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Abstract

A generator program for a computable function (by definition) generates an infinite sequence of

programs all but finitely many of which compute that function. Machine learning of generator programs

for computable functions is studied. To partially motivate these studies, it is shown that, in some cases,

interesting global properties for computable functions can be proved from suitable generator programs

which can not be proved from any ordinary programs for them. The power (for variants of various

learning criteria from the literature) of learning generator programs is compared with the power of

learning ordinary programs. The learning power in these cases is also compared to that of learning

limiting programs, i.e., programs allowed finitely many mind changes about their correct outputs.

1 Preliminaries

1.1 Notation

Any unexplained recursion theoretic notation is from [Rog67]. N denotes the set of natural numbers,

{0, 1, 2, 3, . . .}. Unless otherwise specified, b, e, i, j, k, l, m, n, p, r, s, t, w, x, y, z, with or without decorations1,
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range over N . ∗ denotes a non-member of N and is assumed to satisfy (∀n)[n < ∗ < ∞]. a with or without

decorations, ranges over N ∪ {∗}. ∅ denotes the empty set. ⊆ denotes subset. ⊂ denotes proper subset.

For S, a subset of N , card(S) denotes the cardinality of S. ↑ denotes undefined. max(·), min(·) denote the

maximum and minimum of a set, respectively, where max(∅) = 0 and min(∅) =↑.

η and θ range over partial functions with arguments and values from N . η(x)↓ denotes that η(x) is

defined; η(x)↑ denotes that η(x) is undefined.

f, g, h, L, q with or without decorations range over total functions with arguments and values from N .

For n ∈ N and partial functions η and θ, η =n θ means that card({x | η(x) 6= θ(x)}) ≤ n; η =∗ θ means

that card({x | η(x) 6= θ(x)}) is finite. domain(η) and range(η) denote the domain and range of the function

η, respectively.

We say that η is monotone
def
⇔ (∀x, y | x < y)[η(x)↓ < η(y)↓]. Thus η is monotone iff η is a strictly

increasing total function.

〈i, j〉 stands for an arbitrary, computable, one-to-one encoding of all pairs of natural numbers onto N

[Rog67]. Similarly we can define 〈·, . . . , ·〉 for encoding multiple natural numbers onto N .

ϕ denotes a fixed acceptable programming system for the partial computable functions: N → N [Rog58,

Rog67, MY78]. ϕi denotes the partial computable function computed by program i in the ϕ-system. Φ

denotes an arbitrary Blum complexity measure [Blu67, HU79] for the ϕ-system. K denotes {p | ϕp(p)↓}. K

is a standard r.e. set with K, the complement of K, being constructively non-r.e. [Rog67].

The set of all total computable functions of one variable is denoted by R. C, with or without decorations,

ranges over subsets of R. For computable f , MinProg(f) denotes min({i | ϕi = f}).

We sometimes consider partial computable functions with multiple arguments in the ϕ system. In such

cases we implicitly assume that a 〈·, . . . , ·〉 is used to code the arguments, so, for example, ϕi(x, y) stands

for ϕi(〈x, y〉).

The quantifier ‘
∞

∀ ’ essentially from [Blu67], means ‘for all but finitely many’. ‘∃!’ means ‘there exists an

unique’.

1.2 Fundamental Function Inference Paradigms

A Learning Machine (LM) [Gol67] is an algorithmic device which takes as its input a set of data given one

element at a time, and which from time to time, as it is receiving its input, outputs programs. LMs have

2



been used in the study of machine learning or inductive inference of programs for computable functions as

well as algorithmic learning of grammars for languages [BB75, CS83, Che81, Ful85, Gol67, OSW86, Wie78,

AS83, KW80, Cas86].2

M, with or without decorations, ranges over the class of LMs. For the learning of a computable function

f by an LM, M, the graph of f is fed to M in any order. Without loss of generality [BB75, CS83], we will

assume that M is fed the graph of f in the sequence (0, f(0)), (1, f(1)), (2, f(2)), . . .. For all computable

functions f , f [n] denotes the finite initial segment ((0, f(0)), (1, f(1)), . . . , (n − 1, f(n − 1))). Let INIT =

{f [n] | f ∈ R∧ n ∈ N}. σ, with or without decorations, ranges over INIT. M(σ) is the last output of M by

the time it receives all of σ. For the learning criteria discussed in this paper, we can and will assume, without

loss of generality, that M(σ) is always defined. We say that M(f) converges to i (written: M(f)↓ = i) iff

(
∞

∀ n)[M(f [n]) = i]; M(f) is undefined if no such i exists.

Recall, that according to our convention a ∈ N ∪ {∗}.

Definition 1 [Gol67, BB75, CS83]

(a) M Exa-identifies a computable function f (written: f ∈ Exa(M)) iff both M(f)↓ and ϕM(f) =a f .

(b) Exa = {C ⊆ R | (∃M)[C ⊆ Exa(M)]}.

Case and Smith [CS83] introduced another infinite hierarchy of learning criteria which we describe below.

“Bc” stands for behaviorally correct. Barzdin [Bar74] essentially introduced the notion Bc0.

Definition 2 [CS83]

(a) M Bca-identifies a computable function f (written: f ∈ Bca(M)) iff (
∞

∀ n)[ϕM(f [n]) =a f ].

(b) Bca = {C ⊆ R | (∃M)[C ⊆ Bca(M)]}.

We usually write Ex for Ex0 and Bc for Bc0. Theorem 3 just below states some of the basic hierarchy

results about the Exa and Bca classes.

Theorem 3 For all n,

(a) Exn ⊂ Exn+1,

2We have not yet investigated language learning analogs of our results.

3



(b)
⋃

n∈N Exn ⊂ Ex∗,

(c) Ex∗ ⊂ Bc,

(d) Bcn ⊂ Bcn+1,

(e)
⋃

n∈N Bcn ⊂ Bc∗, and

(f) R ∈ Bc∗.

Parts (a), (b), (d), and (e) are due to Case and Smith [CS83]. John Steel first observed that Ex∗ ⊆ Bc

and the diagonalization in part (c) is due to Harrington and Case [CS83]. Part (f) is due to Harrington

[CS83]. Blum and Blum [BB75] first showed that Ex ⊂ Ex∗. Barzdin [Bar74] first showed that Ex ⊂ Bc.

2 Higher Order Programs

2.1 Definition and Motivation of Higher Order Programs

We consider two kinds of higher order programs: limiting programs (from [CJS92]) and generator programs

(introduced in the present paper).

First we discuss limiting programs.

For each i, consider the following corresponding procedure for “computing” a (partial) function ϕ?
i .

On input x

for t = 0 to ∞

Start a new clone of ϕ-program i running on input (x, t)

endfor

It is to be understood that

(a) each iterate of the for-loop finishes since it merely starts a process running and

(b) in some iterates of the for-loop the process started may itself never converge.

ϕ?
i (x)

def
= the unique y (if any) eventually output by all but finitely many of the clones of ϕ-program i in

the for-loop above. Equivalently, ϕ?
i (x)

def
= limt→∞ ϕi(x, t).
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We shall refer to i as Lim-program i (in the ϕ?-system) when we are thinking of i as encoding the

for-loop above rather than as encoding ϕ-program i.

Intuitively, Lim-program i (in the ϕ?-system) is a procedure, which on an input for which it has an

output, is allowed to change its mind finitely many times about that output (or even about whether to

output at all). N.B. there may be no algorithm for signaling when a Lim-program has stopped changing its

mind about its output.

The partial functions which are the limit of some total computable function are well known to be

characterized as exactly the partial functions computable relative to an oracle for the halting problem

[Sho59, Put65, Gol65, Sho71, Soa87].3 This result and its relativizations were first noticed and used by Post

[Sha71] and have been employed (sometimes with rediscovery) many times. [LMF76] studied acceptable

programming systems for partial functions computable relative to oracles. Many of the results of this paper

about Lim-programs would hold also for programs in acceptable oracular programming systems with oracle

for the halting problem attached, but we will present our Lim-program results directly about systems such

as ϕ?.

In the present paper, as in [CJS92], we shall be especially interested in Lim-programs (from the ϕ?
i sys-

tem) which happen to compute partial computable functions. The learning of Lim-programs for computable

functions is compared to the learning of ordinary ϕ-programs in [CJS92].

The reader might think that Lim-programs for computable functions f are not particularly useful, but

with such programs one can discover values for f eventually. However, one may not know when one has

found those values, and it is easy to argue that “eventually” is too long to wait.

Actually, Lim-programs can be quite useful.

In physics it is sometimes easier to infer a global property of a phenomenon than it is to make more

detailed predictions about observations; for example, Kepler’s Law that the planets orbit in ellipses is easier

to derive than equations of motion of planets. In Section 2.2 we state a result, Theorem 5, extending a result

from [CJS92], that it is, in some cases, possible to prove global properties of a computable function from a

suitable Lim-program for it when it is not possible to prove these properties from any of the ordinary (ϕ)

programs for it.

Next we discuss generator programs.

3The class of partial functions which are the limit of some partial computable function, i.e., {ϕ?
i
| i ∈ N}, is a larger class

than the class of partial functions computable in the halting problem.
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Informally, a ϕ-program p is a 0-generator program for f just in case ϕp is total and all but finitely many

of the programs ϕp(0), ϕp(1), ϕp(2), . . . compute f .4

Definition 4 We say that ϕ-program p is an a-generator for f iff

(a) ϕp ∈ R and

(b) (
∞

∀ x)[ϕϕp(x) =a f ].

Our remarks above about the possible usefulness of Lim-programs can be applied mutatis mutandis to

a-generators. An a-program for f is a program p such that ϕp =a f . In the next section (Section 2.2) we

present results to the effect that, for a = 0, 1, respectively, it is, in some cases, possible to prove global

properties of a computable function from a suitable a-generator program for it when it is not possible to

prove these properties from any of the ordinary b-programs for it, for b = 0, ∗, respectively. We also present

such a result comparing Lim-programs with 0-generator programs.

2.2 Further Motivation

We next provide the preliminaries for obtaining the provability results as advertised above in the previous

section (Section 2.1).

We present our results for extensions of first order arithmetic. Regarding expressing propositions in first

order arithmetic, we shall proceed informally. If E is an expression such as ‘Φi ≤ t’, or ‘ϕi is monotone’, we

shall write � E � to denote a naturally corresponding, fixed standard wff of first order arithmetic [Men86]

which (semantically) expresses E. We need and assume that

if E
′ is obtained from E by changing some numerical values, then � E

′ � can be algorithmically

obtained from those changed numerical values and � E �.

It is understood that, if E contains references to partial functions, such as ϕ and Φ, then in � E � these

are, in effect, named by standard programs for them. It is well known that wffs extensionally equivalent

(with respect to standard models) may not be intensionally or provably equivalent [Fef60]. In what follows,

when we use the � E � notation, it will always be for propositions that are easily seen to be (semantically)

expressible in first order arithmetic.5 ‘`’ denotes the provability relation.

4It is without loss of generality for our learning criteria introduced in Section 3 below that we require ϕp be total.

5This informal discussion of provability and expressibility is based on Section 4.3 of [RC92].
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The following theorem extends slightly a theorem from [CJS92] and motivates the usefulness of Lim-

programs over ordinary ϕ-programs. The furthermore clause is new. Grigori Schwarz suggested to us the

problem of whether it could be added.

Theorem 5 Suppose T is an axiomatizable (i.e., r.e. [Cra53]) first order theory which extends Peano Arith-

metic [Men86] and in which one can not prove anything false about monotonicity of (partial) computable

functions computed by programs in ϕ. Then there exist f ∈ R and e such that ϕ?
e = f and f is monotone,

yet

(a) (∀i | ϕi = f)[T 6 `� ϕi is monotone �] and

(b) [T `� ϕ?
e is monotone �].

Furthermore, [T `� ϕ?
e is computable �].

The proof of Theorem 5 can be obtained by a simple modification of its predecessor in [CJS92]. The

proof of Theorem 11 below can be similarly obtained. We omit the details for both. An anonymous referee

nicely pointed out that, if we replace the global property of ‘monotone’ in Theorems 5 and 11 by ‘total’ and

note that (i) there is an r.e. set of Lim-programs for R and (ii) there is neither an r.e. set of (ordinary)

programs nor an r.e. set of 0-generators for R, then these modified theorems involve the well studied provably

recursive functions [Kre51, Kre58, Fis65, Rog57, Ros84] and quite easily follow. We originally chose to work

with monotonicity, rather than totality, since it is about the global shape of a curve and, hence, a better

analog of the elliptical shape of orbits.

Next we present the advertised two theorems (Theorem 6 and 10) motivating the usefulness of generator

programs over ordinary programs. The range containment property featured in Theorem 6 is a somewhat

technical global property for computable functions. Theorem 10 deals with a variant of the monotonicity

property of functions, and this property is clearly an interesting global property.

Theorem 6 Suppose T is an axiomatizable (i.e., r.e.) first order theory which extends Peano Arithmetic

and in which one can not prove anything false about the containment of ranges of (partial) computable

functions (computed by programs in ϕ) in K. Then there exist f ∈ R and p0 such that ϕp0
is total, p0 is a

0-generator for f , and range(f) ⊆ K, yet

(a) (∀i | ϕi = f)[T 6 `� range(ϕi) ⊆ K �] and
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(b) T `� (
∞

∀ t)[range(ϕϕp0
(t)) ⊆ K] �.

Furthermore, T `� [(
∞

∀ t)[ϕϕp0
(t) ∈ R] ∧ (

∞

∀ t)[ϕϕp0
(t) = ϕϕp0

(t+1)]] �.

Proof. Suppose the hypotheses. Fix an automatic theorem prover for T. In what follows, any reference

to proving something in T within so many steps refers to steps in the execution of this automatic theorem

prover.

Note that, since K is not r.e., {x | x ∈ K ∧ (∀i | x ∈ range(ϕi))[T 6 `� range(ϕi) ⊆ K �]} is not empty;

hence, z0
def
= min({x | x ∈ K ∧ (∀i | x ∈ range(ϕi))[T 6 `� range(ϕi) ⊆ K �]}) is in K.

Let z1 be such that T `� z1 ∈ K �.

For each t, let St = {ϕj(y) | j ≤ t ∧ y ≤ t ∧ Φj(y) ≤ t and T `� range(ϕj) ⊆ K � in ≤ t steps } and

let Tt = {x ≤ t | Φx(x) ≤ t}. Note that, for all t, St ⊆ K and Tt ⊆ K. Moreover, canonical indices [Rog67]

for the finite sets St and Tt can be found algorithmically from t.

Let h, computable, be such that for all x, y, ϕh(x)(y) = x (by Kleene’s s-m-n theorem [Rog67] such an h

exists).

Let p0 be such that,

ϕp0
(t) =

{

h(min(St ∪ Tt)), if St ∩ Tt = ∅ ;

h(z1), otherwise.

A simple analysis shows that z0 = limt→∞[min(St ∪ Tt)]. Let f = λx.z0. Note that (
∞

∀ t)[ϕϕp0
(t) = f ].

Clearly, (∀i | ϕi = f)[T 6 `� range(ϕi) ⊆ K �] (by the definition of z0). Since, in Peano Arithmetic,

it can be proved that � [(∀t)[St ∩ Tt = ∅] ⇒ [limt→∞(St ∪ Tt) 6= ∅]] � and also that � [(∃t)[St ∩ Tt 6=

∅] ⇒ (
∞

∀ t)[St ∩ Tt 6= ∅]] �, it is easy to show in Peano Arithmetic that � [(
∞

∀ t)[range(ϕϕp0
(t)) ⊆ K]] �.

Furthermore, it can be shown in Peano Arithmetic that [(∀t)[ϕϕp0
(t) ∈ R] ∧ (

∞

∀ t)[ϕϕp0
(t) = ϕϕp0

(t+1)]]. 2

We will now consider the monotonicity result for the 1-generator programs. First we present a few

definitions.

Definition 7 Let a ∈ N ∪ {∗}. We say that p is an a-nice generator for f ∈ R, iff ϕp ∈ R, and, either

(a) (
∞

∀ n)[ϕϕp(n) = f ] or

(b) (∃!g ∈ R)[(
∞

∀ n)[ϕϕp(n) =a g]] ∧ (
∞

∀ n)[ϕϕp(n) =a f ].

Definition 8 Let a ∈ N ∪ {∗}. We say that p is a-nice gen monotone iff (∃f ∈ R | f is monotone)[p is

a-nice generator for f ].
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Definition 9 Let a ∈ N ∪ {∗}. We say that i is a-monotone iff (∃f ∈ R | f is monotone)[ϕi =a f ].

Theorem 10 Suppose T is an axiomatizable (i.e., r.e.) first order theory which extends Peano Arithmetic,

and in which one can not prove anything false of the form ‘i is ∗-monotone’. Then there exist f ∈ R and p0

such that ϕp0
is total, p0 is 1-nice generator for f , and f is monotone, yet

(a) (∀i | ϕi =∗ f)[T 6 `� i is ∗-monotone �] and

(b) [T `� p0 is 1-nice gen monotone �].

Proof. Suppose the hypotheses. Fix an automatic theorem prover for T. As in the proof of Theorem 6

above, in what follows any reference to proving something in T within so many steps refers to steps in the

execution of this automatic theorem prover.

By the operator recursion theorem [Cas74] there exists a p0, such that the (partial) functions ϕϕp0
(·) may

be described as follows. The (partial) functions ϕϕp0
(·) are described in stages.

Let ϕϕp0
(0)(0) = 0. xs denotes the least input on which ϕϕp0

(0) has not been defined before stage s. ls

denotes the least number such that, ϕϕp0
(ls) has not been defined on any input before the start of stage s.

Thus x0 = 1 and l0 = 1. Go to stage 0.

Begin stage s

1. For all x < xs, let ϕϕp0
(ls)(x) = ϕϕp0

(0)(x).

2. Let rs = ls and y = xs − 1.

3. Let P = {j ≤ s | T `� j is ∗-monotone � in ≤ s steps}.

4. repeat

4.1 rs = rs + 1; y = y + 1.

4.2 For x < y, let ϕϕp0
(rs)(x) = ϕϕp0

(ls)(x).

For x ≥ y, whenever ϕϕp0
(ls)(x) gets defined, let ϕϕp0

(rs)(x) = ϕϕp0
(ls)(x) (i.e. ϕϕp0

(rs) “follows”

ϕϕp0
(ls) from now on. Note that because of this step ϕϕp0

(rs) = ϕϕp0
(ls)).

4.3 Let ϕϕp0
(ls)(y) = ϕϕp0

(ls)(y − 1) + card(P ) + 2.

4.4 If there exists an x, xs ≤ x < y, such that (∀j ∈ P )[Φj(x) ≤ y], then let z be the least such x, and

go to step 5.

forever
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5. For x ∈ {x 6= z | xs ≤ x ≤ y}, let ϕϕp0
(0)(x) = ϕϕp0

(ls)(x).

Let ϕϕp0
(0)(z) = w, where w = min({x | ϕϕp0

(ls)(z) < x < ϕϕp0
(ls)(z + 1)} − {ϕj(z) | j ∈ P}).

(Note that w is not undefined since, ϕϕp0
(ls)(z + 1) − ϕϕp0

(ls)(z) = card(P ) + 2.)

For x > y, whenever ϕϕp0
(0)(x) gets defined, let ϕϕp0

(ls)(x) = ϕϕp0
(0)(x) (i.e. ϕϕp0

(ls) “follows” ϕϕp0
(0)

from now on).

(Note that due to step 5, ϕϕp0
(ls) =1 ϕϕp0

(0).)

6. Go to stage s + 1.

(Note that xs+1 = y + 1 and ls+1 = rs + 1).

End stage s.

Now define f as follows.

f =

{

ϕϕp0
(0), if infinitely many stages are executed;

ϕϕp0
(ls), if stage s starts but never finishes.

A simple case analysis shows that,

f is monotone, and

p0 is a 1-nice generator for f , and thus p0 is 1-nice gen monotone.

Furthermore, this proof of p0 being 1-nice gen monotone can be formalized in Peano Arithmetic.

Now, since T does not prove anything false about ∗-monotonicity of programs, all stages halt. This

implies that f = ϕϕp0
(0). Thus for all j, such that T `� j is ∗-monotone �, there exist infinitely many x

such that, ϕj(x) 6= f(x) (by the diagonalization at step 5 on input z, for each stage s). The theorem follows.

2

Next is the promised theorem (Theorem 11) comparing Lim-programs and 0-generator programs.

Theorem 11 Suppose T is an axiomatizable (i.e., r.e.) first order theory which extends Peano Arithmetic

such that, for each p, one can not prove anything false of the form ‘(
∞

∀ t)[ϕϕp(t) is monotone ]’. Then there

exist f ∈ R and e such that ϕ?
e = f and f is monotone, yet

(a) (∀p | p is a 0-generator for f)[T 6 `� (
∞

∀ t)[ϕϕp(t) is monotone ] �] and

(b) [T `� ϕ?
e is monotone �].

Furthermore, [T `� ϕ?
e is computable �].
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3 Learning Higher Order Programs

Definition 12 [CJS92]

(a) A machine M, LimExa-identifies f (written: f ∈ LimExa(M)) iff M(f)↓ = i such that [f =a ϕ?
i ].

(b) LimExa = {C ⊆ R | (∃M)[C ⊆ LimExa(M)]}.

(c) M LimBca-identifies f ∈ R iff (
∞

∀ n)[ϕ?
M(f [n]) =a f ].

(d) LimBca = {C ⊆ R | (∃M)[C ⊆ LimBca(M)]}.

We write LimEx for LimEx
0 and LimBc for LimBc

0. We do not consider LimBc
a further since from

[CJS92] R ∈ LimBc.

It is shown in [CJS92], for example, that

Theorem 13 For all a, i,

(a) Exa ⊂ LimExa,

(b) LimEx − Bci 6= ∅,

(c) Exi+1 − LimExi 6= ∅,

(d) Ex∗ −
⋃

i∈N LimExi 6= ∅, and

(e) Bc − LimEx
∗ 6= ∅.

Definition 14

(a) A machine M, GenExa-identifies f (written: f ∈ GenExa(M)) iff M(f)↓ to some a-generator for f .

(b) GenExa = {C ⊆ R | (∃M)[C ⊆ GenExa(M)]}.

(c) A machine M, GenBca-identifies f (written: f ∈ GenBca(M)) iff (
∞

∀ n)[M(f [n]) is an a-generator

for f ].

(d) GenBca = {C ⊆ R | (∃M)[C ⊆ GenBca(M)]}.

We write GenEx for GenEx0 and GenBc for GenBc0. The terminology in Definition 14 just above

should not be confused with that in [CL82].
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3.1 Results

The next theorem (Theorem 15) leaves open the questions of whether some containment relations are proper.

These questions are settled by the end of the paper.

Theorem 15 For all a,

(a) Exa ⊆ GenExa,

(b) GenExa ⊆ Bca,

(c) GenEx = Ex, and

(d) R ∈ GenBc.

Proof.

(a), (b) Easy to prove.

(c) Given M, we will construct M′ such that GenEx(M) ⊆ Ex(M′).

Let P (p, x, j, t) = [Φp(j) ≤ t ∧ Φϕp(j)(x) ≤ t]. Note that, for all p, x, j, (∃t)[P (p, x, j, t)] ⇔ (
∞

∀

t)[P (p, x, j, t)] ⇔ ϕϕp(j)(x)↓.

By the Kleene’s s-m-n theorem there exists a computable g such that

ϕg(p,j)(x) =















ϕϕp(k′)(x), if (∃k ≥ j)(∃t)[P (p, x, k, t)]∧

(∃t′)[〈k′, t′〉 = min({〈k, t〉 | k ≥ j ∧ P (p, x, k, t)})];

↑, otherwise.

Note that if p, j and f are such that

[p is a 0-generator for f ] and [(∀k ≥ j)[card({x | ϕϕp(k)(x)↓ 6= f(x)}) = 0]],

then ϕg(p,j) = f .

Let jf
n = 1 + max({j ≤ n | (∃y < n)[ For p = M(f [n]), P (p, y, j, n) ∧ ϕϕp(j)(y) 6= f(y)]}). Note that if

f ∈ GenEx(M), and p = M(f), then for all but finitely many n, jf
n = 1+max({j | (∃y)[ϕϕp(j)(y)↓ 6= f(y)]}).

Let M′(f [n]) = g(M(f [n]), jf
n).

It is easy to see, using the property of g discussed above, that GenEx(M) ⊆ Ex(M′).

(d) Let prog(f [n], t) = min({n} ∪ {i ≤ n | (∀x < n)[Φi(x) ≤ t ∧ ϕi(x) = f(x)]}).

12



It is easy to see that, for all f ∈ R,

(∀n > MinProg(f))(
∞

∀ t)[prog(f [n], t) = MinProg(f)] (1)

Let M be such that, for all f, n, M(f [n]) is a program for λt.[prog(f [n], t)].

Using (1) it immediately follows that R ∈ GenBc(M). 2

Theorem 16 below shows that it may not always be possible to tradeoff anomalies by allowing learning

machines to output higher order programs in the limit.

Theorem 16 (∀i)[Exi+1 − GenExi 6= ∅].

Proof. Let C = {f | ϕf(0) =i+1 f}. Clearly, C is in Exi+1. C 6∈ GenExi can be shown by a simple

modification of the proof that C 6∈ Exi in [CS83]. We omit the details. 2

Similarly it can be shown that,

Theorem 17 Ex∗ −
⋃

i∈N GenExi 6= ∅.

As a corollary to Theorems 16 and 17 we have

Corollary 18 (∀i)[GenExi+1 − GenExi 6= ∅].

Corollary 19 [GenEx0 ⊂ GenEx1 ⊂ · · · ⊂ GenExi ⊂ GenExi+1 ⊂ · · · ⊂ GenEx∗].

Theorem 20 Bc− GenEx∗ 6= ∅.

Proof. Let C = {f ∈ R | (
∞

∀ x ∈ N)[ϕf(x) = f ]}. It is easy to see that C ∈ Bc. C 6∈ GenEx∗ can be shown

by a simple modification of the proof that C 6∈ Ex∗ in [CS83]. We omit the details. 2

Theorem 21 (∀i)[GenExi+1 − Bci 6= ∅].

Proof.

Let C = {f ∈ R | f(0) is an (i + 1)-generator for f }.

It is easy to see that C ∈ GenExi+1. Suppose by way of contradiction that M Bci-identifies C. Then, by

the operator recursion theorem [Cas74], there exists an 1–1, computable function q such that the (partial)

functions ϕq(·) may be defined as follows.

13



Let x0
s denote the least x such that ϕq(0)(x) has not been defined before stage s. Let x1

s denote the least

x such that ϕq(1)(x) has not been defined before stage s. Let ϕq(0)(0) = q(1). Let ϕq(1)(0) = q(0). Go to

stage 2.

Begin stage s

1. For x < x1
s, let ϕq(s)(x) = ϕq(1)(x).

2. Let y0
s = x0

s, y1
s = x1

s.

repeat

2.1 Let ϕq(0)(y
0
s) = q(s).

2.2 Let ϕq(s)(y
1
s) = 0.

2.3 Let y0
s = y0

s + 1.

2.4 Let y1
s = y1

s + 1.

2.5 If (∃m, z | x1
s ≤ m ≤ z < y1

s), such that, for each x ≤ i, ΦM(ϕq(s)[m])(z+x) ≤ y1
s and ϕM(ϕq(s)[m])(z+

x) = 0, then go to step 3.

forever

3. Let z be as found in step 2.5.

3.1 For each x ∈ {w | x1
s ≤ w < y1

s ∧ w 6∈ {z + r | r ≤ i}}, let ϕq(1)(x) = 0.

3.2 For each x ∈ {z + r | r ≤ i}, let ϕq(1)(x) = 1.

4. For x ≥ y1
s , whenever ϕq(1)(x) gets defined, let ϕq(s)(x) = ϕq(1)(x) (i.e. ϕq(s) “follows” ϕq(1) from now

on).

(Note that this step ensures that ϕq(s) =i+1 ϕq(1).)

5. Go to stage s + 1.

End stage s

Now consider the following cases:

Case 1: Infinitely many stages are executed.

In this case, let f = ϕq(1). Clearly, ϕq(1) ∈ C (since ϕq(0) is an (i+1) generator for ϕq(1)). However,

because of the success of the condition in step 2.5 in each stage, and the diagonalization in step

3.2, for infinitely many m, ϕM(ϕq(1)[m]) 6=
i ϕq(1). Thus f 6∈ Bci(M).

14



Case 2: Stage s starts but never finishes.

In this case, let f = ϕq(s). Clearly, f ∈ C. Moreover, for all but finitely many m, for infinitely

many x, ϕM(f [m])(x) 6= 0 (otherwise the test at step 2.5 would succeed). Thus f 6∈ Bci(M).

From the above cases it follows that C 6∈ Bci. 2

As a corollary to Theorem 21 and Theorem 3(c) we have

Corollary 22 (∀i ≥ 1)[GenExi − Ex∗ 6= ∅].

The following theorem follows as a corollary to Theorems 13(b) and 15(b).

Theorem 23 (∀i)[LimEx − GenExi 6= ∅].

The following theorems show some tradeoff results in learning generators vis-à-vis learning Lim-programs.

Note that there is a gap between the diagonalization in Theorem 24 and simulation in Theorem 25. We

leave it as an open question to find an exact tradeoff relationship between the different GenEx and LimEx

learning criteria.

Theorem 24 (∀i ≥ 1)[GenExi − LimExb3i/2c−1 6= ∅].

The proof of this theorem is complicated and uses the operator recursion theorem [Cas74].

Proof.

Let C = {f ∈ R | f(0) is an i-generator for f }.

It is easy to see that C ∈ GenExi. Suppose by way of contradiction that M LimExb3i/2c−1-identifies C.

Then, by the operator recursion theorem [Cas74], there exists an 1–1, computable function q such that the

(partial) functions ϕq(·) may be described as follows.

By the Kleene s-m-n theorem, there exists a computable L such that for all p, x, t,

ϕL(p)(x, t) =















ϕp(x, t′), (∃t′′ ≤ t)[Φp(x, t′′) ≤ t]∧

t′ = max({t′′ ≤ t | Φp(x, t′′) ≤ t});

0, otherwise.

Note that, for all p, ϕL(p) is a total function, and ϕ?
p ⊆ ϕ?

L(p).

Let x0
s denote the least x, such that ϕq(0)(x) has not been defined before stage s. Let x1

s denote the least

x, such that ϕq(1)(x) has not been defined before stage s.

Let ϕq(0)(0) = q(1). Let ϕq(1)(0) = q(0). Go to stage 1.
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Begin stage s

1. For x < x1
s, let ϕq(2s)(x) = ϕq(2s+1)(x) = ϕq(1)(x).

For all z < i, let ϕq(2s)(x
1
s + z) = 0 and ϕq(2s+1)(x

1
s + z) = 1.

2. For b0, b1, . . . , bi−1 ∈ {0, 1} and y ∈ N , define fb0b1...bi−1,y as follows:

fb0b1...bi−1,y(x) =































ϕq(1)(x), if x < x1
s;

bx−x1
s
, if x1

s ≤ x ≤ x1
s + i − 1;

y, if x1
s + i ≤ x < x1

s + b 3i
2 c;

0, otherwise.

3. Let y0
s = x0

s and y1
s = x1

s + b 3i
2 c.

repeat

3.1 Let ϕq(2s)(y
1
s) = ϕq(2s+1)(y

1
s) = 0.

3.2 Let C1 = card({x | x1
s ≤ x < x1

s + i ∧ ϕL(M(ϕq(1)[x1
s]))(x, y1

s) = 1}).

3.3 if C1 ≥ d i
2e then

let ϕq(0)(y
0
s) = q(2s).

else

let ϕq(0)(y
0
s) = q(2s + 1).

endif

3.4 y0
s = y0

s + 1, y1
s = y1

s + 1.

3.5 If there exist b0, b1, . . . , bi−1 ∈ {0, 1} and y ≤ y1
s such that M(ϕq(1)[x

1
s]) 6= M(fb0b1...bi−1,y[y1

s ]),

then go to step 4.

forever

4. Let b0, b1, . . . , bi−1, y be as found in step 3.5.

4.1 For z < i, let ϕq(1)(x
1
s + z) = bz .

4.2 For z < b i
2c, let ϕq(2s)(x

1
s + i + z) = ϕq(2s+1)(x

1
s + i + z) = ϕq(1)(x

1
s + i + z) = y.

4.3 For z such that x1
s + b 3i

2 c ≤ z < y1
s , let ϕq(1)(x

1
s + i + z) = 0.

4.4 For x ≥ y1
s , whenever ϕq(1)(x) gets defined, let ϕq(2s)(x) = ϕq(2s+1)(x) = ϕq(1)(x) (i.e. ϕq(2s) and

ϕq(2s+1)(x) “follow” ϕq(1) from now on; also, because of step 4, ϕq(2s) =i ϕq(1) and

ϕq(2s+1) =i ϕq(1)).
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5. Go to stage s + 1.

End stage s

Now consider the following cases.

Case 1: Infinitely many stages are executed.

In this case, let f = ϕq(1). Clearly, f ∈ C (since ϕq(0) is a i generator for f). However, M(f)↑

(since, the only way infinitely many stages can be executed is the success of the condition at step

3.5 in each stage s). Thus f 6∈ LimExb3i/2c−1.

Case 2: Stage s starts but never finishes.

For all b0, b1, . . . , bi−1 ∈ {0, 1} and y ∈ N , let fb0b1...bi−1,y be as defined in step 2 of stage s. Note

that in this case, for all b0, b1, . . . , bi−1 ∈ {0, 1} and y ∈ N , M(fb0b1...bi−1,y) = M(ϕq(1)[x
1
s]).

Let Conv1 = {x | [x1
s ≤ x < x1

s + i]
∧

[ϕ?
M(ϕq(1)[x1

s])(x)↓ = 1]}.

Let Convnon1 = {x | [x1
s ≤ x < x1

s + i]
∧

[ϕ?
M(ϕq(1)[x1

s])(x)↓ 6= 1]}.

Let y be such that, for all z ∈ {z′ | x1
s + i ≤ z′ < x1

s + b 3i
2 c}, ϕ?

M(ϕq(1)[x1
s])(z) 6= y (note that

there exists such a y).

Case 2.1: card(Conv1) ≥ di/2e.

Note that in this case (
∞

∀ x)[ϕq(0)(x) = q(2s)]. For k < i, if x1
s + k ∈ Conv1, then let bk = 0;

else, let bk = 1. Note that fb0b1...bi−1,y 6=b3i/2c−1 ϕ?
M(ϕq(1)[x1

s]). Since (i− card(Conv1))+ b i
2c ≤ i,

fb0b1...bi−1,y =i ϕq(2s). Thus fb0b1...bi−1,y ∈ C − LimEx
b3i/2c−1(M).

Case 2.2: card(Convnon1) ≥ di/2e.

Note that in this case (
∞

∀ x)[ϕq(0)(x) = q(2s + 1)]. For k < i, if x1
s + k ∈ Convnon1,

then let bk = 1; else, let bk = 0. Note that fb0b1...bi−1,y 6=b3i/2c−1 ϕ?
M(ϕq(1)[x1

s]). Since (i −

card(Convnon1))+b i
2c ≤ i, fb0b1...bi−1,y =i ϕq(2s+1). Thus fb0b1...bi−1,y ∈ C−LimExb3i/2c−1(M).

Case 2.3: card(Conv1) < di/2e and card(Convnon1) < di/2e.

Let S ⊆ {x1
s + z | z < i} be a set of cardinality di/2e such that Convnon1 ⊆ S and

S ∩ Conv1 = ∅ (note that there exists such an S). Note that in this case (
∞

∀ x)[ϕq(0)(x) ∈

{q(2s), q(2s + 1)}]. For k < i, if x1
s + k ∈ S, then let bk = 1; else, let bk = 0. Note that
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fb0b1...bi−1,y 6=b3i/2c−1 ϕ?
M(ϕq(1)[x1

s]). Since card(S) + b i
2c ≤ i, fb0b1...bi−1,y =i ϕq(2s). Also, since

(i − card(S)) + b i
2c ≤ i, fb0b1...bi−1,y =i ϕq(2s+1). Thus fb0b1...bi−1,y ∈ C − LimExb3i/2c−1(M).

From the above cases it follows that C 6∈ LimExb3i/2c−1. 2

Theorem 25 (∀i)[GenExi ⊂ LimEx2i].

Proof. We show that GenExi ⊆ LimEx
2i. Proper containment will then follow using Theorem 23.

Let F be the (partial) function from triplets of natural numbers to sequences defined as follows.

F (p, r, m) = the lexicographically least sequence σ of length m + 1, if such a sequence exists, which

satisfies (2).

(∀j | r ≤ j < m)[card({x | x ≤ m ∧ Φp(j) ≤ m ∧ Φϕp(j)(x) ≤ m ∧ ϕϕp(j)(x) 6= σ(x)}) ≤ i]; (2)

F (p, r, m) =↑ if no σ of length m + 1 satisfies (2).

By the Kleene’s s-m-n theorem [Rog67] there exists a computable g such that for all p, x, r, t

ϕg(p, r)(x, t) = (F (p, r, t + x))(x). (3)

Let Err(f, n, p) = max({j + 1 | card({x < n | Φp(j) ≤ n ∧ Φϕp(j)(x) ≤ n ∧ ϕϕp(j)(x) 6= f(x)}) > i}).

Given M, define M′ as follows. M′(f [n]) = g(M(f [n]), Err(f, n,M(f [n]))).

It is easy to see that GenExi(M) ⊆ LimEx2i(M′). 2

Theorem 26 LimEx∗ ⊆ GenEx∗.

Proof. We will describe a computable function g such that, for all p, g(p) is such that

ϕg(p) is total and (∀f ∈ R)[ϕ?
p =∗ f ⇒ g(p) is a ∗ -generator for f ]. (4)

Given, M define M′(f [n]) = g(M(f [n])). It is easy to see that LimEx∗(M) ⊆ GenEx∗(M′).

Now we show how to obtain the g as claimed above.

By Kleene’s s-m-n theorem there exist computable h, prog, g such that the following three conditions hold.
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(a) For all p, x, t,

ϕh(p)(x, t) =















ϕp(x, t′), (∃t′′ ≤ t)[Φp(x, t′′) ≤ t]∧

t′ = max({t′′ ≤ t | Φp(x, t′′) ≤ t});

0, otherwise.

Note that for all p, ϕh(p) is a total function. Moreover, ϕ?
p ⊆ ϕ?

h(p).

(b) For all p, j, y,

prog(p, j, y) = min({j} ∪ {i < j | card({x ≤ j | Φi(x) > y ∨ ϕi(x) 6= ϕh(p)(x, y)}) ≤ i}). (5)

(c) For all p, j, y, [ϕg(p) is total ∧ ϕϕg(p)(j)(y) = ϕprog(p,j,y)(y)].

Suppose, p is such that for some f ∈ R, ϕ?
p =∗ f . Let finerr(p) = min({i | card({x | ϕ?

p(x)↑ ∨ ϕi(x) 6=

ϕ?
p(x)}) ≤ i}). It is easy to see that ϕfinerr(p) =∗ f . Moreover,

(∀f ∈ R)(∀p | ϕ?
p =∗ f)(

∞

∀ j)(
∞

∀ y)[prog(p, j, y) ≤ finerr(p) ∧ ϕprog(p,j,y) =∗ f ]. (6)

It follows that,

(∀f ∈ R)(∀p | ϕ?
p =∗ f)(

∞

∀ j)(
∞

∀ y)[ϕprog(p,j,y)(y) = f(y)]. (7)

It follows from (7) and the definition of g, that, g satisfies (4). 2

4 Open Problems

Note that there is a gap between the diagonalization in Theorem 24 and simulation in Theorem 25. We leave it

as an open question to find an exact tradeoff relationship between the different GenEx and LimEx learning

criteria. It is also open at present whether GenEx∗ = LimEx
∗ (note that by Theorem 26 LimEx

∗ ⊆

GenEx∗).
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