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Abstract

Intrinsic complexity is used to measure the complexity of learning areas limited by
broken-straight lines (called open semi-hulls) and intersections of such areas. Any strategy
learning such geometrical concepts can be viewed as a sequence of primitive basic strategies.
Thus, the length of such a sequence together with the complexities of the primitive strategies
used can be regarded as the complexity of learning the concepts in question. We obtained the
best possible lower and upper bounds on learning open semi-hulls, as well as matching upper
and lower bounds on the complexity of learning intersections of such areas. Surprisingly,
upper bounds in both cases turn out to be much lower than those provided by natural
learning strategies. Another surprising result is that learning intersections of open semi-
hulls turns out to be easier than learning open semi-hulls themselves.

1 Introduction

Learning geometrical concepts from examples is a popular topic in Computational Learning
Theory (see for example, [BEHW89, CM94, CA99, GGDM94, Heg94, GG94, GGS96, GS99,
DG95, Fis95, BGM98, BGGM98, GKS01]). The above listed papers mostly dealt with finite
geometric concepts. The goal of this paper is to quantify the complexity of algorithmic learning
of infinite geometrical concepts from growing finite segments. For this purpose, we will be using
the learning in the limit model.

Consider, for example, an open semi-hull representing the space consisting of all points (x, y)
with integer components x, y in the first quadrant of the plane bounded by the y-axis and the
broken line passing through some points (a0, c0), (a1, c1), . . . , (an, cn), ai, ci ∈ N, ai < ai+1, 0 ≤
i < n. The line is straight between any points (ai, ci), (ai+1, ci+1) and begins at (a0, c0) = (0, 0);
further we assume that the slope of the broken line is monotonically non-decreasing — that
is (ci+1 − ci)/(ai+1 − ai) is non-decreasing in i (we need this for learnability of the semi-hull).
For technical ease we further assume that the first line segment (0, 0), (a1, c1) is adjacent to the
x-axis, that is, c1 = 0. (See example semi-hull figure in Figure 1.) Note that each break point
in the boundary of the semi-hull defines an angle in the semi-hull. Any such open semi-hull
can be easily learned in the limit by the following strategy: given growing finite sets of points
in the open semi-hull (potentially getting all points), learn the first break point (a1, c1). Here,
under our assumption, c1 must be 0, therefore, we change our mind every time when we get in
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Figure 1: Open Semi Hull

the input a new point (a, 0) with the value a greater than all values b in the points (b, 0) seen
so far. Now, once the first break point has been learned, we can try to learn the first slope
(c2 − c1)/(a2 −a1). The more points we get in the input, the more our hypothetical border-line
may bend towards the x-axis. Since it can never cross the x-axis and since the points in the
concept to be learned have integer components, we will eventually learn the slope. Now, moving
along the border-line as more points on it become available from the input, we can learn the
second break point (a2, c2). Then we can learn the second slope (c3 − c2)/(a3 − a2), etc. Is
this strategy the best possible? Do there exist easier strategies of learning such geometrical
concepts? How do we measure the complexity of learning such concepts? As we are interested
in learning infinite objects from infinitely growing finite segments, we use inductive inference
as our learning paradigm. This paradigm suggests several ways to quantify the complexity of
learning. Among them are:

a) counting the number of mind changes [BF72, CS83, LZ93] the learner makes before
arriving at the correct hypothesis;

b) measuring the amount of so-called long-term memory the learner uses [KS95];
c) reductions between different learning problems (classes of languages) and respective de-

grees of the so-called intrinsic complexity [FKS95, JS96, JS97].
There have been other notions of the complexity of learning in the limit considered in

literature (for example see [Gol67, DS86, Wie86]).
The first two approaches, however, cannot capture the complexity of learning open semi-

hulls with different numbers of angles: the number of mind changes cannot be bounded by any
reasonable function (even for learning the very first break-point), and the long-term memory is
maximum (linear) even for one angle. Thus, we have chosen reductions as the way to measure
the (relative) complexity of geometrical concepts like open semi-hulls. An important issue
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here is which classes of languages can be used as a scale for quantifying the complexity of
open semi-hulls. One such scale, that turned out to be appropriate for our goal, had been
suggested in [JKW00, JKW99]. This scale is a hierarchy of degrees of intrinsic complexity
composed of simple natural ground degrees. Every such natural ground degree represents a
natural type of learning strategy. For example, the degree INIT represents a strategy that
tries to use a sequence of hypotheses equivalent to a sequence of monotonically growing finite
sets. Another such strategy, COINIT, tries to use a sequence of hypotheses equivalent to a
sequence of monotonically growing sets Na = {x|x ∈ N, x ≥ a}. Intuitively, capabilities of
INIT and COINIT-strategies must be different (this has been formally established in [JS96]).
For example, when a COINIT-strategy learns the language {5, 6, 7, ...}, it actually tries to find
the minimum number in this set (5 in our case). When the first number, say, 17 appears in the
input, the strategy can immediately use it as the upper bound on its conjectures: no number
greater than 17 can possibly be the desired minimum. Note also that the strategy is aware
of the absolute lower bound 0 for all its conjectures. On the other hand, an INIT -strategy
learning, say, the set {0, 1, 2, 3, 4, 5, 6, 7} tries to find the maximum number 7. While, every
next inputted number may increase the lower bound on its final conjecture, the strategy never
is aware of any upper bound on it.

It has been demonstrated in [JS96] that many important simple learning problems (in
particular, pattern languages) can be handled by strategies of these basic types. Now, the
corresponding degrees of complexity INIT and COINIT can be used to form a complex hierarchy
of degrees as follows. Imagine a three-dimensional language L. Suppose an INIT-type strategy
M1 can be used to learn its first dimension, L1. Once this dimension has been learned, a
strategy of a different (or even same) type, say, COINIT can pick the grammar learned by M1

and use this information to learn the second dimension L2. Consequently, the grammar learned
by the COINIT-strategy M2 can be used to learn the third dimension L3 by a strategy M3 of
type, say, INIT. Thus, we get a strategy of the type (INIT, COINIT, INIT), where information
learned by the learner Mi is relayed to the learner Mi+1 making it possible to learn the next
dimension. This idea can be naturally extended to any (finite) number of dimensions and to any
sequences Q = (q1, q1, ..., qk) of strategies qi ∈ {INIT, COINIT}. It has been shown in [JKW00]
that the degrees of complexity (classes of languages) corresponding to such Q-strategies form
a rich hierarchy. For example, some classes learnable by (INIT, COINIT, INIT)-type strategies
cannot be learned by any (INIT, COINIT)-strategy. In other words, such a class can be learned
by a strategy that first works as an INIT-strategy, then it changes to a COINIT-strategy to
learn another aspect of the concept, and then it changes to a INIT-strategy to learn the last
component of the concept. On the other hand, changing strategies only one time (from INIT

to COINIT) is not enough.
How can one apply the above hierarchy to quantify the complexity of learning semi-hulls?

Let us take a closer look at the strategy learning semi-hulls (described in the beginning of the
paper). The reader may have noticed that the strategy learning the first break point (as well
as any other break point) is an INIT-type strategy: it tries to find the maximum number in a
growing finite set. Now, once a break point has been found, what strategy can learn the slope?
Let us assume that the slopes come from the set N

⋃

{1/n | n ∈ N} (actually, sets of possible
slopes in our model will be equivalent to this set). Suppose the actual slope to be learned is 1/7.
Suppose also that, based on some initial portion of the input, we conjectured the slope 5. That
tells us that the actual slope cannot be greater than 5. Therefore, every following conjecture
will be a number between 5 and 1/7, getting closer and closer to 1/7, but never being aware of
any lower bound on its final guess 1/7. This strategy seems to be similar to a COINIT-strategy
discussed above. However, unlike a COINIT-strategy, it is never aware of any lower bound
on possible conjectures. One can easily see that a very similar (equivalent) strategy can learn
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sets {...− k,−(k − 1), ...0, 1, 2, 3, ...}. Based on this observation, we call such strategies HALF-
strategies (learning “halfs” of the set of integers). We also show that these strategies, while
being still quite primitive, are more powerful than COINIT-strategies (moreover, in certain
sense, they can be regarded as Cartesian products of INIT and COINIT-strategies).

Thus, to learn the first break point we use an INIT-strategy, then we use a HALF-strategy
to learn the first slope, then we change back to an INIT-strategy to learn the second break
point, then to a HALF-strategy to learn the second slope, etc. If, for example, a semi-hull
has two angles (the border line has two break points), then we use the sequence of strategies
INIT, HALF, INIT, HALF. In other words, the corresponding learning problem belongs to
the level (INIT, HALF, INIT, HALF) of the abovementioned hierarchy. Obviously, learning the
semi-hulls with two angles by an (INIT, HALF, INIT)-strategy (if possible) can be viewed as
more efficient. We will show, however, that such a strategy is not possible. Another question
is if semi-hulls with two angles are learnable by an (INIT, COINIT, INIT, COINIT) - strat-
egy. One must again agree that this strategy can be considered as a more efficient than our
(INIT, HALF, INIT, HALF)-strategy, since, as we mentioned above, COINIT-strategies gener-
ally are more primitive (less capable) than HALF-strategies. We will show that such a strategy
does exist for semi-hulls with two angles (Theorem 3; it is somewhat less intuitive than our
original (INIT, HALF, INIT, HALF)- strategy). We will also show that for example, neither
(COINIT, INIT, COINIT, INIT)- strategy nor any strategy with a number of components (from
INIT, COINIT, HALF) smaller than 4 can learn the given class, as it easily follows from Corol-
lary 6. In general, for every class of semi-hulls with fixed numbers of angles (two, or three, or
four, etc.) we establish upper and lower bounds of this type.

We submit that this approach to measuring the complexity of learning is very reasonable
for geometrical concepts of this and similar types. As we already mentioned, some more tradi-
tional measures of complexity (like the number of mind changes) are not applicable, since these
measures cannot make distinction between learning one-angle semi-hulls and, say, three-angle
ones.

We use also a similar approach to examine the power of learning semi-hulls (and other
figures) from a slightly different perspective. Namely, suppose we are given some strategy to
learn two-angle semi-hulls. How can knowledge of such a strategy help us to learn problems
like (INIT, COINIT, INIT) (viewed this time as families of languages rather than strategies)?
We can show that, being armed with such a strategy, one can learn, for example, the class of
languages (HALF, INIT) (Theorem 5). On the other hand, being able to learn two-angle semi-
hulls does not help to learn the class (INIT, INIT, INIT) (Corollary 7) or (COINIT, INIT, INIT)
(Corollary 8). It also does not help to learn any similar class with COINIT as the second
component (Corollaries 9 and 10). In this respect, (HALF, INIT) can be regarded as a lower
bound on the power of learning two-angle semi-hulls.

The paper has the following structure. Section 2 introduces notations and preliminaries. In
Section 3 we define the reductions and the degrees of complexity. In Section 4 we give formal
definition of the Q-classes and degrees. This definition extends the definition of the Q-classes
in [JKW00]: in addition to the classes INIT and COINIT, we use in vectors Q a new class
of strategies/languages, HALF, that turns out to be different from INIT and COINIT and
is useful for classifying geometrical concepts. In Section 5 we show that the Q-hierarchy can
be appropriately extended to the class of learning strategies/languages involving HALF. In
Section 6 we define the classes of the type SEMI HULL that formalize intuitive geometrical
concepts described above. In this section we also prove some useful technical propositions. In
Sections 7 and 8 we establish upper and lower bounds for the SEMI HULL degrees in terms of
the Q-hierarchy. In particular, we establish that semi-hulls with n angles can be learned by a
(INIT, COINIT, ..., INIT, COINIT)- strategy with 2n components (Theorem 3). On the other
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hand, no strategy, with alternating INITs and COINITs and a smaller number of components,
can learn such concepts (Corollary 6). We also examine how learning semi-hulls can help to
learn the Q-classes (Theorem 5). Corollaries 7, 8, 9 and 10 give examples of the Q-classes that
cannot be learned by strategies armed with a strategy capable of learning semi-hulls. These
examples show that the Q-classes found in Theorem 5 are the most complex Q-classes that
can be learned using a strategy for learning semi-hulls. Therefore, they can be regarded as the
best possible lower bounds (based on the Q-classes considered here) on the power of learning
semi-hulls.

In Section 9 we introduce the classes coSEMI HULL that consist of complements of
languages in SEMI HULL. Sections 10 and 11 establish lower and upper bounds for
coSEMI HULLs in terms of the Q-hierarchy. In particular, we show that the most efficient
strategy for learning complements of semi-hulls with n angles is (INIT, COINIT, ..., COINIT)
with n occurrences of COINIT (Theorem 10). We also give examples of the Q-classes that
can and cannot be learned by strategies having access to strategies learning coSEMI HULLs,
providing the best possible lower bounds for the learnability power of complements of semi-hulls.

Upper and lower bounds for SEMI HULLs and coSEMI HULLs come close, but do not
match (though, upper bounds are much lower than the ones suggested by intuitive strategies
learning the classes in question). In Section 12 we define the classes of open hulls formed by
intersections of languages in SEMI HULLs adjacent to x and y-axis; Figure 2 shows an example
of open hull. For the complexity of learning these classes, we have established matching upper
and lower bounds in terms of the Q-hierarchy. Namely, we show that the most efficient strategy
for learning open hulls with at most n angles on each side is (INIT, INIT, ..., INIT) with n
components INIT (Theorem 14). It turns out also (Theorem 13) that a strategy armed with a
strategy for learning open hulls can learn the class (INIT, INIT, ...INIT) with n components. (It
seems a bit counterintuitive that open hulls can be learned by strategies simpler than semi-hulls.
We will give some intuition behind the corresponding strategy in Theorem 14).

In Section 13 we define the classes of languages formed by complements of open hulls and
establish matching upper and lower bounds for the corresponding degrees of intrinsic complexity.
All the abovementioned upper bounds are much lower than the ones suggested by intuitive
learning strategies.

2 Notation and Preliminaries

Any unexplained recursion theoretic notation is from [Rog67]. The symbol N denotes the set of
natural numbers, {0, 1, 2, 3, . . .}. Z denotes the set of integers. Z− denotes the set of negative
integers. i .− j is defined as follows:

i .− j =

{

i − j, if i ≥ j;
0, otherwise.

Symbols ∅, ⊆, ⊂, ⊇, and ⊃ denote empty set, subset, proper subset, superset, and proper
superset, respectively. D0, D1, . . . , denotes a canonical recursive indexing of all the finite sets
[Rog67]. We assume that if Di ⊆ Dj then i ≤ j (the canonical indexing defined in [Rog67]
satisfies this property). Cardinality of a set S is denoted by card(S). The maximum and
minimum of a set are denoted by max(·), min(·), respectively, where max(∅) = 0 and min(∅) =
∞.

We let 〈·, ·〉 stand for an arbitrary, computable, bijective mapping from N × N onto N
[Rog67]. We assume without loss of generality that 〈·, ·〉 is monotonically increasing in both its
arguments. We define π1(〈x, y〉) = x and π2(〈x, y〉) = y. 〈·, ·〉 can be extended to n-tuples in a
natural way (including n = 1, where 〈x〉 may be taken to be x). Projection functions π1, . . . , πn
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Figure 2: Open Hull

corresponding to n-tuples can be defined similarly (where the tuple size would be clear from
context). Due to above isomorphism between Nn and N , we often identify (x1, · · · , xn) with
〈x1, · · · , xn〉. Thus we can say L1 × L2 = {〈x, y〉 | x ∈ L1, y ∈ L2}.

By ϕ we denote a fixed acceptable programming system for the partial computable functions:
N → N [Rog67, MY78]. By ϕi we denote the partial computable function computed by the
program with number i in the ϕ-system. Symbol R denotes the set of all total computable
functions. By Φ we denote an arbitrary fixed Blum complexity measure [Blu67, HU79] for the
ϕ-system. By Wi we denote domain(ϕi). Wi is, then, the r.e. set/language (⊆ N) accepted (or
equivalently, generated) by the ϕ-program i. We also say that i is a grammar for Wi. Symbol E
will denote the set of all r.e. languages. Symbol L, with or without decorations, ranges over E .
By L, we denote the complement of L, that is N − L. Symbol L, with or without decorations,
ranges over subsets of E . We denote by Wi,s the set {x < s | Φi(x) < s}.

↓ denotes defined or converges. ↑ denotes undefined or diverges.
A partial function F from N to N is said to be partial limit recursive, iff there exists a

recursive function f from N ×N to N such that for all x, F (x) = limy→∞ f(x, y). Here if F (x)
is not defined then limy→∞ f(x, y), must also be undefined. A partial limit recursive function
F is called (total) limit recursive function, if F is total.

We now present concepts from language learning theory. The next definition introduces the
notion of a sequence of data.

Definition 1 (a) A finite sequence σ is a mapping from an initial segment of N into (N ∪{#}).
The empty sequence is denoted by Λ.

(b) The content of a finite sequence σ, denoted content(σ), is the set of natural numbers in
the range of σ.

(c) The length of σ, denoted by |σ|, is the number of elements in σ. So, |Λ| = 0.
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(d) For n ≤ |σ|, the initial sequence of σ of length n is denoted by σ[n]. So, σ[0] is Λ.

Intuitively, #’s represent pauses in the presentation of data. We let σ, τ , and γ, with
or without decorations, range over finite sequences. We denote the sequence formed by the
concatenation of τ at the end of σ by σ ⋄ τ . Sometimes we abuse the notation and use σ ⋄ x
to denote the concatenation of sequence σ and the sequence of length 1 which contains the
element x. SEQ denotes the set of all finite sequences.

Definition 2 [Gol67] (a) A text T for a language L is a mapping from N into (N ∪{#}) such
that L is the set of natural numbers in the range of T .

(b) The content of a text T , denoted content(T ), is the set of natural numbers in the range
of T .

(c) T [n] denotes the finite initial sequence of T with length n.

We let T , with or without decorations, range over texts. We let T range over sets of texts.

Definition 3 [Gol67] A language learning machine is an algorithmic device which computes a
mapping from SEQ into N .

We let M, with or without decorations, range over learning machines. M(T [n]) is interpreted
as the grammar (index for an accepting program) conjectured by the learning machine M
on the initial sequence T [n]. We say that M converges on T to i, (written M(T )↓ = i) iff

(
∞
∀ n)[M(T [n]) = i].

There are several criteria for a learning machine to be successful on a language. Below we
define identification in the limit introduced by Gold [Gol67].

Definition 4 [Gol67, CS83] Suppose a ∈ N ∪ {∗}.

(a) M TxtEx-identifies a text T if and only if (∃i | Wi = content(T )) (
∞
∀ n)[M(T [n]) = i].

(b) M TxtEx-identifies an r.e. language L (written: L ∈ TxtEx(M)) if and only if M
TxtEx-identifies each text for L.

(c) M TxtEx-identifies a class L of r.e. languages (written: L ⊆ TxtEx(M)) iff M
TxtEx-identifies each L ∈ L.

(d) TxtEx = {L ⊆ E | (∃M)[L ⊆ TxtEx(M)]}.

Other criteria of success are finite identification [Gol67], behaviorally correct identification
[Fel72, OW82, CL82], and vacillatory identification [OW82, Cas99]. In the present paper, we
only discuss results about TxtEx-identification.

3 Reductions

We first present some technical machinery.
We write σ ⊆ τ if σ is an initial segment of τ , and σ ⊂ τ if σ is a proper initial segment

of τ . Likewise, we write σ ⊂ T if σ is an initial finite sequence of text T . Let finite sequences
σ0, σ1, σ2, . . . be given such that σ0 ⊆ σ1 ⊆ σ2 ⊆ · · · and limi→∞ |σi| = ∞. Then there is a
unique text T such that for all n ∈ N , σn = T [|σn|]. This text is denoted by

⋃

n σn. Let T
denote the set of all texts, that is, the set of all infinite sequences over N ∪ {#}.

We define an enumeration operator (or just operator), Θ, to be an algorithmic mapping
from SEQ into SEQ such that for all σ, τ ∈ SEQ, if σ ⊆ τ , then Θ(σ) ⊆ Θ(τ). We further
assume that for all texts T , limn→∞ |Θ(T [n])| = ∞. By extension, we think of Θ as also defining
a mapping from T into T such that Θ(T ) =

⋃

n Θ(T [n]).
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A final notation about the operator Θ. If for a language L, there exists an L′ such that
for each text T for L, Θ(T ) is a text for L′, then we write Θ(L) = L′, else we say that Θ(L)
is undefined. The reader should note the overloading of this notation because the type of the
argument to Θ could be a sequence, a text, or a language; it will be clear from the context
which usage is intended.

We let Θ(T ) = {Θ(T ) | T ∈ T }, and Θ(L) = {Θ(L) | L ∈ L}.
We also need the notion of an infinite sequence of grammars. We let α, with or without

decorations, range over infinite sequences of grammars. From the discussion in the previous
section it is clear that infinite sequences of grammars are essentially infinite sequences over
N . Hence, we adopt the machinery defined for sequences and texts over to finite sequences of
grammars and infinite sequences of grammars. So, if α = i0, i1, i2, i3, . . ., then α[3] denotes the
sequence i0, i1, i2, and α(3) is i3. Furthermore, we say that α converges to i if there exists an
n such that, for all n′ ≥ n, in′ = i.

Let I be any criterion for language identification from texts, for example I = TxtEx. We
say that an infinite sequence α of grammars is I-admissible for text T just in case α witnesses
I-identification of text T . So, if α = i0, i1, i2, . . . is a TxtEx-admissible sequence for T , then
α converges to some i such that Wi = content(T ); that is, the limit i of the sequence α is a
grammar for the language content(T ).

Intuitively, a learning problem L1 is reducible to a learning problem L2 if, using a strategy
learning L1 one can learn L2.

We now formally introduce our reductions. Although in this paper we will only be concerned
with TxtEx-identification, we present the general case of the definition.

Definition 5 [JS96] Let L1 ⊆ E and L2 ⊆ E be given. Let identification criterion I be given.
Let T1 = {T | T is a text for L ∈ L1}. Let T2 = {T | T is a text for L ∈ L2}. We say that
L1 ≤I L2 if and only if there exist operators Θ and Ψ such that, for all T, T ′ ∈ T1 and for all
infinite sequences α of grammars, the following hold:

(a) Θ(T ) ∈ T2 and
(b) if α is an I-admissible sequence for Θ(T ), then Ψ(α) is an I-admissible sequence for T .
(c) if content(T ) = content(T ′) then content(Θ(T )) = content(Θ(T ′)).

We say that L1 ≡I L2 iff L1 ≤I L2 and L2 ≤I L1.

The reduction defined above was called strong-reduction in [JS96]. The above reduction without
clause (c) was called weak-reduction. Since in this paper we will be only concerned with strong-
reductions, we just refer to them as reductions. (Weak reductions are not sharp enough to
provide real distinction between most of the classes considered in this paper).

Intuitively, L1 ≤I L2 just in case there exists an operator Θ that transforms texts for
languages in L1 into texts for languages in L2 and there exists another operator Ψ that behaves
as follows: if Θ transforms text T (for a language in L1) to text T ′ (for a language in L2),
then Ψ transforms I-admissible sequences for T ′ into I-admissible sequences for T . Thus,
informally, the operator Ψ has to work only on I-admissible sequences for such texts T ′. In
other words, if α is a sequence of grammars which is not I-admissible for any text T ′ in {Θ(T ) |
content(T ) ∈ L1}, then Ψ(α) can be defined arbitrarily. This property will be used implicitly
at all places below where we have to define operators Ψ witnessing (together with operators
Θ) some reducibility. Note that this approach both simplifies the corresponding definitions and
preserves the computability of the so defined operators.

Additionally different texts for some language L ∈ L1, are transformed into (possibly dif-
ferent) texts for same language L′ ∈ L2.

Now, a degree of learnability under our reduction is, naturally, a set of families L reducible
to each other (i.e. the equivalence class under the reduction considered).
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Intuitively, for many identification criteria I such as TxtEx, if L1 ≤I L2 then the problem
of identifying L2 in the sense of I is at least as hard as the problem of identifying L1 in the sense
of I, since the solvability of the former problem implies the solvability of the latter one. That is
given any machine M2 which I-identifies L2, one can construct a machine M1 which I-identifies
L1. To see this, for I = TxtEx, suppose Θ and Ψ witness L1 ≤I L2. M1(T ), for a text T
is defined as follows. Let pn = M2(Θ(T )[n]), and α = p0, p1, . . .. Let α′ = Ψ(α) = p′0, p

′
1, . . ..

Then let M1(T ) = limn→∞ p′n. Consequently, L2 may be considered as a hardest problem for
I-identification if for all classes L1 ∈ I, L1 ≤I L2 holds. If L2 itself belongs to I, then L2 is
said to be complete. We now formally define these notions of hardness and completeness for
the above reduction.

Definition 6 [JS96] Let I be an identification criterion. Let L ⊆ E be given.
(a) If for all L′ ∈ I, L′ ≤I L, then L is ≤I-hard .
(b) If L is ≤I-hard and L ∈ I, then L is ≤I-complete.

Proposition 1 ([JS96]) ≤TxtEx is reflexive and transitive.

The above proposition holds for most natural learning criteria.

Proposition 2 (based on [JS97]) Suppose L ≤I L′, via Θ and Ψ. Then, for all L, L′ ∈ L,
L ⊆ L′ ⇒ Θ(L) ⊆ Θ(L′).

We will be using Proposition 2 implicitly when we are dealing with reductions. Since, for
L ≤I L′ via Θ and Ψ, for all L ∈ L, Θ(L) is defined (= some L′ ∈ L′), when considering
reductions, we often consider Θ as mapping finite sets to (possibly infinite) sets instead of
mapping sequences to sequences.1 This is clearly without loss of generality, as one can easily
convert such Θ to Θ as in Definition 5 of reduction.

4 Q-classes

In this section we introduce the classes of languages and corresponding degrees of intrinsic
complexity that form the scale being used for estimating the complexity of learning open semi-
hulls and open hulls. First we define ground natural classes that are being used as bricks to
build our hierarchy of degrees.

Definition 7 INIT = {L ⊆ N | (∃i ∈ N)[L = {x ∈ N | x ≤ i}]}.
COINIT = {L ⊆ N | (∃i ∈ N)[L = {x ∈ N | x ≥ i}]}.
HALF = {L ⊆ Z | (∃i ∈ Z)[L = {x ∈ Z | x ≥ i}]}.

Note that officially our definition for languages and r.e. sets as in the Section 2, only allows
subsets of N . Since, one can easily code Z onto N , by slight abuse of convention, we can consider
subsets of Z also as languages. We thus assume an implicit coding of Z onto N whenever we
deal with languages and language classes involving HALF, without explicitly stating so.

In the sequel, we will use the above notation in two different contexts. Namely, we will use
INIT to denote the class of languages as defined above, and to denote the degree of all classes
of languages equivalent to the class INIT under our reductions. Similarly, we will use in two
different contexts COINIT, HALF and all their combinations defined below in this section. In
every use of this notation, the reader will be able to easily determine an appropriate context.

1For infinite X, by definition, Θ(X) would be
⋃

X′⊆X:card(X′)<∞
Θ(X ′).
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While both the classes INIT and COINIT are monotonically learnable, the types of conjec-
tures being used to learn INIT and, respectively, COINIT are obviously different. For INIT the
maximum element in the input gives a code for the language, whereas in COINIT the minimum
element gives the code. Note that the maximum element used in INIT strategy is unbounded,
whereas the minimum element for COINIT is bounded by 0. So, not surprisingly, the degrees
of INIT and COINIT were proven in [JS96] to be different.

Classes HALF and COINIT are learnable by similar strategies, however, the minimum
element in HALF is unbounded. We will formally prove below that degree of HALF is different
from degrees of both INIT and COINIT. Furthermore, we will show that the degree of HALF

can be viewed as a cross product of the degrees of INIT and COINIT.
There are several other natural classes considered in the literature such as FINITE (degree

of which is equivalent to INIT), SINGLE, COSINGLE, etc. but we will not be concerned with
them here since they will not be relevant to our results.

Now we define the cross product of arbitrary classes L1 and L2.

Definition 8 Let L1,L2 be two classes of languages. Then L1×L2 = {L1×L2 | L1 ∈ L1, L2 ∈
L2}.

This definition can be naturally extended to any finite number of dimensions. For example,
one can naturally define L1 × L2 × L3, etc.

Theorem 1 HALF ≡TxtEx INIT × COINIT.

Proof of the above Theorem is given in the Appendix.
Now, following [JKW00], we are going to combine the classes INIT, COINIT, and HALF to

form classes of multidimensional languages, where, to learn the dimension Lk+1 of a language
L, the learner must first learn the parameters i1, . . . , ik of the dimensions L1, . . . , Lk; then Lk+1

is the projection {xk+1|〈i1, . . . , ik, xk+1, xk+2, . . . , xn〉 ∈ L} with a simple sublanguage whose
description is specified yet by i1, . . . , ik. Once it has been determined which projection must
be learned, the learner can use a predefined INIT, COINIT, or HALF-type strategy to learn
the projection in question. For example, one can consider a class of two-dimensional languages
(INIT, COINIT), where the first dimension L1 = {x|〈x, y〉 ∈ L} of any language L belongs to
INIT, and if i is the parameter describing L1 (that can be learned by an INIT-type strategy)
then the projection {y|〈i, y〉 ∈ L} is in COINIT.

Below for any tuples X and Y , let X · Y denote the concatenation of X and Y . That
is if X = 〈x1, x2, . . . , xn〉 and Y = 〈y1, y2, . . . , ym〉 then X · Y = 〈x1 . . . , xn, y1, . . . ym〉. Let
BASIC = {INIT, COINIT, HALF}.

In part (c) of the following definition and in later situations in languages involving HALF

we sometimes abuse notation slightly and allow elements of Z as components of the pairing
function 〈· · ·〉. This is for ease of notation, and one could easily replace these by using some
coding of Z onto N .

Definition 9 [JKW00] Suppose k ≥ 1. Let Q ∈ BASICk. Let I ∈ Nk. Then inductively on k,
we define the languages LQ

I and T (LQ
I ) and P (LQ

I ) as follows.
If k = 1, then
(a) if Q = (INIT) and I = (i), i ∈ N , then

T (LQ
I ) = {〈x〉 | x ∈ N, x < i}, P (LQ

I ) = {〈i〉}, and LQ
I = T (LQ

I )
⋃

P (LQ
I ).

(b) if Q = (COINIT) and I = (i), i ∈ N , then
T (LQ

I ) = {〈x〉 | x ∈ N, x > i}, P (LQ
I ) = {〈i〉}, and LQ

I = T (LQ
i )

⋃

P (LQ
i ).

(c) if Q = (HALF) and I = (i), i ∈ Z, then
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T (LQ
I ) = {〈x〉 | x ∈ Z, x > i}, P (LQ

I ) = {〈i〉}, and LQ
I = T (LQ

i )
⋃

P (LQ
i ).

Now suppose we have already defined LQ
I for k ≤ n. We then define LQ

I for k = n + 1
as follows. Suppose Q = (q1, . . . , qn+1) and I = (i1, . . . , in+1). Let Q1 = (q1) and Q2 =
(q2, . . . , qn+1). Let I1 = (i1) and I2 = (i2, . . . , in+1). Then,

T (LQ
I ) = {X · Y | X ∈ T (LQ1

I1
), or [X ∈ P (LQ1

I1
) and Y ∈ T (LQ2

I2
)]},

P (LQ
I ) = {X · Y | X ∈ P (LQ1

I1
) and Y ∈ P (LQ2

I2
)}, and

LQ
I = T (LQ

I )
⋃

P (LQ
I ).

Intuitively, in the above definition T (LQ
I ) denotes the terminating part of the language that

is specified yet by i1, . . . , in, in+1, and P (LQ
I ) denotes the propagating part of the language LQ

I

that could be used for adding a language in dimension n + 2. (See [JKW00] for more details
and motivation on the terminology of terminating and propagating.)

For ease of notation we often write LQ

(i1,i2,...,ik) as LQ
i1,i2,...,ik

.

Definition 10 Let k ≥ 1. Let Q = (q1, . . . , qk) ∈ BASICk and R = R1 ×R2 × · · · ×Rk, where
for 1 ≤ i ≤ k, Ri ⊆ N if qi ∈ {INIT, COINIT}, and Ri ⊆ Z, if qi = HALF. Then the class
LQ,R is defined as

LQ,R = {LQ
I | I ∈ R}.

For technical convenience, for Q = (), I = (), R = {I}, we also define T (LQ
I ) = ∅, P (LI

Q) =

{〈〉}, and LQ
I = T (LQ

I )
⋃

P (LQ
I ), and LQ,R = {LQ

I }.
Note that we have used a slightly different notation for defining the classes LQ,R (for example

instead of INIT, we now use L(INIT),N)). This is for clarity of notation.
Also, our main interest is for Ri’s being N or Z (based on whether qi ∈ {INIT, COINIT}

or qi = HALF), though (as the following proposition shows) it doesn’t matter as long as Ri is
(or contains) an infinite recursive subset of N , if qi ∈ {INIT, COINIT}, and Ri is (or contains)
an infinite recursive subset of Z with infinite intersection with both N and Z−, if qi = HALF.
The usage of general R is more for ease of proving some of our theorems.

Proposition 3 Suppose k ≥ 1. Let Q ∈ BASICk. Let R = R1 ×R2 × · · · ×Rk, where each Ri

is an infinite recursive subset of N , if qi ∈ {INIT, COINIT} and Ri is a recursive subset of Z,
with infinite intersection with both N and Z−, if qi = HALF. Let R′ = R′

1 × R′
2 × · · · × R′

k,
where R′

i is N , if qi ∈ {INIT, COINIT} and R′
i is Z, if qi = HALF. Then, LQ,R ≡TxtEx LQ,R′

.

For ease of notation, if Q = (q1, q2, . . . , qn) and R = R1 × R2 × . . . × Rn, where Ri = N if
qi ∈ {INIT, COINIT} and Ri = Z if qi = HALF, then we drop R from LQ,R, using just LQ.

The immediate question is which classes Q represent different degrees.

Proposition 4 Suppose Q = (q1, . . . , qk−1, qk, qk+1, . . . , ql), and
Q′ = (q1, . . . , qk−1, q

′, qk+1, . . . , ql), where qk ∈ {INIT, COINIT} and q′ = HALF, and other
qi ∈ BASIC.

Then, LQ ≤TxtEx LQ′

.

Proof. Above can be easily shown using INIT ≤TxtEx HALF.

Since INIT × COINIT ≤TxtEx LQ, for Q = (INIT, COINIT), or Q = (COINIT, INIT)
[JKW00], we have the following proposition.

Proposition 5 Suppose
Q = (q1, . . . , qk−1, HALF, qk+1, . . . , qn), and Q′ = (q1, . . . , qk−1, INIT, COINIT, qk+1, . . . , qn)
or Q′ = (q1, . . . , qk−1, COINIT, INIT, qk+1, . . . , qn). Then LQ ≤TxtEx LQ′

.
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Proof. Above can be easily shown using HALF ≤TxtEx (INIT, COINIT) and HALF ≤TxtEx

(COINIT, INIT).

Proposition 6 (Based on [JS96]) Suppose Q = (INIT), R = R1, Q′ = (COINIT), and R′ =
R′

1, where R1 and R′
1 are infinite subsets of N . Then LQ,R 6≤TxtEx LQ′,R′

, and LQ′,R′

6≤TxtEx

LQ,R.

The following technical definition introduces an ordering on all k-tuples of parameters
i1, . . . , ik of languages in an arbitrary class LQ. This ordering will be helpful for the result
in the next section.

Definition 11 Suppose Q = (q1, . . . , qk), where each qi ∈ {HALF, INIT, COINIT}, for 1 ≤
i ≤ k. Let Q′ = (q2, . . . , qk). We say that 〈i1, . . . , ik〉 ≤Q 〈j1, . . . , jk〉 iff

(a) if q1 = INIT, then [i1 < j1] or [i1 = j1 and 〈i2, . . . , ik〉 ≤Q′ 〈j2, . . . , jk〉];
(b) if q1 = COINIT or q1 = HALF, then [i1 > j1] or [i1 = j1 and 〈i2, . . . , ik〉 ≤Q′ 〈j2, . . . , jk〉].

Here, for Q = (), we assume that 〈〉 ≤Q 〈〉.

5 Q-hierarchy Involving HALF

In this section we establish a hierarchy among the Q-classes that will serve as a scale for the
complexity of our geometrical concepts.

Definition 12 Q is said to be a pseudo-subsequence of Q′, iff there exists a subsequence Q′′

of Q′, such that Q′′ is obtainable from Q by
(i) replacing some INIT with HALF,
(ii) replacing some COINIT with HALF,
(iii) replacing some HALF with (COINIT, INIT), or
(iv) replacing some HALF with (INIT, COINIT).

For example, Q = (INIT, HALF, COINIT) is a pseudo-subsequence of Q′ =
(COINIT, HALF, COINIT, INIT, INIT, COINIT): dropping the first COINIT and the second
INIT from Q′, we get the subsequence Q′′ = (HALF, COINIT, INIT, COINIT); now Q can be
promoted to Q′′ by replacing INIT with a more powerful HALF and replacing HALF (in its
middle) with a more powerful combination COINIT, INIT.

In other words, a pseudosubsequence of a vector Q is a subsequence where some HALFs
are replaced with more primitive INITs or COINITs and some combinations INIT, COINIT or
COINIT, INIT are replaced with more primitive HALFs.

Proposition 7 Suppose Q, Q′, Q′′ ∈ BASIC∗. Then if Q is a pseudo-subsequence of Q′ and
Q′ is a pseudo-subsequence of Q′′, then Q is a pseudo-subsequence of Q′′.

Proof. Follows from definition of pseudo-subsequence.

Proposition 8 Suppose Q, Q′ ∈ BASIC∗ and Q is a pseudo-subsequence of Q′. Then
LQ ≤TxtEx LQ′

.

Proof. Follows from definition of pseudo-subsequence, Proposition 4, and Proposition 5.
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Proposition 9 Suppose Q = (q1, q2, . . . , qk) and Q′ = (q′1, q
′
2, . . . , q

′
l), where each qi, q

′
i ∈

BASIC.
(a) If q1 = q′1, then (q2, . . . , qk) is a pseudo-subsequence of (q′2, . . . , q

′
l), iff Q is a pseudo-

subsequence of Q′.
(b) Suppose q1, q

′
1 ∈ {INIT, COINIT}, but q1 6= q′1. Then, Q is a pseudo-subsequence of Q′

iff Q is a pseudo-subsequence of Q′′ = (q′2, q
′
3, . . . , q

′
l).

(c) Suppose q1 = HALF. Then, Q is a pseudo-subsequence of Q′ implies (INIT, q2, . . . , qk)
is a pseudo-subsequence of Q′.

(d) Suppose q1 = HALF. Then, Q is a pseudo-subsequence of Q′ implies
(COINIT, q2, . . . , qk) is a pseudo-subsequence of Q′.

(e) Suppose q′1 = HALF. Then, Q is a pseudo-subsequence of Q′ iff (q2, q3, . . . , qk) is a
pseudo-subsequence of (q′2, q

′
3, . . . , q

′
l).

Proof. Follows from the definition of pseudo-subsequence.

Proposition 10 Suppose Q = (q1, q2, . . . , qk) and Q′ = (q′1, q
′
2, . . . , q

′
l), where each qi, q

′
i ∈

BASIC. Suppose Q is not a pseudo-subsequence of Q′.
(a) If q1 = q′1 ∈ {INIT, COINIT}, q2 ∈ {INIT, COINIT}, and q2 6= q1, then Q′′ =

(q2, q3, . . . , qk) is not a pseudo-subsequence of Q′.
(b) If q1 = HALF, and q′1 = INIT, then Q′′ = (COINIT, q2, . . . , qk) is not a pseudo-

subsequence of Q′.
(c) If q1 = HALF, and q′1 = COINIT, then Q′′ = (INIT, q2, . . . , qk) is not a pseudo-

subsequence of Q′.
(d) If q1 = q′1 ∈ {INIT, COINIT}, q2 = HALF, l ≥ 2, and q′2 ∈ {INIT, HALF}, then

Q′′ = (q1, COINIT, q3, q4, . . . , qk) is not a pseudo-subsequence of Q′.
(e) If q1 = q′1 ∈ {INIT, COINIT}, q2 = HALF, l ≥ 2, and q′2 ∈ {COINIT, HALF}, then

Q′′ = (q1, INIT, q3, q4, . . . , qk) is not a pseudo-subsequence of Q′.

Proof. We show part (a), (b) and (e). Proof of part (c) is similar to part (b) and proof of
part (e) is similar to part (d).

(a) Let Q′′′ = (q′2, q
′
3, . . . , q

′
l). Now by Proposition 9(a) Q is a pseudo-subsequence of Q′ iff

Q′′ is pseudo-subsequence of Q′′′. By Proposition 9(b) Q′′ is pseudo-subsequence of Q′′′ iff Q′′

is pseudo-subsequence of Q′. Thus, since Q is not a pseudo-subsequence of Q′ it follows that
Q′′ is not a pseudo-subsequence of Q′.

(b) Suppose by way of contradiction that (COINIT, q2, . . . , qk) is a pseudo-subsequence
of Q′. Then by applying Proposition 9(b), we have that (COINIT, q2, . . . , qk) is a pseudo-
subsequence of (q′2, q

′
3, . . . , q

′
l). Thus by Proposition 9(a) we have (INIT, COINIT, q2, . . . , qk) is

a pseudo-subsequence of (q′1, q
′
2, . . . , q

′
l). But since (HALF, q2, . . . , qk) is a pseudo-subsequence

of (INIT, COINIT, q2, . . . , qk) we have, Q = (HALF, q2, . . . , qk) is a pseudo-subsequence of
Q′ = (q′1, q

′
2, q

′
3, q

′
4, . . . , q

′
l). A contradiction to the hypothesis. Part (b) follows.

(d) Let Q′′′ = (q′2, q
′
3, . . . , q

′
l). We consider two cases.

Case 1: q′2 = HALF.
By Proposition 9(a), Q is a pseudo-subsequence of Q′ iff (q2, . . . , qk) is a pseudo-

subsequence of Q′′′. By Proposition 9(e), (q2, q3, . . . , qk) is a pseudo-subsequence of Q′′′, iff
(COINIT, q3, . . . , qk) is a pseudo-subsequence of Q′′′. Thus, since Q is not a pseudo-subsequence
of Q′ it follows that (COINIT, q3, . . . , qk) is not a pseudo-subsequence of Q′′′. Thus, by Propo-
sition 9(a), it follows that (q1, COINIT, q3, . . . , qk) is not a pseudo-subsequence of Q′.

Case 2: q′2 = INIT.
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By hypothesis and Proposition 9(a) we have that (q2, q3, . . . , qk) is not a pseudo-subsequence
of (q′2, q

′
3, . . . , q

′
l). Thus by part (b) (COINIT, q3, . . . , qk) is not a pseudo-subsequence of

(q′2, q
′
3, . . . , q

′
l). Thus by Proposition 9(a) (q1, COINIT, q3, . . . , qk) is not a pseudo-subsequence

of Q′.

The following theorem shows that reducing any Q′-vector to its proper pseudo-subsequence
Q results in the degree of learnability that is properly below the degree defined by the Q′-class.

Theorem 2 Suppose Q = (q1, . . . , qk) ∈ BASICk and Q′ = (q′1, . . . , q
′
l) ∈ BASIC l. Let R =

R1 × R2 × · · · × Rk, R′ = R′
1 × R′

2 × · · · × R′
l, where each Ri (R′

i) is an infinite subset of N ,
if qi ∈ {INIT, COINIT} (q′i ∈ {INIT, COINIT}), and Ri (R′

i) is a subset of Z, with infinite
intersection with both N and Z−, if qi = HALF (q′i = HALF).

If Q is not a pseudo-subsequence of Q′ then LQ,R 6≤TxtEx LQ′,R′

.

Proof of the above Theorem is given in the Appendix.

Corollary 1 Suppose Q ∈ BASICk and Q′ ∈ BASIC l. Then, LQ ≤TxtEx LQ′

iff Q is a
pseudo-subsequence of Q′.

6 Definitions for Open Semi-Hull and some Propositions

Let rat denote the set of non-negative rationals. rat+ = rat− {0}, denotes the set of positive
rationals.

Any language SEMI HULLn
... defined below is a geometrical figure semi-hull, collection of

points in the first quadrant of the plane bounded by the y-axis and a broken-line that consists
of a straight fragment l0 of the x-axis (starting from origin) followed by a straight fragment l1
that makes an angle δ1 < 90◦ with the x-axis, followed by a fragment l2 that makes an angle
δ2 > δ1 with the x-axis, etc. (In above the angle is being measured anti-clockwise from the
positive x-axis).

Definition 13 Suppose a1, . . . , an ∈ N and b1, . . . , bn ∈ rat+, where 0 < a1 < a2 < . . . < an.
SEMI HULLn

a1,b1,a2,b2,...,an,bn
= {(x, y) ∈ N2 | y ≥

∑

1≤i≤n bi ∗ (x .− ai)}.

Note that SEMI HULL0 = N2. Also, note that though SEMI HULLn above are subsets of N2,
one can easily consider them as languages ⊆ N , by using pairing function. We assume such
implicit coding whenever we are dealing with sets ⊆ N2.

Parameters ai in the above definition specify x-coordinates of break points of the border
line, while the bi specify the slopes that are being added to the slope of the border line after
every break point.

To make our classes of languages learnable, we have to impose certain restrictions on the
parameters ai, bi. First, we want both coordinates a and c of break points (a, c) to be integers.
Secondly, for all languages in our classes, we fix a subset S from which slopes bi may come from.
(In the following definition S may be an arbitrary subset of rat+; however, later we will impose
additional restrictions on S). The definition of valid sequences of parameters ai, bi accomplishes
this goal.

Definition 14 Suppose a1, . . . , an ∈ N and b1, . . . , bn ∈ rat+, where 0 < a1 < a2 < . . . < an.
Suppose S ⊆ rat+.

We say that (a1, b1, . . . , an, bn) is valid iff for 1 ≤ j ≤ n, [
∑

1≤i≤n bi ∗ (aj
.− ai)] ∈ N .

Additionally, if each bi ∈ S, then we say that (a1, b1, . . . , an, bn) is S-valid.
Let VALID = {(a1, b1, . . . , an, bn) | (a1, b1, . . . , an, bn) is valid}.
Let VALIDS = {(a1, b1, . . . , an, bn) | (a1, b1, . . . , an, bn) is S-valid}.
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Note that the empty sequence () is both valid and S-valid. Also we require a1 > 0. This is for
technical convenience, and crucial for some of our results.

Now we define the class of languages we are going to explore.

Definition 15 Suppose S ⊆ rat+. Then SEMI HULLn,S = {SEMI HULLn
a1,b1,...,an,bn

|
(a1, b1, . . . , an, bn) ∈ VALIDS}.

Now we formulate and prove a number of useful technical propositions (few of them imme-
diately follow from the relevant definitions).

Proposition 11 (a) Suppose (a1, b1, . . . , aj , bj , aj+1, bj+1) ∈ VALID. Then

SEMI HULL
j+1
a1,b1,...,aj ,bj ,aj+1,bj+1

⊂ SEMI HULL
j
a1,b1,...,aj ,bj

.

(b) Suppose (a1, b1, . . . , aj−1, bj−1, aj , bj) and (a1, b1, . . . , aj−1, bj−1, a
′
j , b

′
j) ∈ VALID, and

aj ≤ a′j, bj ≥ b′j. Then, SEMI HULL
j
a1,b1,...,aj ,bj

⊆ SEMI HULL
j

a1,b1,...,a′
j
,b′

j

.

Proof. Follows from definitions.

Definition 16 Suppose a1, b1, . . . , , aj, bj are given such that (a1, b1, . . . , aj , bj) ∈ VALID.
Then, let INTER(a1, b1, . . . , aj , bj) =

⋂

{SEMI HULLn
a1,b1,...,aj ,bj ,...,an,bn

| n ≥ j ∧
(a1, b1, . . . , aj , bj, . . . , an, bn) ∈ VALID }.

Intuitively,
INTER(a1, b1, . . . , aj, bj), denotes the common portion of all SEMI HULLn

a′
1,b′1,...,a′

j
,b′

j
,..., with

ai = a′i and bi = b′i for 1 ≤ i ≤ j.

Proposition 12 (a) Suppose 1 ≤ j ≤ n, and (a1, b1, . . . , aj , bj , . . . , an, bn) ∈ VALID. Then
INTER(a1, b1, . . . , aj, bj) ⊆ SEMI HULLn

a1,b1,...,,aj ,bj ,...,an,bn
.

(b) Suppose (a1, b1, . . . , aj , bj, aj+1, bj+1) is valid. Then, INTER(a1, b1, . . . , aj, bj) ⊆
INTER(a1, b1, . . . , aj, bj , aj+1, bj+1).

Proof. Follows from definitions.

Definition 17 Suppose (a1, b1, . . . , aj , bj) ∈ VALID. Then let maxinter(a1, b1, . . . , aj , bj) de-
note the least natural number x > aj such that

∑

1≤i≤j bi ∗ (x .− ai) ∈ N .

Proposition 13 Suppose a1, b1, . . . , , aj , bj are given such that (a1, b1, . . . , aj , bj) ∈ VALID.
Then, INTER(a1, b1, . . . , aj , bj) = SEMI HULLn

a1,b1,...,aj ,bj
∩ {(x, y) ∈ N2 | x ≤

maxinter(a1, b1, . . . , aj , bj)}.

Proof. Follows from definitions.

Proposition 14 Suppose a1, b1, . . . , aj−1, bj−1, aj , bj , a
′
j , b

′
j

are given, where (a1, b1, . . . , aj−1, bj−1, aj , bj), and (a1, b1, . . . , aj−1, bj−1, a
′
j , b

′
j) are valid. If

INTER(a1, b1, . . . , aj−1, bj−1, a
′
j , b

′
j) ⊆ SEMI HULLn

a1,b1,...,aj−1,bj−1,aj ,bj

Then,
(i) a′j ≤ aj and
(ii) b′j ∗ (maxinter(a1, b1, . . . , aj−1, bj−1, a

′
j , b

′
j)

.− a′j) ≥
bj ∗ (maxinter(a1, b1, . . . , aj−1, bj−1, a

′
j , b

′
j)

.− aj).
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Proof. Suppose that a1, b1, . . . , aj−1, bj−1, a′j , b
′
j, aj , bj are as given in the hypothesis.

If aj < a′j , then (a′j ,
∑

1≤i<j bi∗(a′j
.− ai)) belongs to INTER(a1, b1, . . . , aj−1, bj−1, a

′
j , b

′
j) but

does not belong to SEMI HULLn
a1,b1,...,aj−1,bj−1,aj ,bj

(since (a′j ,
∑

1≤i<j bi ∗ (a′j
.− ai)) is below

the last fragment of the border line for SEMI HULLn
a1,b1,...,aj−1,bj−1,aj ,bj

).

Thus, we must have a′j ≤ aj .
Let x = maxinter(a1, b1, . . . , aj−1, bj−1, a

′
j , b

′
j). Let y = b′j ∗ (x .− a′j) +

∑

1≤i<j bi ∗
(x .− ai)). Now, (x, y) belongs to INTER(a1, b1, . . . , aj−1, bj−1, a

′
j , b

′
j). If (x, y) belongs to

SEMI HULL
j
a1,b1,...,aj−1,bj−1,aj ,bj

then by definition of SEMI HULLj , we must have y = b′j ∗(x .−

a′j) +
∑

1≤i<j bi ∗ (x .− ai) ≥ bj ∗ (x .− aj) +
∑

1≤i<j bi ∗ (x .− ai). Thus, b′j(x
.− a′j) ≥ bj(x

.− aj).
The Proposition follows.

The following two corollaries have obvious geometrical interpretation.

Corollary 2 Suppose (a1, b1, . . . , aj−1, bj−1, a
′
j , b

′
j , . . . , a

′
n, b′n) and

(a1, b1, . . . , aj−1, bj−1, a
′′
j , b

′′
j , . . . , a

′′
n, b′′n) are valid.

(a) If a′j < a′′j , then
SEMI HULLn

a1,b1,...,aj−1,bj−1,a′′
j
,b′′

j
,...,a′′

n,b′′n
6⊆ SEMI HULLn

a1,b1,...,aj−1,bj−1,a′
j
,b′

j
,...,a′

n,b′n
.

(b) If a′j = a′′j and b′j > b′′j then SEMI HULLn
a1,b1,...,aj−1,bj−1,a′′

j
,b′′

j
,...,a′′

n,b′′n
6⊆

SEMI HULLn
a1,b1,...,aj−1,bj−1,a′

j
,b′

j
,...,a′

n,b′n
.

Proof. If SEMI HULLn
a1,b1,...,aj−1,bj−1,a′′

j
,b′′

j
,...,a′′

n,b′′n
⊆ SEMI HULLn

a1,b1,...,aj−1,bj−1,a′
j
,b′

j
,...,a′

n,b′n
,

then it follows that INTER(a1, b1, . . . , aj−1, bj−1, a
′′
j , b

′′
j ) ⊆ SEMI HULLn

a1,b1,...,aj−1,bj−1,a′
j
,b′

j
.

Thus it follows from Proposition 14 that a′′j ≤ a′j and if a′′j = a′j , then b′′j ≥ b′j . Corollary
follows.

Corollary 3 Suppose (a1, b1, . . . , an, bn) and (a′1, b
′
1, . . . , a

′
n, b′n) are valid. Suppose

SEMI HULLn
a1,b1,...,an,bn

⊂ SEMI HULLn
a′
1,b′1,...,a′

n,b′n
. Let i be the minimum value such that

ai 6= a′i or bi 6= b′i. Then, ai < a′i or [ai = a′i and bi > b′i].

Proof. Note that for the least j such that (a′j , b
′
j) 6= (aj , bj), we must have INTERn

a1,b1,...,aj ,bj
⊆

SEMI HULLn
a1,b1,...,aj−1,bj−1,a′

j
,b′

j
. Corollary now follows from Proposition 14.

Proposition 15 Suppose 1 ≤ j ≤ n. Suppose (a1, b1, . . . , aj−1, bj−1, aj , bj , . . . , an, bn) and
(a1, b1, . . . , aj−1, bj−1, a

′
j , b

′
j) are valid.

(a) If a′j ≤ aj and b′j ≥
∑

j≤i≤n bi, Then, SEMI HULL
j

a1,b1,...,aj−1,bj−1,a′
j
,b′

j

⊆

SEMI HULLn
a1,b1,...,aj ,bj ,...,an,bn

.

(b) If a′j ≤ aj and b′j >
∑

j≤i≤n bi, Then, SEMI HULL
j

a1,b1,...,aj−1,bj−1,a′
j
,b′

j

⊂

SEMI HULLn
a1,b1,...,aj ,bj ,...,an,bn

.

Proof. (a) SEMI HULL
j

a1,b1,...,aj−1,bj−1,a′
j
,b′

j

= {(x, y) ∈ N2 | y ≥ b′j(x
.− a′j)+

∑

1≤i<j bi ∗ (x .−

ai)}.
SEMI HULLn

a1,b1,...,an,bn
= {(x, y) ∈ N2 | y ≥

∑

j≤i≤n bi ∗ (x .− ai) +
∑

1≤i<j bi ∗ (x .− ai)}.
Part (a) follows since b′j(x

.− a′j) ≥ b′j(x
.− aj) ≥

∑

j≤i≤n bi ∗ (x .− aj) ≥
∑

j≤i≤n bi ∗ (x .− ai).
(b) Follows from part (a) and Corollary 2.

Now we are at the point when our results require additional constraint on the set S (of
slopes). Intuitively, the set S satisfying the constraints cover the positive rational numbers,
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and can be algorithmically listed in a monotonic order on a two-sided-infinite tape. A natural
example of set S satisfying the constraint below is the set N

⋃

{1/x|x ∈ N}. Although our
results below hold for any fixed set S of rationals satisfying the constraint in question, we
suggest the reader to keep in mind the above set when reading the proofs.

Definition 18 A set S ⊆ rat+ is said to be rat+-covering iff there exists a recursive bijection
f from Z to S such that,

(i) for i, j ∈ Z, i < j iff f(i) < f(j).
(ii) for every x ∈ rat+, there exist y, y′ ∈ S such that y < x < y′.

A natural choice for a set S (which doesn’t satisfy the above constraint) seems to be the set rat+.
However, in this case, a complete class of languages {Ly = {x|x ∈ rat+, x ≥ y} | y ∈ rat+}
(see [JKW00]) would be trivially reducible to any class of languages-figures considered in our
paper, thus making all of them of the same complexity. The use of rat+-covering sets S gives
us opportunity to capture differences in learnability of different geometrical concepts observed
in our paper.

Our results below hold for any rat+-covering set S. However it is open at present whether
SEMI HULLn,S ≡TxtEx SEMI HULLn,S′

, for arbitrary rat+-covering sets S and S′.
Note that, for any given n ∈ N , and rat+-covering set S, there exists a limiting partial

recursive function F such that, if i is a grammar for some SEMI HULL
n,S
a1,b1,...,an,bn

, where
(a1, b1, . . . , an, bn) being S-valid, then F (i) converges to (a1, b1, . . . , an, bn). That is one can
determine the parameters limit-effectively from any grammar for SEMI HULL

n,S
a1,b1,...,an,bn

. This
fact will be implicitly used in construction of Ψ in some of our proofs.

Intuitively, the following technical proposition claims that, given a point (x0, y0) in a lan-
guage SEMI HULL

j−1
a1,b1,...,aj−1,bj−1

, one can effectively find a lower bound on the boundary

slopes bj of all languages SEMI HULL
j
a1,b1,...,aj−1,bj−1,aj ,bj ,... which do not contain (x0, y0).

Proposition 16 Suppose (a1, b1, . . . , aj−1, bj−1) is valid. Let (x0, y0) ∈ N2 be such that
y0 >

∑

1≤i<j bi(x0
.− ai). Then, there exists a B′ ∈ rat+ obtainable effectively from

a1, b1, . . . , aj−1, bj−1, x0 and y0 such that for any (a′j , b
′
j), if (a1, b1, . . . , aj−1, bj−1, a

′
j , b

′
j), is

valid and x0 ≤ a′j or b′j < B′, then, (x0, y0) ∈ INTER
j

a1,b1,...,aj−1,bj−1,a′
j
,b′

j

.

Proof. If a′j ≥ x0, then we would have y0 ≥
∑

1≤i<j bi(x0
.− ai) = b′j(x0

.− a′j)+
∑

1≤i<j bi(x0
.−

ai). Thus, (x0, y0) ∈ INTER
j

a1,b1,...,aj−1,bj−1,a′
j
,b′

j
.

Now fix any a′j < x0. If (a1, b1, . . . , aj−1, bj−1, a
′
j , b

′
j) is valid, but (x0, y0) 6∈

INTER
j

a1,b1,...,aj−1,bj−1,a′
j
,b′

j

, then either (a) maxinter(a1, b1, . . . , aj−1, bj−1, a
′
j , b

′
j) < x0, or (b)

y0 < b′j(x0
.− a′j) +

∑

1≤i<j bi(x0
.− ai).

Let B(a′j) = (y0 −
∑

1≤i<j bi(x0
.− ai))/(x0

.− a′j). Now for (b) to be true b′j must
be greater than B(a′j). We now consider which b′j ≤ B(a′j) can satisfy (a). Let x1 =
maxinter(a1, b1, . . . , aj−1, bj−1, a

′
j , b

′
j), and y1 = b′j ∗ (x1

.− a′j) +
∑

1≤i<j bi ∗ (x1
.− ai). For

b′j ≤ B(a′j) to satisfy (a), (x1, y1) must lie in the intersection of the following three regions:
(A) y >

∑

1≤i<j bi(x
.− ai),

(B) x ≤ x0, and
(C) y ≤ B(a′j) ∗ (x .− a′j) +

∑

1≤i<j bi(x
.− ai).

Since the above intersection is finite, there are only finitely many possibilities for (x1, y1),
and thus for b′j . Thus, let B1(a

′
j) ≤ B(a′j), be a positive rational number, such that

maxinter(a1, b1, . . . , aj−1, bj−1, a
′
j , b

′
j) < x0 implies b′j > B1(a

′
j). Note that such a B1(a

′
j) exists

and can be obtained effectively from a1, b1, . . . , aj−1, bj−1, x0, y0.
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Now taking B′ = min({B1(a
′
j) | aj−1 < a′j < x0}), witnesses the Proposition.

Corollary 4 Suppose (a1, b1, . . . , aj , bj) is valid. Then, one can effectively (in a1, b1, . . . , aj , bj)
obtain a B′ ∈ rat+ such that following property is satisfied.

For any (a1, b1, . . . , aj−1, bj−1, a
′
j , b

′
j) which is valid, if INTER(a1, b1, . . . , aj−1, bj−1, a

′
j , b

′
j) ⊆

SEMI HULLn
a1,b1,...,aj−1,bj−1,aj ,bj

, then b′j ≥ B′ and a′j ≤ aj.

Proof. Pick (x0, y0) ∈ N2 such that x0 > aj , and
∑

1≤i<j bi(x0
.− ai) < y0 <

∑

1≤i≤j bi(x0
.−

ai). Corollary, now follows from Proposition 14 and 16.

Proposition 18 below will play an important role in some of our proofs. Imagine that, in
the process of learning, SEMI HULLn

a1,b1,...,aj−1,bj−1,aj ,bj ,...,an,bn
, the learner has already learned

the parameters a1, b1, . . . , aj−1, bj−1, and is now trying to learn the parameters aj , bj . Our aim
is to use a (INIT, COINIT) type strategy to learn (aj , bj) (instead of the trivial (INIT, HALF)
type strategy mentioned in the introduction).

Since we intend to use (INIT, COINIT) type strategy, we need to be safe in choosing the
parameters. That is, choosing (aj, bj) must imply that any (a′j , b

′
j) smaller than (aj , bj) must

be inconsistent with the input, (smaller in the sense of some (INIT, COINIT)-type ordering of
all pairs (a′′j , b

′′
j )).

This is achieved in two steps. First we order (a′′j , b
′′
j ), with b′′j ≤ B, for some fixed positive ra-

tional number B in a INIT like fashion. Then, we order b′′j > B, in a COINIT like fashion. This
latter ordering is easily achievable (as will be seen in the proof of Theorem 3 below). For the
former ordering, if b′j , bj ≤ B, then we make sure that if INTER(a1, b1, . . . , aj−1, bj−1, a

′
j , b

′
j) is a

subset of SEMI HULLn
a1,b1,...,aj−1,bj−1,aj ,bj

, then ordering places (a′j , b
′
j) below (aj, bj). Proposi-

tion 18 (which is based on Corollary 5 and Proposition 17 below) shows that this is achievable.
Note that this ordering depends on (a1, b1, . . . , aj−1, bj−1).

Corollary 5 Suppose 1 ≤ j ≤ n. Let S be any rat+-covering set, and B ∈ S.
Suppose a1, b1, . . . , aj−1, bj−1 aj , bj are given, where (a1, b1, . . . , aj−1, bj−1, aj , bj) is S-valid.
Then, there exist only finitely many (a′j , b

′
j), such that

(i) (a1, b1, . . . , aj−1, bj−1, a
′
j , b

′
j) is S-valid,

(ii) b′j ≤ B, and

(iii) INTER(a1, b1, . . . , aj−1, bj−1, a
′
j , b

′
j) ⊆ SEMI HULL

j
a1,b1,...,aj−1,bj−1,aj ,bj

.

Moreover, canonical index for the finite set of a′j , b
′
j satisfying above three conditions can be

obtained effectively from B, a1, b1, . . . , aj−1, bj−1, aj , bj.
Furthermore, for any a′j , b

′
j satisfying the above three conditions, a′j ≤ aj, and if a′j = aj,

then b′j ≥ bj.

Proof. Furthermore clause follows from Proposition 14.
By Corollary 4, one can effectively find a B′ ∈ rat+ such that any (a′j , b

′
j) satisfying (i) and

(iii) must satisfy b′j ≥ B′ and a′j ≤ aj . Corollary now follows since there are only finitely many
(a′j , b

′
j) such that a′j ≤ aj , B′ ≤ b′j ≤ B, and b′j ∈ S and for any (a′j , b

′
j), one can effectively test

whether (a′j , b
′
j) satisfies clauses (i) to (iii) in the corollary.

The above corollary together with the following technical proposition will enable us to
impose a suitable ordering on (a1, b1, . . . , aj , bj) with an upper bound B on slopes bj . Think of
(a1, b1, . . . , aj−1, bj−1) as already fixed.

Proposition 17 Suppose R is a partial order over an r.e. set A, and F is a partial recursive
function with domain A such that, for any x ∈ A,
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(i) {x′ | x′Rx} is finite, and
(ii) F (x) is the canonical index for {x′ ∈ A | x′Rx}.
Then, effectively from a program for F , one can obtain a program for a 1–1, partial recursive

function h with domain A and range ⊆ N , such that x′Rx implies h(x′) ≤ h(x). Moreover, if
A is infinite, then range of h is N .

Proof. Let f be a recursive function such that range(f) = A. Define h as follows. Let cur = 0.
Go to stage 0.

Stage s

(* In this stage we make sure that h(f(s)), along with h(x), for all x such that xRf(s), are
defined appropriately. *)

If h(f(s)) has already been defined, then go to stage s + 1.

Otherwise let X = {x | xRf(s)} (note that one can effectively obtain X from f(s) by
assumption (ii) of the hypothesis; also note that f(s) ∈ X, since f(s)Rf(s)).

Let x0, x1, . . . , xm be listing of members of X such that xiRxj implies i ≤ j (note that one
can easily get such an ordering since X is finite).

For j = 0 to m do

If h(xj) has not been defined then
let h(xj) = cur; cur = cur + 1.

EndFor

(* Note that h(f(s)) along with h(x), for all x such that xRf(s), have been defined. *)

End Stage s

It is easy to verify that h satisfies the properties required in the proposition.

Proposition 18 Let S be any rat+-covering set. Then, there exists a recursive function code
with domain rat × VALIDS, and range ⊆ N such that following is satisfied.

Suppose 1 ≤ j ≤ n, B ∈ S, and (a1, b1, . . . , aj−1, bj−1) is S-valid.
(A) Suppose (a1, b1, . . . , aj−1, bj−1, aj , bj) and (a1, b1, . . . , aj−1, bj−1, a

′
j , b

′
j) are S-valid.

(A.1) If bj , b
′
j ≤ B

and INTER(a1, b1, . . . , aj−1, bj−1, a
′
j , b

′
j) ⊆ SEMI HULL

j
a1,b1,...,aj−1,bj−1,aj ,bj

, then

code(B, a1, b1, . . . , aj−1, bj−1, a
′
j , b

′
j) ≤ code(B, a1, b1, . . . , aj−1, bj−1, aj , bj).

(A.2) If bj , b
′
j ≤ B and (aj , bj) 6= (a′j , b

′
j), then

code(B, a1, b1, . . . , aj−1, bj−1, a
′
j , b

′
j) 6= code(B, a1, b1, . . . , aj−1, bj−1, aj , bj).

(A.3) {code(B, a1, b1, . . . , aj−1, bj−1, a
′′
j , b

′′
j ) | (a1, b1, . . . , aj−1, bj−1, a

′′
j , b

′′
j ) ∈

VALIDS and b′′j ≤ B} = N .

(B) Suppose (a1, b1, . . . , aj , bj) is S-valid. If bj > B, then code(B, a1, b1, . . . , aj−1, bj−1, aj , bj) =
code(B, a1, b1, . . . , aj−1, bj−1, aj , B).

Proof. Fix a1, b1, . . . , aj−1, bj−1 and B as in the hypothesis. Let us first define a relation Rel
on N × S ∩ {r ∈ rat | r ≤ B} as follows:

(a′, b′)Rel(a, b) iff
INTER(a1, b1, . . . , aj−1, bj−1, a

′, b′) ⊆ SEMI HULL
j
a1,b1,...,aj−1,bj−1,a,b.
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Note that (by Corollary 5) for each (a, b), there are only finitely many (a′, b′) such that
(a′, b′)Rel(a, b). Also, for each of these (a′, b′), a′ ≤ a and either a′ < a or b′ ≥ b. Furthermore,
canonical index for {(a′, b′) | (a′, b′)Rel(a, b)}, can be effectively obtained from (a, b).

Let Rel∗ be transitive closure of Rel. It is easy to verify that Rel∗ is a partial order, where
for each (a, b), there exists at most finitely many (a′, b′) such that (a′, b′)Rel∗(a, b). Moreover,
canonical index for {(a′, b′) | (a′, b′)Rel∗(a, b)}, can be effectively obtained from (a, b).

Existence of code as required now follows from Proposition 17.

7 Q-classes to Which SEMI HULL
n,S is Reducible

Our goal in this section is to establish an upper bound on the SEMI HULLn,S degrees in terms
of the Q-hierarchy. To find such a bound, we actually have to design a learning strategy for
languages in SEMI HULLn,S that consists of qi-type strategies for some Q = (q1, q1, . . . , qk),
and a grammar learned by every qi is used by qi+1. A natural strategy of this type would be
the following (q1, q2, . . . , q2n−1, q2n)-strategy, where q2i+1 = INIT and q2i+2 = HALF for i < n:
learn the first break point a1 using an INIT-type strategy; once a1 has been learned, learn the
first slope b1 at the point (a1, 0) using a HALF -type strategy; then learn the second break point
(a2, b1 ∗ (a2 − a1)) using an INIT-type strategy, etc. However, a much more efficient learning
strategy is suggested by the following. Informally one can visualize this strategy as follows.
Assume that slope values come from the set N

⋃

{1/n | n ∈ N}. It may happen that in the
beginning the learner receives points (x, y) indicating that the slope to be learned is greater
or equal 1. Then the learner uses an INIT-like strategy to learn a break and a COINIT-like
strategy (not a HALF-strategy as above!) to learn the slope: the slopes tend to 1 from above,
and the learner uses this assumption. If the slope gets smaller than 1, the learner then uses
a combined INIT-like strategy to learn the break point and the slope together: both of them
change now in INIT-fashion.

There is a slight problem though in the above strategy. It may be possible that slope
at some point seems less than 1, but later on when lots of new points (i, 0) come from
the input, slope again seems larger than 1. To prevent this from harming the learn-
ing process, the learner uses the combined INIT-strategy in a safe fashion: Informally,
suppose one has learned the parameters, a1, b1, . . . , aj−1, bj−1, and is now trying to de-
termine aj , bj . Now we need to make sure that the combined INIT-strategy does not
commit to (aj , bj) being (a′j , b

′
j) before it has been able to determine that input data

cannot be from SEMI HULLn
a1,b1,...,aj−1,bj−1,a′′

j
,b′′

j
,..., for any other a′′j , b

′′
j , . . ., which satisfies

SEMI HULLn
a1,b1,...,aj−1,bj−1,a′′

j
,b′′

j
,... ⊂ SEMI HULLn

a1,b1,...,aj−1,bj−1,a′
j
,b′

j
,a′

j+1,b′
j+1,..., for some value

of the parameters a′j+1, b
′
j+1, . . .. It is possible to achieve this by using Proposition 18.

The actual proof of the theorem technically looks somewhat different, and the above method
is a bit hidden.

Theorem 3 Suppose S is rat+-covering. Suppose Q = (q1, q2, . . . , q2n−1, q2n), where q2i+1 =
INIT and q2i+2 = COINIT, for i < n. Then SEMI HULLn,S ≤TxtEx LQ.

Proof. Fix S which is rat+-covering. Let h be a recursive bijection from Z to S such that
h(i) < h(i + 1). Let B = h(0).

The intuitive idea of the learning strategy is as follows. Suppose we have already learned
(a1, b1, . . . , aj−1, bj−1). Then, we use INIT like strategy to learn any pair (aj , bj), if bj ≤ B =
h(0), and use COINIT type strategy to learn bj if bj > B. The former is done using code as in
Proposition 18. The latter can be done easily by using h to form a COINIT like strategy.
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Going through the proof below (and the proofs for other upper bounds in this paper) one
must be aware of the fact that, though intuitively we do use INIT/COINIT (or whatever -
in other proofs) strategy for learning each successive parameter, in the actual proof we do it
by choosing an appropriate minimal consistent SEMI HULL on every step and INIT/COINIT

strategy is in some sense hidden.
Now we proceed with the formal construction.
Fix code as in Proposition 18. Let g be a function from S to N such that g(b) = 0, if b ≤ B,

and g(b) = h−1(b), otherwise. (Note that g is monotonically non-decreasing).
The following claim utilizes the construction of proposition 18 to show that the values

(code(B, a1, b1, . . . , aj , bj)) can be used as conjectures by INIT-type substrategies, and the values
g(bj) can be used as conjectures by COINIT-type substrategies.

Claim 1 Suppose (a1, b1, . . . , aj−1, bj−1, aj , bj), (a1, b1, . . . , aj−1, bj−1, a
′
j , b

′
j) ∈ VALIDS, where

(aj , bj) 6= (a′j , b
′
j). Suppose

INTER(a1, b1, . . . , aj−1, bj−1, aj , bj) ⊂ SEMI HULLn
a1,b1,...,aj−1,bj−1,a′

j
,b′

j
.

Then,
(i) code(B, a1, b1, . . . , aj−1, bj−1, aj , bj) < code(B, a1, b1, . . . , aj−1, bj−1, a

′
j , b

′
j), or

(ii) code(B, a1, b1, . . . , aj−1, bj−1, aj , bj) = code(B, a1, b1, . . . , aj−1, bj−1, a
′
j , b

′
j), and g(bj) >

g(b′j).

Proof. By Proposition 14 we have that aj ≤ a′j .
We now consider following cases:
Case 1: bj , b

′
j ≤ B.

Since, INTER(a1, b1, . . . , aj , bj) ⊆ SEMI HULL
j

a1,b1,...,aj−1,bj−1,a′
j
,b′

j

, we have

code(B, a1, b1, . . . , aj−1, bj−1, aj , bj) < code(B, a1, b1, . . . , aj−1, bj−1, a
′
j , b

′
j) (by Proposition 18;

for getting < instead of ≤ use the fact that (aj, bj) 6= (a′j , b
′
j)).

Case 2: bj ≤ B < b′j .
In this case aj < a′j by Proposition 14.

Also, INTER(a1, b1, . . . , aj , bj) ⊆ SEMI HULL
j

a1,b1,...,aj−1,bj−1,a′
j
,b′

j

⊆

SEMI HULL
j

a1,b1,...,aj−1,bj−1,a′
j
,B

.

Thus, code(B, a1, b1, . . . , aj−1, bj−1, aj , bj) < code(B, a1, b1, . . . , aj−1, bj−1, a
′
j , B) =

code(B, a1, b1, . . . , aj−1, bj−1, a
′
j , b

′
j) (by Proposition 18; for getting < instead of ≤ use the fact

that (aj , bj) 6= (a′j , B)).
Case 3: b′j ≤ B < bj .

In this case, INTER(a1, b1, . . . , aj , B) ⊆ SEMI HULL
j
a1,b1,...,aj−1,bj−1,aj ,B ⊆

SEMI HULL
j

a1,b1,...,aj−1,bj−1,a′
j
,b′

j

. Thus, code(B, a1, b1, . . . , aj−1, bj−1, aj , bj) =

code(B, a1, b1, . . . , aj−1, bj−1, aj , B) ≤ code(B, a1, b1, . . . , aj−1, bj−1, a
′
j , b

′
j) (by Proposition 18).

Also g(b′j) = 0 < g(bj).
Case 4: B < bj ≤ b′j .
In this case aj < a′j by Proposition 14. Thus,

INTER(a1, b1, . . . , aj, B) ⊆ SEMI HULL
j
a1,b1,...,aj−1,bj−1,aj ,B ⊆ SEMI HULL

j

a1,b1,...,aj−1,bj−1,a′
j
,B

.

Thus, code(B, a1, b1, . . . , aj−1, bj−1, aj , bj) = code(B, a1, b1, . . . , aj−1, bj−1, aj , B) <
code(B, a1, b1, . . . , aj−1, bj−1, a

′
j , B) = code(B, a1, b1, . . . , aj−1, bj−1, a

′
j , b

′
j) (by Proposition 18;

for getting < instead of ≤ use the fact that (aj, B) 6= (a′j , B)).
Case 5: B < b′j ≤ bj .
If aj < a′j , then

INTER(a1, b1, . . . , aj, B) ⊆ SEMI HULL
j
a1,b1,...,aj−1,bj−1,aj ,B ⊆ SEMI HULL

j

a1,b1,...,aj−1,bj−1,a′
j
,B

.
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Thus, code(B, a1, b1, . . . , aj−1, bj−1, aj , bj) = code(B, a1, b1, . . . , aj−1, bj−1, aj , B) <
code(B, a1, b1, . . . , aj−1, bj−1, a

′
j , B) = code(B, a1, b1, . . . , aj−1, bj−1, a

′
j , b

′
j) (by Proposition 18;

for getting < instead of ≤ use the fact that (aj, B) 6= (a′j , B)).
If aj = a′j , then b′j < bj (by Proposition 14).

Thus, g(bj) > g(b′j). Also, INTER(a1, b1, . . . , aj , B) ⊆ SEMI HULL
j

a1,b1,...,aj−1,bj−1,a′
j
,B

. Thus,

code(B, a1, b1, . . . , aj−1, bj−1, aj , bj) = code(B, a1, b1, . . . , aj−1, bj−1, aj , B) ≤
code(B, a1, b1, . . . , aj−1, bj−1, a

′
j , B) = code(B, a1, b1, . . . , aj−1, bj−1, a

′
j , b

′
j) (by Proposition 18).

2

Let map be a mapping from VALID to N∗ such that
map(a1, b1, . . . , an, bn) =

(code(B, a1, b1), g(b1), code(B, a1, b1, a2, b2), g(b2), . . . , code(B, a1, b1, . . . , an, bn), g(bn)).
Now we suggest the reader to recall the properties of the ordering <Q. For example, note

that if Q = (INIT, COINIT) then (i, j) <Q (i′, j′) would mean that i < i′ or (i = i′ and j > j′).

Claim 2 Suppose (a1, b1, . . . , an, bn) and (a′1, b
′
1, . . . , a

′
n, b′n) are S-valid.

(A) If map(a′1, b
′
1, . . . , a

′
n, b′n) <Q map(a1, b1, . . . , an, bn), then, for the least j such that

(aj , bj) 6= (a′j , b
′
j), INTER(a1, b1, . . . , aj , bj) 6⊆ SEMI HULL

j

a1,b1,...,aj−1,bj−1,a′
j
,b′

j
.

(B) If map(a′1, b
′
1, . . . , a

′
n, b′n) <Q map(a1, b1, . . . , an, bn), Then,

INTER(a1, b1, . . . , aj, bj , . . . , an, bn) 6⊆ SEMI HULLn
a′
1,b′1,...,a′

n,b′n
.

(C) If SEMI HULLn
a1,b1,...,an,bn

⊂ SEMI HULLn
a′
1,b′1,...,a′

n,b′n
, then map(a1, b1, . . . , an, bn) <Q

map(a′1, b
′
1, . . . , a

′
n, b′n).

Proof. (A) Let j be least number such that (aj , bj) 6= (a′j , b
′
j). Note that, for i < j,

we must have code(B, a1, b1, . . . , ai, bi) = code(B, a′1, b
′
1, . . . , a

′
i, b

′
i), and g(bi) = g(b′i). If

INTER(a1, b1, . . . , aj, bj) ⊆ SEMI HULL
j

a1,b1,...,aj−1,bj−1,a′
j
,b′

j

, then, by Claim 1 we would

have code(B, a1, b1, . . . , aj , bj) < code(B, a′1, b
′
1, . . . , a

′
j , b

′
j) or code(B, a1, b1, . . . , aj , bj) =

code(B, a′1, b
′
1, . . . , a

′
j , b

′
j) and g(bj) > g(b′j). Thus, map(a1, b1, . . . , an, bn) <Q

map(a′1, b
′
1, . . . , a

′
n, b′n), a contradiction to the hypothesis.

(B) Let j be the least number such that (aj , bj) 6= (a′j, b
′
j). Now (B) follows using

part (A) and the fact that INTER(a1, b1, . . . , aj , bj) ⊆ INTER(a1, b1, . . . , aj , bj, . . . , an, bn) and

SEMI HULLn
a′
1,b′1,...,a′

j
,b′

j
,...,a′

n,b′n
⊆ SEMI HULL

j

a′
1,b′1,...,a′

j
,b′

j

.

(C) Follows from part (B) and
INTER(a1, b1, . . . , aj, bj , . . . , an, bn) ⊆ SEMI HULLn

a1,b1,...,an,bn
. 2

We now continue with the proof of the theorem. The aim is to construct Θ which maps
SEMI HULLn

a1,b1,...,an,bn
to LQ

map(a1,b1,...,an,bn).
Note that definition of Ψ mapping grammar sequence converging to a grammar for

LQ

map(a1,b1,...,an,bn) to a grammar sequence converging to a grammar for SEMI HULLn
a1,b1,...,an,bn

would be trivial. We thus just define Θ.
Without loss of generality, we will be giving Θ as mapping sets to sets.
For any finite X ⊆ N2, let Prop(X, a1, b1, . . . , an, bn) be true iff following two properties are

satisfied.
(A) (a1, b1, . . . , an, bn) ∈ VALIDS .
(B) For all (a′1, b

′
1, . . . , a

′
n, b′n) ∈ VALIDS such that map(a′1, b

′
1, . . . , a

′
n, b′n) <Q

map(a1, b1, . . . , an, bn), X 6⊆ SEMI HULLn
a′
1,b′1,...,a′

n,b′n
.

Note that condition (B) above is equivalent to
(B’) For all j, 1 ≤ j ≤ n, (B’.1) and (B’.2) are satisfied.
(B’.1) For all a′j ∈ N, b′j ∈ S, b′j ≤ B,
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if code(B, a1, b1, . . . , aj−1, bj−1, a
′
j, b

′
j) < code(B, a1, b1, . . . , aj−1, bj−1, aj , bj)), then

[X 6⊆ SEMI HULL
j

a1,b1,...,aj−1,bj−1,a′
j
,b′

j

].

(B’.2) If B ≤ bj , then for all b′j ∈ S such that bj < b′j , X 6⊆ SEMI HULL
j

a1,b1,...,aj−1,bj−1,aj ,b′
j

Note that B’.2 above is equivalent to
(B”.2) If B ≤ bj , then for least b′j ∈ S such that bj < b′j , X 6⊆

SEMI HULL
j

a1,b1,...,aj−1,bj−1,aj ,b′
j

.

Note that whether X, a1, b1, . . . , an, bn, satisfy (A) and (B’.1) and (B”.2) for all j, 1 ≤ j ≤ n,
is effectively testable.

Thus, for any finite set X ⊆ N2, let
Θ(X) =

⋃

{LQ

map(a1,b1,...,an,bn) | Prop(X, a1, b1, . . . , an, bn)}.

For infinite X ′, Θ(X ′) =
⋃

X⊆X′, card(X)<∞ Θ(X).
It is easy to verify that
(1) for any X ⊆ SEMI HULLn

a1,b1,...,an,bn
,

Θ(X) ⊆ LQ

map(a1,b1,...,an,bn) (due to clause (B) in definition of Prop above, and the fact that

for any valid I and I ′, map(I) <Q map(I ′), implies LQ

map(I) ⊆ LQ

map(I′)), and

(2) for any finite set X ⊆ N2 such that {(x, y) ∈ N2 | x ≤ maxinter(a1, b1, . . . , an, bn) and
y = min({y′ | (x, y′) ∈ INTER(a1, b1, . . . , an, bn)})} ⊆ X ⊆ SEMI HULLn

a1,b1,...,an,bn
,

Θ(X) ⊇ LQ

map(a1,b1,...,an,bn).

(By Claim 2(B), and definition of Prop and Θ).
Thus, we have that Θ(SEMI HULLn

a1,b1,...,an,bn
) = LQ

map(a1,b1,...,an,bn).

Now we will show that the above theorem is in some sense optimal. That is, for Q =
(q1, q2, . . . , q2n−1, q2n), where q2i+1 = INIT, and q2i+2 = COINIT, for i < n, and any Q′ ∈
BASIC∗, if LQ 6≤TxtEx LQ′

, then SEMI HULLn,S 6≤TxtEx LQ′

. Thus, Q in above theorem
cannot be improved if we use components only from BASIC (whether we can improve it by
using some other basic components is open).

Theorem 4 Suppose n ∈ N+, 1 ≤ j ≤ n. Suppose S is any rat+-covering set.
(1) Suppose (a1, b1, . . . , aj−1, bj−1) is S-valid.
Let Q = (q1, q2, . . . , q2(n−j+1)), where q2i+1 = INIT and q2i+2 = COINIT (for i ≤ n − j).

Suppose Q′ ∈ BASIC∗ is such that LQ 6≤ LQ′

.
Then {SEMI HULLn

a1,b1,...,aj−1,bj−1,a′
j
,b′

j
...,a′

n,b′n
| (a1, b1, . . . , aj−1, bj−1, a

′
j , b

′
j . . . , a′n, b′n) is S-valid

} 6≤TxtEx LQ′

.
(2) Suppose (a1, b1, . . . , aj−1, bj−1, aj) is such that there exists a bj, such that

(a1, b1, . . . , aj−1, bj−1, aj , bj) is S-valid.
Let Q = (q1, . . . , q2(n−j)+1), where q2i+1 = COINIT, for i ≤ n − j, and q2i+2 = INIT, for

i < n − j. Suppose Q′ ∈ BASIC∗ is such that LQ 6≤ LQ′

.
Then {SEMI HULLn

a1,b1,...,aj−1,bj−1,aj ,b′
j
...,a′

n,b′n
| (a1, b1, . . . , aj−1, bj−1, aj , b

′
j . . . , a′n, b′n) is S-valid

} 6≤TxtEx LQ′
.

Proof. The intuitive idea of the proof is to use a’s to diagonalize against sequences of COINIT

and b’s to diagonalize against sequences of INIT.
For a fixed n, we prove the above theorem by reverse induction on j (from j = n to j = 1).

For each such j, we first show (2) and then (1).
Base Case: j = n, for (2):

In this case Q = (COINIT).
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Now COINIT ≤TxtEx {SEMI HULLn
a1,b1,...,an−1,bn−1,an,b′n

| (a1, b1, . . . , an−1, bn−1, an, b′n) is
S-valid } as witnessed by Θ and Ψ defined as follows.

Let h be an isomorphism from Z to S such that h(i) < h(i + 1).
For any set Y ⊆ N , let Θ(Y ) =

⋃

i∈Y SEMI HULLn
a1,b1,...,an−1,bn−1,an,h(i).

It is easy to verify that Θ(LQ
i ) = SEMI HULLn

a1,b1,...,an−1,bn−1,an,h(i). Let Ψ
be defined as follows. If a sequence α of grammars converges to a grammar for
SEMI HULLn

a1,b1,...,an−1,bn−1,an,h(i), then Ψ(α) converges to a grammar for LQ
i .

It is easy to verify that Θ and Ψ witness that
COINIT ≤TxtEx {SEMI HULLn

a1,b1,...,an−1,bn−1,an,b′n
| (a1, b1, . . . , an−1, bn−1, an, b′n) is S-valid

}.
Thus, since COINIT 6≤TxtEx LQ′

, (2) is proven for j = n.
Induction Case (for (1)):

Suppose for j > j′, we have shown both (1) and (2), and for j = j′, we have shown (2).
Then we show (1) for j = j′.

Note that Q = (q1, q2, . . . , q2(n−j+1)), where q2i+1 is INIT and q2i+2 is COINIT, for i ≤ n−j.
Without loss of generality assume that Q′ contains at least one INIT or HALF (otherwise just
add INIT at the end of Q′). Suppose Q′ = (q′1, . . . , q

′
k−1, q

′
k, q

′
k+1, . . . , q

′
l), where q′1, . . . , q

′
k−1 are

COINIT, q′k may be either INIT or HALF, and for k+1 ≤ i ≤ l, q′i ∈ {INIT, COINIT, HALF}.
Without loss of generality assume that q′k is INIT (since otherwise we could just replace q′k =
HALF with (COINIT, INIT ) and consider Q′ = (q′1, . . . , q

′
k−1, COINIT, INIT, q′k+1, . . . , q

′
l)).

Now, by hypothesis we know that LQ 6≤TxtEx LQ′

. Thus, by Corollary 1, Q is not a pseudo-
subsequence of Q′. Now consider Q′′ obtained from Q by dropping q1 = INIT, Q′′′ obtained
from Q′ by dropping q′1, q

′
2, . . . , q

′
k−1. Now, Q is not a pseudo-subsequence of Q′′′ by repeated

use of Proposition 9(b), and thus Q′′ is not a pseudo-subsequence of Q′′′ by Proposition 10(a).
Thus, by Corollary 1, LQ′′

6≤TxtEx LQ′′′

.
Now, suppose by way of contradiction that Θ along with Ψ witnesses the reduction
{SEMI HULLn

a1,b1,...,aj−1,bj−1,a′
j
,b′

j
...,a′

n,b′n
| (a1, b1, . . . , aj−1, bj−1, a

′
j , b

′
j . . . , a′n, b′n) is S-valid }

≤TxtEx LQ′

.
Recall that SEMI HULL0 is N2. Let v1 = min({u1 | (∃u2, . . . , ul)[〈u1, u2, . . . , ul〉 ∈

Θ(SEMI HULL
j−1
a1,b1,...,aj−1,bj−1

)]})

For 1 < i < k, let vi = min({ui | (∃ui+1, . . . , ul)[〈v1, . . . , vi−1, ui, . . . , ul〉 ∈
Θ(SEMI HULL

j−1
a1,b1,...,aj−1,bj−1

)]}).

Let σ be such that content(σ) ⊆ SEMI HULL
j−1
a1,b1,...,aj−1,bj−1

, and there exist uk, . . . , ul,

such that 〈v1, v2, . . . , vk−1, uk, . . . , ul〉 ∈ Θ(σ).
Let aj > max({x ∈ N | (∃y ∈ N)[〈x, y〉 ∈ content(σ)]}) be such that, for

some bj , (a1, b1, . . . , aj−1, bj−1, aj , bj) is S-valid. Note that, for all b′′j , a
′′
j+1, b

′′
j+1, . . . , a

′′
n, b′′n,

such that (a1, b1, . . . , aj−1, bj−1, aj , b
′′
j , a

′′
j+1, b

′′
j+1, . . . , a

′′
n, b′′n) is S-valid, content(σ) ⊆

SEMI HULLn
a1,b1,...,aj−1,bj−1,aj ,b′′

j
,a′′

j+1,b′′
j+1,...,a′′

n,b′′n
. Thus, Θ (along with Ψ) essentially witnesses

that
{SEMI HULLn

a1,b1,...,aj−1,bj−1,aj ,b′
j
...,a′

n,b′n
| (a1, b1, . . . , aj−1, bj−1, aj , b

′
j . . . , a′n, b′n) is S-valid, }

≤TxtEx LQ′′′

(since parameters for the first k − 1 COINITs in Q′ are fixed to be v1, . . . , vk−1).
This is not possible by induction hypothesis (since LQ′′

6≤TxtEx LQ′′′

).
Induction Case (for (2)): Suppose for j > j′, we have shown both (1) and (2). Then we
show (2) for j = j′.

In this case Q = (q1, q2, . . . , q2(n−j)+1), where q2i+1 is COINIT, for i ≤ n − j, and q2i+2

is INIT, for i < n − j. Without loss of generality assume that Q′ contains at least one
COINIT or HALF (otherwise just add COINIT to the end of Q′). Suppose Q′ is of form
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(q′1, . . . , q
′
k−1, q

′
k, . . . , q

′
l), where q′1, . . . , q

′
k−1 are INIT, q′k may be either COINIT or HALF, and

for k + 1 ≤ i ≤ l, q′i ∈ {INIT, COINIT, HALF}. Without loss of generality assume that q′k is
COINIT (since otherwise we could just replace q′k = HALF with (INIT, COINIT) and consider
Q′ = (q′1, . . . , q

′
k−1, INIT, COINIT, q′k+1, . . . , q

′
l)).

Now, by hypothesis we know that LQ 6≤TxtEx LQ′

. Thus, by Corollary 1, Q is not a pseudo-
subsequence of Q′. Thus, for Q′′ obtained from Q by dropping q1 = COINIT, Q′′′ obtained
from Q′ by dropping q′1, q

′
2, . . . , q

′
k−1 (note that q′k is COINIT, while the first q in Q′′ is INIT),

Q′′ is not a pseudo-subsequence of Q′′′ (this case is similar to the one in Induction Case for (1)
with INITs and COINITs reversed). Thus, by Corollary 1, LQ′′

6≤TxtEx LQ′′′

.
Suppose by way of contradiction that Θ along with Ψ witnesses the reduction
{SEMI HULLn

a1,b1,...,aj−1,bj−1,aj ,b′
j
...,a′

n,b′n
| (a1, b1, . . . , aj−1, bj−1, aj , b

′
j . . . , a′n, b′n) is S-valid }

≤TxtEx LQ′

.
Let X = {〈u1, u2, . . . , ul〉 | (a1, b1, . . . , aj−1, bj−1, aj , b

′
j . . . , a′n, b′n) is S-valid, and

Θ(SEMI HULLn
a1,b1,...,aj−1,bj−1,aj ,b′

j
...,a′

n,b′n
) = LQ′

u1,u2,...,ul
}.

Let v1 = min({u1 | (∃u2, . . . , ul)〈u1, u2, . . . , ul〉 ∈ X}).
For 1 < i < k, let vi = min({ui | (∃ui+1, . . . , ul)〈v1, . . . , vi−1, ui, . . . , ul〉 ∈ X}).
Let b′j , . . . , a

′
n, b′n be such that Θ(SEMI HULLn

a1,b1,...,aj−1,bj−1,aj ,b′
j
...,a′

n,b′n
) = LQ′

v1,...,vk−1,uk,...,ul

for some uk, . . . , ul.
Let us fix a bj >

∑k=n
k=j b′k, bj ∈ S. Then, for any a′′w, b′′w, j < w ≤ n, such that

(a1, b1, . . . , aj , bj, a
′′
j+1, b

′′
j+1, . . . , a

′′
n, b′′n) is S-valid, we have that

Θ(SEMI HULLn
a1,b1,...,aj−1,bj−1,aj ,bj ,a′′

j+1,b′′
j+1,...,a′′

n,b′′n
) = LQ′

v1,...,vk−1,uk,...,ul
, for some values

of uk, . . . , ul (due to monotonicity of Θ; note that SEMI HULL
j
a1,b1,...,aj−1,bj−1,aj ,bj

⊆
SEMI HULLn

a1,b1,...,aj−1,bj−1,aj ,b′
j
...,a′

n,b′n
by Proposition 15, and, there-

fore, SEMI HULLn
a1,b1,...,aj−1,bj−1,aj ,bj ,a′′

j+1,b′′
j+1,...,a′′

n,b′′n
⊆ SEMI HULLn

a1,b1,...,aj−1,bj−1,aj ,b′
j
...,a′

n,b′n
,

but v1, . . . , vk−1 are chosen to be the minimum possible values, thus only uk, . . . , ul can vary
for a′′j+1, b

′′
j+1, . . . , a

′′
n, b′′n).

Thus, Θ (along with Ψ) essentially witnesses that
{SEMI HULLn

a1,b1,...,aj−1,bj−1,aj ,bj ,a′′
j+1,b′′

j+1,...,a′′
n,b′′n

|

(a1, b1, . . . , aj−1, bj−1, aj , bj , a
′′
j+1, b

′′
j+1, . . . , a

′′
n, b′′n) is S-valid } ≤TxtEx LQ′′′

(since parameters
for the first k − 1 INITs are fixed in Q′ to be v1, . . . , vk−1). This is not possible by induction
hypothesis (since LQ′′

6≤TxtEx LQ′′′

).

Corollary 6 Suppose S is rat+-covering. Let Q = (q1, . . . , q2n), where q2i+1 = INIT and
q2i+2 = COINIT, for i < n. Suppose Q′ ∈ BASIC∗ is such that LQ 6≤ LQ′

. Then,
SEMI HULLn,S 6≤TxtEx LQ′

.

8 Q-classes Which Are Reducible to SEMI HULL
n,S

In this section we establish the best possible lower bound on the complexity of SEMI HULLn,S

in terms of the Q-classes. One can ask the question: using a learner powerful enough to learn
SEMI HULLn,S, can a learner learn languages from the hierarchy based on BASIC? The next
result shows that, using a learner able to learn SEMI HULLn,S , one can learn all languages in
(HALF, INIT, . . . , INIT), where INIT is taken n − 1 times.

We begin with two useful technical propositions.

Proposition 19 Suppose S is rat+-covering. Then there exists an S′ ⊆ S, such that S′ is
rat+-covering, and for all b, b′ ∈ S′, if b < b′ then 2b < b′.
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Proof. Suppose h is an isomorphism from Z to S such that h(i) < h(i + 1). Define h′ as
follows: h′(0) = h(0). Suppose we have defined h′(i) and h′(−i). Then define h′(i + 1) and
h′(−i − 1) as follows. h′(i + 1) = h(j), such that h(j) > 2h′(i), and h′(−i − 1) = h(j′) such
that h(j′) < h′(−i)/2. Note that such j and j′ exist since S is rat+-covering. It immediately
follows that S′ = range(h′) satisfies the requirements of the Proposition.

Proposition 20 Suppose S′ ⊆ S. Then SEMI HULLn,S′

≤TxtEx SEMI HULLn,S.

Proof. Follows trivially, since SEMI HULLn,S′

⊆ SEMI HULLn,S.

Theorem 5 Suppose S is rat+-covering. Let n ∈ N+, and Q = (q1, q2, . . . , qn), where q1 =
HALF, and for 2 ≤ i ≤ n, qi = INIT.

Then, LQ ≤TxtEx SEMI HULLn,S.

Proof. The intuitive idea of the reduction is as follows. Fix the first break point to be a1 = 1.
The first HALF -component can be reduced to the first slope b1. Then the (j − 1)-th INIT-
component ij is reduced to aj . Then bj is fixed based on aj in such a way that ij < i′j would
imply aj < a′j and bj > b′j +

∑

j<i≤n b′i, for any potential values of b′i, i > j. This ensures the
desired monotonicity in the definition of the reducing operator Θ.

Now we proceed with the formal proof.
Without loss of generality (using Propositions 19 and 20) we can assume that,
(PropertyH) for each b, b′ ∈ S, if b < b′, then 2b < b′.
Let h be an isomorphism from Z to S such that h(i) < h(i + 1).
For i1 ∈ Z, and i2, . . . , in ∈ N , let map(i1, i2, . . . , in) = (a1, b1, . . . , an, bn), where aj , bj , 1 ≤

j ≤ n are defined as follows. a1 = 1, b1 = h(i1 − a1). Suppose we have defined a1, b1, . . . , ak, bk.
Then let Ak+1 = {x ∈ N | x > ak, [

∑

1≤i≤k bi ∗ (x .− ai)] ∈ N}, and then let ak+1 to be the
(ik+1 + 1)-th least element in Ak+1. Let bk+1 = h(i1 − ak+1).

Claim 3 (i1, i2, . . . , in) <Q (i′1, i
′
2, . . . , i

′
n) implies

SEMI HULL
n,S

map(i1,...,in) ⊂ SEMI HULL
n,S

map(i′1,...,i′n).

Proof. Suppose (i1, i2, . . . , in) <Q (i′1, i
′
2, . . . , i

′
n). Suppose

map(i1, . . . , in) = (a1, b1, . . . , an, bn) and map(i′1, . . . , i
′
n) = (a′1, b

′
1, . . . , a

′
n, b′n).

We consider the following cases.
Case 1: i1 > i′1.

In this case
(1) b1 > b′1, and
(2) a1 = a′1 = 1.
From (1) and (PropertyH) it follows that
(3) b1 > 2 ∗ b′1.
Now, for 1 ≤ i < n, since a′i < a′i+1, and b′i = h(i′1 − a′i), we have b′i > b′i+1. Thus,

b′i > 2 ∗ b′i+1, for 1 ≤ i < n by hypothesis about elements of S.
Thus,

∑

1≤i≤n b′i ≤ 2b′1. Along with (3), we have that b1 >
∑

1≤i≤n b′i. This along with

(2), Proposition 11 and Proposition 15 gives SEMI HULL
n,S
a1,b1,...,an,bn

⊆ SEMI HULL
1,S
a1,b1

⊂

SEMI HULL
n,S

a′
1,b′1,...,a′

n,b′n
.

Case 2: For some j, 1 < j ≤ n, for 1 ≤ k < j, ik = i′k, but ij < i′j.
In this case
(4) ai = a′i and bi = b′i, for 1 ≤ i < j.
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(5) bj > b′j , and
(6) aj < a′j .
From (5) and (PropertyH) it follows that
(7) bj > 2 ∗ b′j .
Now, for 1 ≤ i < n, since a′i < a′i+1, and b′i = h(i′1 − a′i), we have b′i > b′i+1. Thus,

b′i > 2 ∗ b′i+1, for 1 ≤ i < n by hypothesis about elements of S.
Thus,

∑

j≤i≤n b′i ≤ 2b′j . This, along with (7) gives us that bj >
∑

j≤i≤n b′i.

Thus using (6), Proposition 11 and Proposition 15 we have SEMI HULL
n,S
a1,b1,...,an,bn

⊆

SEMI HULL
j,S
a1,b1,...,aj ,bj

⊂ SEMI HULL
n,S

a′
1,b′1,...,a′

n,b′n
.

Claim follows from above cases. 2

For any X ⊆ N , let Θ(X) =
⋃

〈i1,...,in〉∈X SEMI HULLn
map(i1,...,in).

Thus, it follows that Θ(LQ
i1,i2,...,in

) = SEMI HULL
n,S

map(i1,...,in).
Define Ψ as follows. If a sequence α of grammar converges to a grammar for

SEMI HULL
n,S

map(i1,...,in), then Ψ(α) converges to a grammar for LQ
i1,i2,...,in

.

It is now easy to verify that Θ and Ψ witness that LQ ≤TxtEx SEMI HULLn,S .

We now show that the above result is in some sense the best possible with respect to the Q-
classes considered in this paper. For example, as Corollary 9 and 10 show, being able to learn the
classes SEMI HULLn,S cannot help to learn languages even in the classes (COINIT, COINIT)
and (INIT, COINIT).

The following technical result will be used to show that the Q-classes with n + 1 INITs in
Q cannot be reduced to SEMI HULLn,S.

Theorem 6 Let n ∈ N+. Suppose 0 ≤ j ≤ n. Q = (q1, q2, . . . , qn+1−j), where qi = INIT,
for 1 ≤ i ≤ n − j + 1. Let R = R1 × R2 × . . . × Rn+1−j, where R1 is of cardinality at least
2 and, for 2 ≤ i ≤ n + 1 − j, Ri is an infinite subset of N . Suppose S is rat+-covering, and
(a1, b1, . . . , aj , bj) is S-valid.

Then,
LQ,R 6≤TxtEx {SEMI HULLn

a1,b1,...,aj ,bj ,a′
j+1,b′

j+1,...,a′
n,b′n

| (a1, b1, . . . , aj , bj , a
′
j+1, b

′
j+1, . . . , a

′
n, b′n)

is S-valid }.

Proof. We prove the theorem by reverse induction on j (from n to 0). For
j = n, theorem clearly holds (since LQ,R contains at least two languages, whereas
{SEMI HULLn

a1,b1,...,aj ,bj ,a′
j+1,b′

j+1,...,a′
n,b′n

| (a1, b1, . . . , aj , bj , a
′
j+1, b

′
j+1, . . . , a

′
n, b′n) is S-valid }

contains only one language).
So suppose the theorem holds for j′ < j ≤ n. Then, we show that the theorem holds for

j = j′.
Suppose by way of contradiction that Θ (along with some Ψ) witnesses that LQ,R ≤TxtEx

{SEMI HULLn
a1,b1,...,aj ,bj ,a′

j+1,b′
j+1,...,a′

n,b′n
| (a1, b1, . . . , aj , bj, a

′
j+1, b

′
j+1, . . . , a

′
n, b′n) is S-valid },

for some S-valid (a1, b1, . . . , aj , bj).

Let w be the minimal element in R1. For i ∈ R2, suppose Θ(LQ

w,i,min(R3),min(R4),...) =

SEMI HULL
n,b

a1,b1,...,aj ,bj ,aj+1(i),bj+1(i),...,an(i),bn(i). If, as i varies, aj+1(i) takes arbi-

trarily large value then, for w′ > w, w′ ∈ R1, Θ(LQ

w′,min(R2),min(R3),...
) =

SEMI HULL
j
a1,b1,...,aj ,bj

and is thus not a member of {SEMI HULLn
a1,b1,...,aj ,bj ,a′

j+1,b′
j+1,...,a′

n,b′n
|

(a1, b1, . . . , aj , bj, a
′
j+1, b

′
j+1, . . . , a

′
n, b′n) is S-valid }.

So suppose i1 ∈ R2 maximizes aj+1(i1). Now for i > i1, if bj+1(i) takes arbitrarily small
value, then for w′ > w,
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Θ(LQ

w′,min(R2),min(R3),...
) ⊇

⋃

b′
j+1∈S SEMI HULL

j

a1,b1,...,aj ,bj ,aj+1(i1),b′j+1
. However, any member

of {SEMI HULLn
a1,b1,...,aj ,bj ,a′

j+1,b′
j+1,...,a′

n,b′n
| (a1, b1, . . . , aj , bj, a

′
j+1, b

′
j+1, . . . , a

′
n, b′n) is S-valid},

misses out infinitely
many elements in

⋃

b′
j+1∈S SEMI HULL

j

a1,b1,...,aj ,bj ,aj+1(i1),b′j+1
. Thus, Θ(LQ

w′,min(R2),min(R3),...) 6∈

{SEMI HULLn
a1,b1,...,aj ,bj ,a′

j+1,b′
j+1,...,a′

n,b′n
| (a1, b1, . . . , aj , bj , a

′
j+1, b

′
j+1, . . . , a

′
n, b′n) is S-valid}.

So, suppose i2 > i1, i2 ∈ R2, minimizes b1(i2).
Thus, Θ (along with Ψ) essentially

witnesses that that LQ′,R′

≤TxtEx {SEMI HULLn
a1,b1,...,aj ,bj ,aj+1(i2),bj+1(i2),a′

j+2,b′
j+2,...,a′

n,b′n
|

(a1, b1, . . . , aj , bj, aj+1(i2), bj+1(i2), a
′
j+2, b

′
j+2, . . . , a

′
n, b′n) is S-valid}, where Q′ is obtained by

dropping q1 from Q. R′ is obtained from R by dropping R1 and changing R2 to R2−{x | x ≤ i2}.
This is a contradiction to induction hypothesis.

Corollary 7 Suppose Q = (q1, q2, . . . , qn+1), where qi = INIT, for 1 ≤ i ≤ n + 1. Suppose S
is rat+-covering.

Then, LQ 6≤TxtEx SEMI HULLn,S.

Proof similar to the one used in proving Theorem 6 above can be used to show the following
theorem (we just need to interchange the role of w and w′ in the proof, for j = 0 case).

Theorem 7 Let n ∈ N+, and Q = (q1, q2, . . . , qn+1), where q1 = COINIT, and qi = INIT, for
2 ≤ i ≤ n + 1. Let R = R1 × R2 × . . . × Rn+1, where R1 is of cardinality at least 2 and, for
2 ≤ i ≤ n + 1, Ri is an infinite subset of N . Suppose S is any rat+-covering set.

Then, LQ,R 6≤TxtEx SEMI HULLn,S.

Corollary 8 Suppose Q = (q1, q2, . . . , qn+1), where q1 = COINIT, and qi = INIT, for 2 ≤ i ≤
n + 1. Suppose S is rat+-covering.

Then, LQ 6≤TxtEx SEMI HULLn,S.

Do there exist Q-classes reducible to SEMI HULLn,S with COINIT on the second or greater
positions in Q? Our next results show that even (COINIT, COINIT) and (INIT, COINIT) are
not reducible to SEMI HULLn,S .

Based on Corollary 3, let us define <valid as follows.

Definition 19 Suppose (a1, b1, . . . , an, bn) and (a′1, b
′
1, . . . , a

′
n, b′n) are valid. Then,

(a1, b1, . . . , an, bn) <valid (a′1, b
′
1, . . . , a

′
n, b′n) iff there exists an i, 1 ≤ i ≤ n such that, for

1 ≤ j < i, aj = a′j , bj = b′j and ai < a′i or ai = a′i and bi > b′i.

Note that <valid imposes a total order among valid sequences of form (a1, b1, . . . , an, bn).
Moreover, SEMI HULLn

a1,b1,...,an,bn
⊂ SEMI HULLn

a′
1,b′1,...,a′

n,b′n
, implies (a1, b1, . . . , an, bn) <valid

(a′1, b
′
1, . . . , a

′
n, b′n).

Similarly define (a1, b1, . . . , an, bn) ≤valid (a′1, b
′
1, . . . , a

′
n, b′n) iff (a1, b1, . . . , an, bn) <valid

(a′1, b
′
1, . . . , a

′
n, b′n) or (a1, b1, . . . , an, bn) = (a′1, b

′
1, . . . , a

′
n, b′n).

≥valid and >valid can be similarly defined.
For any fixed n ∈ N , X ⊆ {(a1, b1, . . . , an, bn) | (a1, b1, . . . , an, bn) ∈ VALIDS},

let maxvalid(X) = (a1, b1, . . . , an, bn) ∈ X, if any, such that (∀(a′1, b
′
1, . . . , a

′
n, b′n) ∈

X)[(a′1, b
′
1, . . . , a

′
n, b′n) ≤valid (a1, b1, . . . , an, bn)].

Similarly, let minvalid(X) = (a1, b1, . . . , an, bn) ∈ X, if any, such that (∀(a′1, b
′
1, . . . , a

′
n, b′n) ∈

X)[(a1, b1, . . . , an, bn) ≤valid (a′1, b
′
1, . . . , a

′
n, b′n)].

28



Proposition 21 Suppose n ∈ N , S is rat+-covering, and X ⊆ {(a1, b1, . . . , an, bn) |
(a1, b1, . . . , an, bn) ∈ VALIDS}. Then, if minvalid(X) does not exist, then no subset of
(
⋂

I∈X SEMI HULLn
I ) belongs to SEMI HULLn,S.

Proof. Suppose S, X is given as above, and minvalid(X) does not exist. Then, there ex-
ists a j, such that for some a1, b1, . . . , aj−1, bj−1, aj , there exist arbitrarily large bj such that
(a1, b1, . . . , aj−1, bj−1, aj , bj , . . .) ∈ X, for some aj+1, bj+1, . . . , an, bn, (which may depend on bj).
Thus,

⋂

I∈X SEMI HULLn
I ⊆ {(x, y) | x ≤ aj}. But no subset of {(x, y) ∈ N2 | x ≤ aj} belongs

to SEMI HULLn,S (any language L in SEMI HULLn,S satisfies: for all x, there exists a y such
that (x, y) ∈ L).

Theorem 8 Suppose S is rat+-covering and n ∈ N . Let Q = (COINIT, COINIT), R =
R1 × R2, where R2 is infinite, and R1 contains at least two elements. Then LQ,R 6≤TxtEx

SEMI HULLn,S.

Proof. Suppose by way of contradiction that LQ,R ≤TxtEx SEMI HULLn,S as witnessed by
Θ (along with Ψ).

Let w = min(R1). Suppose Θ(LQ
w,x) = SEMI HULLn

a1(x),b1(x),...an(x),bn(x), for x ∈ R2.

Note that, for x < x′, x, x′ ∈ R2, Θ(LQ
w,x) ⊃ Θ(LQ

w,x′). Thus, for x < x′, x, x′ ∈ R2,
(a1(x), . . . , bn(x)) >valid (a1(x

′), . . . , bn(x′)), by Corollary 3.
Let X = {(a1(x), b1(x), . . . , an(x), bn(x)) | x ∈ R2}.
If minvalid(X) does not exist, then for any w1 > w, w1 ∈ R1 and w2 ∈ R2, Θ(LQ

w1,w2
) ⊆

⋂

x∈R2
SEMI HULLn

a1(x),b1(x),..., does not belong to SEMI HULLn,S by Proposition 21.
So suppose x1 ∈ R2 is such that minvalid(X) = (a1(x1), b1(x1), . . . , an(x1), bn(x1)). But

then, for all x ≥ x1, (a1(x), . . . , bn(x)) ≤valid (a1(x1), . . . , bn(x1)) (due to monotonicity of Θ).
Thus, for all x ≥ x1, x ∈ R2, (a1(x), . . . , bn(x)) = (a1(x1), . . . , bn(x1)). A contradiction to Θ
(along with Ψ) witnessing that LQ,R ≤TxtEx SEMI HULLn,S .

Corollary 9 Suppose S is rat+-covering, and n ∈ N . Let Q = (COINIT, COINIT). Then
LQ 6≤TxtEx SEMI HULLn,S.

Similarly, to Theorem 8 we also have the following theorem (for proving it, we just need to
interchange the roles of LQ

w,x and LQ
w1,x in the proof of Theorem 8).

Theorem 9 Suppose n ∈ N and S is rat+-covering. Let Q = (INIT, COINIT), R =
R1 × R2, where R2 is infinite, and R1 contains at least two elements. Then LQ,R 6≤TxtEx

SEMI HULLn,S.

Corollary 10 Suppose S is rat+-covering. Let Q = (INIT, COINIT). Then LQ 6≤TxtEx

SEMI HULLn,S.

9 Definitions for Complements of Open Semi Hull

In this section we define the classes of complements of SEMI HULLs and establish some useful
propositions following from appropriate definitions.

Definition 20 Suppose a1, . . . , an ∈ N and b1, . . . , bn ∈ rat+, where 0 < a1 < a2 < . . . < an.
coSEMI HULLn

a1,b1,a2,b2,...,an,bn
= {(x, y) ∈ N2 | y <

∑

1≤i≤n bi ∗ (x .− ai)} = N2 −
SEMI HULLn

a1,b1,a2,b2,...,an,bn
.
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Definition 21 Suppose S ⊆ rat+ is rat+-covering.
coSEMI HULLn,S = {coSEMI HULLn

a1,b1,...,an,bn
| (a1, b1, . . . , an, bn) ∈ VALIDS}.

Proposition 22 Suppose (a1, b1, . . . , an, bn) and (a′1, b
′
1, . . . , a

′
m, b′m) are valid.

Then, SEMI HULLn
a1,b1,...,an,bn

⊆ SEMI HULLm
a′
1,b′1,...,a′

m,b′m
iff coSEMI HULLn

a1,b1,...,an,bn
⊇

coSEMI HULLm
a′
1,b′1,...,a′

m,b′m

Proof. Follows from the definitions.

Definition 22 Suppose a1, b1, . . . , , aj, bj are given such that (a1, b1, . . . , aj , bj) ∈ VALID.
Then, let coINTER(a1, b1, . . . , aj , bj) =

⋃

{coSEMI HULLn
a1,b1,...,aj ,bj ,...,an,bn

| n ≥ j ∧

(a1, b1, . . . , aj , bj, . . . , an, bn) ∈ VALID} = N2 − INTER(a1, b1, . . . , aj , bj).

Proposition 23 Suppose 1 ≤ j ≤ n, and (a1, b1, . . . , . . . , an, bn) and (a′1, b
′
1, . . . , a

′
m, b′m) are

valid. Then coINTER(a′1, b
′
1, . . . , a

′
m, b′m) ⊇ coSEMI HULLn

a1,b1,...,an,bn
iff

INTER(a′1, b
′
1, . . . , a

′
m, b′m) ⊆ SEMI HULLn

a1,b1,...,an,bn
.

Proof. Follows from the definitions.

Proposition 24 Suppose (a1, b1, . . . , aj−1, bj−1) is valid. Let (x, y) ∈ N2 be such that
y >

∑

1≤i<j bi(x
.− ai). Then, there exists a B′ ∈ rat+ obtainable effectively from

a1, b1, . . . , aj−1, bj−1, x and y such that for any (a′j , b
′
j), if (a1, b1, . . . , aj−1, bj−1, a

′
j , b

′
j), is valid

and (x, y) ∈ coINTER
j

a1,b1,...,aj−1,bj−1,a′
j
,b′

j

, then a′j < x and b′j ≥ B′.

Proof. Follows from Proposition 16.

10 Classes to Which coSEMI HULL
n,S is Reducible

In this section we obtain nearly the best possible upper bound on the complexity of
coSEMI HULLs in terms of Q-degrees. Intuitive upper bound LQ for Q = (q1, q2, . . . , q2n−1, q2n)
with q2i+1 = COINIT and q2i+2 = HALF can be easily established using the following learning
strategy for coSEMI HULLn,S : apply a COINIT-type strategy to learn the first break point
a1, then apply a HALF-type strategy to learn the first slope b1, etc. However, the upper bound
established below contains only n + 1 components!

Theorem 10 Suppose n ∈ N and S is rat+-covering. Suppose Q = (q1, q2, . . . , qn+1), where
q1 = INIT and qi = COINIT, for 2 ≤ i ≤ n + 1. Then coSEMI HULLn,S ≤TxtEx LQ.

Proof. The intuitive strategy for learning coSEMI HULLn,S providing the desired upper
bound operates as follows: first, it applies an INIT-type strategy to learn a bound on the
maximum slope:

∑

i bi; then, using this bound, it applies COINIT-type strategies to learn
every pair of parameters ai, bi. This COINIT-type strategy is in some sense mirror image of
the INIT-type strategy used in the proof of Theorem 3. The technical details though become
somewhat more complicated.

Now we proceed with the formal proof.
Fix S which is rat+-covering. Let h be a recursive bijection from Z to S such that h(i) <

h(i + 1). Fix code as in Proposition 18.
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Claim 4 Suppose B ∈ S. Suppose (a1, b1, . . . , aj−1, bj−1, aj , bj), (a1, b1, . . . , aj−1, bj−1, a
′
j , b

′
j) ∈

VALIDS, where bi, b
′
i ≤ B, and (aj , bj) 6= (a′j, b

′
j). Suppose

coINTER(a1, b1, . . . , aj−1, bj−1, a
′
j , b

′
j) ⊇ coSEMI HULL

j
a1,b1,...,aj−1,bj−1,aj ,bj

.

Then, code(B, a1, b1, . . . , aj−1, bj−1, a
′
j, b

′
j) < code(B, a1, b1, . . . , aj−1, bj−1, aj , bj).

Proof. By Proposition 14 and definitions of SEMI HULL, coSEMI HULL, INTER, coINTER,
we have that a′j ≤ aj .

Now, since, coINTER(a1, b1, . . . , aj−1, bj−1, a
′
j , b

′
j) ⊇ coSEMI HULL

j
a1,b1,...,aj−1,bj−1,aj ,bj

, we

have INTER(a1, b1, . . . , aj−1, bj−1, a
′
j , b

′
j) ⊆ SEMI HULL

j
a1,b1,...,aj−1,bj−1,aj ,bj

. Thus, we have

code(B, a1, b1, . . . , aj−1, bj−1, a
′
j , b

′
j) < code(B, a1, b1, . . . , aj−1, bj−1, aj , bj) (by Proposition 18;

for getting < instead of ≤ use the fact that (aj, bj) 6= (a′j , b
′
j)). 2

Let map be a mapping from VALID to N∗ such that
map(a1, b1, . . . , an, bn) =

(h−1(B), code(B, a1, b1), code(B, a1, b1, a2, b2), . . . , code(B, a1, b1, . . . , an, bn)), where B is the
least element of S such that max(h(0),

∑

1≤i≤n bi) ≤ B.

Claim 5 Suppose (a1, b1, . . . , an, bn) is S-valid. Let B = min({b ∈ S | b ≥
max(h(0),

∑

1≤i≤n bi)}).
(A) Suppose 1 ≤ j ≤ n. Suppose B ≥ b′j, and (a1, b1, . . . , aj−1, bj−1, a

′
j , b

′
j) is S-

valid. If code(B, a1, b1, . . . , aj−1, bj−1, a
′
j , b

′
j) > code(B, a1, b1, . . . , aj−1, bj−1, aj , bj). Then

coINTER(a1, b1, . . . , a
′
j , b

′
j) 6⊇ coSEMI HULL

j
a1,b1,...,aj−1,bj−1,aj ,bj

.

(B)
Suppose (a′1, b

′
1, . . . , a

′
n, b′n) is S-valid, and map(a′1, b

′
1, . . . , a

′
n, b′n) <Q map(a1, b1, . . . , an, bn).

Then either B > min({b ∈ S | b ≥ max(h(0),
∑

1≤i≤n b′i)}) or for the least j, 1 ≤ j ≤ n, such

that (aj , bj) 6= (a′j, b
′
j), coINTER(a′1, b

′
1, . . . , a

′
j , b

′
j) 6⊇ coSEMI HULL

j
a1,b1,...,aj−1,bj−1,aj ,bj

.

(C) Suppose (a′1, b
′
1, . . . , a

′
n, b′n) is S-valid,

and map(a′1, b
′
1, . . . , a

′
n, b′n) <Q map(a1, b1, . . . , an, bn). Then either B > min({b ∈ S | b ≥

max(h(0),
∑

1≤i≤n b′i)}) or coINTER(a′1, b
′
1, . . . , a

′
j , b

′
j , . . . , a

′
n, b′n) 6⊇ coSEMI HULLn

a1,b1,...,an,bn
.

(D) If coSEMI HULLn
a1,b1,...,an,bn

⊂ coSEMI HULLn
a′
1,b′1,...,a′

n,b′n
, then

map(a1, b1, . . . , an, bn) <Q map(a′1, b
′
1, . . . , a

′
n, b′n).

(E) Suppose 1 ≤ j ≤ n. There exists a finite Xj ⊆ coSEMI HULLn
a1,b1,...,aj ,bj

such that, for

all S-valid (a1, b1, . . . , aj−1, bj−1, a
′′
j , b

′′
j ), if B ≥ b′′j and code(B, a1, b1, . . . , aj−1, bj−1, a

′′
j , b

′′
j ) >

code(B, a1, b1, . . . , aj−1, bj−1, aj , bj), then coINTER(a1, b1, . . . , a
′′
j , b

′′
j ) 6⊇ Xj.

(F) There exists a finite X ⊆ coSEMI HULLn
a1,b1,...,an,bn

such that, for all S-
valid (a′1, b

′
1, . . . , a

′
n, b′n), if B = min({b ∈ S | b ≥ max(h(0),

∑

1≤i≤n b′i)}), and
map(a′1, b

′
1, . . . , a

′
n, b′n) <Q map(a1, b1, . . . , an, bn), then coINTER(a′1, b

′
1, . . . , a

′
n, b′n) 6⊇ X.

Proof. (A) Follows from Claim 4.
(B) Let B′ = min({b ∈ S | b ≥ max(h(0),

∑

1≤i≤n b′i)}). Since map(a′1, b
′
1, . . . , a

′
n, b′n) <Q

map(a1, b1, . . . , an, bn), h−1(B′) ≤ h−1(B). Therefore, B′ ≤ B, and we must have min({b ∈ S |
b ≥ max(h(0),

∑

1≤i≤n b′i)}) ≤ min({b ∈ S | b ≥ max(h(0),
∑

1≤i≤n bi)}) = B. If min({b ∈ S |
b ≥ max(h(0),

∑

1≤i≤n b′i)}) = B, then let j be the least value such that 1 ≤ j ≤ n, and (a′j , b
′
j) 6=

(aj , bj). Thus, code(B, a1, b1, . . . , aj−1, bj−1, a
′
j , b

′
j) > code(B, a1, b1, . . . , aj−1, bj−1, aj , bj). Now

part (B) follows from part (A).
(C) Since coINTER(a′1, b

′
1, . . . , a

′
j , b

′
j) ⊇ coINTER(a′1, b

′
1, . . . , a

′
j , b

′
j, . . . , a

′
n, b′n) (by Propo-

sition 12 and definitions of INTER and coINTER), and coSEMI HULL
j
a1,b1,...,aj−1,bj−1,aj ,bj

⊆

coSEMI HULLn
a1,b1,...,an,bn

(Proposition 11 and definitions of SEMI HULL, coSEMI HULL),
part (C) follows from part (B).
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(D) Suppose coSEMI HULLn
a1,b1,...,an,bn

⊂ coSEMI HULLn
a′
1,b′1,...,a′

n,b′n
. Thus, we must have

min({b ∈ S | b ≥ max(h(0),
∑

1≤i≤n b′i)}) ≥ min({b ∈ S | b ≥ max(h(0),
∑

1≤i≤n bi)}) (since
otherwise, for all but finitely many x,

∑

1≤i≤n bi(x
.− ai) > 1 +

∑

1≤i≤n b′i(x
.− a′i), which would

contradict coSEMI HULLn
a1,b1,...,an,bn

⊆ coSEMI HULLn
a′
1,b′1,...,a′

n,b′n
).

If min({b ∈ S | b ≥ max(h(0),
∑

1≤i≤n b′i)}) > min({b ∈ S | b ≥ max(h(0),
∑

1≤i≤n bi)}),
then clearly, map(a1, b1, . . . , an, bn) <Q map(a′1, b

′
1, . . . , a

′
n, b′n). If min({b ∈ S | b ≥

max(h(0),
∑

1≤i≤n b′i)}) = min({b ∈ S | b ≥ max(h(0),
∑

1≤i≤n bi)}), then (D) follows from
part (C), and the fact that coSEMI HULLn

a′
1,b′1,...,a′

n,b′n
⊆ coINTER(a′1, b

′
1, . . . , a

′
n, b′n).

(E) Let (x, y) ∈ N2 be such that (x, y) ∈ coSEMI HULLn
a1,b1,...,aj ,bj

⊆
coSEMI HULLn

a1,b1,...,an,bn
, but y >

∑

1≤i<j bi(x
.− ai). Note that there exists such (x, y).

By
Proposition 24, there exists a B′ ∈ rat+ such that, if (x, y) ∈ coINTER

j

a1,b1,...,aj−1,bj−1,a′′
j
,b′′

j
,

then a′′j < x and b′j ≥ B′. Thus, it follows that for any (a′′j , b
′′
j ), if a′′j ≥ x, or b′′j < B′, (x, y) 6∈

coINTER(a1, b1, . . . , aj−1, bj−1, a
′′
j , b

′′
j ). Now, for each a′′j < x, and b′′j ∈ S such that B′ ≤ b′′j ≤

B, if coSEMI HULL
j
a1,b1,...,aj ,bj

6⊆ coINTER(a1, b1, . . . , aj−1, bj−1, a
′′
j , b

′′
j ), then pick xa′′

j
,b′′

j
, ya′′

j
,b′′

j

such that (xa′′
j
,b′′

j
, ya′′

j
,b′′

j
) ∈ coSEMI HULL

j
a1,b1,...,aj ,bj

− coINTER(a1, b1, . . . , aj−1, bj−1, a
′′
j , b

′′
j );

if coSEMI HULL
j
a1,b1,...,aj ,bj

⊆ coINTER(a1, b1, . . . , aj−1, bj−1, a
′′
j , b

′′
j ), then let (xa′′

j
,b′′

j
, ya′′

j
,b′′

j
) =

(x, y).
Now let Xj = {(x, y)} ∪ {(xa′′

j
,b′′

j
, ya′′

j
,b′′

j
) | a′′j < x, B′ ≤ b′′j ≤ B, b′′j ∈ S}. Using part (A), it

is easy to verify that Xj witnesses the claim of part (E).
(F) Let X =

⋃

1≤j≤n Xj where Xj is as in part (E). Now, if map(a′1, b
′
1, . . . , a

′
n, b′n) <Q

map(a1, b1, . . . , an, bn), and B = min({b ∈ S | b ≥ max(h(0),
∑

1≤i≤n b′i)}), then there exists a
j, 1 ≤ j ≤ n such for 1 ≤ i < j, ai = a′i and bi = b′i and code(B, a1, b1, . . . , aj−1, bj−1, a

′
j , b

′
j) >

code(B, a1, b1, . . . , aj−1, bj−1, aj , bj). Part (F) now follows from part (E) and definition of X. 2

We now continue with the proof of the theorem. The aim is to construct Θ which maps
coSEMI HULLn

a1,b1,...,an,bn
to LQ

map(a1,b1,...,an,bn).
Note that definition of Ψ mapping grammar sequence converging to a gram-

mar for LQ

map(a1,b1,...,an,bn) to a grammar sequence converging to a grammar for
coSEMI HULLn

a1,b1,...,an,bn
would be trivial. We thus just define Θ.

Without loss of generality, we will be giving Θ as mapping sets to sets.
For any finite X ⊆ N2, let Prop(X, a1, b1, . . . , an, bn) be true iff following three properties

are satisfied. Let B = min({b ∈ S | b ≥ h(0) ∧ (∀(x, y) ∈ X)[b ≥ y
x
]}).

(A) (a1, b1, . . . , an, bn) ∈ VALIDS ,
(B) B ≥ min({b ∈ S | b ≥ max(h(0),

∑

1≤i≤n bi)})
and
(C) If B = min({b ∈ S | b ≥ max(h(0),

∑

1≤i≤n bi)}), then for all j, 1 ≤ j ≤
n, for all a′j ∈ N, b′j ∈ S such that (B, a1, b1, . . . , aj−1, bj−1, a

′
j, b

′
j) is S-valid, B ≥

b′j and code(B, a1, b1, . . . , aj−1, bj−1, a
′
j, b

′
j) > code(B, a1, b1, . . . , aj−1, bj−1, aj , bj)), [X 6⊆

coINTERa1,b1,...,aj−1,bj−1,a′
j
,b′

j
].

Note that whether X, a1, b1, . . . , an, bn, satisfy (A) and (B) and (C) is effectively testable.
Moreover, (C) along with definition of B above implies that
(D) For all (a′1, b

′
1, . . . , a

′
n, b′n) ∈ VALID such that b′i ∈ S and map(a′1, b

′
1, . . . , a

′
n, b′n) <Q

map(a1, b1, . . . , an, bn), X 6⊆ coSEMI HULL(a′1, b
′
1, . . . , a

′
n, b′n).

Thus for finite X ⊆ N2, let
Θ(X) =

⋃

{LQ

map(a1,b1,...,an,bn) | Prop(X, a1, b1, . . . , an, bn)}.

For infinite X ′, Θ(X ′) =
⋃

X⊆X′, card(X)<∞ Θ(X).
It is easy to verify that
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(1) for any X ⊆ coSEMI HULLn
a1,b1,...,an,bn

,

Θ(X) ⊆ LQ

map(a1,b1,...,an,bn) (by (D) and the fact that for any valid I and I ′, map(I) <Q

map(I ′), implies LQ

map(I) ⊆ LQ

map(I′)), and

(2) For all S-valid (a1, b1, . . . , an, bn), by Claim 5(F), there exists a finite X ⊆
coSEMI HULLn

a1,b1,...,an,bn
, such that Θ(X) ⊇ LQ

map(a1,b1,...,an,bn).

Thus, we have that Θ(coSEMI HULLn
a1,b1,...,an,bn

) = LQ

map(a1,b1,...,an,bn).

The construction in the proof of above theorem can be slightly changed along the following
lines: instead of learning first the bound on the maximum slope, one can first apply a COINIT-
type strategy trying to learn the parameters a1, b1 under assumption that b1 is smaller than
some fixed bound B ∈ rat+, and then apply an INIT-type strategy to learn both the bound
on the maximum slope and b1 if the latter becomes greater than the bound B. Thus we obtain
the following theorem.

Theorem 11 Suppose n ∈ N and S is rat+-covering. Suppose Q = (q1, q2, . . . , qn+1), where
q2 = INIT and qi = COINIT, for 1 ≤ i ≤ n + 1, i 6= 2. Then coSEMI HULLn,S ≤TxtEx LQ.

11 Classes Which are Reducible to coSEMI HULL
n,S

In this section we will get a lower bound for coSEMI HULLn,S having n components, and thus
being very close to the upper bounds obtained in the previous section.

The proof of the following theorem is similar to the proof of the lower bound for
SEMI HULLs, with COINITs replacing INITs.

Theorem 12 Suppose S is rat+-covering. Let n ∈ N+, and Q = (q1, q2, . . . , qn), where q1 =
HALF, and for 2 ≤ i ≤ n, qi = COINIT.

Then, LQ ≤TxtEx coSEMI HULLn,S.

The proof of the above theorem is given in the Appendix.
Note that upper and lower bounds for coSEMI HULLn,S given by Theorems 10, 11, and 12

do not match. The lower bound in Theorem 12 above is the best possible (for Q-classes involving
components from BASIC). However it is open whether the upper bound can be improved for
general n. For n = 1, we do know that the upper bound can be improved to show that
coSEMI HULL1,S ≤TxtEx HALF (which is optimal by Theorem 12).

12 Open Hulls - Intersections of Semi-Hulls

Now consider the class of language-figures that are intersections of SEMI HULLs adjacent to
the x-axis (that is with the first break point (a1, 0)) and reverse SEMI HULLs adjacent to the
y-axis (with the first break point (0, a′1)). These figures are the open hulls.

We give the formal definition below (preceded by the formal definition of the reverse
SEMI HULLs adjacent to the y-axis).

Definition 23 REV SEMI HULLn
a1,b1,...,an,bn

= {(x, y) | (y, x) ∈ SEMI HULLn
a1,b1,...,an,bn

}.

REV SEMI HULLn,S = {REV SEMI HULLn
a1,b1,...,an,bn

| SEMI HULLn
a1,b1,...,an,bn

∈

SEMI HULLn,S}.
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Definition 24
OP HULL

n,m
a1,b1,...,an,bn;c1,d1,...,cm,dm

= SEMI HULLn
a1,b1,...,an,bn

∩ REV SEMI HULLm
c1,d1,...,cm,dm

.

OP HULLn,m,S = {OP HULL
n,m,S
a1,b1,...,an,bn;c1,d1,...,cm,dm

| SEMI HULLn
a1,b1,...,an,bn

∈

SEMI HULLn,S, REV SEMI HULLn
c1,d1,...,cm,dm

∈ REV SEMI HULLm,S , and
∑

1≤i≤n bi <
1

∑

1≤i≤m
di
}.

The latter condition,
∑

1≤i≤n bi < 1
∑

1≤i≤m
di

, ensures that the languages in OP HULLs are

infinite, and thus the corresponding geometrical figures are open hulls.2

Surprisingly, unlike SEMI HULLs and coSEMI HULL, upper and lower bounds for
OP HULLs match. The following theorem establishes the lower bound for the OP HULLs.
Somewhat surprising is also the fact that the learnability degree of open hulls is below the
learnability degree of semi-hulls. However, the reader must note that while slopes of segments
of the border-line for semi-hulls are bounded only by both axes, the slopes of the segments of
border-lines in a open hull bound each other (the reader should note that, as we only consider
(reversed) semi-hulls with at least one angle in the theorems below, the (reversed) semi-hull
cannot contain the entire domain). Consequently, while learning the angles along both border-
lines in a open hull, the learning algorithm becomes aware of these bounds and, as it turns out,
can use a shorter sequence of the primitive strategies to learn the concept in question.

Theorem 13 Suppose S is rat+-covering. Suppose n ≥ 1, m ≥ 1. Let Q = (q1, . . . , qn), where
each qi = INIT. Then, (a) LQ ≤TxtEx OP HULLn,m,S, and (b) LQ ≤TxtEx OP HULLm,n,S.

Proof of the above Theorem is given in the Appendix. We next show the upper bound for
OP HULLs.

Theorem 14 Suppose S is rat+-covering. Suppose n ≥ m ≥ 1. Let Q = (q1, . . . , qn), where
each qi = INIT. Then, (a) OP HULLn,m,S ≤TxtEx LQ, and (b) OP HULLm,n,S ≤TxtEx LQ.

Proof of the above Theorem is given in the Appendix.

13 Complements of Open Hulls

In this section we define and explore the classes of complements of OP HULLs.

Definition 25
REV coSEMI HULLn

a1,b1,...,an,bn
= {(x, y) | (y, x) ∈ coSEMI HULLn

a1,b1,...,an,bn
}.

REV coSEMI HULLn,S = {REV coSEMI HULLn
a1,b1,...,an,bn

| coSEMI HULLn
a1,b1,...,an,bn

∈

coSEMI HULLn,S}.

Definition 26 coOP HULL
n,m
a1,b1,...,an,bn;c1,d1,...,cm,dm

= coSEMI HULLn
a1,b1,...,an,bn

∪

REV coSEMI HULLm
c1,d1,...,cm,dm

= N2 − OP HULL
n,m
a1,b1,...,an,bn;c1,d1,...,cm,dm

.

coOP HULLn,m,S = {coOP HULL
n,m,S
a1,b1,...,an,bn;c1,d1,...,cm,dm

| coSEMI HULLn
a1,b1,...,an,bn

∈

coSEMI HULLn,S , REV coSEMI HULLm
c1,d1,...,cm,dm

∈ REV coSEMI HULLm,S , and
∑

1≤i≤n bi < 1
∑

1≤i≤m
di
}.

2If we do not require
∑

1≤i≤n
bi <

1
∑

1≤i≤m
di

, then the geometrical figure may be finite. In this case, the

complexity of learnability shows similar properties as the classes considered (with the above constraint on slopes),
however the analysis becomes more complex.

34



The following theorem gives the lower bound for coOP HULLs.

Theorem 15 Suppose S is rat+-covering. Suppose n ≥ 1, m ≥ 1. Let Q = (q1, . . . , qn),
where each qi = COINIT. Then, (a) LQ ≤TxtEx coOP HULLn,m,S, and (b) LQ ≤TxtEx

coOP HULLm,n,S.

Proof of the above Theorem is given in the Appendix. The following theorem gives the upper
bound for coOP HULLs.

Theorem 16 Suppose n ≥ m ≥ 1. Let Q = (q1, . . . , qn), where each qi = COINIT. Then, (a)
coOP HULLn,m,S ≤TxtEx LQ, and (b) coOP HULLm,n,S ≤TxtEx LQ.

Proof of the above Theorem is given in the Appendix.

14 Conclusions

A new complexity scale has been successfully applied for evaluating the complexity of learning
various geometrical figures from texts. Many upper bounds obtained by us are surprisingly
lower than the ones suggested by intuitive learning strategies. Another surprising result is
that upper and lower bounds match for OP HULL and their complements, while there is a
gap between upper and lower bounds for SEMI HULLs that cannot be narrowed. One more
interesting aspect of this picture is that upper bounds for OP HULLs, the intersection of
SEMI HULLs, are much lower than that for SEMI HULLs themselves! In general, the picture
of upper and lower bounds for OP HULLs and their complements is much more uniform than
for SEMI HULLs and their complements: bounds for coOP HULLs can be obtained from the
bounds for OP HULLs by just replacing INITs by COINITs, while bounds for SEMI HULLs
and coSEMI HULLs differ even in the number of components in Q-vectors.

There are many other interesting types of geometrical concepts whose complexity can be
explored in terms of the Q-classes. For example, one can evaluate the complexity of learning
SEMI HULLs and all other figures observed in our paper dropping requirement of the first
angle being adjacent to x or y-axis. Even more promising seems to be the class of finite unions
of OP HULLs (though proofs may become technically messy). In general, we are convinced
that the Q-classes (possibly using some other basic classes/strategies) are very promising tools
for exploring the complexity of learning hard languages from texts.
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16 Appendix

16.1 Proof of Theorem 1

Theorem 1 HALF ≡TxtEx INIT × COINIT.
Proof. For a ∈ Z, let La = {x ∈ Z | x ≥ a}. For i, j ∈ N , let Xi,j = {x ∈ N | x ≤ i} × {x |
x ≥ j}.

We now define Θ and Ψ witnessing that HALF ≤TxtEx INIT × COINIT.
For any finite subset Y of Z, let Θ(Y ) =

⋃

a≥0,a∈Y X0,a ∪
⋃

a<0,a∈Y X−a,0.
It can be easily verified that Θ(La) = X0,a (if a ≥ 0), and Θ(La) = X−a,0 (if a < 0).
Ψ is defined as follows. Suppose a sequence α of grammars converges to grammar p. Suppose

i = max({x ∈ N | (∃y ∈ N)[〈x, y〉 ∈ Wp]}), and j = min({y ∈ N | (∃x ∈ N)[〈x, y〉 ∈ Wp]}).
Then, if i = 0, then Ψ(α) converges to a program for Lj. If i > 0, then Ψ(α) converges to a
program for L−i.

It is easy to verify that Θ and Ψ witness that HALF ≤TxtEx INIT × COINIT.
Now, we show that INIT × COINIT ≤TxtEx HALF.

Define h as follows:
for i, j ∈ N ,
h(i, j) = −[(i + 1)(i + 2)/2] + 1 + j, if i ≥ j;
h(i, j) = [j(j + 1)/2] − i, if i < j.

Intuitively picture h(i, j) as follows:

· · · h(2, 0) h(2, 1) h(2, 2) h(1, 0) h(1, 1) h(0, 0)
· · · −5 −4 −3 −2 −1 0

h(0, 1) h(1, 2) h(0, 2) h(2, 3) h(1, 3) h(0, 3) · · ·
1 2 3 4 5 6 · · ·

Note that for all i, j, k, l ∈ N , if i ≥ k and j ≤ l, then h(i, j) ≤ h(k, l). Now, for any set
Y ⊆ N2, let Θ(Y ) =

⋃

〈i,j〉∈Y Lh(i,j). It is easy to verify that Θ(Xi,j) = Lh(i,j).
Ψ(α) is defined as follows. If a sequence α of grammars converges to a grammar p for Lh(i,j),

then Ψ(α) converges to a grammar for Xi,j . (Note that, if p, is a grammar for some Lh(i,j),
then such i, j can be determined in the limit from p.) It is easy to verify that Θ and Ψ witness
that INIT × COINIT ≤TxtEx HALF.

16.2 Proof of Theorem 2

Theorem 2 Suppose Q = (q1, . . . , qk) ∈ BASICk and Q′ = (q′1, . . . , q
′
l) ∈ BASIC l. Let R =

R1 × R2 × · · · × Rk, R′ = R′
1 × R′

2 × · · · × R′
l, where each Ri (R′

i) is an infinite subset of N ,
if qi ∈ {INIT, COINIT} (q′i ∈ {INIT, COINIT}), and Ri (R′

i) is a subset of Z, with infinite
intersection with both N and Z−, if qi = HALF (q′i = HALF).

If Q is not a pseudo-subsequence of Q′ then LQ,R 6≤TxtEx LQ′,R′
.

Proof. We prove the theorem by double induction (first on k and then on l). For k = 0 or
l = 0 theorem clearly holds. Suppose by induction that the theorem holds for k ≤ m, l ∈ N ,
and for k = m + 1, l ≤ r. We then show that the theorem holds for k = m + 1 and l = r + 1.
Suppose by way of contradiction that Θ (along with Ψ) witnesses that LQ,R ≤TxtEx LQ′,R′

.
We consider the following cases:
Case 1: q1 = INIT.
Case 1.1: q′1 = COINIT.
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Consider σ, which minimizes i ∈ N such that 〈i, . . .〉 ∈ content(Θ(σ)). Let j ∈ N be the
maximum number such that 〈j, . . .〉 ∈ content(σ). It follows that, for any j′ > j, j′ ∈ R1,

Θ(LQ
j′,...), for any values of other parameters, is of the form LQ′

i,..., for some values of the other

parameters. Thus, Θ (along with Ψ) essentially witnesses that LQ,RR ≤TxtEx LQQ′,RR′

, where
RR is obtained from R by replacing R1 by R1 − {x | x ≤ j}, and QQ′ is obtained from Q′

by dropping q′1 and RR′ is obtained from R′ by dropping R′
1. Now we are done by induction

hypothesis.
Case 1.2: q′1 = INIT.
In this case k ≥ 2.
Case 1.2.1: q2 = INIT.
Fix i1 ∈ R1, and consider the set

⋃

i2∈R2,... Θ(LQ
i1,i2,...). Suppose this set contains 〈i′1, . . .〉,

for arbitrarily large i′1. Then for any ii1 > i1 (since LQ
ii1,... ⊇ LQ

i1,... for all possible values of

other parameters) we have that Θ(LQ

ii1,min(R2),min(R3),...
) contains elements of form 〈i′1, . . .〉 for

arbitrarily large i′1. Thus, Θ(LQ

ii1,min(R2),min(R3),...) 6∈ LQ′

.

So let i′1 be maximum value such that some element of form 〈i′1, . . .〉 is in
⋃

i2∈R2,... Θ(LQ
i1,i2,...).

Let σ be such that content(σ) ⊆ LQ
i1,i2,..., and Θ(σ) contains an element of form 〈i′1, . . .〉.

Let i2 be maximum value such that some element of form 〈i1, i2, . . .〉 is in content(σ). It follows
that, for all ii2 > i2, ii2 ∈ R2, Θ(LQ

i1,ii2,...), for any value of other parameters, is of form

LQ′

i′1,...
, for some value of other parameters. Thus, Θ (along with Ψ) essentially witnesses that

LQQ,RR ≤TxtEx LQQ′,RR′

, where QQ is obtained from Q by dropping q1, QQ′ is obtained from
Q′ by dropping q′1, RR′ is obtained from R′ by dropping R′

1 and RR is obtained from R by
dropping R1 plus changing R2 to R2 −{x | x ≤ i2}. Now we are done by induction hypothesis.

Case 1.2.2: q2 = COINIT.
In this case, by Proposition 10(a) QQ obtained from Q by dropping q1 is not a pseudo-

subsequence of Q′. Thus we are done by induction hypothesis.
Case 1.2.3: q2 = HALF.
If l = 1, then we are done. So assume l ≥ 2.
Case 1.2.3.1: q′2 = INIT or HALF.
Then, by replacing q2 by COINIT, using Proposition 10(d) we still have that Q is not a

pseudo-subsequence of Q′. Thus, we can use Case 1.2.2.
Case 1.2.3.2: q′2 = COINIT.
Then, by replacing q2 by INIT, using Proposition 10(e) we still have that Q is not a pseudo-

subsequence of Q′. Thus, we can use Case 1.2.1.
Case 1.3 q′1 = HALF.

In this case, let i ∈ R1. Suppose Θ(LQ
i,...) = LQ′

j,..., for some values of other parameters. But

then for all i′ > i, Θ(LQ
i′,...), for any value of other parameters, must be of form LQ′

j′,..., for some
value of other parameters, where j′ ≤ j. Thus, one could essentially consider Θ (along with
Ψ) as a reduction from LQ,RR to LQQ′,RR′

, where RR is obtained from R by replacing R1 by
R1−{x | x ≤ i}, QQ′ is obtained from Q′ by replacing q′1 with INIT, and RR′ is obtained from
R′ by replacing R′

1 by {x ∈ N | −x + j ∈ R′
1 − {y | y ≥ j}}. Thus we can use Case 1.2.

Case 2: q1 = COINIT. This case is very similar to Case 1. We give the analysis for
completeness sake.

Case 2.1: q′1 = INIT.

Let i ∈ N be minimum value such that Θ(LQ
...) = LQ′

i,..., for some values of the other param-

eters. Let j ∈ R1 be such that Θ(LQ
j,...) = LQ′

i,..., for some values of the parameters. It follows
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that for all j′ > j, j′ ∈ R1, Θ(LQ
j′,...), for any value of other parameters, is of form LQ′

i,..., for
some value of other parameters.

Thus, Θ (along with Ψ) essentially witnesses that LQ,RR ≤TxtEx LQQ′,RR′

, where RR is
obtained from R by replacing R1 by R1−{x | x ≤ j}, and QQ′ is obtained from Q′ by dropping
q′1 and RR′ is obtained from R′ by dropping R′

1. Now we are done by induction hypothesis.
Case 2.2: q′1 = COINIT.
In this case k ≥ 2.
Case 2.2.1: q2 = INIT.
In this case, by Proposition 10(a) QQ obtained from Q by dropping q1 is not a pseudo-

subsequence of Q′. Thus we are done by induction hypothesis.

Case 2.2.2: q2 = COINIT. Fix i1 ∈ R1, and consider Θ(LQ
i1,...) = LQ′

i′1,...
. If i′1 achieves

arbitrary high value (for some values of other parameters) then, for ii1 > i1, since LQ
ii1,0,0,... ⊆

LQ
i1,..., and

⋂

i′1∈R′
1
LQ′

i′1,...
= ∅, Θ(Lii1,0,0,...) = ∅ 6∈ LQ′,R′

.

So let i′1 be maximum value such that for some value of other parameters, Θ(LQ,R
i1,...) = LQ′,R′

i′1,...
.

let i2 be such that, for some value of other parameters, Θ(LQ,R
i1,i2,...) = LQ′,R′

i′1,...
. It follows that,

for all ii2 > i2, Θ(LQ,R
i1,ii2,...) is of form LQ′,R′

i′1,...
. Thus, Θ (along with Ψ) essentially witnesses that

LQQ,RR ≤TxtEx LQQ′,RR′

, where QQ is obtained from Q by dropping q1, QQ′ is obtained from
Q′ by dropping q′1, RR′ is obtained from R′ by dropping R′

1 and RR is obtained from R by
dropping R1 plus changing R2 to R2 −{x | x ≤ i2}. Now we are done by induction hypothesis.

Case 2.2.3: q2 = HALF.
If l = 1, then we are done. So assume l ≥ 2.
Case 2.2.3.1: q′2 = INIT or HALF.
Then, by replacing q2 by COINIT, using Proposition 10(d), we still have that Q is not a

pseudo-subsequence of Q′. Thus, we can use Case 2.2.2.
Case 2.2.3.2: q′2 = COINIT.
Then, by replacing q2 by INIT, using Proposition 10(e), we still have that Q is not a

pseudo-subsequence of Q′. Thus, we can use Case 2.2.1.
Case 3: q1 = HALF.
Case 3.1: q′1 = INIT.
Then by Proposition 10(b) replacing q1 by COINIT, still gives us that Q is not a pseudo-

subsequence of Q′. Thus, we can use Case 2.
Case 3.2: q′1 = COINIT.
Then by Proposition 10(c) replacing q1 by INIT, still gives us that Q is not a pseudo-

subsequence of Q′. Thus, we can use Case 1.
Case 3.3: q′1 = HALF.
In this case, let i ∈ R1 and consider Θ(LQ

i,...), for some value of other parameters. Suppose

it is LQ′

j,..., for some value of other parameters. Then for all i′ < i, i′ ∈ R1, Θ(LQ
i′,...) must be of

form LQ′

j′,..., where j′ ≤ j. Thus, one could essentially consider this as a reduction from LQQ,RR

to LQQ′,RR′

, where QQ is obtained from Q by replacing q1 by INIT, RR is obtained from R by
replacing R1 by {x ∈ N | −x + i ∈ R1 − {y | y ≥ i}}, QQ′ is obtained from Q′ by replacing q′1
with INIT, and RR′ is obtained from R′ by replacing R′

1 by {x ∈ N | −x+j ∈ R′
1−{y | y ≥ j}}.

Now we can use Case 1.
It follows from above cases that LQ,R 6≤TxtEx LQ′,R′

.
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16.3 Proof of Theorem 12

Proposition 25 Suppose S′ ⊆ S. Then coSEMI HULLn,S′

≤TxtEx coSEMI HULLn,S.

Theorem 12 Suppose S is rat+-covering. Let n ∈ N+, and Q = (q1, q2, . . . , qn), where
q1 = HALF, and for 2 ≤ i ≤ n, qi = COINIT.

Then, LQ ≤TxtEx coSEMI HULLn,S .
Proof. Without loss of generality (using Propositions 19 and 25) we can assume that, for each
b, b′ ∈ S, if b < b′, then 2b < b′. Let h be an isomorphism from Z to S such that h(i) < h(i+1).

Let map(i1, i2, . . . , in) = (a1, b1, . . . , an, bn), where aj , bj , 1 ≤ j ≤ n are defined as follows.
a1 = 1, b1 = h(−i1 − a1). Suppose we have defined a1, b1, . . . , ak, bk. Then let Ak+1 = {x ∈ N |
x > ak, [

∑

1≤i≤k bi ∗ (x .− ai)] ∈ N}, and then let ak+1 to be the (ik+1 + 1)-th least element in
Ak+1. Let bk+1 = h(−i1 − ak+1).

Claim 6 (i1, i2, . . . , in) <Q (i′1, i
′
2, . . . , i

′
n) implies coSEMI HULL

n,S

map(i1,...,in) ⊂

coSEMI HULL
n,S

map(i′1,...,i′n).

Proof. Suppose (i1, i2, . . . , in) <Q (i′1, i
′
2, . . . , i

′
n). Suppose

map(i1, . . . , in) = (a1, b1, . . . , an, bn) and map(i′1, . . . , i
′
n) = (a′1, b

′
1, . . . , a

′
n, b′n).

We consider the following cases.
Case 1: i1 > i′1.

In this case
(1) b1 < b′1, and
(2) a1 = a′1.
From (1) it follows that
(3) 2b1 < b′1.
Now, for 1 ≤ i < n, since ai < ai+1, and bi = h(−i1 − ai), we have bi > bi+1. Thus, bi >

2∗bi+1, for 1 ≤ i < n by hypothesis about elements of S. Thus,
∑

1≤i≤n bi ≤ 2b1. Along with (3),
we have that b′1 ≥

∑

1≤i≤n bi. This along with (2), Proposition 11, Proposition 15 and Propo-

sition 22 gives coSEMI HULL
n,S
a1,b1,...,an,bn

⊆ coSEMI HULL
1,S

a′
1,b′1

⊆ coSEMI HULL
n,S

a′
1,b′1,...,a′

n,b′n
.

Case 2: For some j, 1 < j ≤ n, ik = i′k, for 1 ≤ k < j, but ij > i′j.
In this case
(4) ai = a′i and bi = b′i, for 1 ≤ i < j.
(5) bj < b′j , and
(6) aj > a′j .
From (5) it follows that
(7) 2 ∗ bj < b′j .
Now, for 1 ≤ i < n, since ai < ai+1, bi = h(−i1 − ai), we have bi > bi+1. Thus, bi > 2 ∗ bi+1,

for 1 ≤ i < n, by hypothesis about elements of S.
Thus,

∑

j≤i≤n bi ≤ 2bj . This, along with (7) gives us that b′j >
∑

j≤i≤n bi. Thus using

(6), Proposition 11, Proposition 15, and Proposition 22 we have coSEMI HULL
n,S
a1,b1,...,an,bn

⊆

coSEMI HULL
j,S

a1,b1,...,aj−1,bj−1,a′
j
,b′

j

⊆ coSEMI HULL
n,S

a′
1,b′1,...,a′

n,b′n
.

Claim follows from above cases. 2

We let Θ(X) =
⋃

〈i1,...,in〉∈X coSEMI HULLn
map(i1,...,in).

Thus, it follows that Θ(LQ
i1,i2,...,in

) = coSEMI HULL
n,S

map(i1,...,in).
Define Ψ as follows. If a sequence α of grammars converges to a grammar for

coSEMI HULL
n,S

map(i1,...,in), then Ψ(α) converges to a grammar for LQ
i1,i2,...,in

.

It is now easy to verify that Θ and Ψ witness that LQ ≤TxtEx coSEMI HULLn,S .
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16.4 Proofs of Theorem 13 and Theorem 14

The following proposition is an obvious corollary of the definition of OP HULLs.

Proposition 26 Suppose S ⊆ S′. Then OP HULLn,m,S ≤TxtEx OP HULLn,m,S′

.

Theorem 13 Suppose S is rat+-covering. Suppose n ≥ 1, m ≥ 1. Let Q = (q1, . . . , qn), where
each qi = INIT. Then, (a) LQ ≤TxtEx OP HULLn,m,S , and (b) LQ ≤TxtEx OP HULLm,n,S.
Proof. We only show part (a). Part (b) can be proved similarly.

The desired reduction works very similarly to the analogous reduction in Theorem 5: we
just fix a REV SEMI HULL and try to reduce a language in LQ to the SEMI HULL part of
the OP HULL; the slope of the REV SEMI HULL provides a starting point for learning the
first slope b1, thus HALF being replaced with INIT in the first component of Q.

Now we proceed with the formal proof.
Without loss of generality (using Propositions 19 and 26) we can assume that, for each

b, b′ ∈ S, if b < b′, then 2b < b′. Let h be an isomorphism from Z to S such that h(i) < h(i+1).
Let (c1, d1, . . . , cm, dm) be S-valid such that

∑

1≤i≤m di < 1/h(1) (note that there clearly
exist such c1, d1, . . . , cm, dm).

Let map(i1, i2, . . . , in) = (a1, b1, . . . , an, bn; c1, d1, . . . , cm, dm), where aj , bj , 1 ≤ j ≤ n are
defined as follows. a1 = i1+1, b1 = h(−a1). Suppose we have defined a1, b1, . . . , ak, bk. Then let
Ak+1 = {x ∈ N | x > ak, [

∑

1≤i≤k bi ∗ (x .− ai)] ∈ N}, and then let ak+1 to be the (ik+1 + 1)-th
least element in Ak+1. Let bk+1 = h(−ak+1).

Note that,
for all (i1, i2, . . . , in) ∈ Nn, if map(i1, i2, . . . , in) = (a1, b1, . . . , an, bn; c1, d1, . . . , cm, dm), then
since ai < ai+1, by definition of bi, we have bi = h(−ai) > h(−ai+1) = bi+1. This along with
requirement on S gives bi > 2bi+1. Thus,

∑

1≤i≤n bi ≤ 2b1 ≤ 2h(−a1) ≤ 2h(0) < h(1). Since,
∑

1≤i≤m di < 1/h(1), we immediately have that
∑

1≤i≤n bi < 1
∑

1≤i≤m
di

, for all (i1, i2, . . . , in).

Claim 7 (i1, i2, . . . , in) <Q (i′1, i
′
2, . . . , i

′
n) implies

OP HULL
n,m,S

map(i1,...,in) ⊂ OP HULL
n,m,S

map(i′1,...,i′n).

Proof. Suppose (i1, i2, . . . , in) <Q (i′1, i
′
2, . . . , i

′
n). Suppose map(i1, . . . , in) =

(a1, b1, . . . , an, bn; c1, d1, . . . , cm, dm) and map(i′1, . . . , i
′
n) = (a′1, b

′
1, . . . , a

′
n, b′n; c1, d1, . . . , cm, dm).

Let j be the least number such that ik = i′k, for 1 ≤ k < j, and ij 6= i′j .
Thus,
(1) ai = a′i and bi = b′i, for 1 ≤ i < j.
(2) bj > b′j , and
(3) aj < a′j .
From (2) it follows that
(4) bj > 2 ∗ b′j .
Now, for 1 ≤ i < n, since a′i < a′i+1, we have b′i = h(−a′i) > h(−a′i+1) = b′i+1. Thus,

b′i > 2 ∗ b′i+1, for 1 ≤ i < n by hypothesis about elements of S.
Thus,

∑

j≤i≤n b′i ≤ 2b′j . This, along with (4) gives us that bj >
∑

j≤i≤n b′i.

Thus using (3), Proposition 11 and Proposition 15 we have SEMI HULL
n,S
a1,b1,...,an,bn

⊂

SEMI HULL
j,S
a1,b1,...,aj ,bj

⊆ SEMI HULL
n,S

a′
1,b′1,...,a′

n,b′n
.

Claim follows. 2

We now define Θ(X) for any finite set X as follows.
We let Θ(X) =

⋃

〈i1,...,in〉∈X OP HULL
n,m

map(i1,...,in).

Thus, it follows that Θ(LQ
i1,i2,...,in

) = OP HULL
n,m,S

map(i1,...,in).
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Define Ψ as follows. If a sequence α of grammars converges to a grammar for
OP HULL

n,m,S

map(i1,...,in), then Ψ(α) converges to a grammar for LQ
i1,i2,...,in

.

It is now easy to verify that Θ and Ψ witness that LQ ≤TxtEx OP HULLn,m,S.

Before proving Theorem 14 we need some propositions.

Definition 27 Suppose (a1, b1, . . . , aj , bj) is valid. REV INTER(a1, b1, . . . , aj , bj) = {(x, y) |
(y, x) ∈ INTER(a1, b1, . . . , aj , bj)}.

Definition 28 Suppose (a1, b1, . . . , aj , bj)
and (c1, d1, . . . , ck, dk) are valid. Then, INT OP HULL(a1, b1, . . . , aj , bj ; c1, d1, . . . , ck, dk) =
⋂

{OP HULL
n,m
a1,b1,...,aj ,bj ,...,an,bn;c1,d1,...,ck,dk,...,cm,dm

| n ≥ j and m ≥ k and (a1, b1, . . . , an, bn)

and (c1, d1, . . . , cm, dm) are valid and
∑

1≤i≤n bi < 1
∑

1≤i≤m
di
}.

Proposition 27 Suppose (a1, b1, . . . , aj , bj) and (c1, d1, . . . , ck, dk) are valid, and
∑

1≤i≤j bj <
1

∑

1≤i≤k
di

. Then,

(a) {(x, y) | x ≤ maxinter(a1, b1, . . . , aj , bj), y = min({y′ | (x, y′) ∈
INTER(a1, b1, . . . , aj, bj)})} ⊆ INT OP HULL(a1, b1, . . . , aj , bj; c1, d1, . . . , ck, dk).

(b) {(x, y) | y ≤ maxinter(c1, d1, . . . , ck, dk), x = min({x′ | (x′, y) ∈
REV INTER(c1, d1, . . . , cj , dj)})} ⊆ INT OP HULL(a1, b1, . . . , aj , bj; c1, d1, . . . , ck, dk).

Proof. We show only part (a). Part (b) can be proved similarly. Suppose (x0, y0) ∈ {(x, y) |
x ≤ maxinter(a1, b1, . . . , aj , bj), y = min({y′ | (x, y′) ∈ INTER(a1, b1, . . . , aj , bj)})}. Then,
1 +

∑

1≤i≤j bi(x0
.− ai) > y0 ≥

∑

1≤i≤j bi(x0
.− ai). Thus, 1 +

∑

1≤i≤j bi ∗ x0 ≥ y0. Hence,
(1)

∑

1≤i≤j bi ≥ (y0 − 1)/x0.
Clearly, (x0, y0) ∈ INTER(a1, b1, . . . , aj , bj).

Thus, (x0, y0) ∈ SEMI HULLn
a1,b1,...,aj ,bj ,...,an,bn

, for all valid (a1, b1, . . . , aj , bj , . . . , an, bn) (by
definition of INTER).

Thus, if (x0, y0) 6∈ INT OP HULL(a1, b1, . . . , aj , bj ; c1, d1, . . . , ck, dk), there must exist
a valid (c1, d1, . . . , ck, dk, . . . , cm, dm), and

∑

1≤i≤j bi < 1
∑

1≤i≤m
di

, such that (x0, y0) 6∈

REV SEMI HULLm
c1,d1,...,ck,dk,...,cm,dm

. But this would mean, x0 <
∑

1≤i≤m di(y0
.− ci) ≤

∑

1≤i≤m di(y0
.− 1). Thus,

(2)
∑

1≤i≤m di > x0/(y0 − 1).
From (1) and (2) we have
∑

1≤i≤n bi > 1
∑

1≤i≤m
di

. A contradiction to the hypothesis.

Proposition 28
Suppose (a1, b1, . . . , aj , bj), (a′1, b

′
1, . . . , a

′
j , b

′
j), (c1, d1, . . . , ck, dk), (c′1, d

′
1, . . . , c

′
k, d

′
k), are valid.

Suppose further that
∑

1≤i≤j bi < 1
∑

1≤i≤k
di

, and
∑

1≤i≤j b′i < 1
∑

1≤i≤k
d′

i

.

If INT OP HULL(a′1, b
′
1, . . . , a

′
j , b

′
j ; c

′
1, d

′
1, . . . , c

′
k, d

′
k) ⊆

OP HULL
j,k
a1,b1,...,aj ,bj ;c1,d1,...,ck,dk

, then, INTER(a′1, b
′
1, . . . , a

′
j, b

′
j) ⊆ SEMI HULL

j
a1,b1,...,aj ,bj

and

REV INTER(c′1, d
′
1, . . . , c

′
k, d

′
k) ⊆ REV SEMI HULLk

c1,d1,...,ck,dk
.

Proof. Suppose
INT OP HULL(a′1, b

′
1, . . . , a

′
j , b

′
j; c

′
1, d

′
1, . . . , c

′
k, d

′
k) ⊆ OP HULL

j,k
a1,b1,...,aj ,bj ;c1,d1,...,ck,dk

.

Thus (using Proposition 27) {(x, y) | x ≤ maxinter(a′1, b
′
1, . . . , a

′
j , b

′
j), y = min({y′ |

(x, y′) ∈ INTER(a′1, b
′
1, . . . , a

′
j , b

′
j)})} ⊆ INT OP HULL(a′1, b

′
1, . . . , a

′
j , b

′
j ; c

′
1, d

′
1, . . . , c

′
k, d

′
k) ⊆

43



OP HULLa1,b1,...,aj ,bj ;c1,d1,...,ck,dk
⊆ SEMI HULL

j
a1,b1,...,aj ,bj

. It follows that

INTER(a′1, b
′
1, . . . , a

′
j, b

′
j) ⊆ SEMI HULL

j
a1,b1,...,aj ,bj

.
Similarly, it can be shown that

REV INTER(c′1, d
′
1, . . . , c

′
k, d

′
k) ⊆ REV SEMI HULLk

c1,d1,...,ck,dk
.

Corollary 11 Suppose 1 ≤ j ≤ n, 1 ≤ k ≤ n. Let S be any rat+-covering set.
Suppose (a1, b1, . . . , aj−1, bj−1, aj , bj), (c1, d1, . . . , ck−1, dk−1, ck, dk) are S-valid, and

∑

1≤i≤j bi < 1
∑

1≤i≤k
di

.

Then, there exist only finitely many (a′j , b
′
j, c

′
k, d

′
k) such that

(i) b′j +
∑

1≤i<j bi < 1
d′

k
+
∑

1≤i<k
dk

, and

(ii) (a1, b1, . . . , aj−1, bj−1, a
′
j , b

′
j), (c1, d1, . . . , ck−1, dk−1, c

′
k, d

′
k) are S-valid, and

(iii) INTER(a1, b1, . . . , aj−1, bj−1, a
′
j , b

′
j) ⊆ SEMI HULL

j
a1,b1,...,aj ,bj

, and

REV INTER(c1, d1, . . . , ck−1, dk−1, c
′
k, d

′
k) ⊆ REV SEMI HULLk

c1,d1,...,ck,dk
.

Moreover, canonical index for the finite set of (a′j , b
′
j , c

′
k, d

′
k) satisfying above three conditions

can be obtained effectively from a1, b1, . . . , aj , bj , c1, d1, . . . , ck, dk.
Furthermore, for any (a′j, b

′
j , c

′
j , d

′
j) satisfying the above three conditions, a′j ≤ aj, c′k ≤ ck,

and if a′j = aj then b′j ≥ bj, and if c′k = ck, then d′k ≥ dk.

Proof. Suppose INTER(a1, b1, . . . , aj−1, bj−1, a
′
j , b

′
j) ⊆ SEMI HULL

j
a1,b1,...,aj ,bj

, and

REV INTER(c1, d1, . . . , ck−1, dk−1, c
′
k, d

′
k) ⊆ REV SEMI HULLk

c1,d1,...,ck,dk
. By Corollary 5

and Proposition 14 it follows that a′j ≤ aj , c′k ≤ ck, and there exists only finitely many (a′j, b
′
j)

such that b′j ≤ bj and INTER(a1, b1, . . . , aj−1, bj−1, a
′
j , b

′
j) ⊆ SEMI HULL

j
a1,b1,...,aj ,bj

, and only

finitely many (c′k, d
′
k) such that d′k ≤ dk and REV INTER(c1, d1, . . . , ck−1, dk−1, c

′
k, d

′
k) ⊆

REV SEMI HULLk
c1,d1,...,ck,dk

, and these (a′j , b
′
j), (c′k, d

′
k) can be obtained effectively

from (a1, b1, . . . , aj , bj ; c1, d1, . . . , ck, dk). Let B′
j = min({bj} ∪ {b′j | b′j ≤ bj ∧

INTER(a1, b1, . . . , aj−1, bj−1, a
′
j , b

′
j) ⊆ SEMI HULL

j
a1,b1,...,aj ,bj

}). Let D′
k = min({dk} ∪ {d′k |

d′k ≤ dk ∧ REV INTER(c1, d1, . . . , ck−1, dk−1, c
′
k, d

′
k) ⊆ REV SEMI HULLk

c1,d1,...,ck,dk
}).

Note that clause (i) in the corollary implies that b′j < 1
d′

k

and d′k < 1
b′
j

.

It follows that, for any (a′j , b
′
j , c

′
k, d

′
k) to satisfy the hypothesis of the corollary we must have

0 ≤ a′j ≤ aj , 0 ≤ c′k ≤ ck, B′
j ≤ b′j ≤ 1/D′

k, and D′
k ≤ d′k ≤ 1/B′

j . Thus, there exist only finitely
many (a′j , b

′
j , c

′
k, d

′
k) which can satisfy clauses (i), (ii) and (iii) of the corollary. Moreover since

for any (a′j , b
′
j , c

′
k, d

′
k) it is effectively testable whether clauses (i), (ii) and (iii) of the corollary

are satisfiable, we can find the canonical index for the set of (a′j , b
′
j , c

′
k, d

′
k) satisfying the clauses

(i), (ii) and (iii) of the corollary effectively from a1, b1, . . . , aj , bj , c1, d1, . . . , ck, dk.
Furthermore clause of the corollary follows using Corollary 5.

Proposition 29 Let S be any rat+-covering set. Then, there exists a recursive function Icode
with domain VALIDS × VALIDS, and range ⊆ N such that following is satisfied.

Suppose (a1, b1, . . . , aj−1, bj−1, aj , bj),
(a1, b1, . . . , aj−1, bj−1, a

′
j , b

′
j), (c1, d1, . . . , ck−1, dk−1, ck, dk), (c1, d1, . . . , ck−1, dk−1, c

′
k, d

′
k) are S-

valid, and
∑

1≤i≤j bi < 1
∑

1≤i≤k
di

and b′j +
∑

1≤i<j bi < 1
d′

k
+
∑

1≤i<k
di

. Then

(A) If INTER(a1, b1, . . . , aj−1, bj−1, a
′
j , b

′
j) ⊆ SEMI HULL

j
a1,b1,...,aj ,bj

, and

REV INTER(c1, d1, . . . , ck−1, dk−1, c
′
k, d

′
k) ⊆ REV SEMI HULLk

c1,d1,...,ck,dk
then

Icode(a1, b1, . . . , aj−1, bj−1, a
′
j , b

′
j ; c1, d1, . . . , ck−1, dk−1, c

′
k, d

′
k) ≤

Icode(a1, b1, . . . , aj−1, bj−1, aj , bj ; c1, d1, . . . , ck−1, dk−1, ck, dk).
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(B) If (aj , bj , ck, dk) 6= (a′j , b
′
j , c

′
k, d

′
k), then

Icode(a1, b1, . . . , aj−1, bj−1, a
′
j , b

′
j ; c1, d1, . . . , ck−1, dk−1, c

′
k, d

′
k) 6=

Icode(a1, b1, . . . , aj−1, bj−1, aj , bj ; c1, d1, . . . , ck−1, dk−1, ck, dk).
(C)

{Icode(a1, b1, . . . , aj−1, bj−1, a
′′
j , b

′′
j ; c1, d1, . . . , ck−1, dk−1, c

′′
k, d

′′
k) | (a1, b1, . . . , aj−1, bj−1, a

′′
j , b

′′
j ) ∈

VALIDS , (c1, d1, . . . , ck−1, dk−1, c
′′
j , d

′′
j ) ∈ VALIDS , and b′′j +

∑

1≤i<j bj < 1
d′′

k
+
∑

1≤i<k
dk
} = N .

Proof can be done along similar lines as of Proposition 18.
Now we show the upper bound for OP HULLs.

Theorem 14 Suppose S is rat+-covering. Suppose n ≥ m ≥ 1. Let Q = (q1, . . . , qn), where
each qi = INIT. Then, (a) OP HULLn,m,S ≤TxtEx LQ, and (b) OP HULLm,n,S ≤TxtEx LQ.
Proof. We show only part (a). Part (b) can be done similarly.

Intuitively, we use INIT type strategy to learn every set of parameters (ai, bi, ci, di). This
is possible based on Proposition 29 above.

Now we proceed with the formal proof.
Let h be a recursive bijection from Z to S such that h(i) < h(i + 1), for i ∈

Z. Let Icode be as in Proposition 29. For (a1, b1, . . . , an, bn) and (c1, d1, . . . , cm, dm) in
VALIDS , such that

∑

1≤i≤n bi < 1
∑

1≤i≤m
di

, we let map(a1, b1, . . . , an, bn; c1, d1, . . . , cm, dm)

= (Icode(a1, b1; c1, d1), Icode(a1, b1, a2, b2; c1, d1, c2, d2), . . .,
Icode(a1, b1, . . . , am, bm; c1, d1, . . . , cm, dm), Icode(a1, b1, . . . , am+1, bm+1; c1, d1, . . . , cm, dm), . . .
Icode(a1, b1, . . . , an, bn; c1, d1, . . . , cm, dm))

Claim 8 Suppose (a1, b1, . . . , an, bn) and (a′1, b
′
1, . . . , a

′
n, b′n), (c1, d1, . . . , cm, dm) and

(c′1, d
′
1, . . . , c

′
m, d′m), are S-valid, and

∑

1≤i≤n bi < 1
∑

1≤i≤m
di

, and
∑

1≤i≤n b′i < 1
∑

1≤i≤m
d′

i

.

(A) Suppose
map(a′1, b

′
1, . . . , a

′
n, b′n; c′1, d

′
1, . . . , c

′
m, d′m) <Q map(a1, b1, . . . , an, bn; c1, d1, . . . , cm, dm). Then,

for the least j
such that (aj, bj , cmin(j,m), dmin(j,m)) 6= (a′j , b

′
j, c

′
min(j,m), d

′
min(j,m)), INTER(a1, b1, . . . , aj , bj) 6⊆

SEMI HULL
j

a1,b1,...,aj−1,bj−1,a′
j
,b′

j

, or REV INTER(c1, d1, . . . , cmin(j,m), dmin(j,m)) 6⊆

REV SEMI HULL
j

c1,d1,...,cmin(j,m)−1,dmin(j,m)−1,c′
min(j,m)

,d′
min(j,m)

.

(B) Suppose map(a′1, b
′
1, . . . , a

′
n, b′n; c′1, d

′
1, . . . , c

′
m, d′m) <Q

map(a1, b1, . . . , an, bn; c1, d1, . . . , cm, dm). Then, INTER(a1, b1, . . . , aj , bj , . . . , an, bn) 6⊆
SEMI HULLn

a′
1,b′1,...,a′

n,b′n
or REV INTER(c1, d1, . . . , cm, dm) 6⊆ REV SEMI HULLm

c′1,d′1,...,c′m,d′m
.

(C) Suppose OP HULL
n,m
a1,b1,...,an,bn;c1,d1,...,cm,dm

⊂ OP HULL
n,m

a′
1,b′1,...,a′

n,b′n;c′1,d′1,...,c′m,d′m
. Then

map(a1, b1, . . . , an, bn; c1, d1, . . . , cm, dm) <Q map(a′1, b
′
1, . . . , a

′
n, b′n; c′1, d

′
1, . . . , c

′
m, d′m).

(D)
Suppose map(a′1, b

′
1, . . . , a

′
n, b′n; c′1, d

′
1, . . . , c

′
m, d′m) <Q map(a1, b1, . . . , an, bn; c1, d1, . . . , cm, dm).

Then, {(x, y) ∈ N2 | x ≤ maxinter(a1, b1, . . . , an, bn) and y = min({y′ | (x, y′) ∈
INTER(a1, b1, . . . , an, bn)}) or y ≤ maxinter(c1, d1, . . . , cm, dm) and x = min({x′ | (x′, y) ∈
REV INTER(c1, d1, . . . , cm, dm)})} 6⊆ OP HULL

n,m

a′
1,b′1,...,a′

n,b′n;c′1,d′1,...,c′m,d′m
.

Proof. (A)
Let j be least number such that (aj, bj , cmin(j,m), dmin(j,m)) 6= (a′j, b

′
j , c

′
min(j,m), d

′
min(j,m)).

Note that, for i < j, we must have Icode(a1, b1, . . . , ai, bi; c1, d1, . . . , cmin(i,m), dmin(i,m)) =
Icode(a′1, b

′
1, . . . , a

′
i, b

′
i; c

′
1, d

′
1, . . . , c

′
min(i,m), d

′
min(i,m)). If INTER(a1, b1, . . . , aj , bj) ⊆

SEMI HULL
j

a1,b1,...,aj−1,bj−1,a′
j
,b′

j

and REV INTER(c1, d1, . . . , cmin(j,m), dmin(j,m)) ⊆
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REV SEMI HULL
j

c1,d1,...,cmin(j,m)−1,dmin(j,m)−1,c′
min(j,m)

,d′
min(j,m)

,

then, by Proposition 29 we would have Icode(a1, b1, . . . , aj , bj ; c1, d1, . . . , cmin(j,m), dmin(j,m)) <
Icode(a′1, b

′
1, . . . , a

′
j , b

′
j ; c

′
1, d

′
1, . . . , c

′
min(j,m), d

′
min(j,m)). Thus,

map(a1, b1, . . . , an, bn; c1, d1, . . . , cmin(j,m), dmin(j,m)) <Q

map(a′1, b
′
1, . . . , a

′
n, b′n; c′1, d

′
1, . . . , c

′
min(j,m), d

′
min(j,m)), a contradiction to the hypothesis.

(B)
Follows from the fact that INTER(a1, b1, . . . , aj , bj) ⊆ INTER(a1, b1, . . . , aj , bj , . . . , an, bn),
REV INTER(c1, d1, . . . , cmin(j,m), dmin(j,m)) ⊆
REV INTER(c1, d1, . . . , cmin(j,m), dmin(j,m), . . . , cm, dm),

SEMI HULLn
a′
1,b′1,...,a′

n,b′n
⊆ SEMI HULL

j

a′
1,b′1,...,a′

j
,b′

j

and REV SEMI HULLm
c′1,d′1,...,c′m,d′m

⊆

REV SEMI HULL
j

c′1,d′1,...,c′
min(j,m)

,d′
min(j,m)

and part (A).

(C) If
OP HULL

n,m
a1,b1,...,an,bn;c1,d1,...,cm,dm

⊂ OP HULL
n,m

a′
1,b′1,...,a′

n,b′n;c′1,d′1,...,c′m,d′m
, then by Proposition 28,

INTER(a1, b1, . . . , an, bn) ⊆ SEMI HULLn
a′
1,b′1,...,a′

n,b′n
and REV INTER(c1, d1, . . . , cm, dm) ⊆

REV SEMI HULLm
c′1,d′1,...,c′m,d′m

. Now part (C) follows from part (B).

(D) Follows from (B) and definition of OP HULLn,m. 2

We now continue with the proof of the theorem. The aim is to construct Θ which maps
OP HULL

n,m,S
a1,b1,...,an,bn;c1,d1,...,cm,dm

to LQ

map(a1,b1,...,an,bn;c1,d1,...,cm,dm).
Note that definition of Ψ mapping grammar sequence converging to a grammar

for LQ

map(a1,b1,...,an,bn;c1,d1,...,cm,dm) to a grammar sequence converging to a grammar for

OP HULL
n,m
a1,b1,...,an,bn;c1,d1,...,cm,dm

would be trivial. We thus just define Θ.
Without loss of generality, we will be giving Θ as mapping sets to sets.
For any finite X ⊆ N2, let Prop(X, a1, b1, . . . , an, bn; c1, d1, . . . , cm, dm) be true iff following

two properties are satisfied.
(A) (a1, b1, . . . , an, bn) ∈ VALIDS , (c1, d1, . . . , cm, dm) ∈ VALIDS , and

∑

1≤i≤n bi <
1

∑

1≤i≤m
di

.

(B) For all (a′1, b
′
1, . . . , a

′
n, b′n), (c′1, d

′
1, . . . , c

′
m, d′m) ∈ VALIDS ,

∑

1≤i≤n b′i < 1
∑

1≤i≤m
d′

i

, such

that map(a′1, b
′
1, . . . , a

′
n, b′n; c′1, d

′
1, . . . , c

′
m, d′m) <Q map(a1, b1, . . . , an, bn; c1, d1, . . . , cm, dm),

X 6⊆ OP HULL
n,m

a′
1,b′1,...,a′

n,b′n;c′1,d′1,...,c′m,d′m
.

Note that condition (B) above is equivalent to
(B’) For all j, 1 ≤ j ≤ n, for all a′j , c

′
min(j,m) ∈ N, b′j , d

′
min(j,m) ∈ S, such that b′j +

∑

1≤i<j bi <
1

d′
min(j,m)

+
∑

1≤i<min(j,m)
d′

i

,

if Icode(a1, b1, . . . , aj−1, bj−1, a
′
j , b

′
j ; c1, d1, . . . , cmin(j,m)−1, dmin(j,m)−1, c

′
min(j,m), d

′
min(j,m)) <

Icode(a1, b1, . . . , aj−1, bj−1, aj , bj ; c1, d1, . . . , cmin(j,m)−1, dmin(j,m)−1, cmin(j,m), dmin(j,m)), then

[X 6⊆ OP HULL
j,min(j,m)
a1,b1,...,aj−1,bj−1,a′

j
,b′

j
;c1,d1,...,cmin(j,m)−1,dmin(j,m)−1,c′

min(j,m)
,d′

min(j,m)
].

Note that whether X, a1, b1, . . . , an, bn, c1, d1, . . . , cm, dm, satisfy (A) and (B’), for all j,
1 ≤ j ≤ n, is effectively testable.

Thus, for finite X ⊆ N2, let
Θ(X) =

⋃

{LQ

map(a1,b1,...,an,bn) | Prop(X, a1, b1, . . . , an, bn)}.

For infinite X ′, Θ(X ′) =
⋃

X⊆X′, card(X)<∞ Θ(X).
It is easy to verify that
(1) for any X ⊆ OP HULL

n,m
a1,b1,...,an,bn;c1,d1,...,cm,dm

,

Θ(X) ⊆ LQ

map(a1,b1,...,an,bn;c1,d1,...,cm,dm) (due to clause (B) in definition of Prop above, and

the fact that for any valid I and I ′, map(I) <Q map(I ′), implies LQ

map(I) ⊆ LQ

map(I′)), and
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(2) for any finite set X such that {(x, y) ∈ N2 | x ≤ maxinter(a1, b1, . . . , an, bn) and
y = min({y′ | (x, y′) ∈ INTER(a1, b1, . . . , an, bn)}) or y ≤ maxinter(c1, d1, . . . , cm, dm)
and x = min({x′ | (x′, y) ∈ REV INTER(c1, d1, . . . , cm, dm)})} ⊆ X ⊆
OP HULL

n,m
a1,b1,...,an,bn;c1,d1,...,cm,dm

,

Θ(X) ⊇ LQ

map(a1,b1,...,an,bn;c1,d1,...,cm,dm).

(By Claim 8(D), and definition of Prop and Θ).
Thus, we have that

Θ(OP HULL
n,m
a1,b1,...,an,bn;c1,d1,...,cm,dm

) = LQ

map(a1,b1,...,an,bn;c1,d1,...,cm,dm).

16.5 Proofs of Theorem 15 and Theorem 16

Proposition 30 Suppose S ⊆ S′. Then coOP HULLn,m,S ≤TxtEx coOP HULLn,m,S′

.

The following theorem gives the lower bound for coOP HULLs.
Theorem 15 Suppose S is rat+-covering. Suppose n ≥ 1, m ≥ 1. Let Q = (q1, . . . , qn),
where each qi = COINIT. Then, (a) LQ ≤TxtEx coOP HULLn,m,S, and (b) LQ ≤TxtEx

coOP HULLm,n,S.
Proof. We only show part (a). Part (b) can be proved similarly. The proof is very similar to
the proof of lower bound for OP HULLs with INITs being replaced by COINITs. Without loss
of generality (using Propositions 19 and 30) we can assume that, for each b, b′ ∈ S, if b < b′,
then 2b < b′. Let h be an isomorphism from Z to S such that h(i) < h(i + 1).

Let (c1, d1, . . . , cm, dm) be S-valid such that
∑

1≤i≤m di < 1/h(1) (note that there clearly
exist such c1, d1, . . . , cm, dm).

Let map(i1, i2, . . . , in) = (a1, b1, . . . , an, bn; c1, d1, . . . , cm, dm), where aj , bj , 1 ≤ j ≤ n are
defined as follows. a1 = i1+1, b1 = h(−a1). Suppose we have defined a1, b1, . . . , ak, bk. Then let
Ak+1 = {x ∈ N | x > ak, [

∑

1≤i≤k bi ∗ (x .− ai)] ∈ N}, and then let ak+1 to be the (ik+1 + 1)-th
least element in Ak+1. Let bk+1 = h(−ak+1).

Note that,
for all (i1, i2, . . . , in) ∈ Nn, if map(i1, i2, . . . , in) = (a1, b1, . . . , an, bn; c1, d1, . . . , cm, dm), then
since ai < ai+1, by definition of bi, we have bi = h(−ai) > h(−ai+1) = bi+1. This along with
requirement on S gives bi > 2bi+1. Thus,

∑

1≤i≤n bi ≤ 2b1 ≤ 2h(−a1) ≤ 2h(0) < h(1). Since,
∑

1≤i≤m di < 1/h(1), we immediately have that
∑

1≤i≤n bi < 1
∑

1≤i≤m
di

, for all (i1, i2, . . . , in).

Claim 9 (i1, i2, . . . , in) <Q (i′1, i
′
2, . . . , i

′
n) implies

coOP HULL
n,m,S

map(i1,...,in) ⊂ coOP HULL
n,m,S

map(i′1,...,i′n).

Proof. Suppose (i1, i2, . . . , in) <Q (i′1, i
′
2, . . . , i

′
n). Suppose map(i1, . . . , in) =

(a1, b1, . . . , an, bn; c1, d1, . . . , cm, dm) and map(i′1, . . . , i
′
n) = (a′1, b

′
1, . . . , a

′
n, b′n; c1, d1, . . . , cm, dm).

Let j be the least number such that ik = i′k, for 1 ≤ k < j, and ij 6= i′j .
Thus,
(1) ai = a′i and bi = b′i, for 1 ≤ i < j.
(2) bj < b′j , and
(3) aj > a′j .
From (2) it follows that
(4) 2bj < b′j .
Now, for 1 ≤ i < n, since ai < ai+1, we have bi = h(−ai) > h(−ai+1) = bi+1. Thus,

bi > 2 ∗ bi+1, for 1 ≤ i < n by hypothesis about elements of S.
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Thus,
∑

j≤i≤n bi ≤ 2bj . This, along with (4) gives us that b′j >
∑

j≤i≤n bi. Thus using

(3), Proposition 11, Proposition 15, and Proposition 22, we have coSEMI HULL
n,S
a1,b1,...,an,bn

⊂

coSEMI HULL
j,S

a′
1,b′1,...,a′

j
,b′

j

⊆ coSEMI HULL
n,S

a′
1,b′1,...,a′

n,b′n
.

Claim follows. 2

We now define Θ(X) for any finite set X as follows.
We let Θ(X) =

⋃

〈i1,i2,...,in〉∈X coOP HULL
n,m

map(i1,...,in).

Thus, it follows that Θ(LQ
i1,i2,...,in

) = coOP HULL
n,m,S

map(i1,...,in).
Define Ψ as follows. If a sequence α of grammars converges to a grammar for

coOP HULL
n,m,S

map(i1,...,in), then Ψ(α) converges to a grammar for LQ
i1,i2,...,in

.

It is now easy to verify that Θ and Ψ witness that LQ ≤TxtEx coOP HULLn,m,S.

Before proving Theorem 16 we need some propositions.

Definition 29 Suppose (a1, b1, . . . , aj , bj) is valid. REV coINTER(a1, b1, . . . , aj , bj) = {(x, y) |
(y, x) ∈ coINTER(a1, b1, . . . , aj , bj)}.

Definition 30 Suppose (a1, b1, . . . , aj , bj)
and (c1, d1, . . . , ck, dk) are valid. Then, coINT OP HULL(a1, b1, . . . , aj , bj ; c1, d1, . . . , ck, dk) =
⋃

{coOP HULL
n,m
a1,b1,...,aj ,bj ,...,an,bn;c1,d1,...,ck,dk,...,cm,dm

| n ≥ j and m ≥ k and

(a1, b1, . . . , an, bn) and (c1, d1, . . . , cm, dm) are valid and
∑

1≤i≤n bi < 1
∑

1≤i≤m
di
} = N2 −

INT OP HULL(a1, b1, . . . , aj , bj; c1, d1, . . . , ck, dk).

Proposition 31 Suppose (a1, b1, . . . , aj , bj) and (c1, d1, . . . , ck, dk) are valid. Suppose
∑

1≤i≤j bi < 1
∑

1≤i≤k
di

. Let (x, y) ∈ N2 be such that 1 +
∑

1≤i<j bi(x
.− ai) ≥ y ≥

∑

1≤i<j bi(x
.− ai). Then, if (x, y) ∈ coINT OP HULL(a1, b1, . . . , aj , bj ; c1, d1, . . . , ck, dk), then

(x, y) ∈ coINTER(a1, b1, . . . , aj , bj).

Proof. Suppose (x, y) ∈ coINT OP HULL(a1, b1, . . . , aj , bj ; c1, d1, . . . , ck, dk). Then,
(x, y) ∈

⋃

{coOP HULL
n,m
a1,b1,...,aj ,bj ,...,an,bn;c1,d1,...,ck,dk,...,cm,dm

| n ≥ j and m ≥ k

and (a1, b1, . . . , an, bn) and (c1, d1, . . . , cm, dm) are valid and
∑

1≤i≤n bi < 1
∑

1≤i≤m
di
}.

Thus (x, y) ∈
⋃

{coSEMI HULLn
a1,b1,...,aj ,bj ,...,an,bn

| n ≥ j and (a1, b1, . . . , an, bn)
is valid} ∪

⋃

{REV coSEMI HULLm
c1,d1,...,ck,dk,...,cm,dm

| m ≥ k and (c1, d1, . . . , cm, dm)

is valid and
∑

1≤i≤m di < 1
∑

1≤i<j
bi
}. Thus, (x, y) ∈ coINTER(a1, b1, . . . , aj, bj) ∪

⋃

{REV coSEMI HULLm
c1,d1,...,ck,dk,...,cm,dm

| m ≥ k and (c1, d1, . . . , cm, dm) is valid and
∑

1≤i≤m di < 1
∑

1≤i<j
bi
}.

We claim that (x, y) 6∈
⋃

{REV coSEMI HULLm
c1,d1,...,ck,dk,...,cm,dm

| m ≥ k and

(c1, d1, . . . , cm, dm) is valid and
∑

1≤i≤m di < 1
∑

1≤i<j
bi
}. This would prove the proposi-

tion. Suppose by way of contradiction that (x, y) ∈ REV coSEMI HULLm
c1,d1,...,ck,dk,...,cm,dm

,

where m ≥ k, (c1, d1, . . . , cm, dm) is valid and
∑

1≤i≤m di < 1
∑

1≤i<j
bi

. But, then (x, y) ∈

REV coSEMI HULLm
c1,

∑

1≤i≤m
di

. Thus, x <
∑

1≤i≤m di(y
.− 1). If y ≤ 1, then clearly, above

cannot happen. So assume y > 1. Thus, x <
∑

1≤i≤m di(y − 1). Hence
(1) x/(y − 1) <

∑

1≤i≤m di.
However, y ≤ 1 +

∑

1≤i<j bi(x
.− ai). Thus, y − 1 ≤

∑

1≤i<j bi(x
.− ai). Thus, y − 1 ≤

∑

1≤i<j bix. Thus,
(2) (y − 1)/x ≤

∑

1≤i<j bi.

48



Multiplying (1) and (2) we have 1 ≤ [
∑

1≤i<j bi] ∗ [
∑

1≤i≤m di]. But then,
∑

1≤i≤n bi ≥
∑

1≤i<j bi ≥ 1/[
∑

1≤i≤m di]. A contradiction.

Similarly, one can show

Proposition 32 Suppose (a1, b1, . . . , aj , bj) and (c1, d1, . . . , ck, dk) are valid. Suppose
∑

1≤i≤j bi < 1
∑

1≤i≤k
di

. Let (x, y) ∈ N2 be such that 1 +
∑

1≤i<j di(y
.− ci) ≥ x ≥

∑

1≤i<j di(y
.− ci). Then, if (x, y) ∈ coINT OP HULL(a1, b1, . . . , aj , bj ; c1, d1, . . . , ck, dk), then

(x, y) ∈ REV coINTER(c1, d1, . . . , ck, dk).

Proposition 33
Suppose (a1, b1, . . . , aj , bj), (a′1, b

′
1, . . . , a

′
j , b

′
j), (c1, d1, . . . , ck, dk), (c′1, d

′
1, . . . , c

′
k, d

′
k), are valid.

Suppose further that
∑

1≤i≤j bi < 1
∑

1≤i≤k
di

, and
∑

1≤i≤j b′i < 1
∑

1≤i≤k
d′

i

.

If
coINT OP HULL(a′1, b

′
1, . . . , a

′
j , b

′
j ; c

′
1, d

′
1, . . . , c

′
k, d

′
k) ⊇ coOP HULL

j,k
a1,b1,...,aj ,bj ;c1,d1,...,ck,dk

,

then, coINTER(a′1, b
′
1, . . . , a

′
j , b

′
j) ⊇ coSEMI HULL

j
a1,b1,...,aj ,bj

and

REV coINTER(c′1, d
′
1, . . . , c

′
k, d

′
k) ⊇ REV coSEMI HULLk

c1,d1,...,ck,dk
.

Proof. Follows from Proposition 28.

Theorem 16 Suppose n ≥ m ≥ 1. Let Q = (q1, . . . , qn), where each qi = COINIT. Then, (a)
coOP HULLn,m,S ≤TxtEx LQ, and (b) coOP HULLm,n,S ≤TxtEx LQ.
Proof. We show only part (a). Part (b) can be done similarly.

Intuitively, we use COINIT type strategy to learn every set of parameters (ai, bi, ci, di). This
is possible based on Proposition 29 above using a method similar to that used in Theorem 14,
though technical details become more complicated.

Let h be a recursive bijection from Z to S such that h(i) < h(i + 1), for i ∈ Z. Let Icode
be as in Proposition 29. For (a1, b1, . . . , an, bn) and (c1, d1, . . . , cm, dm) in VALIDS , such that
∑

1≤i≤n bi < 1
∑

1≤i≤m
di

, we let map(a1, b1, . . . , an, bn; c1, d1, . . . , cm, dm) = (Icode(a1, b1; c1, d1),

Icode(a1, b1, a2, b2; c1, d1, c2, d2), . . .,
Icode(a1, b1, . . . , am, bm; c1, d1, . . . , cm, dm), Icode(a1, b1, . . . , am+1, bm+1; c1, d1, . . . , cm, dm), . . .
Icode(a1, b1, . . . , an, bn; c1, d1, . . . , cm, dm))

Claim 10 Suppose (a1, b1, . . . , aj , bj), (a1, b1, . . . , aj−1, bj−1, a
′
j , b

′
j),

(c1, d1, . . . , ck, dk), (c1, d1, . . . , ck−1, dk−1, c
′
k, d

′
k), are S-valid, where

∑

1≤i≤j bj < 1
∑

1≤i≤k
dk

,

and b′j +
∑

1≤i<j bj < 1
d′

k
+
∑

1≤i<k
dk

. Suppose (aj , bj , ck, dk) 6= (a′j , b
′
j , c

′
k, d

′
k).

Suppose coINTER(a1, b1, . . . , aj−1, bj−1, a
′
j , b

′
j) ⊇ coSEMI HULL

j
a1,b1,...,aj−1,bj−1,aj ,bj

and

REV coINTER(c1, d1, . . . , ck−1, dk−1, c
′
k, d

′
k) ⊇ REV coSEMI HULLk

c1,d1,...,ck−1,dk−1,ck,dk
, then

Icode(a1, b1, . . . , aj−1, bj−1, a
′
j , b

′
j ; c1, d1, . . . , ck−1, dk−1, c

′
k, d

′
k) <

Icode(a1, b1, . . . , aj−1, bj−1, aj , bj ; c1, d1, . . . , ck−1, dk−1, ck, dk).

Proof. By hy-
pothesis, we have INTER(a1, b1, . . . , aj−1, bj−1, a

′
j , b

′
j) ⊆ SEMI HULL

j
a1,b1,...,aj−1,bj−1,aj ,bj

and

REV INTER(c1, d1, . . . , ck−1, dk−1, c
′
k, d

′
k) ⊆ REV SEMI HULLk

c1,d1,...,ck−1,dk−1,ck,dk
. Thus, we

have Icode(a1, b1, . . . , aj−1, bj−1, a
′
j , b

′
j ; c1, d1, . . . , ck−1, dk−1, c

′
k, d

′
k) <

Icode(a1, b1, . . . , aj−1, bj−1, aj , bj ; c1, d1, . . . , ck−1, dk−1, ck, dk) (by Proposition 29; for getting <,
use the fact that (aj , bj , ck, dk) 6= (a′j , b

′
j , c

′
k, d

′
k)). 2
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Claim 11 Suppose (a1, b1, . . . , an, bn), (c1, d1, . . . , cm, dm) are S-valid, and
∑

1≤i≤n bi <
1

∑

1≤i≤m
di

.

(A) Suppose 1 ≤ j ≤ n, 1 ≤ k ≤ m. Suppose (a1, b1, . . . , aj−1, bj−1, a
′
j , b

′
j) and

(c1, d1, . . . , ck−1, dk−1, c
′
k, d

′
k) are S-valid, b′j +

∑

1≤i<j bi < 1
d′

k
+
∑

1≤i<k
di

.

Suppose Icode(a1, b1, . . . , aj−1, bj−1, a
′
j, b

′
j ; c1, d1, . . . , ck−1, dk−1, c

′
k, d

′
k) >

Icode(a1, b1, . . . , aj−1, bj−1, aj , bj ; c1, d1, . . . , ck−1, dk−1, ck, dk). Then

[coINTER(a1, b1, . . . , aj−1, bj−1, a
′
j , b

′
j) 6⊇ coSEMI HULL

j
a1,b1,...,aj−1,bj−1,aj ,bj

or REV coINTER(c1, d1, . . . , ck−1, dk−1, c
′
k, d

′
k) 6⊇ REV coSEMI HULLk

c1,d1,...,ck−1,dk−1,ck,dk
].

Thus, coINT OP HULL(a1, b1, . . . , aj−1, bj−1, a
′
j , b

′
j ; c1, d1, . . . , ck−1, dk−1, c

′
k, d

′
k) 6⊇

coOP HULL
j,k
a1,b1,...,aj−1,bj−1,aj ,bj ;c1,d1,...,ck−1,dk−1,ck,dk

.

(B) Suppose (a′1, b
′
1, . . . , a

′
n, b′n) and (c′1, d

′
1, . . . , c

′
m, d′m) are S-valid,

∑

1≤i≤n b′i < 1
∑

1≤i≤m
d′

i

.

Suppose map(a′1, b
′
1, . . . , a

′
n, b′n; c′1, d

′
1, . . . , c

′
m, d′m) <Q map(a1, b1, . . . , an, bn; c1, d1, . . . , cm, dm).

Then, for the least j such that (aj , bj , cmin(j,m), dmin(j,m)) 6=

(a′j , b
′
j , c

′
min(j,m), d

′
min(j,m)), coINTER(a1, b1, . . . , a

′
j , b

′
j) 6⊇ coSEMI HULL

j
a1,b1,...,aj−1,bj−1,aj ,bj

, or

REV coINTER(c1, d1, . . . , cmin(j,m)−1, dmin(j,m)−1, c
′
min(j,m), d

′
min(j,m)) 6⊇

REV coSEMI HULL
j
c1,d1,...,cmin(j,m)−1,dmin(j,m)−1,cmin(j,m),dmin(j,m)

.

(C) Suppose (a′1, b
′
1, . . . , a

′
n, b′n) and (c′1, d

′
1, . . . , c

′
m, d′m) are S-valid,

∑

1≤i≤n b′i < 1
∑

1≤i≤m
d′

i

.

Suppose map(a′1, b
′
1, . . . , a

′
n, b′n; c′1, d

′
1, . . . , c

′
m, d′m) <Q map(a1, b1, . . . , an, bn; c1, d1, . . . , cm, dm).

Then, coINTER(a′1, b
′
1, . . . , a

′
j , b

′
j, . . . , a

′
n, b′n) 6⊇ coSEMI HULLn

a1,b1,...,an,bn
or

REV coINTER(c′1, d
′
1, . . . , c

′
m, d′m) 6⊇ REV coSEMI HULLm

c1,d1,...,cm,dm
.

(D) Suppose (a′1, b
′
1, . . . , a

′
n, b′n) and (c′1, d

′
1, . . . , c

′
m, d′m) are S-valid,

∑

1≤i≤n b′i < 1
∑

1≤i≤m
d′

i

.

Suppose coOP HULL
n,m
a1,b1,...,an,bn;c1,d1,...,cm,dm

⊂ coOP HULL
n,m

a′
1,b′1,...,a′

n,b′n;c′1,d′1,...,c′m,d′m
. Then

map(a1, b1, . . . , an, bn; c1, d1, . . . , cm, dm) <Q map(a′1, b
′
1, . . . , a

′
n, b′n; c′1, d

′
1, . . . , c

′
m, d′m).

(E) For 1 ≤ j ≤ n, there exists a finite Xj ⊆ coOP HULL
n,m
a1,b1,...,an,bn;c1,d1,...,cm,dm

such
that, for all S-
valid (a1, b1, . . . , aj−1, bj−1, a

′
j , b

′
j), (c1, d1, . . . , cmin(j,m)−1, dmin(j,m)−1, c

′
min(j,m), d

′
min(j,m)), such

that b′j +
∑

1≤i<j bi < 1
d′
min(j,m)

+
∑

1≤i<min(j,m)
di

, if

Icode(a1, b1, . . . , aj−1, bj−1, a
′
j , b

′
j ; c1, d1, . . . , cmin(j,m)−1, dmin(j,m)−1, c

′
min(j,m), d

′
min(j,m))

> Icode(a1, b1, . . . , aj−1, bj−1, aj , bj; c1, d1, . . . , cmin(j,m)−1, dmin(j,m)−1, cmin(j,m), dmin(j,m)), then,
coINT OP HULL(a1, b1, . . . , aj−1, bj−1, a

′
j , b

′
j ; c1, d1, . . . , cmin(j,m)−1, dmin(j,m)−1, c

′
min(j,m), d

′
min(j,m))

6⊇ Xj.
(F) There

exists a finite X ⊆ coOP HULL
n,m
a1,b1,...,an,bn;c1,d1,...,cm,dm

such that, for all j, 1 ≤ j ≤ n, for S-
valid (a1, b1, . . . , aj−1, bj−1, a

′
j , b

′
j), (c1, d1, . . . , cmin(j,m)−1, dmin(j,m)−1, c

′
min(j,m), d

′
min(j,m)), such

that b′j +
∑

1≤i<j bi < 1
d′
min(j,m)

+
∑

1≤i<min(j,m)
di

, if

Icode(a1, b1, . . . , aj−1, bj−1, a
′
j , b

′
j ; c1, d1, . . . , cmin(j,m)−1, dmin(j,m)−1, c

′
min(j,m), d

′
min(j,m))

> Icode(a1, b1, . . . , aj−1, bj−1, aj , bj; c1, d1, . . . , cmin(j,m)−1, dmin(j,m)−1, cmin(j,m), dmin(j,m)), then,
coINT OP HULL(a1, b1, . . . , aj−1, bj−1, a

′
j , b

′
j ; c1, d1, . . . , cmin(j,m)−1, dmin(j,m)−1, c

′
min(j,m), d

′
min(j,m))

6⊇ X.

Proof.

(A) Suppose the hypothesis. Then, it follows
from Claim 10 that [coINTER(a1, b1, . . . , aj−1, bj−1, a

′
j , b

′
j) 6⊇ coSEMI HULL

j
a1,b1,...,aj−1,bj−1,aj ,bj

or REV coINTER(c1, d1, . . . , ck−1, dk−1, c
′
k, d

′
k) 6⊇ REV coSEMI HULLk

c1,d1,...,ck−1,dk−1,ck,dk
].
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Thus, by Proposi-
tion 33, we have coINT OP HULL(a1, b1, . . . , aj−1, bj−1, a

′
j , b

′
j ; c1, d1, . . . , ck−1, dk−1, c

′
k, d

′
k) 6⊇

coOP HULL
j,k
a1,b1,...,aj−1,bj−1,aj ,bj ;c1,d1,...,ck−1,dk−1,ck,dk

.

(B) Let j be least number such that (aj , bj , cmin(j,m), dmin(j,m)) 6= (a′j, b
′
j , c

′
min(j,m), d

′
min(j,m)).

Note that, for i < j, we must have Icode(a1, b1, . . . , ai, bi; c1, d1, . . . , cmin(i,m), dmin(i,m)) =
Icode(a′1, b

′
1, . . . , a

′
i, b

′
i; c

′
1, d

′
1, . . . , c

′
min(i,m), d

′
min(i,m)). If coINTER(a1, b1, . . . , aj−1, bj−1, a

′
j , b

′
j) ⊇

coSEMI HULL
j
a1,b1,...,aj−1,bj−1,aj ,bj

and

REV coINTER(c1, d1, . . . , cmin(j,m)−1, dmin(j,m)−1, c
′
min(j,m), d

′
min(j,m)) ⊇

REV coSEMI HULL
j
c1,d1,...,cmin(j,m)−1,dmin(j,m)−1,cmin(j,m),dmin(j,m)

, then, by part (A) we would

have Icode(a1, b1, . . . , aj , bj ; c1, d1, . . . , cmin(j,m), dmin(j,m)) >
Icode(B, a′1, b

′
1, . . . , a

′
j , b

′
j ; c

′
1, d

′
1, . . . , c

′
min(j,m), d

′
min(j,m)). Thus,

map(a1, b1, . . . , an, bn; c1, d1, . . . , cmin(j,m), dmin(j,m)) <Q

map(a′1, b
′
1, . . . , a

′
n, b′n; c′1, d

′
1, . . . , c

′
min(j,m), d

′
min(j,m)), a contradiction to the hypothesis.

(C) Follows from the fact that, for 1 ≤ j ≤ n, coINTER(a1, b1, . . . , aj , bj) ⊇
coINTER(a1, b1, . . . , aj , bj , . . . , an, bn), REV coINTER(c1, d1, . . . , cmin(j,m), dmin(j,m)) ⊇
REV coINTER(c1, d1, . . . , cmin(j,m), dmin(j,m), . . . , cm, dm),

coSEMI HULLn
a′
1,b′1,...,a′

n,b′n
⊇ coSEMI HULL

j

a′
1,b′1,...,a′

j
,b′

j

and REV coSEMI HULLm
c′1,d′1,...,c′m,d′m

⊇ REV coSEMI HULL
j

c′1,d′1,...,c′
min(j,m)

,d′
min(j,m)

and part

(B).
(D) If coOP HULL

n,m
a1,b1,...,an,bn;c1,d1,...,cm,dm

⊂ coOP HULL
n,m

a′
1,b′1,...,a′

n,b′n;c′1,d′1,...,c′m,d′m
, then

coOP HULL
n,m
a1,b1,...,an,bn;c1,d1,...,cm,dm

⊂ coINT OP HULL
n,m

a′
1,b′1,...,a′

n,b′n;c′1,d′1,...,c′m,d′m
. Thus, by

Proposition 33, coSEMI HULL(a1, b1, . . . , an, bn) ⊆ coINTERn
a′
1,b′1,...,a′

n,b′n
and

REV coSEMI HULL(c1, d1, . . . , cm, dm) ⊆ REV coINTERm
c′1,d′1,...,c′m,d′m

. Now part (D) follows

from part (C).
(E) Let (x1, y1) ∈ coSEMI HULL

j
a1,b1,...,aj ,bj

be such that 1 +
∑

1≤i<j bi(x1
.− ai) ≥ y1 >

∑

1≤i<j bi(x1
.− ai). Note that there exists such (x1, y1). By Proposition 31 if (x1, y1) ∈

coINT OP HULL(a1, b1, . . . , aj−1, bj−1, a
′′
j , b

′′
j ; c1, d1, . . . , cmin(j,m)−1, dmin(j,m)−1, c

′′
min(j,m), d

′′
min(j,m)),

then (x1, y1) ∈ coINTER(a1, b1, . . . , aj−1, bj−1, a
′′
j , b

′′
j ). Thus, by Proposition 24, there exists a

B′ ∈ rat+ such that if (x1, y1) ∈
coINT OP HULL(a1, b1, . . . , aj−1, bj−1, a

′′
j , b

′′
j ; c1, d1, . . . , cmin(j,m)−1, dmin(j,m)−1, c

′′
min(j,m), d

′′
min(j,m)),

then a′′j < x1 and b′′j > B′.
Similarly, let (x2, y2) ∈

REV coSEMI HULL
min(j,m)
c1,d1,...,cmin(j,m),dmin(j,m)

be such that 1 +
∑

1≤i<min(j,m) bi(y2
.− ai) ≥ x2 >

∑

1≤i<min(j,m) bi(y2
.− ai). Note that there exists such (x2, y2). By Proposition 32 if (x2, y2) ∈

coINT OP HULL(a1, b1, . . . , aj−1, bj−1, a
′′
j , b

′′
j ; c1, d1, . . . , cmin(j,m)−1, dmin(j,m)−1, c

′′
min(j,m), d

′′
min(j,m)),

then (x2, y2) ∈ REV coINTER(c1, d1, . . . , cmin(j,m)−1, dmin(j,m)−1, c
′′
min(j,m), d

′′
min(j,m)). Thus, by

Proposition 24, there exists a B′′ ∈ rat+ such that if (x2, y2) ∈
coINT OP HULL(a1, b1, . . . , aj−1, bj−1, a

′′
j , b

′′
j ; c1, d1, . . . , cmin(j,m)−1, dmin(j,m)−1, c

′′
min(j,m), d

′′
min(j,m)),

then c′′min(j,m) < y2 and d′′min(j,m) > B′′.

Thus, for (x1, y1) and (x2, y2) to be in
coINT OP HULLj,min(j,m)(a1, b1, . . . , aj−1, bj−1, a

′
j , b

′
j ; c1, d1, . . . , cmin(j,m)−1, dmin(j,m)−1, c

′
min(j,m), d

′
min(j,m)),

where b′j +
∑

1≤i<j bi < 1
d′
min(j,m)

+
∑

1≤i<min(j,m)
di

, we must have a′j ≤ x1, b′j ≥ B′, c′min(j,m) ≤ y2,

d′min(j,m) ≥ B′′, and b′j ≤ 1/B′′ and dmin(j,m) ≤ 1/B′. Since there are only finitely many such

(a′j , b
′
j , c

′
min(j,m), d

′
min(j,m)) with b′j , d

′
min(j,m) ∈ S, we have part (E) using part (A).
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(F) Let X =
⋃

1≤j≤n Xj where Xj is as in part (E). Now, if map(a′1, b
′
1, . . . , a

′
n, b′n) <Q

map(a1, b1, . . . , an, bn), there exists a j, 1 ≤ j ≤ n such for 1 ≤ i < j, ai = a′i and bi =
b′i and Icode(a1, b1, . . . , aj−1, bj−1, a

′
j , b

′
j ; c1, d1, . . . , cmin(j,m)−1, dmin(j,m)−1, c

′
min(j,m), d

′
min(j,m)) >

Icode(a1, b1, . . . , aj−1, bj−1, aj , bj ; c1, d1, . . . , cmin(j,m)−1, dmin(j,m)−1, cmin(j,m), dmin(j,m)).
Part (F) now follows from part (E), and definition of X. 2

We now continue with the proof of the theorem. The aim is to construct Θ which maps
coOP HULL

n,m,S
a1,b1,...,an,bn;c1,d1,...,cm,dm

to LQ

map(a1,b1,...,an,bn;c1,d1,...,cm,dm).
Note that definition of Ψ mapping grammar sequence converging to a grammar

for LQ

map(a1,b1,...,an,bn;c1,d1,...,cm,dm) to a grammar sequence converging to a grammar for

coOP HULL
n,m
a1,b1,...,an,bn;c1,d1,...,cm,dm

would be trivial. We thus just define Θ.
Without loss of generality, we will be giving Θ as mapping sets to sets.
For any finite X ⊆ N2, let Prop(X, a1, b1, . . . , an, bn; c1, d1, . . . , cm, dm) be true iff following

two properties are satisfied.
(A) (a1, b1, . . . , an, bn) ∈ VALIDS , (c1, d1, . . . , cn, dn) ∈ VALIDS , and

∑

1≤i≤n bi <
1

∑

1≤i≤m
di

.

(B) For all j, 1 ≤ j ≤ n,
for all a′j , c

′
j ∈ N, b′j , d

′
min(j,m) ∈ S, such that b′j +

∑

1≤i<j bi < 1
d′
min(j,m)

+
∑

1≤i<min(j,m)
dj

,

If Icode(a1, b1, . . . , aj−1, bj−1, a
′
j , b

′
j ; c1, d1, . . . , cmin(j,m)−1, dmin(j,m)−1, c

′
min(j,m), d

′
min(j,m)) >

Icode(a1, b1, . . . , aj−1, bj−1, aj , bj ; c1, d1, . . . , cmin(j,m)−1, dmin(j,m)−1, cmin(j,m), dmin(j,m)), then

[X 6⊆ coINT OP HULL
j,min(j,m)
a1,b1,...,aj−1,bj−1,a′

j
,b′

j
;c1,d1,...,cmin(j,m)−1,dmin(j,m)−1,c′

min(j,m)
,d′

min(j,m)
].

Note that whether X, a1, b1, . . . , an, bn, c1, d1, . . . , cm, dm, satisfy (A) and (B), for all j, 1 ≤
j ≤ n, is effectively testable.

Moreover, (B) above implies that,
(C) For all (a′1, b

′
1, . . . , a

′
n, b′n), (c′1, d

′
1, . . . , c

′
m, d′m) ∈ VALIDS ,

∑

1≤i≤n b′i < 1
1≤i≤m

d′i, such
that map(a′1, b

′
1, . . . , a

′
n, b′n; c′1, d

′
1, . . . , c

′
m, d′m) <Q map(a1, b1, . . . , an, bn; c1, d1, . . . , cm, dm),

X 6⊆ coOP HULL
n,m

a′
1,b′1,...,a′

n,b′n;c′1,d′1,...,c′m,d′m
.

Thus, for finite X ⊆ N2, let
Θ(X) =

⋃

{LQ

map(a1,b1,...,an,bn) | Prop(X, a1, b1, . . . , an, bn)}.

For infinite X ′, Θ(X ′) =
⋃

X⊆X′, card(X)<∞ Θ(X).
It is easy to verify that
(1) for any X ⊆ coOP HULL

n,m
a1,b1,...,an,bn;c1,d1,...,cm,dm

,

Θ(X) ⊆ LQ

map(a1,b1,...,an,bn;c1,d1,...,cm,dm) (by (C) and the fact that for any valid I and I ′,

map(I) <Q map(I ′), implies LQ

map(I) ⊆ LQ

map(I′)), and

(2) for any S-valid (a1, b1, . . . , an, bn) and (c1, d1, . . . , cm, dm), by Claim 11(F) there
exists a finite set X ⊆ coOP HULL

n,m
a1,b1,...,an,bn;c1,d1,...,cm,dm

, such that Θ(X) ⊇

LQ

map(a1,b1,...,an,bn;c1,d1,...,cm,dm).
Thus, we have that

Θ(coOP HULL
n,m
a1,b1,...,an,bn;c1,d1,...,cm,dm

) = LQ

map(a1,b1,...,an,bn;c1,d1,...,cm,dm).
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