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Abstract

Acceptable programming systems have many nice properties like

s-m-n-Theorem, Composition and Kleene Recursion Theorem. Those

properties are sometimes called control structures, to emphasize that

they yield tools to implement programs in programming systems. It

has been studied, among others by Riccardi and Royer, how these

control structures influence or even characterize the notion of accept-

able programming system. The following is an investigation, how

these control structures behave in the more general setting of com-

plete numberings as defined by Mal’cev and Eršov.
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1 Introduction

The notion of acceptable numbering (also called acceptable programming
system) describes the usual programming languages like Pascal, C, Fortran
and the like, and provides an elegant tool to prove results about this kind of
languages in a universal and abstract setting.

Acceptable numberings have been characterized in various ways; see be-
low for references. Mostly by saying that a numbering is acceptable if and
only if it enumerates every partial recursive function and has an additional
property, for example it satisfies the s-m-n-Theorem. The s-m-n-Theorem
and other similar properties can be understood as effective means to build
programs in a numbering or – equivalently – programming system. So they
were termed control structures by Riccardi and Royer.

Beside acceptable numberings, also numberings for subclasses of the par-
tial recursive functions have been studied. In this paper we will investigate
the notion of complete numbering as defined by Mal’cev and Eršov and the
stronger notion of U -acceptable numbering. Intuitively, this kind of num-
berings should model programming systems that do not contain every par-
tial recursive function, but come as close as possible to the “programming
comfort” of acceptable numberings. For example, although a programming
system does not contain every partial recursive function, one might want to
have nice programming tools such as the s-m-n-Theorem, composition or the
Kleene Recursion Theorem to ease work within the system.

The programming comfort of a programming system is usually measured
by the user in terms of the control structures it provides: the more and pow-
erful the structures, the better the system. In acceptable numberings, many
control structures can be shown to be equivalent, i.e., one can be obtained
from the other. Moreover, the acceptable numberings can be characterized
using control structures. The following investigates how those control struc-
tures behave in the more general setting of complete and U -acceptable num-
berings. As it will turn out, most of the considered control structures will
be independent, i.e., one can not be “simulated” by the other. This means,
for programming systems not containing every partial recursive function, one
has to be careful to design into the system whatever control structures are
desired. Furthermore the results indicate, that it is not single control struc-
tures that characterize the notions of completeness and U -acceptability, in
contrast to acceptable numberings; cf. Theorem 1. It would be interesting
to know then, what properties could be employed to characterize complete
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and U -acceptable numberings.
Applications for numberings not containing every partial recursive func-

tions can be found, for example, in machine learning. Learning success often
depends on the choice of a suitable programming system which is then used
as a hypothesis space. In many occasions those suitable hypothesis spaces,
i.e., the underlying programming systems, are not acceptable programming
systems; see [1, 3, 9, 10] among others. The work in [9, 10] on language learn-
ing often uses hypothesis spaces containing only total recursive predicates,
which are interpreted as languages. Those results often depend on whether
a hypothesis space may contain only the languages to be learned or if the
space contains more languages: redundant spaces often give greater learning
power. [3] also deals with language learning. The goal there was to find
control structures that, if present in a numbering representing a hypothesis
space, ensure learnability within this space. It contains a theorem stating
that a numbering is “limiting acceptable” if and only if every languages class,
that is learnable in the limit, is learnable using this numbering as (implicit)
hypothesis space and if the numbering has a control structure called ‘limiting
projection’ – we refer the interested reader to the mentioned publication for
definitions and details.

Two of the purposes of the present article are, to provide tools to achieve
the goals of [3] and to gain better understanding of the phenomena observed
in [9, 10].

Other results involving non-acceptable numberings are characterizations
of learnable classes of total recursive functions. They usually have the form “a
class of total recursive functions is learnable ‘with respect to some criteria’
if and only if there exists a numbering with certain properties”; cf. for
example [5, 6, 8]. The techniques employed in this paper could now be used
to investigate how comfortable or “user friendly” those numberings are. Or
if it is possible to add additional control structures to the used numberings
without the structures interfering with learnability. Since, for example, each
recursively enumerable – see below for definition – class of total recursive
is learnable in the limit, having “comfortable” hypothesis spaces might be
valuable for potential users, in order to work with results obtained by learning
algorithms within such a rather big hypothesis space.

The paper is organized in the following way. In section 2 we give defini-
tions and a short survey over previous work by Mal’cev and Eršov. Section 3
is devoted to the proof that the notion of U -acceptable numbering is more
restrictive than the notion of U -complete numbering. In section 4 we provide
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the independence results for control structures in complete numberings.

2 Definitions and previous work

The following text assumes familiarity with standard mathematical and re-
cursion theoretic notions and notations as given for example in [15]. For
A ⊆ N, let max(A) and min(A) stand for the maximum and minimum value
in A. We define max(∅) = 0 and min(∅) = ∞.

〈·, ·〉 denotes a computable, one-to-one, and onto pairing function from
pairs of natural numbers to natural numbers. By π1 and π2 we denote the
corresponding projection functions. This pairing function can be naturally
extended to encoding of triples etc. (for example, one can take 〈x, y, z〉 =
〈x, 〈y, z〉〉).

In the following, f, g, h range over (possibly partial) functions; domain(f)
and range(f) denote the domain and range of a function f , respectively. By
f ◦ g we denote the composition of f and g. For functions f, g, f ⊆ g means
that f is a subfunction of g. We write f(x)↓ to denote that f is defined on x
and f(x)↑ to denote that f is undefined on x. We often identify functions with
their graphs. Thus, the everywhere undefined function may also be written
∅. F0, F1, F2, . . . , denotes a canonical recursive enumeration of all and only
the finite functions, where one can effectively determine card(domain(Fi))
and graph of Fi from i; cf. [15].

A set of functions U is said to have a least element if there exists an
element ⊥ ∈ U such that for all f ∈ U , ⊥ ⊆ f . Note that if U has a least
element, then this least element is unique.

For n ≥ 1, Rn and Pn denote the sets of all total and partial recursive
functions of n arguments, respectively. We define R = R1 and P = P1.

Any function from P2 is called a computable numbering (also called a
programming system). Since we will only be concerned about computable
numberings, in this paper we often drop “computable” from “computable
numbering”. From now on, ψ, η, ζ and the like range over numberings. For
a numbering ψ, ψi means λx.ψ(i, x), and i is said to be an index or program
for the function ψi. Furthermore, Pψ = {ψi | i ∈ N} is the set of partial
recursive functions enumerated by the numbering ψ. If U = Pψ, we say that
ψ is a numbering for U . If Pη ⊆ Pψ for numberings η and ψ, then η is called
a subnumbering of ψ. U ⊆ P is called recursively enumerable, if there exists
ψ such that U = Pψ. Suppose Ψ is a fixed Blum complexity measure [2] for
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numbering ψ. Then ψi,s denotes the function

ψi,s(x) =

{

ψi(x), if x < s and Ψi(x) < s;
↑, otherwise.

The index set for a function f in the numbering ψ, denoted by I
ψ
f , is

I
ψ
f = {i | ψi = f}. This notion of index sets can be extended to sets V of

functions: IψV =
⋃

f∈V I
ψ
f .

A numbering η is said to be reducible to a numbering ψ, abbreviated η �
ψ, if there is a recursive function r such that ηi = ψr(i) for all i. Note that �
is reflexive and transitive. If η is reducible to ψ via recursive function r, then
we denote this fact by η �r ψ. Two numberings ψ, η are called equivalent if
ψ � η and η � ψ, and isomorphic if they are equivalent by a one-to-one and
onto recursive function. A numbering ψ is said to be acceptable, if η � ψ for
all numberings η. By ϕ we denote a standard acceptable numbering. By Φ
we denote a fixed Blum complexity measure for ϕ.

Intuitively, the most important numberings are the acceptable ones. One
of the reasons is that most natural programming languages are in fact ac-
ceptable numberings. They have many nice properties, including

• universality, i.e., every partial recursive function appears within the
numbering,

• composition, i.e., any two programs can be effectively combined into a
third one,

• s-m-n-Theorem, i.e., input variables can be made constants within the
program,

• recursion theorems, like the Kleene Recursion Theorem (KRT) and the
Rogers Fixed Point Theorem (FPT), which make possible proofs using
self-referential arguments.

The following is a more formal definition of what it means for a numbering
to “have” composition or some other properties. If in the rest of the paper ψ
is said “to have some property” or to “satisfy a theorem” not defined below,
it should be interpreted analogously.

Definition 1 Let ψ be any numbering.
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(a) ψ has composition if there exists comp ∈ R2 such that ψcomp(i,j)(x) =
ψi(ψj(x)) for all i, j, x.

(b) ψ satisfies (effective) s-m-n-Theorem if there exists s ∈ R2 such that
ψs(x,y)(z) = ψx(〈y, z〉) for all x, y, z. We will say that ψ satisfies non-effective
s-m-n-Theorem to emphasize the fact that the function s exists, but it might
not be computable. So effective s-m-n-Theorem immediately yields non-
effective s-m-n-Theorem. If not otherwise stated, effective s-m-n-Theorem is
assumed.

(c) ψ has infinite padding if there exists p ∈ R such that, for all i, ψp(i) =
ψi, and p(i) > i.

(d) ψ satisfies (non-effective) KRT (Kleene Recursion Theorem) if for
every i there exists an e such that ψe(x) = ψi(〈e, x〉), for all x. If nothing
else is stated, non-effective KRT is assumed.

(e) ψ satisfies effective KRT if there exists r ∈ R such that ψr(i)(x) =
ψi(〈r(i), x〉), for all i, x.

(f) ψ satisfies FPT (Fixed Point Theorem) if for every h ∈ R there exists
n such that ψn = ψh(n). If ψh(n) = ψn, then we call n the fixed point of ψ for
h.

(g) ψ satisfies RT (Rice’s Theorem) if for every U ⊆ Pψ, IψU is recursive
if and only if U = ∅ or U = Pψ.

Acceptable numberings have been characterized in various ways, the fol-
lowing theorem only lists a few examples.

Theorem 1

Let ψ be any numbering. Then the following statements are equivalent.
(a) ψ is acceptable.
(b) Pψ = P and ψ has composition.
(c) Pψ = P and ψ satisfies s-m-n-Theorem.
(d) Pψ = P and ψ satisfies Parametric Recursion Theorem (see below).
(e) Pψ = P and ψ satisfies effective KRT and has infinite padding.

Proof. See [11, 15, 13].

Properties like the ones just defined are called control structures in the
work of Riccardi and Royer, cf. [13, 16], though their representation is dif-
ferent. The intuition behind this denotation is, that composition and s-
m-n-Theorem give “programming tools” for numberings, i.e., means to build
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programs. For more motivation, the interested reader is referred to the above
mentioned publications.

Now we give the definition of U -complete numbering, as it can be found
in Mal’cev’s and Eršov’s work. Originally, the following definition was stated
in [12] and [4] for arbitrary collections of objects, rather than restricted to
partial recursive functions.

Definition 2 ([12, 4]) Let U ⊆ P. A numbering ψ is called U -complete
numbering (or complete numbering for U) if Pψ = U and there is an element
⊥ ∈ U (called a “special element”) with the following property: for every
f ∈ P, there is a g ∈ R such that for all x,

ψg(x) =

{

ψf(x), if f(x)↓;
⊥, otherwise.

The use of ⊥ for the special element suggests that ⊥ is a least element.
As the following theorem shows, this is indeed the case. The theorem seems
to be folklore; the following proof is due to John Case.

Theorem 2 Consider any U ⊆ P. If ψ is U -complete numbering then the
special element ⊥ is the least element for U .

Proof. Suppose by way of contradiction that ψ is U -complete numbering
and the special element ⊥ is not the least element of U . Then there is a
ψi ∈ U such that ⊥ 6⊆ ψi. Thus, there exist m,n such that ⊥(m)↓ = n

and ψi(m) 6= n. It may be the case that ψi(m)↑. Let A be any recursively
enumerable but not recursive set and, for all x, let

f(x) =

{

i, if x ∈ A;
↑, otherwise.

Clearly, f is partial recursive. Since ψ is U -complete, there exists a g ∈ R
such that for all x,

ψg(x) =

{

ψf(x), if f(x)↓;
⊥, otherwise.

That is,

ψg(x) =

{

ψi, if x ∈ A;
⊥, if x 6∈ A.
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Thus, for all x, x ∈ A if and only if ψg(x)(m)↓ = n. This implies that A
is recursively enumerable, a contradiction.

Mal’cev and Eršov prove the following facts about U -complete number-
ings.

Theorem 3 ([12, 4])

(a) (Fixed Point Theorem, FPT) If ψ is a U -complete numbering then,
for every recursive function f , the equation ψf(n) = ψn has a solu-
tion (“fixed point”) n. Moreover, there is an algorithm which given a
program for f computes such a solution, i.e., there exists a recursive
function g such that, for all n, if ϕn is recursive, the following holds:

ψg(n) = ψϕn(g(n)).

(b) Every numbering which is equivalent to a U -complete numbering is iso-
morphic to the latter, and hence it is also U -complete.

(c) Every U -complete numbering has infinite padding.

(d) Every U -complete numbering satisfies Rice’s Theorem, i.e., the only
recursive index sets are the trivial ones.

Note that (b) does not imply that, for some fixed U , all U -complete
numberings are equivalent. In fact, there exists a set U of partial recursive
functions that has U -complete numberings which are not all equivalent.

We now define the notion of U -acceptable numberings. As it will turn
out, this notion is stronger than U -completeness. But using U -acceptability
instead of U -completeness will simplify some of the proofs later on. Beside
that, U -acceptable numberings have some interesting properties on their own.

Definition 3 Let U ⊆ P such that U has a least element. A numbering ψ ∈
P2 is called U -acceptable numbering (also called U -acceptable programming
system, acceptable numbering for U) if the following properties are satisfied:

(a) Pψ = U ,
(b) for all numberings η, if Pη ⊆ U , then η � ψ,
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Since � is transitive and reflexive, all U -acceptable numberings are equiv-
alent.

Note that the traditional notion of acceptable numbering is equivalent
to P-acceptable numbering. Parts (a) and (b) in the above definition are
natural counterparts of traditional definition of acceptable numberings when
we restrict ourselves to U instead of P. Further note, that U -acceptable
numberings are defined only for U having a least element. This is needed to
get useful properties from U -acceptable numberings. A similar property was
exploited by Mal’cev and Eršov in the definition of U -complete numberings;
see the special element in Definition 2.

Proposition 1 If U ⊆ P is finite and has a least element, then there exists
a U -acceptable numbering.

Proof. Assume U = {f0, f1, . . . , fn} and f0 = ⊥. Let ψ be any acceptable
numbering. For each i ≤ n, let ∆i ⊆ fi be a finite function such that, for
j ≤ n, ∆i ⊆ fj, if and only if fi ⊆ fj. Note that such ∆i can easily be
constructed.

The functions ηi in η are defined as follows. Let m0 = 0. Go to stage 0.

Stage s

1. For each x ≤ s such that fms
(x)↓ in at most s steps, let ηi(x) = fms

(x).

2. If there are j such that fms
⊂ fj, and ∆j ⊆ ψi can be detected within s

steps, then let ms+1 = least such j.

Otherwise, let ms+1 = ms.

3. Go to stage s+ 1

End stage s

Fix i and consider the computation of ηi. Note that making fms
⊆ ηi in

step 1 above is consistent, since fms
⊆ fms+1

by definition of ms+1, and thus,
fm0

⊆ fm1
⊆ fm2

· · ·. Therefore η is a computable numbering.
Also, lims→∞ms↓ = m such that fm ⊆ ψi, and for all m′ ≤ n, ¬[fm ⊂

fm′ ⊆ ψi]. Hence, ηi = fm, for some m such that fm ⊆ ψi and for all m′ ≤ n,
¬[fm ⊂ fm′ ⊆ ψi].

It follows that ηi ∈ U , and also U ⊆ Pη is easy to see. Furthermore, if
ψi ∈ U then ηi = ψi. Let ζ be any subnumbering of U . Then ζ � ψ, since
ψ is acceptable. This, together with the previous remark yields ζ � η, and
hence η is U -acceptable. The proposition follows.
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3 U-Completeness and U-Acceptability

We first show that every U -acceptable numbering is a U -complete numbering.
Therefore, if we later on show the existence of a U -acceptable numbering with
a certain property, we have also found a U -complete numbering with that
property.

Theorem 4 If ψ is U -acceptable then ψ is U -complete.

Proof. Suppose U ⊆ P and ψ is U -acceptable. Choose the least element
of U to be the special element ⊥ in the definition of U -complete numbering.
Let f be any partial recursive function. Define η as follows.

ηx =

{

ψf(x), if f(x)↓;
⊥, if f(x)↑.

Note that first and second clauses of above definition are consistent, since ⊥
is the least element of Pψ.

Clearly, η is a subnumbering of ψ. Let r ∈ R be such that η �r ψ (such
r exists since ψ is U -acceptable).

Now, for all x, we have

ψr(x) = ηx =

{

ψf(x), if f(x)↓;
⊥, otherwise.

It follows that ψ is a U -complete numbering.

The next two theorems show that U -acceptable numberings are a proper
restriction of U -complete numberings.

The proof for the following theorem can be found in [4] for the general
case, i.e., for enumerations of arbitrary objects. Here we give an easier ver-
sion, specialized for partial recursive functions.

Theorem 5 Suppose U ⊆ P is recursively enumerable and there exists a
least element ⊥ of U . Then there exists a complete numbering ψ for U .

Proof. Suppose η is a numbering of U . Define ψ as follows:
ψ2i = ηi.
ψ2〈i,j〉+1 is defined as follows.
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ψ2〈i,j〉+1(x)

In parallel execute steps 1 and 2.

1. For x such that ⊥(x)↓, let ψ2〈i,j〉+1(x) = ⊥(x).

2. Let i′ = i and j ′ = j.

Loop

2.1 Wait until ϕi′(j
′)↓.

2.2 Suppose ϕi′(j
′) = k.

2.3 If k is even, then ψ2〈i,j〉+1 = ψk = ηk/2.

2.4 If k is odd, then let i′, j′ (for next iteration) be such that k = 2〈i′, j′〉+1,
and go to next iteration of the loop.

End Loop

End

Note that step 2.4 is essentially a simulation of ψk. It immediately follows
that

ψ2〈i,j〉+1 =

{

ψk, if ϕi(j)↓ = k;
⊥, if ϕi(j)↑.

Thus for every partial recursive function ϕi, g(x) = 2〈i, x〉+ 1, witnesses the
requirement for complete numbering. Thus ψ is a U -complete numbering
with ⊥ as the special element.

On the other hand there are infinite enumerable classes U with a least
element that do not have U -acceptable numberings.

Theorem 6 There exists an infinite recursively enumerable class U with
least element such that U has no U -acceptable numbering.

Proof. Let U = {f | f has finite domain}. Clearly U is recursively enu-
merable and has ∅ as the least element. Suppose by way of contradiction
that some ψ is U -acceptable. Construct η as follows.

ηi(x) =

{

0, if ϕi(i)↓ = j and [x = 1 or ψj(x− 1)↓];
↑, otherwise.

Clearly η is a numbering. Since every function in Pψ has finite domain,
it follows that every ηi has finite domain: if ϕi(i)↑, then domain(ηi) = ∅;
otherwise max(domain(ηi)) = 1+max(domain(ψϕi(i))). Now suppose ϕk ∈ R
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reduces η to ψ. Then max(domain(ηk)) = 1 + max(domain(ψϕk(k))). Thus
ηk 6= ψϕk(k), a contradiction. Therefore ψ is not U -acceptable.

Corollary 1 There exists U ⊆ P such that U has U -complete numberings
but no U -acceptable numberings.

Proof. Immediate by Theorems 5 and 6.

4 Results

Let us first prove some general properties for complete numberings.

Theorem 7 (Fixed Point Theorem with Parameters) Let U ⊆ P and ψ be
U -complete. For all h ∈ R2 there exists g ∈ R such that, for all y,

ψg(y) = ψh(g(y),y).

Proof. Define a function u by u(〈x, y〉) = ϕx(〈x, y〉). So there exists a
recursive r such that

ψr(〈x,y〉) =

{

ψu(〈x,y〉), if, u(〈x, y〉)↓;
⊥, otherwise.

Now consider any h ∈ R2. Let n such that, for all x, y, ϕn(〈x, y〉) =
h(r(〈x, y〉), y). Then ϕn is clearly recursive and thus, for all y, ϕn(〈n, y〉)↓.
Now, for all y,

ψr(〈n,y〉) = ψu(〈n,y〉) = ψϕn(〈n,y〉) = ψh(r(〈n,y〉),y).

Thus taking g(y) = r(〈n, y〉) satisfies the theorem.

The next theorem shows that a stronger formulation of Fixed Point The-
orem also holds.

Theorem 8 (Double FPT) Let U ⊆ P and ψ be a U -complete numbering.
For all f, g ∈ R there exist a, b such that

ψa = ψf(〈a,b〉) and ψb = ψg(〈a,b〉).
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Proof. Let h(x, y) = f(〈x, y〉). Then by parametric FPT (Theorem 7)
there exists a recursive r such that, for all x, ψr(x) = ψh(r(x),x) = ψf(〈r(x),x〉).
Let r′(x) = g(〈r(x), x〉). Now by FPT (Theorem 3(a)) there exists an e such
that ψe = ψr′(e) = ψg(〈r(e),e〉).

Taking a = r(e) and b = e thus satisfies the theorem.

The proof of the following theorem can be found in [4]. (Actually, Eršov
proves the theorem for the weaker notion of pre-complete numberings.)

Theorem 9 Suppose U ⊆ P and ψ is a U -complete numbering.

(a) (Extended Rice’s Theorem) Suppose V ⊆ U is such that, for some
f, g ∈ U , f ⊂ g, f ∈ V , and g 6∈ V . Then I

ψ
V is not recursively

enumerable.

(b) (Rice’s Theorem) For all V such that ∅ ⊂ V ⊂ U , IψV is not recursive.

For universal numberings, s-m-n-Theorem and composition were neces-
sary to obtain acceptability; cf. Theorem 1. This no longer holds for complete
numberings, as the corollary to the next theorem shows; the theorem actually
gives a stronger result.

Theorem 10

(a) There exists U ⊆ P such that there exist U -acceptable numberings, but
no numbering of U satisfies (even non-effective) s-m-n-Theorem.

(b) There exists U ⊆ P such that there exist U -acceptable numberings, but
no numbering of U has (even non-effective) composition.

Proof. (a) Choose U = {∅, id}, where id is the identity function. Clearly,
U has U -acceptable numberings by Proposition 1. Let ψ be any numbering
for U . Since 〈·, ·〉 is one-to-one and onto, there is a k satisfying k 6= 〈k, k〉.
Suppose by way of contradiction that ψ satisfies s-m-n-Theorem and let s be
the s-m-n-function. (Note that we may even take s to be non-computable
for the following). Let i be such that ψi = id. Now ψs(i,k)(k) = ψi(〈k, k〉) =
id(〈k, k〉) = 〈k, k〉. But since k 6= 〈k, k〉, this implies that ψs(i,k) 6∈ {∅, id}. A
contradiction to the fact that ψ is a numbering for U .

(b) Let f, g be defined as follows. f(x) = x + 1, and g(x) = x2. Let
U = {∅, f, g}. Again, by Proposition 1, U has U -acceptable numberings.
However, λx.f(g(x)) 6∈ U , and thus no composition exists.
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Corollary 2

(a) There exists U ⊆ P such that there exist U -complete numberings, but
no numbering of U satisfies (even non-effective) s-m-n-Theorem.

(b) There exists U ⊆ P such that there exist U -complete numberings, but
no numbering of U has (even non-effective) composition.

Proof. Immediate by Theorems 4 and 10.

On the other hand, it is easy to see that none of composition, s-m-n-
Theorem or KRT, nor any combination of the three, is sufficient for a num-
bering ψ to be complete, even if Pψ contains a least element. To see this,
define ψ as follows.

ψi(x) =

{

j, if i = 2j;
↑, if i = 2j + 1.

Obviously, the set Pψ has a least element, ψ has composition, satisfies the
s-m-n-Theorem and KRT, but is not Pψ-complete. To see this, note for
example that f(x) = 0 has exactly one index in ψ and therefore Rice’s
Theorem can not be satisfied by ψ, in contrast to what Theorem 3(d) requires
of complete numberings.

As the proofs of Theorem 10 and Corollary 2 show, the results hold
for information-theoretic reasons: sometimes there is no function in U that
could realize the input-output behavior required by the programs that the
s-m-n-Theorem or composition would generate. However, it is possible to
strengthen Corollary 2 in order to show that it holds for computational rea-
sons as well, i.e., there are U -complete numberings that satisfy non-effective
s-m-n-Theorem and have non-effective composition, but no effective counter-
parts.

Theorem 11

(a) There exists U ⊆ P and a U -complete numbering ψ, such that ψ satis-
fies non-effective s-m-n-Theorem, but no effective s-m-n-Theorem.

(b) There exists U ⊆ P and a U -complete numbering ψ, such that ψ has
non-effective composition, but no effective composition.

14



Proof. Recall that ϕ is an acceptable numbering (for P). Without loss of
generality, assume ϕ0 = ∅ for ease of notation; so ϕ0 cannot witness effective
s-m-n-Theorem or composition. We will describe two numberings ψ below,
one to prove part (a) and one to prove part (b). Let U = {ψi | i ∈ N} in
both cases.

First we define ψ〈0,j,x〉 and will use this “first half” of ψ for both parts of
the proof to follow. We will make sure that

ψ〈0,j,x〉 =

{

ψϕj(x), if ϕj(x)↓;
∅, otherwise.

Note that this will imply ψ being U -complete (since for any partial recursive
function f = ϕj, one can take g(x) = 〈0, j, x〉). So define ψ〈0,j,x〉 as follows:

Definition of ψ〈0,j,x〉.

1. Let j ′ = j and x′ = x.

2. Loop

2.1 If ϕj′(x
′)↑, then ψ〈0,j,x〉 is empty function.

2.2 If ϕj′(x
′)↓ = 〈i′′, j′′, x′′〉 with i′′ > 0, then let ψ〈0,j,x〉 = ψ〈i′′,j′′,x′′〉.

2.3 If ϕj′(x
′)↓ = 〈0, j ′′, x′′〉, then let j ′ = j′′ and x′ = x′′ and go to next

iteration of the loop.

End Loop

End

Note that if the loop above is infinite, then ψ〈0,j,x〉 is the empty function.
Step 2.3 is essentially a simulation of ψ〈0,j′′,x′′〉. Thus it immediately follows
that

ψ〈0,j,x〉 =

{

ψϕj(x), if ϕj(x)↓;
∅, otherwise.

Thus, whatever we do with ψ〈i,j,k〉, for i ≥ 1, we have already ensured
that ψ is a U -complete numbering.

Also, note that for each j, k, either ψ〈0,j,k〉 is the empty set, or ψ〈0,j,k〉 =
ψ〈i,j′,k′〉 for some i > 0 and j ′, k′ ∈ N.

(a) Let r be such that ϕr(i)↓ if and only if ϕi(〈i, 0, 0〉, 0)↓ = 〈i, 0, 0〉
or ϕi(〈i, 0, 0〉, 0)↓ = 〈0, j ′, k′〉, and ψ〈0,j′,k′〉, eventually follows ψ〈i,0,0〉 in the
definition of ψ〈0,j′,k′〉 above. Note that there exists such a ϕr.

We now go on to define ψ〈i,j,k〉 for i ≥ 1. Here we will try to let ψ satisfy
non-effective s-m-n-Theorem but not the effective s-m-n-Theorem.
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Recall that Fn, n ≥ 0, is a canonical enumeration of all and only the finite
functions. For i > 0, and j + k > 0, let

ψ〈i,j,k〉(x) =

{

i, if x ∈ domain(Fj+k−1);
↑, otherwise.

Note that every finite function with range = {i} is represented in the con-
struction above.

We now define ψ〈i,0,0〉 for i > 0. Let

ψ〈i,0,0〉(〈x, y〉) =







i, Φr(i) > 〈x, y〉 or
[x = 0 ∧ y = min({y′ | 〈0, y′〉 > y′ > Φr(i)});

↑, otherwise.

Note that for any constant c, if domain of ψi is finite, then domain of
λx.ψi(〈c, x〉) is also finite. Using the above, it is easy to verify that ψ satisfies
non-effective s-m-n-Theorem.

We now show that ψ does not satisfy effective s-m-n-Theorem. Suppose
by way of contradiction, that ϕi witnesses the effective s-m-n-Theorem for
ψ. By assumption on ϕ we have i > 0. Now, consider the following cases:
Case 1: ϕr(i)↓.

In this case, ψϕi(〈i,0,0〉,0) = ψ〈i,0,0〉. However, ψ〈i,0,0〉(〈0, y〉) 6= ψ〈i,0,0〉(y),
where y = min({y′ | 〈0, y′〉 > y′ > Φr(i)}).
Case 2: ϕr(i)↑.

In this case ψ〈i,0,0〉 is the constant i function, and for any 〈i′, j′, k′〉,
ψ〈i′,j′,k′〉 = ψ〈i,0,0〉 if and only if 〈i′, j′, k′〉 = 〈i, 0, 0〉, or i′ = 0, and ψ〈i′,j′,k′〉

eventually follows ψ〈i,0,0〉 in the construction above. Therefore ψϕi(〈i,0,0〉,0) 6=
ψ〈i,0,0〉 holds. Thus, ϕi does not witness effective s-m-n-Theorem for ψ.

The above case distinction proves part (a).
(b) Let r be such that ϕr(i)↓ if and only if ϕi(〈i, 0, 0〉, 〈i, 0, 0〉)↓ = 〈i, 0, 0〉

or ϕi(〈i, 0, 0〉, 〈i, 0, 0〉)↓ = 〈0, j ′, k′〉, and ψ〈0,j′,k′〉, eventually follows ψ〈i,0,0〉 in
the definition of ψ〈0,j′,k′〉 above. Note that there exists such a ϕr.

We now again define ψ〈i,j,k〉 for i ≥ 1. For i > 0, if j 6= 0, or k > 1, then
let ψ〈i,j,k〉 = ∅.

Let pi denote the i-th prime number. For i > 0, let

ψ〈i,0,0〉(x) =











pi, if x = pi;
p2
i , if ϕr(i)↓ and x = p3

i ;
p3
i , if ϕr(i)↓ and x = p2

i ;
↑, otherwise.

16



ψ〈i,0,1〉(x) =











pi, if ϕr(i)↓ and x = pi;
p2
i , if ϕr(i)↓ and x = p2

i ;
p3
i , if ϕr(i)↓ and x = p3

i ;
↑, otherwise.

By the use of the prime numbers pi it is easy to see that, (a) for all
functions f in U , domain and range of f are same, and (b) for all functions
f and g in U , either the domains of f and g are equal, or they are disjoint.
Using this property, it is easy to verify that non-effective composition holds
for ψ.

Suppose by way of contradiction, that ϕi witnesses effective composition
for ψ. By assumption on ϕ we have i > 0.

We consider two cases.
Case 1: ϕr(i)↓.

In this case, ψϕi(〈i,0,0〉,〈i,0,0〉) = ψ〈i,0,0〉. However, this does not witness
effective composition, since ψ〈i,0,0〉◦ψ〈i,0,0〉 6= ψ〈i,0,0〉.
Case 2: ϕr(i)↑.

In this case, ψ〈i,0,0〉◦ψ〈i,0,0〉 = ψ〈i,0,0〉. Moreover, if ψ〈i′,j′,k′〉 = ψ〈i,0,0〉, then
〈i′, j′, k′〉 = 〈i, 0, 0〉 or i′ = 0, and ψ〈i′,j′,k′〉 eventually follows ψ〈i,0,0〉 in the
above algorithm. Thus, ϕi cannot witness effective composition for ψ.

It follows from the above cases that ψ does not have effective composi-
tion.

For the stronger notion of U -acceptability we get a nice contrast: for U -
complete numberings, there is a difference between effective and non-effective
s-m-n-Theorem, resp. composition. With U -acceptability, it is not possible
to strengthen Theorem 10 to hold for computational reasons.

Theorem 12 Let U ⊆ P and ψ be U -acceptable.

(a) ψ satisfies non-effective s-m-n-Theorem if and only if ψ satisfies effec-
tive s-m-n-Theorem.

(b) ψ has non-effective composition if and only if ψ has effective composi-
tion.

Proof. We prove part (a); the proof for (b) is similar. Assume U and ψ as
in the hypotheses of the theorem. Let s′ be a non-effective s-m-n-function
for ψ, i.e., for all x, y, z,

ψs′(x,y)(z) = ψx(〈y, z〉).
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Note that this implies ψs′(x,y) ∈ U . Define a numbering η, for all x, y, z, as
follows:

η〈x,y〉(z) = ψx(〈y, z〉).

Obviously, η is a subnumbering of ψ and therefore η �r ψ for some recursive
r. Define a recursive function s by s(x, y) = r(〈x, y〉) for all x, y. This yields

ψs(x,y) = ψr(〈x,y〉) = η〈x,y〉 = ψs′(x,y)

and thus s witnesses effective s-m-n-Theorem.

The following theorem points out that Theorem 10 illustrates a general
fact. Namely that the property of satisfying the s-m-n-Theorem – or com-
position, respectively – does not depend on the choice of a particular U -
acceptable numbering, but on the choice of U (and the choice of the used
pairing function, as Theorem 15 will show).

Theorem 13 Let U ⊆ P.

(a) If there exists a U -acceptable numbering satisfying the s-m-n-Theorem
then every U -acceptable numbering satisfies the s-m-n-Theorem.

(b) If there exists a U -acceptable numbering with composition, then every
U -acceptable numbering has composition.

Proof. We only show part (a); part (b) is similar. Suppose ψ, η are U -
acceptable numberings, where ψ satisfies s-m-n-Theorem. Let r and r′ be
recursive functions such that ψ �r η, and η �r′ ψ. Such functions ex-
ist by definition of U -acceptable numbering. Let s′ be the s-m-n-function
of ψ. Define s(x, y) = r(s′(r′(x), y)). Now ηs(x,y)(z) = ηr(s′(r′(x),y))(z) =
ψs′(r′(x),y)(z) = ψr′(x)(〈y, z〉) = ηx(〈y, z〉) and s is the desired s-m-n-function
for η.

The situation is more complicated for complete numberings, as witnessed
by the following theorem.

Theorem 14 There exists a U ⊆ P such that

(a) there exists a U -complete numbering which satisfies effective s-m-n-
Theorem.
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(b) there exists a U -complete numbering which does not satisfy effective
s-m-n-Theorem.

Proof. For proofs of both parts let U = {f | f has finite domain}. Recall
that F0, F1, . . . is a recursive enumeration of U such that for each i, one can
effectively (in i) determine card(domain(Fi)).

(a) We give a numbering η which is U -complete and satisfies effective
s-m-n theorem.

Let η3i = Fi.
η3i+1 and η3i+2, for each i, will be defined below. We will make sure that
(i) η3i+1, η3i+2 have finite domain,
(ii) η3〈i,j〉+1 = λx.ηi(〈j, x〉), and
(iii)

η3〈i,j〉+2 =

{

ηϕi(j), if ϕi(j)↓;
∅, otherwise.

Thus, s(i, j) = 3〈i, j〉 + 1 would witness the satisfaction of effective s-m-
n-Theorem. Also η would be U -complete, since for any ϕi, g(j) = 3〈i, j〉+ 2
witnesses the requirement for U -complete numbering.

We now continue with the definition of η3i+1 and η3i+2, for each i.

η3〈i,j〉+k, for i, j ∈ N, k ∈ {1, 2}

1. Let i′ = i, j′ = j, k′ = k. Let ` = 0.

(* We will be using numbers ni later on. Inductively, ni has been defined
for 1 ≤ i ≤ ` *).

Loop

2 If k = 1, then
2.1 let n`+1 = j′;
2.2 let ` = `+ 1;
2.3 Suppose i′ = 3〈i′′, j′′〉 + k′′, for some i′′, j′′ ∈ N and k′′ ∈

{0, 1, 2}.
2.4 If k′′ = 0, then let η3〈i,j〉+k(x) = ηi′(〈n1, 〈n2, . . . , 〈n`, x〉〉〉).
2.5 Else let i′ = i′′, j′ = j′′ and k′ = k′′, and go to the next

iteration of the loop.
3 If k = 2, then

3.1 Wait until ϕi′(j
′) converges (if ever).

3.2 Suppose ϕi′(j
′) = 3〈i′′, j′′〉 + k′′, for some i′′, j′′ ∈ N and

k′′ ∈ {0, 1, 2}.
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3.3 If k′′ = 0 and ` = 0, then let η3〈i,j〉+k(x) = ηw(x), where
w = ϕi′(j

′).
3.4 Else If k′′ = 0 and ` > 0, then let

η3〈i,j〉+k(x) = ηw(〈n1, 〈n2, . . . , 〈n`, x〉〉〉),
where w = ϕi′(j

′).
3.5 Else let i′ = i′′, j′ = j′′ and k′ = k′′, and go to the next

iteration of the loop.

End Loop

End

Intuitively, one may consider step 2 of the loop as simulation of ηi′ (with
〈n`, x〉 replacing x for input) and step 3 as simulation of ηϕi′ (j

′). That is,
η3〈i,j〉+1(x) = ηi(〈j, x〉), η3〈i,j〉+2(x) = ηϕi(j)(x) (where right hand side becomes
∅, if ϕi(j)↑).

Using above, it is easy to verify that the construction satisfies properties
(ii) and (iii). Property (i) trivially follows, since ηw is finite for each w

divisible by 3 (see steps 2.4, 3.3 and 3.4).
(b) We give a numbering ψ which is U -complete, but does not satisfy

effective s-m-n-Theorem. The idea is to use ψ3〈i,j〉, and ψ3〈i,j〉+1 to ensure
that ψ is a U -complete numbering, and to use ψ3〈i,j〉+2 to spoil any potential
candidate for effective s-m-n-Theorem.

Let η3i = Fi.
η3〈i,j〉+1 is defined using the following procedure.

η3〈i,j〉+1, for i, j ∈ N.

1. Let i′ = i, j′ = j.

Loop

2.1 Wait until ϕi′(j
′) converges (if ever).

2.2 Suppose ϕi′(j
′) = 3w+k, for some w ∈ N and k ∈ {0, 1, 2}.

2.3 If k = 0 or k = 2, then let η3〈i,j〉+1(x) = η3w+k(x).
2.4 Else suppose w = 〈i′′, j′′〉. Go to the next iteration of the

loop, with i′ = i′′ and j′ = j′′.

End Loop

End
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Note that, above construction makes

ψ3〈i,j〉+1 =

{

ψϕi(j), if ϕi(j)↓;
∅, otherwise.

Thus, assuming each ψ3w+2 ∈ U , above construction ensures that ψ is
U -complete numbering (since for any ϕi, one could take g(j) = 3〈i, j〉 + 1,
and thus satisfy the requirement for U -complete numbering).

We now give description of ψ3w+2, for w ∈ N. Without loss of generality
assume that 〈0, 0〉 = 0 and 〈0, 1〉 6∈ {0, 1}. We will make sure that each Ri is
satisfied, where

Ri: either ϕi(〈3i + 2, 0〉)↑, or, ψϕi(〈3i+2,0〉)(x) 6= ψ3i+2(〈0, x〉), for some
x ∈ {0, 1}.

Note that if each Ri is satisfied, then we will have that ψ does not satisfy
effective s-m-n-Theorem.

We define ψ3i+2 as follows. For each i, ψ3i+2(0) = 0, and ψ3i+2(x)↑, for
x 6∈ {0, 〈0, 1〉}. In particular, ψ3i+2(1)↑.

We define ψ3i+2(〈0, 1〉) as follows.

Definition of ψ3i+2(〈0, 1〉) for i ∈ N.

1. If ϕi(〈3i+ 2, 0〉)↑, then ψ3i+2(〈0, 1〉) =↑.

2. Else,

Suppose ϕi(〈3i+ 2, 0)〉 = 3m+ r, where r ∈ {0, 1, 2}.

If r ∈ {0, 2}, then go to step 3 with w = m and k = r.

Else If r = 1, and the procedure for ψ3m+1 eventually follows some ψ3w+k,
where k ∈ {0, 2}, then go to step 3 with this w, k.

Else ψ3i+2(〈0, 1〉) =↑.

3. If k = 0 and ψ3w(1)↓, then let ψ3i+2(〈0, 1〉) = ψ3w(1) + 1.

Else (in this case k = 2 or k = 0 and ψ3w(1)↑), let ψ3i+2(〈0, 1〉) = 1.

(* note that one can determine effectively whether ψ3w(1) = Fw(1)↑ *).

End

For each i, we claim that Ri is satisfied. Suppose ϕi(3i+ 2, 0)↓ = 3m+ r

(otherwise we are done).
We consider the following cases.
Case 1: r = 1 and ψ3m+r does not eventually follow some ψ3w+k, for

k ∈ {0, 2}.
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In this case ψ3m+r = ∅. Thus, we have that ψ3i+2(〈0, 0〉) = 0 6= ψ3m+r(0)↑.
Case 2: r ∈ {0, 2} or ψ3m+r eventually follows some ψ3w+k, where k ∈

{0, 2}.
In this case by step 3 of the construction, we have that ψ3i+2(〈0, 1〉) 6=

ψ3m+r(1).
From the above cases it follows that ϕi cannot act as s-m-n function.

Thus effective s-m-n-Theorem does not hold for ψ.

In Definition 1, the formulation of the s-m-n-Theorem used a pairing
function 〈·, ·〉. Unfortunately, the used pairing function might be the deciding
factor whether U -complete numberings for a certain set U satisfy the s-m-n-
Theorem or not.

Theorem 15 There exists U ⊆ P and pairing functions 〈·, ·〉, 〈〈·, ·〉〉, such
that U has U -acceptable numberings satisfying s-m-n-Theorem when 〈·, ·〉 is
used, and U has no U -complete numberings satisfying s-m-n-Theorem when
using 〈〈·, ·〉〉.

Proof. Let f be such that f(x) = 0, if x is odd and f(x) = 1, if x is even.
Let U = {∅, f}. Suppose 〈·, ·〉 has the property that 〈x, y〉 is odd if and only
if y is odd. It is easy to define a pairing function with these constraints, just
use a very simple “digit-merging” algorithm: it places the digits of the first
argument on even digits in the result and the digits of the second arguments
on the odd digits in the result, “sometimes” adding or removing zeros. (For
example 〈0, 0〉 = 0, 〈0, 1〉 = 1, 〈1, 0〉 = 10, 〈400, 1〉 = 400001, 〈2, 100〉 =
10020 and so on.) Obviously, the algorithm has the desired properties. Then,
clearly, any numbering for U satisfies s-m-n-Theorem: s(i, x) = i can be used.
Suppose 〈〈·, ·〉〉 has the property that 〈〈x, y〉〉 is odd if and only if y is even.
This can easily be obtained from the above pairing. Then no numbering for
U satisfies s-m-n-Theorem. This is so, since λy.f(〈〈x, y〉〉) does not belong
to U .

Thus for some U , we may have s-m-n theorem in all acceptable/complete
numberings (for example for U = {∅,Zero}, where Zero is everywhere 0
function); for some U we may have s-m-n theorem in no acceptable numbering
under all pairing functions (Theorem 10 (a)); and for some U we may or may
not have s-m-n theorem in acceptable (complete) numberings based on the
pairing function (Theorem 15).

The next result shows, that effective composition does not entail s-m-n-
Theorem for U -complete numberings.
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Theorem 16 There exists U ⊂ P such that

(a) there exists a U -acceptable numbering with effective composition,

(b) there exists no U -complete numbering satisfying (even non-effective)
s-m-n-Theorem.

Proof. Let U = {∅, id} and ψ be any U -acceptable numbering. Such a
numbering exists by Proposition 1. Now, ψi(0)↓ if and only if ψi = id.
Define a numbering η by

η〈x,y〉 =

{

id, if ψx(0)↓ and ψy(0)↓;
∅, otherwise.

Since ψ is U -acceptable and clearly Pη ⊆ Pψ, there is an r ∈ R such that
η �r ψ and therefore

ψr(〈x,y〉) =

{

id, if ψx(0)↓ and ψy(0)↓;
∅, otherwise.

So defining comp(x, y) = r(〈x, y〉) yields effective composition.
The fact, that the numbering ψ can not satisfy s-m-n-Theorem is proved

in Theorem 10(a).

The proof actually shows, that every U -acceptable numbering of {∅, id}
has effective composition. Note that it is not possible to drop “U -acceptable”
here, since there exist numberings of {∅, id}, as can be proved using standard
diagonalization techniques, that do not have effective composition.

On the other hand, s-m-n-Theorem does not imply composition in com-
plete numberings and therefore the two concepts are independent in this
context.

Theorem 17 There exists U ⊆ P such that

(a) there exists a U -acceptable numbering satisfying the effective s-m-n-
Theorem,

(b) there exists no numbering ψ, such that Pψ = U and ψ has (even non-
effective) composition.

Corollary 3 There exists U ⊆ P such that U has a U -complete number-
ing satisfying s-m-n-Theorem but no U -complete numbering has (even non-
effective) composition.

23



Proof. (of Theorem 17) Let f(x) = 0 if x is odd and f(x) = 1 if x is even
and define a function g by g(x) = 2 if x is even and g(x) = 0 if x is odd.
Let U = {∅, f, g}. Since f(g(x)) = 1 for all x, no numbering for U can
have composition. Let 〈·, ·〉 be the pairing function defined in the proof of
Theorem 15. By Proposition 1 there is a U -acceptable numbering ψ. Now it
is easy to see, that taking s(x, y) = x for all x, y and using the properties of
〈·, ·〉 yields effective s-m-n-Theorem for ψ.

We now turn our attention to KRT. Riccardi proves in [13] that effective
KRT and FPT are independent in what he calls “programmable numberings”.
A sequence of functions (ζi)i≥0 is a programmable numbering if {ζi | i ∈ N} =
P and there exists a recursive f such that ζf(i) = ϕi for all i. It is not required
that the function λi, x.ζi(x) is computable. Acceptable numberings of course
satisfy both a KRT and a FPT. As Theorem 18 shows, this does not hold
for U -acceptable numberings. Therefore, it does not hold for U -complete
numberings as well.

Theorem 18 There exists U ⊆ P that has U -acceptable numberings but no
numbering for U satisfies KRT.

Proof. Let U = {∅, id}. By Proposition 1, there exist U -acceptable num-
berings. Suppose by way of contradiction that ψ is a numbering for U which
satisfies KRT. Suppose ψi = id and, for all x, ψe(x) = ψi(〈e, x〉) = 〈e, x〉.
But then ψe 6∈ U .

As in Theorem 10, the argument above is information-theoretic.
Although for the U exhibited in Theorem 18 no numbering satisfying

KRT exists, an analogue to Theorem 13 does not hold for KRT in general in
U -acceptable numberings, and therefore it also does not hold for U -complete
numberings.

Theorem 19 There exists U ⊆ P, such that

(a) there exists a U -acceptable numbering satisfying effective KRT.

(b) there exists a U -acceptable numbering not satisfying KRT (not even
non-effective one).

Proof. We assume that pairing function is monotonically increasing in both
its arguments (in particular 〈0, 0〉 = 0) and 〈i, j〉 > j, for 〈i, j〉 6= 〈0, 0〉. (This
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is more for ease of writing the proof, than a real necessity). Let code(x) = x.
For n ≥ 2, let code(x1, x2, . . . , xn) = 〈x1, code(x2, x3, . . . , xn)〉. Intuitively,
code is a specific mechanism to extend the pairing function to multiple ar-
guments. We will need the following property of code. Each z ∈ N can be
uniquely expressed as z = code(e1, e2, . . . , en, 0), where en > 0 (here n may
be 0, i.e. z = code(0)). Intuitively, if z = 0, then n = 0. If z 6= 0, then
e1 = π1(z), and e2, e3, . . ., are determined inductively from π2(z). Note that
we have assumed that the pairing function is increasing in both its arguments.

Define f(x) = x, g(e1)(x) = f(〈e1, x〉) and further g(e1,...,en,en+1)(x) =
g(e1,...,en)(〈en+1, x〉).

Note that g(e1,...,en)(x) = f(code(e1, . . . , en, x)).
Let U = {f, ∅} ∪ {g(e1,e2,...,en) | n ≥ 1∧(∀j | 1 ≤ j ≤ n)[ej is odd ]}.
Define ψ as follows:
Let

ψ2i =











f, if ϕi(0) = code(0) = 0;
g(e1,...,en), if ϕi(0) = code(e1, . . . , en, 0) > 0, and

e1, . . . , en are all odd;
∅, otherwise.

ψ2i+1 =











g(2i+1), if ψi(0) = code(0) = 0;
g(e1,...,en,2i+1), if ψi(0) = code(e1, . . . , en, 0) > 0, and

e1, . . . , en are all odd;
∅, otherwise.

Clearly, ψ is U -acceptable numbering, and ψ2i+1(x) = ψi(〈2i + 1, x〉).
Thus ψ satisfies effective KRT.

Now define η as follows:
η2i = ψi, and η2i+1 = ∅. Clearly, η is U -acceptable too. However η does

not satisfy KRT, since for odd e, ηe = ∅, and for even e, λx.f(〈e, x〉) 6∈
U .

Note that Theorem 12 does not hold if we use KRT instead of s-m-n-
Theorem or composition. Instead, we get an analogous result to Theorem 11
for both U -complete and U -acceptable numberings.

Theorem 20 There exists U ⊆ P and a U -acceptable numbering ψ that
satisfies non-effective KRT but not effective KRT.
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Proof. Let η0, η1, . . . denote a recursive enumeration of all numberings. We
will describe a numbering ψ below. We will take U = {ψi | i ∈ N} and ψ

will satisfy the constraints of the theorem. The least element of U will be ∅.
Note, that since ψ will be U -acceptable, there are infinitely many ψ-programs
for ∅: just recall that every U -acceptable numbering is U -complete by Theo-
rem 4 and every U -complete numbering has infinite padding by Theorem 3(c).
Thus, in the proof we need not worry about (non-effective) KRT being satis-
fied for finite domain functions in U . To see this, consider any finite function
f ∈ U . Let w be such that, for all e ≥ w, for all x, f(〈e, x〉)↑. Let e ≥ w, be
such that ψe = ∅. Then clearly, for all x, ψe(x) = f(〈e, x〉) = ↑.

U constructed will have following property: for all f, g ∈ U , f(0) = g(0)
implies f = g (so in essence f(0) determines the element of U). This will
make it easy to make ψ acceptable, by defining ψ〈0,〈i,j〉〉 as follows: Wait until
ηij(0)↓; then search for k, l, with k > 0 such that ψ〈k,l〉(0)↓ = ηij(0). Then, let
ψ〈0,〈i,j〉〉 = ψ〈k,l〉. It is easy to verify that, if ηi is a subnumbering of ψ then
h(j) = 〈0, 〈i, j〉〉 reduces ηi to ψ.

We let ψ〈i+1,0〉(x) = 〈i, x〉, for all i, x. The following construction will
ensure that, for all i, for ei = ϕi(〈i + 1, 0〉), ψei

(·) 6= ψ〈i+1,0〉(〈ei, ·〉). Thus
ensuring that effective KRT for ψ is not satisfied. In addition it will allow
non-effective KRT. We now go on to define ψ〈k,l〉, for k, l > 0. For the
following we assume that pairing function is increasing in both the arguments
(and thus also 〈0, 0〉 = 0).

Definition of ψ〈i+1,k〉 for k > 0.

1. Dovetail steps 2 and 3 until wait in step 2 ends. If and when wait in step
2 ends, go to step 4.

2. Wait for ϕi(〈i + 1, 0〉) to converge (to say z), and then for ψz(0) to
converge.

3. For 〈j, x〉 = 0 to ∞

Let ψ〈i+1,j+1〉(x) be same as ψ〈i+1,j〉(〈〈i+ 1, j + 1〉, x〉), whenever it
gets defined.

4. If and when wait in step 2 ends, let w = ψz(0). Let n be such that,
n = w + j ′ + 3, where j ′ is the maximum j considered in the for-loop
of step 3.

For 0 < j < n, ψ〈i+1,j〉 is no longer extended and therefore finite.

For all x, let ψ〈i+1,n〉(x) = ψ〈i+1,0〉(〈〈i+ 1, n〉, x〉).

For j = n to ∞
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For all x, let ψ〈i+1,j+1〉(x) = ψ〈i+1,j〉(〈〈i+ 1, j + 1〉, x〉).

End definition of ψ〈i+1,·〉.

Note that for any i, ψ〈i+1,0〉(0) is of form 〈i, 0〉 and if ψ〈i+1,j+1〉 6= ∅, then
ψ〈i+1,j+1〉(0) is of the form 〈i, 〈〈i+1, 1〉, 〈〈i+1, 2〉, . . . , 〈〈i+1, j+1〉, 0〉〉〉〉 (in
case step 2 does not succeed, or step 2 succeeds, but j + 1 < n as in step 4)
or of the form 〈i, 〈〈i + 1, n〉, 〈〈i + 1, n + 1〉, . . . , 〈〈i + 1, j + 1〉, 0〉〉〉〉 (in case
step 2 succeeds, and j + 1 ≥ n as in step 4).

If follows that, for any i, j and i′, j′, ψ〈i+1,j〉(0) = ψ〈i′+1,j′〉(0) 6=↑, then
i = i′ and j = j ′.

We now consider two cases:
Case 1: ϕi(〈i+ 1, 0〉)↑ or ϕi(〈i+ 1, 0〉)↓ = z and ψz(0)↑.
In this case, clearly, ϕi does not witness effectiveness of KRT. Also, 〈i+

1, j + 1〉 acts as the e in ψe(x) = ψ〈i+1,j〉(〈e, x〉).
Case 2: Not Case 1. In this case let n, w be as in step 4 of the above

construction.
Again, as in Case 1, it is easily seen that ψ satisfies (non-effective) KRT.

However, z = ϕi(〈i + 1, 0〉) does not act as e for ψe(x) = ψ〈i+1,0〉(〈e, x〉). To
see this, consider the following subcases:

Case 2.1: ψz = ψ〈i′+1,j〉, for some i′ 6= i.
In this case, ψz(0) = ψ〈i′+1,j〉(0) 6= ψ〈i+1,0〉(〈z, 0〉), since π1(ψ〈i′+1,j〉(0)) =

i′ 6= i = π1(ψ〈i+1,0〉(〈z, 0〉)).
Case 2.2: ψz = ψ〈i+1,j〉, for some j, 0 < j < n.
In this case, ψz is finite, and thus ψz 6= λx.ψ〈i+1,0〉(〈z, x〉);
Case 2.3: ψz = ψ〈i+1,0〉.
In this case clearly, ψz 6= λx.ψ〈i+1,0〉(〈z, x〉).
On the other hand ψz(0) 6= ψ〈i+1,j〉(0), for j ≥ n, since, for j ≥ n,

ψ〈i+1,j〉(0) = 〈i, 〈〈i+ 1, n〉, 〈〈i + 1, n+ 1〉, . . . , 〈〈i + 1, j〉, 0〉〉〉〉 ≥ n > ψz(0).
It follows from above subcases that ψz 6= λx.ψ〈i+1,0〉(〈z, x〉).

The set U and the pairing functions defined in the proof of Theorem 15
can be used to show the following.

Theorem 21 There exists U ⊆ P and pairing functions 〈·, ·〉, 〈〈·, ·〉〉, such
that U has U -acceptable numberings satisfying KRT when 〈·, ·〉 is used, and
U has no U -acceptable numberings satisfying KRT when using 〈〈·, ·〉〉.
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We now consider the relationship between s-m-n-Theorem and KRT in
U -complete numberings. We prove part (a) of the following theorem for U -
acceptable numberings to simplify the proof, but this immediately yields the
result for U -complete numberings as well.

Theorem 22

(a) There exists a U , and U -acceptable numbering ψ such that ψ satisfies
effective KRT, but ψ does not satisfy s-m-n-Theorem.

(b) For all U , for all U -complete numberings ψ, if ψ satisfies the s-m-n-
Theorem, then ψ satisfies effective KRT.

Proof. (a) We will use a similar approach as in the proof of Theorem 19.
For the readers convenience, we will restate the assumptions we made about
pairing and coding.

Again, we assume that pairing function is monotonically increasing in
both its arguments (in particular 〈0, 0〉 = 0) and 〈i, j〉 > j, for 〈i, j〉 6= 〈0, 0〉.

Let code(x) = x. Further, for n ≥ 2, we define code(x1, x2, . . . , xn) =
〈x1, code(x2, x3, . . . , xn)〉. We will need the following property of code. Each
z ∈ N can be uniquely expressed as z = code(e1, e2, . . . , en, 0), where en > 0
(here n may be 0, i.e. z = code(0)).

Let fi(x) = 〈i, x〉. For n ≥ 1, gi(e1,e2,...,en)(x) = fi(code(e1, e2, . . . , en, x)).
Note that

(A) gi(e1)(x) = fi(〈e1, x〉), and gi(e1,...,en,en+1)(x) = gi(e1,...,en)(〈en+1, x〉).

We will be using gi(e1,e2,...,en) only for each ej being ≥ 1.
We will define a computable numbering ψ below. We let U = Pψ. It will

be the case that U = V , where V = {∅} ∪ {fi | i ∈ N} ∪ {gi(e1,e2,...,en) | n ≥

1∧(∀j ∈ {1, . . . , n})[ej ≥ 1]}.
Note that, V above satisfies:
(B) for all g, h ∈ V , g(0) = h(0) if and only if g = h. In particular, fi is the

only function in V which maps 0 to 〈i, 0〉, and, for n > 0 and e1, e2, . . . , en >

0, gi(e1,e2,...,en) is the only function in V mapping 0 to 〈i, code(e1, e2, . . . , en, 0)〉.
We now define ψ.
(I) For all odd i, define ψ〈i,0〉 to be equal to fi.
(II) For all even i, define ψ〈i,0〉 as follows.
Case 1: ϕi/2(0)↑. In this case ψ〈i,0〉 is empty function.
Case 2: ϕi/2(0)↓ = 〈k, z〉, and z = 0. In this case let ψ〈i,0〉 = fk.
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Case 3: ϕi/2(0)↓ = 〈k, z〉, and z > 0 and z = code(e1, e2, . . . , en, 0), where
each ej > 0. In this case let ψ〈i,0〉 = gk(e1,e2,...,en).

Case 4: ϕi/2(0)↓ = 〈k, z〉, and z > 0 and z = code(e1, e2, . . . , en, 0), where
en > 0, and some ej = 0, j 6= n. In this case let ψ〈i,0〉 = ∅.

(III) For j ≥ 1, let ψ〈i,j〉 be defined as follows.
Case 1: ψ〈i,j−1〉(0)↑. In this case ψ〈i,j〉 is empty function.
Case 2: ψ〈i,j−1〉(0)↓ = 〈k, z〉, and z = 0. In this case let ψ〈i,j〉 = gk(e1),

where e1 = 〈i, j〉.
Case 3: ψ〈i,j−1〉(0)↓ = 〈k, z〉, and z > 0 and z = code(e1, e2, . . . , en, 0),

where each ej > 0. In this case let ψ〈i,j〉 = gk(e1,e2,...,en,en+1), where en+1 = 〈i, j〉.

Note that (by induction on j) the case of ψ〈i,j−1〉(0)↓ = 〈k, z〉, and z > 0
and z = code(e1, e2, . . . , en, 0), where en > 0, and some ej = 0, j 6= n cannot
happen.

It is easy to verify that Pψ ⊆ V . (II) above ensures that (using property
(B) above), if ϕi ∈ V , then ψ〈2i,0〉 = ϕi. (III) above ensures that effective
KRT holds, since for all i, j, x, ψ〈i,j+1〉(x) = ψ〈i,j〉(〈〈i, j+1〉, x〉) (see property
(A) of gi(e1,...,en) mentioned above).

We now claim that s-m-n-Theorem does not hold for ψ. This is so, since
λx.fi(〈0, x〉) does not belong to V ; cf. the properties of code(·).

(b) Suppose U ⊆ P and ψ is U -complete numbering which satisfies s-m-
n-Theorem. Suppose s ∈ R is such that, for all i, j, x, ψs(i,j)(x) = ψi(〈j, x〉).
Define a function u for all i, j as follows.

u(〈i, j〉) =

{

s(i, ϕj(〈i, j〉)), if ϕj(〈i, j〉)↓;
↑, otherwise.

Let ⊥ be the least element of U . Since ψ is U -complete, there exists r ∈ R,
such that, for all i, j,

ψr(〈i,j〉) =

{

ψu(〈i,j〉), if u(〈i, j〉)↓;
⊥, otherwise.

Suppose r = ϕj for some suitable j. Then, for all i, ϕj(〈i, j〉)↓. Thus, for
all i, x, ψϕj(〈i,j〉)(x) = ψr(〈i,j〉)(x) = ψs(i,ϕj(〈i,j〉))(x) = ψi(〈ϕj(〈i, j〉), x〉). Thus,
λi.ϕj(〈i, j〉) witnesses effective KRT for ψ.

The next result will show that the assumption “ψ U -complete” cannot
be dropped from Theorem 22(b).

Theorem 23 There exists U ⊆ P with least element and a numbering ψ for
U that satisfies effective s-m-n-Theorem, but not KRT.
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Proof. Let f(x) = x. Let d be a computable isomorphism from non-empty
finite sequences over N to {2, 3, 4, . . .}, such that, for all e, d((e)) 6= e. Clearly,
there exists such a mapping.

Define ψ as follows.
ψ0 = ∅. ψ1 = f . ψd((e1,e2,...,ek))(x) = f(〈e1, 〈e2, . . . , 〈ek, x〉〉〉).
It is easy to verify that ψd((e1,e2,...,ek,ek+1))(x) = ψd((e1,e2,...,ek))(〈ek+1, x〉)

holds for k ≥ 1. Moreover, ψd((e))(x) = ψ1(〈e, x〉), and ψ0(x) = ψ0(〈e, x〉),
for all e.

Let

s(m,n) =







0, if m = 0;
d((n)), if m = 1;
d((e1, e2, . . . , ek, n)), if 1 < m = d(e1, . . . , ek);

It is easy to verify that s(m,n) witnesses the s-m-n-Theorem for ψ. ψ

does not satisfy KRT, since for all e, ψe 6= λx.f(〈e, x〉) (note that d((n)) 6=
n).

The following theorem proves that composition and KRT are independent
in complete numberings.

Theorem 24 There exist U, V ⊆ P such that

(a) there exists a U -acceptable numbering with effective composition,

(b) there exists no U -complete numbering satisfying (even non-effective)
KRT;

(c) there exists a V -acceptable numbering satisfying KRT,

(d) there exists no V -complete numbering with (even non-effective) compo-
sition.

Proof. Let U = {∅, id}. As in the proof of Theorem 16, every U -complete
numbering has composition. Furthermore, the proof of Theorem 18 shows,
that no U -complete numberings satisfies KRT; yielding (a) and (b).

Parts (c) and (d) follow immediately from Theorems 17 and 22(b).

In [11] the following criterion for recursively enumerable index sets in
acceptable numberings is proved; originally due to [14].

Recall that F0, F1, . . . denotes the canonical indexing of finite functions.
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Theorem 25 ([11]) Suppose U ⊆ P and ψ is an acceptable numbering.
Then, IψU is recursively enumerable if and only if there exists an recursively
enumerable set A such that

I
ψ
U = {x | (∃y ∈ A)[Fy ⊆ ψx]}.

This nice property does not hold for U -acceptable numberings. Hence, it
can not hold for complete numberings either.

Theorem 26 There exists U ⊆ P, a U -acceptable numbering ψ and a set
V ⊆ U such that

(a) IψV is recursively enumerable, and

(b) for all numberings η such that IψV = {i | (∃j)[ηj ⊆ ψi]}, there exists k
such that ηk has infinite domain.

This result is quite surprising. If IψV is recursively enumerable, this means
that for every i such that i is enumerated in IψV , only a finite part of ψi may
have been computed before enumerating i, and this finite part was sufficient
to recognize ψi as a member of V . However, part (b) indicates that this
finite part must depend on index i, and not just the function computed by
ψi, despite the fact that IψV itself depends only on the functions computed
by the indices.

Proof. Let η0, η1, . . . denote an recursively enumerable sequence of all the
numberings. We will define a numbering ψ below. Let U = {ψk | k ∈ N},
and V = {ψ〈i+1,0〉 | i ∈ N}. Let, Ii = {j | ψj = ψ〈i+1,0〉}. Thus, IψV =

⋃

i≥0 Ii
is the index set for V .

If ϕk(0)↑, then ψ〈0,k〉 is defined to be the empty function. In the following
construction we will define, effectively in i,

(I) ψ〈i+1,j〉, j ∈ N,
(II) ψ〈0,j〉, such that ϕj(0) = i, and
(III) Ii.
Note that the above covers the definition of all ψk.
The construction will satisfy the following properties for each i.
(A) Ii = {j | ψj = ψ〈i+1,0〉}, is recursively enumerable (where an index

for enumerating Ii can be found effectively in i).
(B) If ϕk(0) = i and ϕk ∈ U , then ψ〈0,k〉 = ϕk.

31



(C) If there exists a k such that ηik is finite and range(ηik) ⊆ {i}, then,
for some j ′, k′, ηij′ ⊆ ψ〈i+1,k′〉, but ψ〈i+1,k′〉 6∈ V .

(D) For all j, range(ψ〈i+1,j〉) ⊆ {i}. For all j, such that ϕj(0) = i,
range(ψ〈0,j〉) ⊆ {i}. Moreover, either ψ〈i+1,j〉 = ∅ or ψ〈i+1,j〉(0) = i. Similarly,
for j such that ϕj(0) = i, either ψ〈0,j〉 = ∅ or ψ〈0,j〉(0) = i.

Note that the above properties will prove the theorem: (B) along with
the fact that, if ϕk(0)↑ and ϕk ∈ U , then ϕk = ψ〈0,k〉 = ∅, shows that ψ is

acceptable for U ; (A) shows that IψV is recursively enumerable; (C) and ( D)
show that part (b) of the theorem holds. Property (D) is mainly used for
ease of understanding and avoiding interference between the construction for
different i.

We now proceed with the construction, for a given i, of (I) ψ〈i+1,j〉, j ∈ N,
(II) ψ〈0,j〉, such that ϕj(0) = i, and (III) Ii.

Let a0
i , a

1
i , . . . be recursive sequence of numbers satisfying the following: if

there exists a j such that range(ηij) ⊆ {i} and domain(ηij) is finite, then, for
one such j, lims→∞ asi↓ ≥ max(domain(ηij)). On the other hand, if there does
not exists a j such that range(ηij) ⊆ {i} and ηij is finite, then lims→∞ asi↑.
Note that such a recursive sequence can easily be constructed (effectively
from i). We further assume without loss of generality that asi ≥ 2, for all i, s.

Initially, let ψ〈i+1,0〉(0) = i. Let t0i = 0, and Q0
i = ∅. Intuitively, tsi denotes

the maximum j such that 〈i + 1, j〉 has been used for diagonalization up to
(start of) stage s in the construction. Qs

i denotes the set of programs j,
such that it has been detected up to (start of) stage s that ϕj(0) = i. Let ψsk
denote ψk defined before the start of stage s. Initially 〈i+1, 0〉 is enumerated
in Ii.

Definition of Ii; ψ〈i+1,j〉, j ∈ N; and ψ〈0,k〉, such that ϕk(0) = i.

Go to stage 0.

Stage s

1. Let m = max({asi} ∪ domain(ψs〈i+1,0〉)).

Let r = card(Qs
i ).

2. For j ≤ tsi , and x ≤ m+ r + 2, let ψ〈i+1,j〉(x) = i.

For j ∈ Qs
i , and x ≤ m+ r + 2, let ψ〈0,j〉(x) = i.

3. For j, such that 0 < j ≤ r + 2, and x ≤ m, let ψ〈i+1,tsi +j〉
(x) = i.

For j, such that 0 < j ≤ r + 2, let ψ〈i+1,ts
i
+j〉(m+ j) = i.
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(* Note that ψ〈i+1,0〉 has all of X = {x | m < x ≤ m + r + 2} in its
domain. However, for 0 < j ≤ r + 2, ψ〈i+1,tsi +j〉

has m + j but not
X \ {m+ j} in its domain so far. *)

4. Dovetail steps 5, 6 and 7, until step 5 succeeds. If and when step 5
succeeds, go to step 8.

5. Search for s′ > s, such that asi 6= as
′

i .

6. For z = 0 to ∞ do

For k ∈ Qs
i , if {x | m < x ≤ m + r + 2 ∧ Φk(x) ≤ z} = {m + j},

where 0 < j ≤ r + 2, then,
for w ≤ m + r + 2, let ψ〈i+1,tsi +j〉

(w) = i and enumerate
〈i+ 1, tsi + j〉 in Ii.

(Note that ψ〈i+1,tsi +j〉
is made equal to ψ〈i+1,0〉 in this case).

End For

(* The above step makes those ψ〈i+1,tsi +j〉
to be equal to ψ〈i+1,0〉, which

seem to be equal to some ϕk, k ∈ Qs
i . This is needed to make sure

that the reduction from ϕk → ψ〈0,k〉 works. *)

7. For z = 0 to ∞

For k ≤ z, such that k 6∈ Qs
i , Φk(0) ≤ z, and ϕk(0)↓ = i:

(a) If card(domain(ϕk) ∩ {x | m < x ≤ m + r + 2}) ≥ 2,
then enumerate 〈0, k〉 in Ii, and for x ≤ m + r + 2, let
ψ〈0,k〉(x) = i.

(b) If domain(ϕk,z) ∩ {x | m < x ≤ m+ r + 2} = {m+ j},
then for x ≤ m + r + 2, such that ψ〈i+1,tsi +j〉

(x) is de-
fined up to now, let ψ〈0,k〉(x) = i; additionally enumerate
〈0, k〉 ∈ Ii, if 〈i+ 1, tsi + j〉 has been enumerated in Ii.

End For

(* The above step is essentially doing the reduction ϕk → ψ〈0,k〉, for k
such that ϕk(0) = i, but k 6∈ Qs

i . *)

8. LetQs+1
i denote all the k’s such that k ∈ Qs

i or [Φk(0) ≤ s and ϕk(0)↓ = i]
or ϕk(0)↓ = i has been discovered in step 7 in this stage.

Let ts+1
i = tsi + r + 2.

Enumerate 〈i+ 1, j〉 such that j ≤ ts+1
i in Ii.

Enumerate 〈0, j〉 such that j ∈ Qs+1
i in Ii.

Go to stage s+ 1.

End Stage s
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Any ψ〈i+1,w〉 not defined by above procedure is empty. Note that (D) is
trivially satisfied by construction. We now show that (A), (B) and (C) hold
for each i. Fix an i. Let Qi = {j | ϕj(0) = i}. Consider the following cases
in the construction (for the fixed i).

Case 1: There exist infinitely many stages in the construction.
In this case, for all j, ψ〈i+1,j〉 is the constant i function. Also, for all

j ∈ Qi, ψ〈0,j〉 is also the constant i function. Thus, (B) is satisfied. Note that
Ii = {〈0, j〉 | j ∈ Qi} ∪ {〈i + 1, j〉 | j ∈ N} (step 8). Thus, (A) is satisfied.
Also, lims→∞ asi diverges. Thus, for all j, either range(ηij) 6⊆ {i} or ηij has
infinite domain. Thus (C) is satisfied.

Case 2: Stage s starts but does not finish.
In this case, for all s′ ≥ s, asi = as

′

i , and thus there exists a j such that
ηij ⊆ {(x, i) | x ≤ asi}. Let m, r, tsi , Q

s
i be as in stage s. Note that,

(i) for j ∈ Qs
i , ψ〈0,j〉 = ψ〈i+1,0〉 = {(x, i) | x ≤ m+ r + 2};

(ii) for j ≤ tsi , ψ〈i+1,j〉 = ψ〈i+1,0〉 = {(x, i) | x ≤ m+ r + 2};
(iii) for j > tsi + r + 2, ψ〈i+1,j〉 = ∅;
(iv) for 0 < j ≤ r + 2, either ψ〈i+1,tsi +j〉

= ψ〈i+1,0〉 holds, or it holds that
domain(ψ〈i+1,tsi +j〉

) = {x | x ≤ m} ∪ {m+ j};
(v) For k ∈ Qs

i , if domain(ϕk) ∩ {m + x | 0 < x ≤ r + 2} = {m + j},
then ψ〈i+1,ts

i
+j〉 = ψ〈i+1,0〉, and ψ〈i+1,0〉 is the only function in U with range

{i}, and containing m+ j in the domain;
(vi) For k ∈ Qi \Q

s
i , if domain(ϕk)∩ {m+ x | 0 < x ≤ r+ 2} = {m+ j},

then ψ〈i+1,tsi +j〉
= ψ〈0,k〉, moreover, ψ〈i+1,tsi +j〉

is the only function (if any)
in U which contains {(0, i)} and is defined on m + j but not on m + j ′,
0 < j ′ ≤ r + 2, j ′ 6= j;

(vii) For k ∈ Qi \Q
s
i , if card(domain(ϕk)∩ {m+ x | 0 < x ≤ r+ 2}) ≥ 2,

then ψ〈i+1,0〉 = ψ〈0,k〉, moreover, ψ〈i+1,0〉 is the only function (if any) in U

which contains {(0, i)} and is defined on at least two inputs of the form,
m+ j′, 0 < j ′ ≤ r + 2.

From the above it immediately follows that (B) holds. (A) can also be
seen to hold, since any time ψk contains at least two of {m+j | 0 < j ≤ r+2},
in its domain, k is enumerated in Ii (note that ψ〈i+1,0〉 is the only function
in U which contains at least two of {m + j | 0 < j ≤ r + 2} in its domain).
To see (C), first note that at least one of ψ〈i+1,tsi +j〉

, 0 < j ≤ r + 2, is not
equal to ψ〈i+1,0〉 (since cardinality of Qs

i is r, and thus at most r of ψ〈i+1,tsi +j〉
,

0 < j ≤ r + 2, can be made equal to ψ〈i+1,0〉 due to step 6). However,
{(x, i) | x ≤ asi} is contained in all ψ〈i+1,ts

i
+j〉, 0 < j ≤ r + 2. Thus (C) is

satisfied. This proves the theorem.
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The next two results could be interpreted as a warning: one has to be
rather careful in carrying over properties from acceptable numberings to U -
complete numberings.

Theorem 27

(a) For any acceptable numbering ψ and any f ∈ P, Iψf is not recursively
enumerable.

(b) There exists U ⊆ P, card(U) > 1, such that U has a U -acceptable
numbering, and there exists an f ∈ U such that, for any U -complete
numbering ψ, Iψf is recursively enumerable.

Proof. (a) See, for example, [7].
(b) Let g be the everywhere 0 function. Let U = {∅, g}. U has a U -

acceptable numbering by Proposition 1. Moreover, {i | ψi = g} is obviously
recursively enumerable for every U -complete numbering ψ.

For any acceptable numbering ψ, the general halting problem – the set
{(x, y) | ψx(y)↓} – and the special halting problem – the set {x | ψx(x)↓} –
are essentially the same. This no longer holds for U -complete numberings.

Theorem 28

(a) If U ⊆ P, card(U) > 1 and ψ is U -complete, then Kψ = {(x, y) |
ψx(y)↓} is not recursive.

(b) There exists U ⊆ P, card(U) > 1, having a U -complete numbering ψ
such that {x | ψx(x)↓} is recursive.

Proof. (a) Choose U and ψ as in the hypotheses. Suppose by way of
contradiction, that Kψ is recursive. Suppose ⊥ is the least element of U and
let ψj ∈ U be such that ⊥ 6= ψj (note that card(U) > 1). Let A be any
recursively enumerable but not recursive set. For all i, define

u(i) =

{

j, if i ∈ A;
↑, otherwise.

Clearly, u is partial recursive. Since ψ is U -complete, there exists r ∈ R such
that, for all i,

ψr(i) =

{

ψj, if i ∈ A;
⊥, otherwise.
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Let n be such that ψj(n)↓ but ⊥(n)↑ (note that there exists such an n since
⊥ ⊂ ψj). Now, define

g(i) =

{

1, if ψr(i)(n)↓;
0, otherwise.

So, g(i) = 1 if and only if ψr(i)(n)↓ if and only if i ∈ A. Thus g is a
characteristic function of A. Since Kψ is recursive by assumption, g is a
recursive function. But then A is recursive, a contradiction.

(b) Let f be such that f(0) = 1, and f(x)↑ for x > 0. Let U = {∅, f}.
Let η be a U -complete numbering (clearly, there exists such a U -complete
numbering). Let ψ0 = ∅, and ψi+1 = ηi. Thus, ψ is U -complete. However,
for all x, ψx(x)↑, and thus {x | ψx(x)↓} = ∅ is recursive.
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