0, i + x + 1〉 | x ≤ i}.

Also, let N ′ = {〈j, x〉 | j ≥ 1, x ∈ N} ∪ {〈0, x〉 | x ≤ i}.

Now, consider the collection of languages L = {L′ | L ∈ FIN} ∪ {N ′}. It is easy to see

that L ∈ ImiTxtEx. For any text T , let T ′, T ′′ (effectively obtained from T) be such that

content(T ′) = {〈j, x〉 | j ≥ 1 ∧ x ∈ content(T)} ∪ {〈0, x〉 | x ≤ 2i + 1} and content(T ′′) =

{〈j, x〉 | j ≥ 1 ∧ x ∈ content(T)}. Note that if T is a text for L ∈ FIN ∪ {N}, then T ′ is an

(i+1)-noisy text for L′ and T ′′ is an (i+1)-incomplete text for L′. Moreover, for L ∈ FIN∪{N},

a grammar for a finite variant of L′ can be effectively converted to a grammar for a finite variant

of L. Thus [L ∈ Ni+1TxtBc∗ ∨ L ∈ Ini+1TxtBc∗] ⇒ FIN∪ {N} ∈ TxtBc∗. But, this is not

true (Theorem 18). Thus, L 6∈ (Ni+1TxtBc∗ ∪ Ini+1TxtBc∗).

Theorem 33 There exists a L, such that (a) (∀i)[L ∈ ImiTxtEx] and (b) L 6∈ N∗TxtBc∗ ∪

In∗TxtBc∗.

Proof. For a set X and j ∈ N define L0
j,X and L1

j,X as follows.

Let L0
j,X = {〈2, x〉 | x ∈ X} ∪ {〈1, k · j〉 | k ∈ N} ∪ {〈0, x〉 | x < j}.

16

Let L1
j,X = {〈2, x〉 | x ∈ X} ∪ {〈1, k · j〉 | k ∈ N} ∪ {〈0, x〉 | j ≤ x < 2j}.

Let S be a set which is not in Σ3 of the Kleene hierarchy.

Let L = {L0
j,X | X ∈ FIN ∧ j 6∈ S} ∪ {L1

j,N | j ∈ S}.

It is easy to see using technique of Theorem 30 that for each i ∈ N , L ∈ ImiTxtEx.

We show that L 6∈ N∗TxtBc∗. Proof is similar for L 6∈ In∗TxtBc∗. Suppose by way of

contradiction machine M N∗TxtBc∗-identifies L. Then

j ∈ S ⇒ (∃σ | content(σ) ⊆ L1
j,N ∪ {〈0, x〉 | x < 2j})(∀τ ⊇ σ | content(τ) ⊆ L1

j,N ∪ {〈0, x〉 |

x < 2j})[card({x | 〈2, x〉 ∈ WM(τ)}) = ∞].

On the other hand

j 6∈ S ⇒ ¬[(∃σ | content(σ) ⊆ L1
j,N ∪{〈0, x〉 | x < 2j})(∀τ ⊇ σ | content(τ) ⊆ L1

j,N ∪{〈0, x〉 |

x < 2j})[card({x | 〈2, x〉 ∈ WM(τ)}) = ∞]]. Thus S ∈ Σ3. A contradiction.

Thus L 6∈ N∗TxtBc∗.

It should be noted that the above theorems give hierarchies for language learning, similar

in nature to the hierarchies in the function learning.

3.3 Relative Effects

Results in the preceding section underlined a common theme: But for the highly impractical

Bc∗-identification, inaccurate data is ‘bad’ for learning. It is time now to compare which kinds

of inaccuracies do the most damage. First, a comparison between the price paid for learning

from noisy information sequences and incomplete information sequences.

The result below exhibits the apparent advantages of noise over missing data, as there are

collections of functions for which a program can be identified from information sequences with

a finite, but without any preassigned bound, number of spurious data, but for which a program

for even a finite variant cannot be identified from information sequences which possibly are

missing just one data. Corollary 35 gives the language identification counterpart of this result

and follows from Theorem 34. The following result also appears in [FJO94]. We include the

proof for completeness.

Theorem 34 [FJO94] N∗Ex − [In1Ex∗ ∪
⋃

i In
1Bci] 6= ∅.

Proof. For any f ∈ R, we describe a function f ′ as follows:

Let pf = MinProg(f).

For j < pf , let errj = min({x | ϕj(x) 6= f(x)}).

f ′(0) = 〈pf , 〈err0, err1, err2, . . . , errpf−1〉〉.

For all x, k: f ′(1 + 〈k, x〉) = f(x).

17

Let C = {f ′ | f ∈ R}.

We first show that C 6∈ In1Ex∗∪
⋃

i In
1Bci. Suppose I is either Ex∗ or Bci. Suppose by way

of contradiction, that M In1I-identifies C. We then describe a machine M′ which I-identifies

R—yielding a contradiction (Theorem 5). For any f , let Gf be an information sequence such

that content(Gf) = {(1+〈k, x〉, f(x)) | x, k ∈ N}, and Gf [n] can be found effectively from f [n].

Note that Gf is an 1-incomplete information sequence for f ′. Let F be a recursive function such

that for all x and p, ϕF (p)(x) = ϕp(〈1+ 〈0, x〉〉). Define M′ such that M′(f [n]) = F (M(Gf [n])).

Note that such a machine M′ can easily be constructed from M. Clearly, for f ∈ R, if ϕp =a f ′,

then ϕF (p) =a f . Since M In1I-identifies C, it follows that M′ I-identifies R. A contradiction

(Theorem 5). Thus, C 6∈ In1I.

We now show that C ∈ N∗Ex. For an information sequence G, define G′ such that for all

n,

G′(n) =



































(1 + 〈i, x〉, y), if G(n) = (1 + 〈i, x〉, y) ∧

[(∀j, z | (1 + 〈j, x〉, z) ∈ content(G))

(∃j′ ≥ j)[(1 + 〈j′, x〉, y) ∈ content(G)]];

(0, y), if G(n) = (0, y);

#, otherwise.

Let F be a mapping from SEG to SEG such that for n ≤ |σ|:

(F (σ))(n) =



































(1 + 〈i, x〉, y), if σ(n) = (1 + 〈i, x〉, y) ∧

[(∀j, z | (1 + 〈j, x〉, z) ∈ content(σ))

(∃j′ ≥ j)[(1 + 〈j′, x〉, y) ∈ content(σ)]];

(0, y), if σ(n) = (0, y);

#, otherwise.

Intuitively, for a ∗-noisy sequence, G, for f ′ ∈ C, G′ is formed from G by removing all noisy

elements from G, except for noise on input 0. F is an algorithmic mechanism for obtaining G′

from G.

Suppose G is a ∗-noisy sequence for f ′ ∈ C. It is easy to verify that:

(a) (
∞
∀ n)[G′[n] = F (G[n])].

(b) (∀i, x, y)[(1 + 〈i, x〉, y) ∈ content(G′) ⇐⇒ f ′(1 + 〈i, x〉) = y].

(c) π1(f
′(0)) = max({j | (∃err0, err1, . . . , errj−1 | (0, 〈j, 〈err0, err1, . . . errj−1〉〉) ∈

content(G))[(∀i < j)[ϕi(erri) 6= f ′(1 + 〈0, erri〉)]]}).

(d) Suppose e = π1(f
′(0)). For j < e, let errj = min({x | ϕj(x) 6= ϕe(x)}). Then

f ′(0) = 〈e, 〈err0, . . . , erre−1〉〉.

18

Thus f ′(0) (and therefore a program for f ′) can be determined from G′ (and thus G) in the

limit.

Corollary 35

(a) N∗TxtEx − In1TxtEx∗ ∪
⋃

i In
1TxtBci 6= ∅.

(b) N∗Ex − Im1Ex∗ ∪
⋃

i Im
1Bci 6= ∅.

(c) N∗TxtEx − Im1TxtEx∗ ∪
⋃

i Im
1TxtBci 6= ∅.

Proof. Part (b) is immediate corollary of Theorem 34. We show how to obtain part (a)

using Theorem 34 (this is a standard trick used to convert diagonalization results from function

learning to diagonalization results in language learning). Part (c) can be obtained from part

(b) similarly.

Suppose C ∈ N∗Ex− (In1Ex∗ ∪
⋃

i In
1Bci). For any total function f , define Lf = {〈x, y〉 |

f(x) = y}. Let L = {Lf | f ∈ C}. We claim that L ∈ N∗TxtEx−In1TxtEx∗∪
⋃

i In
1TxtBci.

We first show that L ∈ N∗TxtEx. To show this we show:

(i) how to effectively convert an a-noisy text for Lf to an a-noisy information sequence for

f , and

(ii) how to effectively convert a program for f to a grammar for Lf .

To show (i), define GT as follows:

GT (n) =

{

#, if T (n) = #;

(x, y), if T (n) = 〈x, y〉.

It is easy to see that GT satisfies (i).

To show (ii), define gp such that Wgp = {〈x, y〉 | ϕp(x) = y}. It is easy to see (using s-m-n

theorem) that such a gp can be effectively obtained from p and satisfies (ii).

Now suppose C ⊆ N∗Ex(M). Let M′ be defined as follows: M′(T [n]) = gM(GT [n]). It

follows using (i) and (ii) that L ⊆ N∗TxtEx(M′).

We now show that L 6∈ In1TxtEx∗ ∪
⋃

In1TxtBci. To show this we show:

(iii) how to effectively convert an 1-incomplete information sequence for f to an 1-incomplete

text for Lf , and

(iv) how to effectively convert an a-error grammar for Lf to an a-error program for f .

To show (iii), define TG as follows:

TG(n) =

{

#, if G(n) = #;

〈x, y〉, if G(n) = (x, y).

It is easy to see that TG satisfies (iii).

19

To show (iv), define pg such that ϕpg(x) = y, such that 〈x, y〉 ∈ Wg (if there are several y

such that 〈x, y〉 ∈ Wg, then choose the first one in some arbitrary enumeration of Wg).

Now suppose by way of contradiction that L ⊆ In1TxtEx∗(M) (respectively L ⊆

In1TxtBci(M)). Let M′ be defined as follows: M′(G[n]) = pM(TG[n]). It follows using (iii)

and (iv) that C ⊆ In1Ex∗(M′) (respectively C ⊆ In1Bci(M′)) contradicting Theorem 34. Thus

L 6∈ In1TxtEx∗ ∪
⋃

i In
1TxtBci).

Since E 6∈ TxtBc∗, there is scope for further fine tuning of Corollary 35(a). An attempt at

such a refinement is the subject of Theorem 36 below.

Theorem 36 (∀j ∈ N)[NjTxtEx − In1TxtBc∗ 6= ∅].

Proof. For n ∈ N+, let Ln = {〈i, x〉 | i ≥ 1 ∧ x ≤ n}∪{〈0, n〉}. Let L0 = {〈i, x〉 | i ≥ 1 ∧ x ∈

N} ∪ {〈0, 0〉}. Let L = {Ln | n ∈ N}.

We claim that L ∈ NjTxtEx. Suppose T is a j-noisy text for L ∈ L. Then, L = L0 ⇐⇒

(∃x)[x > max({w | 〈0, w〉 ∈ content(T)}) ∧ (∀k | 1 ≤ k ≤ j + 1)[〈k, x〉 ∈ content(T)]]. Thus,

it can be determined, in the limit, if T is a j-noisy text for L0. Also, it is easy to see that

{Ln | n ∈ N+} ∈ NjTxtEx. Thus, L ∈ NjTxtEx.

Let L′
n = Ln − {〈0, n〉}. Now, [L ∈ In1TxtBc∗] ⇒ {L′

n | n ∈ N} ∈ TxtBc∗. But, this is

not true (Corollary 19). Thus, L 6∈ In1TxtBc∗.

Corollary 37 (∀j ∈ N)[NjTxtEx − Im1TxtBc∗ 6= ∅].

It is open at present if Theorem 36 above can be extended to the assertion “N∗TxtEx −

In1TxtBc∗ 6= ∅.”

The reader should note that Theorem 34 implies that there are collections of functions that

can be learned from the ‘most offensive noisy information sequences,’ but cannot be learned

from the ‘least offensive incomplete information sequences.’ A natural question that arises is if

there are collections of functions that can be learned from the ‘most offensive incomplete infor-

mation sequences,’ but cannot be learned from the ‘least offensive noisy information sequences.’

Theorem 38 below answers this question negatively thereby implying that, in the context of

function identification, missing data are strictly more harmful than noisy data.

Theorem 38 Let a, b ∈ N ∪ {∗}.

(a) InaExb ⊆ NaExb.

(b) InaBcb ⊆ NaBcb.

20

Proof. Let machine M be given. We construct a machine M′ such that InaExb(M) ⊆

NaExb(M′) and InaBcb(M) ⊆ NaBcb(M′).

For any information sequence G let G′ be a information sequence such that for all n, x, y:

G′(n) =











(x, y), if G(n) = (x, y) ∧

(∀z 6= y)[(x, z) 6∈ content(G)];

#, otherwise.

Let F be a mapping from SEG to SEG such that, for all σ, for all n < |σ|, and for all

x, y ∈ N :

(F (σ))(n) =











(x, y), if σ(n) = (x, y) ∧

(∀z 6= y)[(x, z) 6∈ content(σ)];

#, otherwise.

Now, if G is an a-noisy information sequence for f ∈ R, then G′ is an a-incomplete infor-

mation sequence for f . Moreover (
∞
∀ n)[G′[n] = F (G[n])].

Let M′(σ) = M(F (σ)). It is easy to see that InaExb(M) ⊆ NaExb(M′) and InaBcb(M) ⊆

NaBcb(M′).

The story, however, is different for language identification as implied by Theorem 39 below.

Theorem 39 (∀i ∈ N)[In2i−1TxtExi − NiTxtEx∗ 6= ∅].

Proof. For any L ∈ E , let Sx,L = {z | 〈x, z〉 ∈ L}. Let L = {L | card({x ≤ 2 | 1 ≤

card(Sx,L) < ∞ ∧ Wmax(Sx,L) = L}) ≥ 2}.

In Lemma 40 below, it will be shown that L 6∈ TxtEx∗.

For L ∈ L, let

L′
i = {〈j, x〉 | j ≥ 1 ∧ x ∈ L} ∪ {〈0, 3j + x〉 | j < i ∧ x ≤ 2 ∧ 1 ≤ card(Sx,L) <

∞ ∧ Wmax(Sx,L) = L}.

Let Li = {L′
i | L ∈ L}. It is easy to see that Li ∈ In2i−1TxtExi.

Let Noisyi(L) = L ∪ {〈0, k〉 | k < 3i}. Clearly, for any L ∈ Li, any text T for Noisyi(L), is

also an i-noisy text for L. Corollary 41 thus implies that Li 6∈ NiTxtEx∗.

Lemma 40 Let L be as defined in the proof of Theorem 39. Then L 6∈ TxtEx∗.

Proof. Suppose by way of contradiction that M TxtEx∗-identifies L. Then by the operator

recursion theorem [Cas74], there exists a recursive 1-1 increasing p such that Wp(·) may be

defined as follows.

Let ϕ-programs p(0), p(1) enumerate 〈0, p(0)〉, 〈1, p(1)〉. Let σ0 be such that content(σ0) =

{〈0, p(0)〉, 〈1, p(1)〉}. Let W s
p(·) denote Wp(·) enumerated before stage s. Go to stage 1. Note

that there is no stage 0. We start at stage 1, just for the ease of writing the proof.

21

Stage s

1. Enumerate W s
p(0)

⋃

W s
p(1) in Wp(0),Wp(1),Wp(2s) and Wp(2s+1). Enumerate 〈2, p(2s)〉 in

Wp(0),Wp(2s). Enumerate 〈2, p(2s + 1)〉 in Wp(1),Wp(2s+1). Let τ0 be an extension of

σs such that content(τ0) = Wp(0) enumerated till now. Let τ1 be an extension of σs such

that content(τ1) = Wp(1) enumerated till now.

2. Let x = 0. Dovetail (2a), (2b) until, if ever, step (2b) succeeds. If and when step (2b)

succeeds, go to step (3).

2a. Go to substage 0.

Substage s′

Enumerate 〈4, x〉 in Wp(0),Wp(2s).

Enumerate 〈5, x〉 in Wp(1),Wp(2s+1).

Let x = x + 1.

Go to substage s′ + 1.

End substage s′.

2b. Search for i ∈ {0, 1}, n ∈ N such that M(τi�〈4+i, 0〉�〈4+i, 1〉�. . .�〈4+i, n〉) 6= M(σs).

3. If and when (2b) succeeds, let i and n be as found in (2b). Let

S = ({〈4 + i, 0〉, 〈4 + i, 1〉, . . . , 〈4 + i, n〉}) ∪

(Wp(1) enumerated till now) ∪

(Wp(0) enumerated till now).

4. Let σs+1 be an extension of τi�〈4+i, 0〉�〈4+i, 1〉�. . .�〈4+i, n〉 such that content(σs+1) = S.

Enumerate S in Wp(0) and Wp(1).

5. Go to stage s + 1.

End stage s.

Now we consider the following cases:

Case 1: All stages finish.

In this case let L = Wp(0) = Wp(1) ∈ L. But M on,
⋃

s∈N σs, a text for L makes infinitely

many mind changes (since only way infinitely many stages can exist is by the success of

step (2b) infinitely often).

Case 2: Stage s, starts but does not finish.

In this case let L0 = Wp(0) = Wp(2s) ∈ L and L1 = Wp(1) = Wp(2s+1) ∈ L. Note that

L0 and L1 are infinitely different from each other. Let T0 = τ0 � 〈4, 0〉 � 〈4, 1〉 � . . ., and

T1 = τ1 � 〈5, 0〉 � 〈5, 1〉 � . . ., where τ0 and τ1 are as defined in step (1), of stage s. Now T0 is

a text for L0 and T1 is a text for L1. However, M converges to the same grammar on both

T0 and T1. Hence, M does not TxtEx∗-identify at least one of L0 and L1.

22

The above cases imply that L 6⊆ TxtEx∗(M).

Corollary 41 Suppose i ∈ N . For any L, define L′ = {〈j, x〉 | j > 0 ∧ x ∈ L} ∪ {〈0, x〉 | x <

3i}. Let L be as defined in the proof of Theorem 39. Let L′ = {L′ | L ∈ L}. Then L′ 6∈ TxtEx∗.

It is open at present if Theorem 39 can be extended to establish, (∀i ∈ N+)[In2i−1TxtEx−

NiTxtEx∗ 6= ∅].

Theorem 42 In∗TxtEx − N∗TxtBc∗ 6= ∅.

Proof. For D ∈ FIN, let LD = {〈0, x〉 | x > max(D)}∪ {〈j, x〉 | j ≥ 1 ∧ x ∈ D}. For m ∈ N ,

let Xm = {〈0, x〉 | x > m} ∪ {〈j, x〉 | j ≥ 1 ∧ x 6= m}.

Let L = {LD | D ∈ FIN} ∪ {Xm | m ∈ N}.

It is easy to see that L ∈ In∗TxtEx. Suppose by way of contradiction that M N∗TxtBc∗-

identifies L. Then we show how to obtain an M′ TxtBc∗-identifying L′ = {L | card(N −L) =

1}∪FIN. Let F be an effective mapping from SEQ to SEQ such that (a) σ ⊆ τ implies F (σ) ⊆

F (τ), and (b) content(F (σ)) = {〈j, x〉 | 1 ≤ j ≤ |σ| ∧ x ∈ content(σ)}∪{〈0, x〉 | x ≤ |σ|}. Let f

be a recursive function such that, for all i, Wf(i) = {x | 〈1, x〉 ∈ Wi}. Let M′(σ) = f(M(F (σ))).

It is easy to see that if M N∗TxtBc∗-identifies L, then M′, TxtBc∗-identifies L′. But this is

not possible (Theorem 20). Thus L 6∈ N∗TxtBc∗.

However,

Theorem 43 For all j ∈ N, a ∈ N ∪ {∗}, In∗TxtExa ⊆ ImjTxtEx2a.

Proof. Suppose M is given. We construct M′ such that In∗TxtExa(M) ⊆ ImjTxtEx2a(M′).

Without loss of generality assume that M is rearrangement independent. Let majority be a

function such that, for all sequences g1, g2 . . . , gl of grammars, majority(g1, g2, . . . , gl) is such

that Wmajority(g1,g2,...,gl) = {x | card({i | 1 ≤ i ≤ l ∧ x ∈ Wgi
}) > l/2}.

Let T be a j-imperfect information sequence for L ∈ In∗TxtExa(M). If a = ∗, then let

k = 2j + 1, else let k be such that k · a < (k
2 − j)(2a + 1). (i.e., we choose k large enough to

ensure the bound on the number of errors later). Let n0 < n1 < n3 < . . . < n2k−1 be such that

the following is satisfied (where Si = content(T [ni])).

(∀i < k)[〈S2i+1 −S2i, 2 · n2i+1〉 is a stabilizing sequence for M on content(T)−S2i].

We claim that such n0, . . . , n2k−1 exist. To see this let s be so large that content(T) −

content(T [s]) ⊆ L. Now for any n > s, there exists an n′ such that 〈content(T [n′]) −

content(T [n]), 2n′〉 is a stabilizing sequence for M on content(T) − content(T [n]) (since M

23

In∗TxtExa-identifies L). Thus n0, n1, . . . can be easily picked to satisfy the requirements

above.

Now we claim that majority(M(〈S1 − S0, 2n1〉),M(〈S3 − S2, 2n3〉), . . . , 〈S2k−1 −

S2k−2, 2n2k−1〉) is a grammar for a 2a-variant of L. To see this note that for each i < k,

either M(〈S2i+1 − S2i, 2n2i+1〉) is a grammar for an a-variant of L, or S2i+1 − S2i contains

an element not in L (otherwise M does not In∗TxtExa-identify L). It follows that at least

k − j of M(〈S1 − S0, 2n1〉),M(〈S3 − S2, 2n3〉), . . . ,M(〈S2k−1 − S2k−2, n2k−1〉) are grammars

for an a-variant of L. Thus, majority(M(〈S1 − S0, 2n1〉),M(〈S3 − S2, 2n3〉), . . . ,M(〈S2k−1 −

S2k−2, n2k−1〉)) is a grammar for a 2a-variant of L. (Note that k was chosen large enough to

ensure the bound on the number of errors committed by majority)

Corollary 44 For all j, a, In∗TxtExa ⊆ NjTxtEx2a.

Having investigated noisy versus incomplete data, we now turn to the comparison of learning

from incomplete versus imperfect information sequences. The reader should note that only

approximate results are known; the exact relationship is open.

Theorem 45 (∀i ∈ N+)[In3i−1Ex − Im2iEx∗ 6= ∅].

Proof. Consider the following collections of functions Ci, for i ∈ N :

Ci = {f ∈ R | the following hold:

1. max({f(x) | x ∈ N}) < ∞;

2. Let S = {x | card({y | f(y) ≥ f(x)}) ≤ 3i};

2a. card(S) = 3i;

2b. (∀x ∈ S)[max(Wf(x)) < ∞ ∧ ϕmax(Wf(x)) = f].

(Note: S above represents the 3i points where f has the largest values.)

}

It is easy to see that Ci ∈ In3i−1Ex. We show that C1 6∈ Im2Ex∗. The proof can easily be

generalized to establish Ci 6∈ Im2iEx∗.

Suppose by way of contradiction, machine M Im2Ex∗-identifies C1. Then by the operator

recursion theorem, there exists a recursive 1-1 increasing p, p(0) > 1, such that Wp(·) and ϕp(·)

may be defined as follows.

Let p(2) ∈ Wp(0). Let ϕp(2)(0) = ϕp(2)(1) = ϕp(2)(2) = p(0). Let xs denote the

largest x such that ϕp(2)(x) is defined before stage s. Let σ0 be such that content(σ0) =

{(0, p(1)), (1, p(0)), (2, p(0))}. Go to stage 0.

24

Stage s

1. Enumerate p(s + 3) in Wp(1).

For 1 ≤ x ≤ xs, let ϕp(s+3)(x) = ϕp(2)(x).

Let ϕp(s+3)(0) = ϕp(s+3)(xs + 1) = ϕp(s+3)(xs + 2) = p(1).

Let x = xs + 2.

2. Dovetail steps (3), (4), and (5) until step (3) or step (4) succeeds. If step (3) succeeds

(before step (4) does, if ever) then go to step (6); If step (4) succeeds (before step (3)

does, if ever) then go to step (7).

3. Search for an n > xs + 3 such that M(σs � (xs + 3, 0) � (xs + 4, 0) � · · · � (n, 0)) 6= M(σs).

4. Search for a y ≥ xs + 3 such that ϕM(σs)(y)↓ = 0.

5. Go to substage 0.

Substage s′

Let x = x + 1, ϕp(s+3)(x) = 0.

Go to substage s′ + 1.

End substage s′.

6. For n as found in step (3) let

ϕp(2)(x) = 0, xs < x ≤ n and

σs+1 = σs � (xs + 3, 0) � (xs + 4, 0) � · · · � (n, 0) � (xs + 1, 0) � (xs + 2, 0).

Go to stage s + 1.

7. For y as found in step (4) let

ϕp(2)(x) = 1, xs < x ≤ y.

σs+1 = σs � (xs + 1, 1) � · · · � (y, 1).

Go to stage s + 1.

End Stage s

Now consider the following cases:

Case 1: All stages finish.

In this case, let f = ϕp(2) ∈ C1. Let G =
⋃

s σs. Clearly, G is a 2-imperfect information

sequence for f (f(0) has been changed from p(0) to p(1) in the information sequence G).

Case 1a: M on G changes its mind infinitely often.

In this case, M does not Im2Ex∗-identify f .

Case 1b: M on G converges.

25

In this case, the only way in which infinitely many stages can exist is by execution of step

(7) infinitely often. But, then, ϕM(G) is infinitely different from f . Thus, M does not

Im2Ex∗-identify f .

Case 2: Stage s starts but does not finish.

In this case, let f = ϕp(s+3) ∈ C1. Now, on G = σs � (xs + 3, 0) � (xs + 4, 0) � · · ·, a 2-

imperfect information sequence for f , M converges to M(σs), and, for all but finitely many

x, ϕM(σs)(x) 6= 0. Thus, M does not Im2Ex∗-identify f .

The above cases imply that M does not Im2Ex∗-identify C1.

Above proof can be easily modified to prove Theorem 46 below. We omit the details.

Theorem 46 (∀i, j ∈ N)[In3i−1Ex − Im2iBcj 6= ∅].

Theorem 47 below suggests that Theorem 45 is nearly ‘optimal.’ As already mentioned, the

exact relationship between identification criteria for incomplete and imperfect information se-

quence is still open.

Theorem 47 (∀i, j ∈ N)[In4iExj ⊆ Im2iEx2j].

Proof. Suppose machine M In4iExj-identifies C. Without loss of generality, let M be re-

arrangement independent (thus we can assume that M is given a finite set and length as its

input). We construct M′ which Im2iEx2j-identifies C. Let G be a 2i-imperfect information

sequence for f ∈ C. We assume that for no x, y and z such that y 6= z, both (x, y) and (x, z)

appear in content(G) (we can assume this since from a 2i-imperfect information sequence for

any total function f , we can effectively construct a 2i-imperfect information sequence satisfying

this property; F as described in Theorem 38 does this).

Let n1 < n2 < · · · < n2i+2, S, P, x1, x2, · · · , xj·card(P), y1, y2, · · · , yj·card(P) (lexicographically

least, if such exist) be such that card(S) ≤ i and conditions (A) to (D) below are satisfied.

(A) (∀k | 1 ≤ k ≤ i + 1)(∀S ′ ⊆ content(G[n2k−1]) | card(S′) ≤ i) [〈content(G[n2k]) − S −

S′, 2 · n2k〉 is a stabilizing sequence for M on content(G) − S − S ′].

(B) P = {M(〈content(G[n2k]) − S − S′, 2 · n2k〉) | (1 ≤ k ≤ i + 1) ∧

(S′ ⊆ content(G[n2k−1])) ∧ (card(S′) ≤ i)}.

(C) {x | (∃k, l ∈ P)[ϕk(x)↓ 6= ϕl(x)↓]} ⊆ {x1, x2 · · · , xj·card(P)}.

(D) For all k ∈ P , card({l | ϕk(xl) 6= yl, 1 ≤ l ≤ j · card(P)}) ≤ j.

Let Prog be a recursive function such that

26

ϕProg(P,x1,···,y1,···)(x)

if x = xk for some k

then output yk

else

search for p ∈ P such that ϕp(x)↓

output ϕp(x) for first such p found

endif

end

Clearly, if there exist n1 < n2 < · · · < n2i+2, S, P, x1, · · · , y1, · · · such that (A) to (D) are

satisfied then M′ can find the lexicographically least such values (in the limit) and thus output,

on G, Prog(P, x1, . . . , y1, . . .) in the limit.

We first argue that that there exist such n1, n2, · · · , S, · · · , P, x1, · · · , y1, · · ·. We then

argue for such n1, · · · , S, P, x1, · · · , y1, · · ·, ϕProg(P,x1,···,y1,···) =2j f . This would prove the

theorem.

We first show that such S1, · · · , n1, · · · , P, x1, · · · , y1, · · · exist. Consider any 2i-imperfect

information sequence G for f , such that for no x, y, z such that y 6= z does (x, y) and (x, z)

both are in content(G). This implies that there are at most i elements (x, y) in the information

sequence such that f(x) 6= y. Let S = {(x, y) | (x, y) ∈ content(G) ∧ f(x) 6= y}. Now since

M In4iExj-identifies f , for all S ′ of cardinality at most i, M on any information sequence for

content(G)− S − S′ converges to a program which computes a j-variant of f . Thus there exist

appropriate n1, · · · , P, x1, · · · , y1, · · · satisfying (A) to (D).

We now show that for such S, n1, · · · , P, x1, · · · , y1, · · · ϕProg(P,x1,···,y1,···) =2j f . Clearly,

for any p ∈ P , card({x | ϕProg(P,x1,···,y1,···)(x) 6= ϕp(x)↓}) ≤ j. Thus our proof will be complete

if we can prove that there is at least one program in P which computes a j-variant for f . Now

for any k such that 1 ≤ k ≤ i + 1, S ′ ⊆ content(G[n2k−1]) such that card(S′) ≤ i, we have

〈content(G[n2k])−S −S′, 2 ·n2k〉 is a stabilizing sequence for M on content(G)−S −S ′. Thus,

either {M(〈content(G[n2k])−S−S′, 2 ·n2k〉) | S′ ⊆ content(G[n2k−1]) ∧ card(S′) ≤ i} contains

a program which computes a j-variant of f or there exists a noisy element in content(G[n2k])−

content(G[n2k−1]) (otherwise, M does not In4iExj-identify f). Since there are at most i noisy

elements in G, there must exist a k such that {M(〈content(G[n2k]) − S − S′, 2 · n2k〉) | S′ ⊆

content(G[n2k−1]) ∧ card(S′) ≤ i} contains a program which computes a j-variant for f .

Slight modification of above proof can be used to show that

Theorem 48 (∀i, j ∈ N)[In4i+1Exj ⊆ Im2i+1Ex2j].

27

Theorems 47 and 48 can actually be improved slightly to give

Theorem 49 (∀i, j ∈ N : i ≥ 1)(∀k ∈ {0, 1})[Inmax({3i,4i−2})+kExj ⊆

Im2i+kExj+min({j,2i−1})].

We omit the proof of the above theorem. Note that the language learning analogue of the

proof of Theorem 47 does not work since there is no corresponding procedure for prog and there

is no limit effective way to check analogue of conditions (C) and (D).

Theorem 50 In∗Ex − [Im∗Ex∗ ∪
⋃

j∈N Im∗Bcj] 6= ∅.

Proof. For any f ∈ R, we describe a function f ′ as follows:

Let pf = MinProg(f).

For j < pf , let errj = min({x | ϕj(x) 6= f(x)}).

For x < 〈pf , 〈err0, err1, err2, . . . , errpf−1〉〉, let f ′(〈0, x〉) = 1.

For x ≥ 〈pf , 〈err0, err1, err2, . . . , errpf−1〉〉, let f ′(〈0, x〉) = 0.

For k ≥ 1, x ∈ N , let f ′(〈k, x〉) = f(x).

Let C = {f ′ | f ∈ R}. Now proceeding in a way similar to the proof of Theorem 34 it can

be shown that C ∈ In∗Ex− [Im∗Ex∗ ∪
⋃

j∈N Im∗Bcj]. We leave the details to the reader.

4 Conclusions

In this paper we considered the effect of three types of inaccuracies in the input data. We

showed several hierarchies and tradeoff results based on the three different kinds of inaccuracies.

It is open to exactly characterize the relationship between the identification criteria based on

imperfect and incomplete data (for both function and language identification). We showed

partial, nearly optimal results, in this direction. It is also open whether N∗TxtEx−In1TxtBc∗

is empty or not.

5 Acknowledgements

We would like to thank Arun Sharma for helpful discussions and comments. Preliminary version

of this paper appeared in [FJ89].

28

References

[AS83] D. Angluin and C. Smith. A survey of inductive inference: Theory and methods.

Computing Surveys, 15:237–289, 1983.

[Bar74] J. M. Barzdin. Two theorems on the limiting synthesis of functions. In Theory

of Algorithms and Programs, Latvian State University, Riga, 210:82–88, 1974. In

Russian.

[BB75] L. Blum and M. Blum. Toward a mathematical theory of inductive inference. Infor-

mation and Control, 28:125–155, 1975.

[Blu67] M. Blum. A machine-independent theory of the complexity of recursive functions.

Journal of the ACM, 14:322–336, 1967.

[Cas74] J. Case. Periodicity in generations of automata. Mathematical Systems Theory, 8:15–

32, 1974.

[Cas88] J. Case. The power of vacillation. In D. Haussler and L. Pitt, editors, Proceedings of

the Workshop on Computational Learning Theory, pages 133–142. Morgan Kaufmann

Publishers, Inc., 1988. Expanded in [Cas92].

[Cas92] J. Case. The power of vacillation in language learning. Technical Report 93-08,

University of Delaware, 1992. Expands on [Cas88]; journal article under review.

[CL82] J. Case and C. Lynes. Machine inductive inference and language identification. In

M. Nielsen and E. M. Schmidt, editors, Proceedings of the 9th International Collo-

quium on Automata, Languages and Programming, pages 107–115. Springer-Verlag,

1982. Lecture Notes in Computer Science 140.

[CS83] J. Case and C. Smith. Comparison of identification criteria for machine inductive

inference. Theoretical Computer Science, 25:193–220, 1983.

[FJ89] M. A. Fulk and S. Jain. Learning in the presence of inaccurate information. In

R. Rivest, D. Haussler, and M. K. Warmuth, editors, Proceedings of the Second An-

nual Workshop on Computational Learning Theory, Santa Cruz, California, pages

175–188. Morgan Kaufmann Publishers, Inc., August 1989.

[FJO94] M. Fulk, S. Jain, and D. Osherson. Open problems in systems that learn. Journal of

Computer and System Sciences, 49(3):589–604, December 1994.

29

[Ful85] M. Fulk. A Study of Inductive Inference Machines. PhD thesis, SUNY at Buffalo,

1985.

[Ful90] M. Fulk. Prudence and other conditions on formal language learning. Information

and Computation, 85:1–11, 1990.

[Gol67] E. M. Gold. Language identification in the limit. Information and Control, 10:447–

474, 1967.

[KW80] R. Klette and R. Wiehagen. Research in the theory of inductive inference by GDR

mathematicians – A survey. Information Sciences, 22:149–169, 1980.

[MY78] M. Machtey and P. Young. An Introduction to the General Theory of Algorithms.

North Holland, New York, 1978.

[OSW82] D. Osherson, M. Stob, and S. Weinstein. Ideal learning machines. Cognitive Science,

6:277–290, 1982.

[OSW84] D. Osherson, M. Stob, and S. Weinstein. Learning theory and natural language.

Cognition, 17:1–28, 1984.

[OSW86] D. Osherson, M. Stob, and S. Weinstein. Systems that Learn, An Introduction to

Learning Theory for Cognitive and Computer Scientists. MIT Press, Cambridge,

Mass., 1986.

[OW82a] D. Osherson and S. Weinstein. Criteria of language learning. Information and Control,

52:123–138, 1982.

[OW82b] D. Osherson and S. Weinstein. A note on formal learning theory. Cognition, 11:77–88,

1982.

[Pin79] S. Pinker. Formal models of language learning. Cognition, 7:217–283, 1979.

[Rog58] H. Rogers. Gödel numberings of partial recursive functions. Journal of Symbolic

Logic, 23:331–341, 1958.

[Rog67] H. Rogers. Theory of Recursive Functions and Effective Computability. McGraw-Hill,

New York, 1967. Reprinted, MIT Press 1987.

[SR86] G. Schäfer-Richter. Some results in the theory of effective program synthesis - learning

by defective information. Lecture Notes in Computer Science, 215:219–225, 1986.

30

[WC80] K. Wexler and P. Culicover. Formal Principles of Language Acquisition. MIT Press,

Cambridge, Mass, 1980.

[Wex82] K. Wexler. On extensional learnability. Cognition, 11:89–95, 1982.

31

