
On the Learnability of Recursively

Enumerable Languages from Good Examples

Sanjay Jain a, Steffen Lange b, Jochen Nessel c

aDepartment of Information Systems and Computer Science, National University

of Singapore, Singapore 119260, Email: sanjay@iscs.nus.edu.sg

bInstitut für Informatik, Universität Leipzig, PF 920, D-04009 Leipzig, Germany,

Email: slange@informatik.uni-leipzig.de

cFB Informatik, Universität Kaiserslautern, PF 3049, D-67653 Kaiserslautern,

Germany, Email: nessel@informatik.uni-kl.de

Abstract

The present paper investigates identification of indexed families L of recursively
enumerable languages from good examples. We distinguish class preserving learning
from good examples (the good examples have to be generated with respect to a
hypothesis space having the same range as L) and class comprising learning from
good examples (the good examples have to be selected with respect to a hypothesis
space comprising the range of L). A learner is required to learn a target language
on every finite superset of the good examples for it. If the learner’s first and only
conjecture is correct then the underlying learning model is referred to as finite iden-

tification from good examples and if the learner makes a finite number of incorrect
conjectures before always outputting a correct one, the model is referred to as limit

identification from good examples.

In the context of class preserving learning, it is shown that the learning power of
finite and limit identification from good text examples coincide. When class com-
prising learning from good text examples is concerned, limit identification is strictly
more powerful than finite learning. Furthermore, if learning from good informant
examples is considered, limit identification is superior to finite identification in the
class preserving as well as in the class comprising case.

Finally, we relate the models of learning from good examples to one another
as well as to the standard learning models in the context of Gold-style language
learning.

Keywords: Inductive Inference, Computational Learning Theory, Good Ex-
amples.

Preprint submitted to Elsevier Science 11 March 2007

1 Introduction

Consider the identification of formal languages from positive data. A machine
is fed all the strings and no non-strings of a language L, in any order, one
string at a time. The machine, as it receives strings of L, outputs a sequence
of grammars. The machine is said to identify L just in case the sequence of
grammars converges to a grammar for L. This is the paradigm of identification
in the limit introduced by Gold [12].

But there are other situations in life, where we speak of learning without hes-
itation, and which are not covered by Gold’s model. As an example, consider
an ordinary school. If a pupil has to learn a language, this is not achieved by
just presenting all correct sentences of that language in random order. Instead,
a teacher, who knows the language the pupil wants to learn, carefully selects
the sentences the pupil will see. Furthermore, at some point the teacher will
stop teaching, because he feels the examples should suffice for the learning
task.

This observation led Freivalds, Kinber and Wiehagen [10] to study models
in which learners are provided with only finitely many examples (of a pos-
sibly infinite language), though these examples may include important ones.
Freivalds, Kinber and Wiehagen referred to these important examples as good

examples. The revised learning model then requires the learner to come up
with a grammar for the language when it is provided a set of examples con-
taining all good examples. If the learner’s first and only conjecture is correct
then the model is referred to as finite identification from good examples and if
the learner makes a finite number of incorrect conjectures before converging
to a correct one, the model is referred to as identification in the limit from

good examples. 1

It should be noted that in the model just described, the learner may receive
some superset of the good examples and not necessarily just the good exam-
ples. This avoids some trivial cases where learnability can be achieved by a
suitable encoding of a correct grammar into the good examples (see for ex-
ample [3]). The model places as an additional requirement that it has to be
possible to effectively generate the good examples for a language (from any of
its grammars in the hypothesis space). This allows a helpful teacher to provide
the good examples needed for learning. We refer the reader to [10] and [15]
for additional motivation and discussion on these models.

1 It should be noted that the learning power of the criteria of inference from good
examples considered in this paper is not effected if we consider set-driven learning
in the sense that the output of an admissible learning machine depends exclusively
on the content of the input, thereby neglecting the length and order of the data
sequence.

2

As a concrete example consider pattern languages [1]. For a pattern p, we can
take {w ∈ Σ∗ | |w| = |p|, w ∈ L(p)} as a set of good examples for L(p) (for
class preserving finite identification from good text examples). 2

Learning from good examples was first considered by Freivalds, Kinber and
Wiehagen in the context of function learning [10]. Lange, Nessel and Wiehagen
[15] extended this study to include indexed families of recursive languages.
For this latter case, they showed that the power of finite identification and
identification in the limit is the same as long as class preserving learning is
considered. They left open the issue of whether a similar result holds in the
context of learning language classes that are not necessarily indexed families
of recursive languages. In this paper, we provide a solution to this question.

Other authors have attacked the problem of learning with help from selected
examples as well. In [19], Shinohara and Miyano study the learnability from
finite sets of examples. However, these finite sets need not be effectively com-
putable from the grammars in the hypothesis space and the learning machines
are not required to learn when a proper superset of these good examples is
given as input (in contrast to our requirements, as in Definition 5 below). Mo-
toki in [16] and Baliga, Case and Jain in [3] consider language learning from
all positive data and a finite amount of negative data. Again, they did not re-
quire negative examples to be computable. However, [3] did consider the case
of allowing supersets of negative examples. A model similar to the one studied
here is also investigated by Goldman and Mathias in [13]. Their main interest
lies in decribing concept classes that can be learned in polynomial time with
polynomial size (in the description of the target concept) example sets. They
also address the problem of coding the target concept into the examples.

In the case of learning indexed families of recursive languages, the hypothesis
space chosen is also an indexed family of recursive languages. The effective
generation of the good examples is with respect to the grammars from the
hypothesis space. Regarding the choice of hypothesis spaces, usually two sit-
uations are considered: class preserving (when the hypothesis space contains
exactly the languages in the class being learned) and class comprising (when
the hypothesis space may contain descriptions for languages in addition to the
language class being learned). In this paper we consider learning from good
examples for indexed families of recursively enumerable languages. 3 We take

2 Note that we do not need such a large set of good examples for learning pattern
languages (for example see [1] and [21]). Furthermore, if we are interested in class
comprising identification in the limit from good examples, for k ∈ N , for unions of k

pattern languages, we can obtain good examples based on Theorem 4(a). Such a set
of good examples can also be explicitly obtained using a trick used in [14,6]. We do
not know at present whether we can do this for class preserving finite identification
from good examples.
3 We refer the reader to [9] for some nice characterizations for learnability of indexed

3

the hypothesis space also to be an indexed family of recursively enumerable
languages. Some of our results can also be extended to the case of learning
arbitrary classes of r.e. languages, i.e., classes which may not possess an enu-
meration that contains all and only the languages in the class.

In the present paper we consider combinations of learning from good text
or good informant examples, finite or limit learning, class preserving or class
comprising learning. In addition we compare the resulting inference types with
the standard inference types. Some of the highlights are briefly discussed next.

We first consider learning from good text examples. We show the following:
(i) for class preserving learning, the power of finite learning and limit learning
from good text examples coincide (Theorem 1 (a)); (ii) for class comprising
learning, the power of finite and limit learning from good text examples differ
(Theorem 1 (b)). As noted, the above two results resolve an open question in
[15]. Theorem 3 shows that TxtEx , the class of all families of r.e. languages
identifiable in the limit from text, is incomparable to the class of all families
of r.e. languages that can be finitely learned from good text examples. In
contrast, for class comprising learning, every class in TxtEx is learnable in the
limit from good text examples (Theorem 4 (a)).

For learning from informant, we show that, for both class preserving and class
comprising learning, the power of finite and limit learning from good informant
examples differ (Theorem 7). This also addresses an open question in [15].

We now proceed formally.

2 Preliminaries

Any unexplained recursion theoretic notation is from [17]. N denotes the set
of natural numbers, {0, 1, 2, . . .}. Let L ⊆ N . We set L = N \ L, i.e., L is
the complement of L. We will use χL to indicate the characteristic function
for language L, i.e., χL(x) = 1 if x ∈ L, and 0 otherwise. The cardinality of
a set S is written card(S). The maximum and minimum of a set are denoted
by max(·) and min(·), respectively, where max(∅) = 0 and min(∅) = ∞. Let
D0, D1, . . . be some canonical recursive indexing of finite sets [17]. FIN will
stand for the family of all finite sets of natural numbers and INIT for the
family {Xi | i ∈ N}, where Xi = {x | x < i}.

We let 〈·, ·〉 stand for an arbitrary, computable, bijective mapping from N×N
onto N [17]. Similarly, for each m ∈ N , one can define an encoding 〈·, . . . , ·〉

families of recursively enumerable languages, along the lines of characterizations for
learnability of indexed families of recursive languages by Angluin [2].

4

for all m-tuples of natural numbers onto N .

For a partial function α, domain(α) and range(α) are the domain and range
of α, respectively. We write α(x)↓ to denote the fact that α(x) is defined on
x and α(x)↑ to denote that α(x) is undefined on x.

A programming system ψ is a partial recursive function of two arguments. For
a programming system ψ, let ψi be the partial recursive function λx.ψ(i, x).
i is also called a ψ-program for the (possibly partial) function ψi. We use
Wψ

i to denote the domain of ψi. Thus we can consider W ψ
i as the language

accepted by ψ-grammar i. Let Lψ = {Wψ
i | i ∈ N}. Intuitively, Lψ is the class

of languages accepted by programs in programming system ψ. Suppose Ψ is
some fixed Blum complexity measure for the programming system ψ, cf. [4].
Wψ

i,s will stand for the set {x < s | Ψi(x) < s}. Intuitively, W ψ
i,s will be the

part of W ψ
i enumerated within s steps by some fixed effective procedure for

enumeration of all W ψ
i .

A language class L is said to be an indexable class of r.e. languages provided
there is a programming system ψ such that Lψ = L. A language class L
is said to be an indexable class of recursive languages provided there is a
programming system ψ such that Lψ = L and a recursive function d such
that d(〈i, x〉) = 1 iff ψi(x)↓. In other words, for an indexable class of recursive
languages it is uniformly decidable whether or not x ∈W ψ

i .

We let β0, β1, . . . denote some effective enumeration of all the computable
programming systems, cf. [17].

A programming system η is called an acceptable programming system [17],
iff for all programming systems ψ, there exists a recursive function h, such
that (∀i)[ηh(i) = ψi]. Throughout the following, ϕ will be a fixed acceptable

programming system. Let Φ be an arbitrary fixed Blum complexity measure
[4] for the ϕ-system. For ease of notation, we sometimes use Wi instead of W ϕ

i .

In order to specify the effective generation of good examples, we need to
consider the notion of computable functions from N to FIN . We say that a
(possibly partial) mapping F from N to FIN , is (partially) computable, iff
there exists a partial recursive function α such that α(x)↓ iff F (x) is defined,
and for x ∈ domain(F), F (x) = Dα(x). In other words, some Turing machine
on input x, enumerates F (x) and then signals that it has completed the enu-
meration. We let F0, F1, . . . denote an effective enumeration of all the partial
computable mappings from N to FIN . For example, such an enumeration can
easily be obtained from any acceptable numbering.

Quantifiers ∀,∃,
∞

∀,
∞

∃, respectively, denote, for all, there exists, for all but
finitely many and there exist infinitely many.

5

2.1 Language identification from text

We first define the notion of text for languages. A text T is a mapping from N
intoN ∪ {#}. content(T) denotes the set of natural numbers in the range of T .
Thus, the content of a text never includes #. A text T is for L iff content(T) =
L. Intuitively, a text T for a language L is a presentation of elements of L
(repetition allowed) and no non-elements of L; #’s in the presentation may
be thought of as modeling pauses in data. The initial sequence of text T of
length n is denoted T [n]. The set of all finite sequences of natural numbers
and #’s is denoted by SEQ. It is easy to see that there exists a computable
bijection between SEQ and N . Members of SEQ are inputs to machines that
learn grammars (acceptors) for r.e. languages. We let σ range over SEQ. Λ
denotes the empty sequence and content(σ) the set of natural numbers in the
range of σ. For two sequences σ and σ′, we write their concatenation as σ · σ′.

A language learning machine (from text) is an algorithmic mapping (possibly
partial) from SEQ into N . M denotes a typical variable for a language learning
machine from texts. We say that M converges on text T to i (written: M (T)
converges to i; M (T)↓ = i) just in case, for all but finitely many n, M (T [n]) =
i. Let M0,M1, . . . be an enumeration of all learning machines.

We interpret the output of a machine as programs in some programming
system (which need not to be acceptable). This programming system is called
the hypothesis space for the machine.

The following definition introduces standard criteria for successful identifica-
tion of languages.

Definition 1 ([12]). Suppose ψ is a hypothesis space.

(a) M TxtExψ-identifies a text T , if (∃i |W ψ
i = content(T))[M (T)↓ = i].

(b) M TxtExψ-identifies an r.e. language L (written: L ∈ TxtExψ(M)) just
in case M TxtExψ-identifies each text T for L.

(c) M TxtExψ-identifies L iff M TxtExψ-identifies each L ∈ L.

Let TxtExψ be the collection of all indexable classes L of r.e. languages such
that some M TxtExψ-identifies L. By TxtEx we denote

⋃

ψ TxtExψ.

Definition 2 ([18,11]). M is rearrangement independent iff
(∀σ, σ′ | content(σ) = content(σ′) ∧ |σ| = |σ′|)[M (σ) = M (σ′)]

Lemma 1 ([18,11]). If L ∈ TxtEx, then there exists a hypothesis space ψ and

a rearrangement independent M which TxtEx ψ-identifies each language in L.

Definition 3 ([5]). Suppose ψ is a hypothesis space.

σ is a locking sequence for M on L iff

6

(a) content(σ) ⊆ L,
(b) (∀σ′ ⊇ σ | content(σ′) ⊆ L)[M (σ′) = M (σ)], and
(c) Wψ

M (σ) = L

Lemma 2 ([5]). Suppose ψ is a hypothesis space. If M TxtEx ψ-identifies L,

then there exists a locking sequence for M on L.

Definition 4 ([7]). Suppose ψ is a hypothesis space.

(a) M TxtBcψ-identifies a text T just in case, (
∞

∀ n)[Wψ
M (T [n]) = content(T)].

(b) M TxtBcψ-identifies an r.e. language L (written: L ∈ TxtBcψ(M)) just
in case M TxtBcψ-identifies each text T for L.

(c) M TxtBcψ-identifies L iff M TxtBcψ-identifies each L ∈ L.

Let TxtBcψ be the collection of all indexable classes L of r.e. languages such
that some M TxtBcψ-identifies L. By TxtBc we denote

⋃

ψ TxtBcψ.

It is easy to verify that TxtExϕ = TxtEx , and TxtBcϕ = TxtBc.

2.2 Language identification from informant

We next introduce the notion of informant for languages. An informant I is
a mapping from N into (N × {0, 1}) such that {x | (x, 1) ∈ range(I)} and
{x | (x, 0) ∈ range(I)} partition the set of natural numbers. Pos(I) denotes
the set {x | (x, 1) ∈ range(I)} and Neg(I) will stand for the set {x | (x, 0) ∈
range(I)}. An informant I is for L, iff Pos(I) = L (and thus Neg(I) = L).
The initial sequence of informant I of length n is written I[n]. SEG means
the set of initial sequences of informants, i.e., SEG = {I[n] | n ∈ N ∧ I is
an informant }. The canonical informant for a language L is the informant I,
such that I(x) = (x, χL(x)).

Intuitively, an informant I for a language L is a presentation of the character-
istic function of L. It is easy to see that there exists a computable bijection
between SEG and N . Members of SEG are inputs to machines that learn
grammars (acceptors) for r.e. languages from informant. We let τ range over
SEG. Pos(τ) denotes the set {x | (x, 1) ∈ range(τ)} and Neg(τ) denotes the
set {x | (x, 0) ∈ range(τ)}.

A language learning machine (from informant) is an algorithmic mapping
(possibly partial) from SEG into N . We use M to also denote a language
learning machine from informant. Context will determine whether a learning
machine from text or a learning machine from informant is meant. We say that
M converges on informant I to i (written: M (I) converges to i; M (I)↓ = i)
just in case for all but finitely many n, M (I[n]) = i.

7

The notion of InfEx -identifiability and InfBc-identifiability, respectively, as
well as the corresponding learning types are defined analogously as their text
counterparts by replacing everywhere text by informant (cf. Definitions 1
and 4). It is easy to verify that InfExϕ = InfEx , and InfBcϕ = InfBc.

3 Language Learning from good examples

Intuitively, for learning a language L from good examples, a learner is given a
set of examples from L, which contain all the good examples. Here we assume
that the set of good examples is finite. The learner is then expected to come
up with a grammar for L either recursively (for finite identification) or in the
limit depending on the criteria. Note that the learner is given not just the good
examples, but examples which contain all the good examples. The reason is
to disallow some coding of the language in the good examples (for example
see [3]). We further require that the set of good examples should be effectively
generable from any grammar for L in the hypothesis space. Here by effective
generation we mean, there exists a recursive function which maps grammars
for L in the hypothesis space to finite sets (using the canonical indexing of
finite sets).

3.1 Learning from good text examples

We first consider the class comprising version.

Definition 5. Let L be an indexable class of r.e. languages.

M CTxtGFin-identifies L iff there exists a hypothesis space ψ and a recursive
function Gp from N into FIN such that

(a) L ⊆ Lψ,

(b) for each i, if W ψ
i ∈ L then Gp(i) ⊆Wψ

i ,

(c) for each i, if W ψ
i ∈ L, then (∀σ ∈ SEQ | Gp(i) ⊆ content(σ) ⊆ W ψ

i)(∃n |

Wψ
n = Wψ

i)[M (σ) = n].

Intuitively, Gp(i) above gives the set of good positive examples (text examples)

for Wψ
i ∈ L. Part (b) in the above definition says that good examples for

Wψ
i ∈ L can be effectively given by Gp(i). Part (c) says that, for any language

Wψ
i ∈ L, if the input sequence σ contains the good examples Gp(i), then M

on σ outputs a ψ-grammar for W ψ
i .

By CTxtGFin we denote the collection of all indexable classes L of r.e. lan-
guages for which there is a learning machine M which CTxtGFin-identifies L.

8

We now define the class preserving version of learning from good examples.

Definition 6. Let L be an indexable class of r.e. languages.

M PTxtGFin-identifies L iff there exists a hypothesis space ψ and a recursive
function Gp from N into FIN such that

(a) L = Lψ,

(b) for each i, Gp(i) ⊆Wψ
i ,

(c) for each i, (∀σ ∈ SEQ | Gp(i) ⊆ content(σ) ⊆ W ψ
i)(∃n | Wψ

n =

Wψ
i)[M (σ) = n].

By PTxtGFin we denote the collection of all indexable classes L of r.e. lan-
guages for which there is a learning machine M which PTxtGFin-identifies L.

We now consider limit identification from good examples. For this we need
the learning machines to be a limiting recursive function from SEQ to N .
Thus, for such identification criteria, we take machines to be a mapping from
SEQ × N to N . We use M as a typical variable for these kinds of machines
too. It will be clear from context, which type of machine is meant.

Definition 7. Let L be an indexable class of r.e. languages.

M CTxtGEx -identifies L iff there exists a hypothesis space ψ and a recursive
function Gp from N into FIN such that

(a) L ⊆ Lψ,

(b) for each i, if W ψ
i ∈ L then Gp(i) ⊆Wψ

i ,

(c) for each i, if W ψ
i ∈ L, then (∀σ ∈ SEQ | Gp(i) ⊆ content(σ) ⊆ W ψ

i)(∃n |

Wψ
n = Wψ

i)(
∞

∀ m)[M (σ,m) = n].

The notion of PTxtGEx -identifiability can be defined in a similar manner as
above. CTxtGEx and PTxtGEx will denote the collections of all indexable
classes L of r.e. languages for which there is a learning machine M which
CTxtGEx -identifies (PTxtGEx -identifies) L.

3.2 Learning from good informant examples

Definition 8. Let L be an indexable class of r.e. languages.

M CInfGFin-identifies L iff there exists a hypothesis space ψ and recursive
functions Gp and Gn from N into FIN such that

(a) L ⊆ Lψ,

(b) for each i, if W ψ
i ∈ L then Gp(i) ⊆Wψ

i and Gn(i) ⊆ Wψ
i ,

(c) for each i, if W ψ
i ∈ L, then (∀τ ∈ SEG | Gp(i) ⊆ Pos(τ) ⊆W ψ

i ∧ Gn(i) ⊆

Neg(τ) ⊆ W ψ
i)(∃n | Wψ

n = Wψ
i)[M (τ) = n].

9

Intuitively, Gp(i) above gives the set of positive good examples for W ψ
i ∈ L

and Gn(i) gives the set of negative good examples for W ψ
i ∈ L. Subsequently,

we use the term ‘good informant examples’ to refer to both sets GP (i) and
Gn(i). Part (b) in the above definition says that good positive and negative
examples for W ψ

i ∈ L can be effectively generated (as given by Gp(i) and

Gn(i)). Part (c) says that, for any language W ψ
i ∈ L, if the input information

sequence τ contains the (appropriately labeled) good positive examples Gp(i)
and good negative examples Gn(i), then M on τ outputs a ψ-grammar for
Wψ

i .

As above, CInfGFin denotes the collection of all indexable classes L of r.e. lan-
guages for which there is a learning machine M which CInfGFin-identifies L.

One can similarly define PInfGFin, CInfGEx , and PInfGEx .

The following proposition follows immediately from the corresponding defini-
tions.

Proposition 1. Let λ ∈ {P,C}. Then,

(a) λTxtGFin ⊆ λTxtGEx.

(b) λInfGFin ⊆ λInfGEx.

(c) λTxtGFin ⊆ λInfGFin.

(d) λTxtGEx ⊆ λInfGEx.

As we shall see, all the stated inclusions are proper, except PTxtGFin ⊆
PTxtGEx .

4 Results on learning from good text examples

The following theorem shows that, for class preserving learning from good ex-
amples, there is no increase in learning power when we consider limit learning
instead of finite learning. On the other hand, for class comprising learning
from good examples, there is an increase in learning power when we consider
limit learning instead of finite learning. Interestingly, this phenomenon can be
observed on the fairly concrete level of indexable classes of recursive languages.

Theorem 1. (a) PTxtGFin = PTxtGEx.

(b) CTxtGFin ⊂ CTxtGEx.

Proof. We begin with (a). Since, by Proposition 1 (a), we have PTxtGFin ⊆
PTxtGEx , it remains to verify that PTxtGEx ⊆ PTxtGFin. Suppose M , L,
and Gp are given such that M PTxtGEx -identifies L using hypothesis space
ψ, where Gp gives the good examples.

10

Let M ′ be defined as follows. M ′ on input σ, searches for an i such that
Gp(i) ⊆ content(σ) ⊆W ψ

i ; M ′(σ) then outputs the first i, if any, found in the
search.

We now verify that M ′ PTxtGFin-identifies L using hypothesis space ψ, where
Gp gives the set of good examples: let i, σ be arbitrary such that Gp(i) ⊆

content(σ) ⊆ W ψ
i . Therefore, M ′(σ)↓ = j for some j satisfying Gp(j) ⊆

content(σ) ⊆ W ψ
j . If Wψ

i 6= Wψ
j , then M would fail to identify one of the

languages W ψ
i and Wψ

j from input σ. Thus, we must have W ψ
i = Wψ

j .

We continue with (b). Since, by Proposition 1 (a), CTxtGFin ⊆ CTxtGEx , it
suffices to define a language class L separating CTxtGEx and CTxtGFin.

For every i ∈ N , the infinite language Li = {〈i, x〉 | x ∈ N} belongs to L. Let
K be the diagonal halting set of the fixed acceptable programming system
ϕ, i.e., K = {x | ϕx(x)↓}. Recall that Φ denotes a fixed Blum complexity
measure for the ϕ-system. For every j ∈ K and every y ≤ Φj(j), the finite
language L〈j,y〉 = {〈j, x〉 | x ≤ y} belongs to L as well. Since L ∈ TxtEx

(cf. [20]), L ∈ CTxtGEx follows directly from Theorem 4 (a). The remaining
part, i.e., L /∈ CTxtGFin, will be shown by reducing the halting problem for
the ϕ-system to L ∈ CTxtGFin. Thus, suppose M , and Gp are given such that
M CTxtGFin-identifies L using hypothesis space ψ, where Gp gives the set of
good examples.

Based on M and ψ, we define an algorithm A which solves the halting problem
for the ϕ-system.

Algorithm A:
1. On input k ∈ N , determine the first z ∈ N such that there is an y > z

with 〈k, y〉 ∈ W ψ
j , where j = M (σ) and σ = 〈k, 0〉, . . . , 〈k, z〉.

2. Test whether or not Φk(k) ≤ z. In case it is, output ‘ϕk(k)↓.’ Otherwise,
output ‘ϕk(k)↑.’

Since M , in particular, CTxtGFin-identifies every infinite language Lk on the
basis of finitely many good examples for it, one easily verifies that algorithm A
terminates on every input k. Clearly, if A outputs ‘ϕk(k)↓,’ then ϕk(k) is
indeed defined. Thus, suppose that k ∈ K, but algorithm A terminates with
‘ϕk(k)↑.’ Let z be the corresponding index determined by A on input k, and
let L′ = {〈k, x〉 | x ≤ z}. Since k ∈ K and Φk(k) > z, we have L′ ∈ L.
Moreover, L′ is finite, and, therefore, it must be the case that W ψ

j = L′ for

j = M (σ) with σ = 〈k, 0〉, . . . , 〈k, z〉. However, 〈k, y〉 ∈ W ψ
j for some y with

y > z, and, thus, W ψ
j 6= L′, a contradiction.

11

Hence, algorithm A solves the halting problem for the ϕ-system, a contradic-
tion, and, thus, L /∈ CTxtGFin follows. 2

The following theorem and its implications show the disadvantages of requiring
class preserving hypothesis spaces.

Theorem 2. There exists a recursively enumerable subset Lfin of FIN such

that Lfin 6∈ PInfGEx.

Proof. For each i = 〈u, v, w〉, we will define two finite languages, L1
i and L2

i

below. Let Lfin = {L1
i | i ∈ N} ∪ {L2

i | i ∈ N}. We will show that, for each
i = 〈u, v, w〉, either Lβu

6= Lfin , or no M can witness that Lfin ∈ PInfGEx using
hypothesis space βu, with positive good examples given by Fv and negative
good examples given by Fw.

We now give the construction of L1
i and L2

i .

Definition of L1
i and L2

i

1. Suppose i = 〈u, v, w〉.
Enumerate 〈i, 0〉 in L1

i .
2. Search for j such that 〈i, 0〉 ∈W βu

j , Fv(j)↓ and Fw(j)↓.
3. If Fv(j) 6⊆ {〈i, 0〉}, then go to step 9.
4. Else, if Fw(j) ∩ {〈i, x〉 | x ∈ N} 6= ∅, then enumerate an element of

Fw(j) ∩ {〈i, x〉 | x ∈ N} in L1
i and go to step 9.

5. Otherwise enumerate 〈i, 1〉 in L1
i and wait until W βu

j enumerates 〈i, 1〉.
6. Enumerate 〈i, 0〉 in L2

i .
7. Search for k such that 〈i, 0〉 ∈ W βu

k , Fw(k)↓ and Fw(k)∩{〈i, x〉 | x ∈ N} 6=
∅.

8. If and when such a k is found, enumerate an element of Fw(k) ∩ {〈i, x〉 |
x ∈ N} in both L1

i and L2
i .

9. Do not enumerate any more elements in L1
i and L2

i (i.e., definition ends).
End

It is easy to verify that L1
i and L2

i are both finite. Thus Lfin ⊆ FIN . We
now show that Lfin 6∈ PInfGEx . Suppose by way of contradiction that some
machine M PInfGEx -identifies Lfin using hypothesis space βu, with positive
good examples given by Fv and negative good examples given by Fw. Let
i = 〈u, v, w〉.

We consider the following cases in the definition of L1
i , L

2
i .

Case 1: Search in step 2 does not succeed.

12

In this case, either Lβu
6= Lfin , or Fu, Fv do not give the good positive, good

negative examples.

Case 2: If-clause in step 3 succeeds.

In this case, L1
i is the only language in Lfin which contains 〈i, 0〉. Thus W βu

j

must be equal to L1
i (otherwise Lβu

6= Lfin). However, Fv(j) 6⊆ L1
i violating

the requirements of good positive examples.

Case 3: In step 4, If-condition succeeds.

In this case, L1
i is the only language in Lfin which contains 〈i, 0〉. Thus W βu

j

must be equal to L1
i (otherwise Lβu

6= Lfin). However, Fw(j) 6⊆ L1
i violating

the requirements of good negative examples.

Case 4: In step 5, procedure waits forever.

In this case, L1
i = {〈i, 0〉, 〈i, 1〉}, is the only language in Lfin which contains

〈i, 0〉. However, W βu

j contains 〈i, 0〉 but not 〈i, 1〉. Thus Lβu
6= Lfin .

Case 5: Search in step 7 does not succeed.

In this case L1
i = {〈i, 0〉, 〈i, 1〉}, L2

i = {〈i, 0〉}. Suppose Lβu
= Lfin . Then W βu

j

must be equal to L1
i . Let k be a βu-grammar for L2

i . Now, Fv(j) ⊆ L2
i ⊂ L1

i ,
and Fv(k) ⊆ L2

i ⊂ L1
i . Moreover, Fw(j) ⊆ L1

i ⊂ L2
i , and Fw(k) ⊆ L1

i ⊂ L2
i . Let

τ ∈ SEG be such that Pos(τ) = L2
i and Neg(τ) = Fw(j) ∪ Fw(k). Then M on

τ must converge to a grammar for both L1
i and L2

i , an impossible task.

Case 6: Search in step 7 succeeds.

In this case, either W βu

k is not in Lfin , or it must be one of L1
i and L2

i . But

Fw(k) is not a subset of either L2
i or L1

i , violating the condition for negative
good examples.

From the above cases we have that Lfin /∈ PInfGEx and we are done. 2

Applying the result above, we can show that, for learning from good examples,
it is advantageous to use class comprising hypothesis spaces instead of class
preserving ones. This nicely contrasts the fact that learning in the limit of
indexable classes of r.e. languages is invariant with respect to the choice of the
underlying hypothesis space, cf. [9].

Corollary 1. PTxtGEx ⊂ CTxtGFin.

Proof. Since PTxtGEx = PTxtGFin and PTxtGFin ⊆ CTxtGFin, by def-
inition, it suffices to separate CTxtGFin and PTxtGFin. Obviously, FIN ∈

13

CTxtGFin and, thus, every subclass of FIN belongs to CTxtGFin as well.
Consequently, the wanted separation follows immediately via Theorem 2 and
Proposition 1 (d). 2

Our next result points out a difference to learning indexable classes of recursive
languages from good examples. We show that there are indexable classes of
r.e. languages which are class preservingly learnable from good examples, but
which are not learnable in the limit from text. In contrast, class preserving
learning of indexable classes of recursive languages from good examples is less
powerful than learning in the limit from text, cf. [15].

Theorem 3. (a) TxtEx \ CTxtGFin 6= ∅.
(b) PTxtGFin \ InfEx 6= ∅.

Proof. The language class L used in the proof of Theorem 1 (b), separates
TxtEx and CTxtGFin, and (a) follows.

Next we prove (b). We will define a numbering ψ. The diagonalizing class L
will be formed by using the non-empty languages in Lψ. Let M0,M1, . . . be
an enumeration of all InfEx -learning machines. For every i, L will contain a
non-empty language L ⊆ {〈i, x〉 | x ∈ N} which Mi fails to InfExϕ-identify.
(Recall that InfEx = InfExϕ.)

Fix i. Below we give the description of ψ〈i,·〉. Enumerate 〈i, 0〉 in W ψ
〈i,0〉. For

a finite set S let IS denote the canonical information sequence for S. Let
x0 = 〈i, 0〉 + 1.

Stage s
1. Let q0, q1 ∈ {〈i, x〉 | x ∈ N} be such that xs < q0 < q1.
2. Let S denote the set of elements enumerated in W ψ

〈i,0〉 until now.

3. Enumerate S ∪ {q0} into Wψ
q0

.
Enumerate S ∪ {q1} into Wψ

q1
.

4. Search for a t > q1 such that, Mi(IS∪{q0}[t]) 6= Mi(IS∪{q1}[t]).
5. If and when such a t is found, let i ∈ {0, 1} be such that Mi(IS∪{qi}[t]) 6=

Mi(IS∪{qi}[xs]).

Enumerate qi in Wψ
〈i,0〉.

Let Wψ
qi

enumerate whatever W ψ
〈i,0〉 enumerates from now on. Thus W ψ

qi
=

Wψ
〈i,0〉.

Let xs+1 = t.
Go to stage s+ 1.

End stage s

14

Let L = {L ∈ Lψ} − {∅}. First, we show that L /∈ InfEx . Suppose to the
contrary that there is a machine Mi which InfExϕ-identifies L. Consider the

construction of the languages W ψ
〈i,·〉.

Case 1: Each stage s is entered and subsequently terminates.

Then, by construction,W ψ
〈i,0〉 is an infinite language. However, Mi on the canon-

ical informant for W ψ
〈i,0〉, diverges.

Case 2: Some stage s is entered but never subsequently terminates.

Then, let S, q0, q1 be as defined in stage s. Then, Mi(IS∪{q0}) = Mi(IS∪{q1}).
Thus, Mi fails to InfExϕ-identify at least one of W ψ

q0
and Wψ

q1
.

It follows from the above cases that Mi does not InfExϕ-identify L.

Finally, we show that L belongs to PTxtGFin. For this purpose, choose a total
recursive function g with range(g) = {j | W ψ

j 6= ∅}. Clearly, such a recursive
function exists. Let ψ′

j = ψg(j) for all j ∈ N . We define a machine M which
PTxtGFin-identifies L with respect to the above numbering ψ′ of L, where
the good examples are given by Gp(j) = {g(j)}, for every j ∈ N .

On input σ for an unknown language L ∈ L, M behaves as follows: It deter-
mines the maximum x with 〈i, x〉 ∈ content(σ), and outputs the least z with
g(z) = 〈i, x〉.

Let y be the least index such that L = W ψ
〈i,y〉. Clearly, if x = y, then z is a

correct guess for L. Otherwise, we know that x > y. Since 〈i, x〉 ∈ content(σ) ⊆
Wψ

〈i,y〉 = L and x > y, one easily verifies that both W ψ
〈i,x〉 and Wψ

〈i,y〉 must equal

Wψ
〈i,0〉. Hence, z is a correct guess for L, and M behaves as required. 2

The next corollary summarizes the established relations between finite learning
from good examples and learning in the limit from text.

Corollary 2. (a) PTxtGFin # TxtEx.

(b) CTxtGFin # TxtEx.

The next result shows the limitations of finite learning of indexable classes
of r.e. languages from good examples. It illustrates a difference to learning
of recursive functions from good examples, where finite learning from good
examples turns out to be of the same learning power as Bc-inference, cf. [10].

Corollary 3. CTxtGFin ⊂ TxtBc.

Proof. CTxtGFin ⊆ TxtBc follows from the definition of CTxtGFin. More-
over, since, by definition, TxtEx ⊆ TxtBc and TxtEx \CTxtGFin 6= ∅ (cf. The-

15

orem 3 (a)), we are done. 2

Our final results in this section provide some more insight in the power of
learning machines that are allowed to process the good examples in the limit.

Theorem 4. (a) TxtEx ⊂ CTxtGEx.

(b) CTxtGEx \ TxtBc 6= ∅.

Proof. In order to show (a) it suffices to verify that TxtEx ⊆ CTxtGEx . Note
that, by definition, TxtEx ⊆ TxtBc, and, thus, CTxtGEx \TxtEx 6= ∅ follows
directly from (b).

Next, we show TxtEx ⊆ CTxtGEx . Suppose L ∈ TxtEx as witnessed by
M (using hypothesis space ϕ). Assume, without loss of generality that M is
rearrangement independent (cf. Definition 2 and Lemma 1). We also assume,
without loss of generality, that ∅ 6∈ L (we can easily modify the following proof
to take care of ∅). We consider two cases.

Case 1: N 6∈ L

Let ψ be defined as follows. Note that we assume an implicit coding of all
members of SEQ onto N . When we use σ in a pairing function below, we
assume such an encoding.

Definition of W ψ
j ,

Suppose j = 〈σ, i〉.
1. If content(σ) 6⊆ W ϕ

i or i 6= M (σ), then let W ψ
j = ∅.

2. Dovetail steps 3 and 4 until, if ever, step 3 succeeds. If and when step 3
succeeds, go to step 5.

3. Search for a σ′ extending σ such that content(σ′) ⊆ Wϕ
i and M (σ′) 6=

M (σ).
4. For s = 0 to ∞

Enumerate W ϕ
i,s in Wψ

j .
EndFor

5. Enumerate N in W ψ
j .

(* Intuitively step 5, denotes spoiling of ψ-grammar j *)
End definition of W ψ

j .

Let G(j) = content(σ), where j = 〈σ, i〉.

Now, for each L ∈ L, let σ be a locking sequence for M on L (cf. Definition 3
and Lemma 2). Then clearly, W ψ

〈σ,M (σ)〉 = L. Thus, L ⊆ Lψ.

16

Now consider the following M ′. On input σ̂, M ′(σ̂, t) outputs the least j ′ =
〈σ′, i′〉, if any, such that (i) G(j ′) ⊆ content(σ̂) ⊆ W ψ

j′,t 6= ∅, and, (ii) in the

construction above for W ψ
j′ , the procedure does not reach step 5 by time t. If

no such j ′ exists then M ′(σ̂, t) outputs 0.

Thus, M ′ on σ̂, in the limit, converges to the least j ′ = 〈σ′, i′〉, if any, such
that (i) G(j ′) ⊆ content(σ̂) ⊆W ψ

j′ 6= ∅, and, (ii) in the construction above for

Wψ
j′ , the procedure does not reach step 5.

We claim that M ′ CTxtGEx -identifies L with respect to hypothesis space ψ.

So, suppose L ∈ L. Let j ′ = 〈σ′, i′〉 be a ψ-grammar for L. Note that this
implies σ′ is a locking sequence for M on L, and W ϕ

i′ = L. Consider any σ̂
such that content(σ′) ⊆ content(σ̂) ⊆ L. We claim that M ′ on σ̂ converges to
a ψ-grammar for L. First note that the sequence (M ′(σ̂, t))t∈N must converge
since j ′ above satisfies G(j ′) ⊆ content(σ̂) ⊆ W ψ

j′ 6= ∅, and procedure for W ψ
j′

does not reach step 5. Now suppose M ′ on σ̂ converges to j ′′ = 〈σ′′, i′′〉. Then
we have (A) content(σ′′) ⊆ content(σ̂) ⊆ W ϕ

i′′ , M (σ′′) = i′′, σ′′ is a locking
sequence for M on W ϕ

i′′ , and (B) content(σ′) ⊆ content(σ̂) ⊆ W ϕ
i′ , M (σ′) =

i′, σ′ is a locking sequence for M on W ϕ
i′ . Now since M is rearrangement

independent, we may conclude that, i′′ = M (σ′′) = M (σ′′ · σ′ · σ̂) = M (σ′ · σ′′ ·
σ̂) = M (σ′) = i′. Hence, we have W ψ

j′′ = Wψ
j′ .

Case 2: N ∈ L.

In this case let z be such that, for all w ≥ z, {x | x ≤ w} 6∈ L. Such z exists,
cf. [12], Theorems I.8 and I.9.

Let ψ be defined as follows. Note that we assume an implicit coding of all
members of SEQ onto N . When we use σ in a pairing function below, we
assume such an encoding.

Definition of W ψ
j ,

Suppose j = 〈σ, i〉.
1. If content(σ) 6⊆ W ϕ

i or i 6= M (σ), then let W ψ
j = ∅.

2. Dovetail steps 3 and 4 until, if ever, step 3 succeeds. If and when step 3
succeeds, go to step 5.

3. Search for a σ′ extending σ such that content(σ′) ⊆ Wϕ
i and M (σ′) 6=

M (σ).
4. For s = 0 to ∞

Enumerate W ϕ
i,s in Wψ

j .
EndFor

5. Let w be the largest element that has been enumerated in W ψ
j so far.

Enumerate {x | x ≤ max({z, w,max(content(σ))})} in W ψ
j .

17

End definition of W ψ
j .

The rest of the proof of (a) is now identical to Case 1.

Finally, we refer the reader to the demonstration of Theorem 8 which con-
tains a language class witnessing CTxtGEx \ InfBc 6= ∅. Since, by definition,
TxtBc ⊆ InfBc, we have CTxtGEx \ TxtBc 6= ∅ as well. 2

The next result contrasts Theorem 4. We show that TxtEx and CTxtGEx co-
incide if exclusively indexable classes of recursive languages have to be learned.
Thereby, we exploit the common assumption that, as long as learning of in-
dexable classes of recursive languages is concerned, only indexable classes of
recursive languages are allowed to serve as hypothesis spaces, cf. [2] and [20].

Theorem 5. Let L be an indexable class of recursive languages. Then, the

following are equivalent:

(i) L is TxtEx-identifiable using some indexable class of recursive languages

comprising L as hypothesis space.

(ii) L is CTxtGEx-identifiable using some indexable class of recursive lan-

guages comprising L as hypothesis space.

Proof. We first prove (ii) implies (i). Let L ∈ CTxtGEx using hypothesis
space ψ and good examples given by Gp, where it is effectively decidable (in

i and x) whether x ∈W ψ
i . If L is finite, then trivially it belongs to TxtEx . So

assume L is infinite. Let η be such that Lη = L, and without loss of generality
assume that W η

i 6= W η
j for all i 6= j. Let c be a binary total recursive function

such that, for all i and all but finitely many n, c(i, n) = min({j | W η
i = Wψ

j }),
i.e., c(i, n) equals almost always the minimal ψ grammar for W η

i . For this
purpose one can let c(i, n) = min({n + 1} ∪ {k | {w ≤ n | w ∈ W η

i } = {w ≤
n | w ∈Wψ

k }}).

We let Ti = W η
i ∩

⋃

s∈N Gp(c(i, s)). Clearly, the family {Ti}i∈N is uniformly
recursively enumerable and Ti ⊆W η

i holds for all i. Since c(i, n) equals almost
always the minimal ψ grammar for W η

i , we also have that Ti is finite.

Claim 1. If W ψ
i ∈ L, Wψ

j ∈ L, and Wψ
j ⊂ Wψ

i , then Gp(i) 6⊆Wψ
j .

Suppose the opposite, i.e., there are i, j such that W ψ
i ∈ L, Wψ

j ∈ L, Wψ
j ⊂

Wψ
i , and Gp(i) ⊆Wψ

j . Since Gp(j) ⊆Wψ
j , by definition of good examples, we

immediately get Gp(j) ⊆ Wψ
i . However, this contradicts the assumption that

L is learnable from good examples with respect to hypothesis space ψ, since
any inference machine would have to infer a hypothesis for both W ψ

i and Wψ
j

from Gp(i) ∪Gp(j), an impossible task.

18

Claim 2. For each i there exists an m such that W ψ
m = W η

i and Gp(m) ⊆ Ti.

Let m = min({j | W ψ
j = W η

i }). Since, c(i, n) = m for all but finitely many n,
it follows that Gp(m) ⊆ Ti.

Putting Claims 1 and 2 together, one immediately obtains that, for all i and j,
if Ti ⊆ W η

j then W η
j 6⊂ W η

i . Hence, each Ti serves as finite “tell-tale” set for the
corresponding language W η

i . Hence, L is TxtEx -identifiable using hypothesis
space Lη via Angluin’s characterization of TxtEx , cf. [2].

The justification of the remaining part, i.e., (i) implies (ii), is similar to that
of Theorem 4 (a). W ψ

j can be defined as in the proof of Theorem 4 (a), Case 1,
except: (1) we replace W ϕ

i there by W η
i , (2) in step 4, we describe a decision

procedure for W ψ
i as similar to that of W η

i , (3) in step 5, we need to diag-
onalize against all languages in Lη. For this we cannot enumerate N or an
initial segment of N , as in the proof of Theorem 4 (a), since step 4 may have
excluded some elements from W ψ

j . However, this is not a problem since one
can effectively diagonalize against all languages in Lη (despite having already
decided the membership for finite number of elements in step 4), using the fact
that Lη is indexed family of recursive languages. We omit the details. 2

5 Results on learning from good informant examples

In this section we investigate learning when the good examples may come from
the target language as well as from its complement.

The following theorem shows the advantages of having good informant exam-
ples, compared to good text examples.

Theorem 6. Let L = FIN ∪ {N}. Then L ∈ InfEx ∩ PInfGFin, but L 6∈
TxtBc ∪ CTxtGEx.

Proof. Clearly, L ∈ InfEx . Also, define W ψ
0 = N , Wψ

i+1 = Di, Gp(0) =
Gn(0) = ∅, Gp(i+ 1) = Di, Gn(i+ 1) = {min(N \Di)}. Let

M (τ) =
{

0, if Neg(τ) = ∅;
i+ 1, if Neg(τ) 6= ∅ ∧ Pos(τ) = Di.

It is easy to verify that M witnesses that L is in PInfGFin using hypothesis
space ψ, where positive and negative good examples are given by Gp and Gn

respectively.

Since L is superfinite, L 6∈ TxtBc (see [12]). Now suppose by way of contradic-
tion that M using hypothesis space ψ, and positive good examples given by

19

Gp, shows that L ∈ CTxtGEx . Let i be such that W ψ
i = N . Let X = Gp(i).

Let j be such that W ψ
j = X. Let σ be such that content(σ) = X. Now M

on σ must converge to a ψ-grammar for both N and X, an impossible task.
Thus, L 6∈ CTxtGEx . 2

The next theorem shows that Bc-learning from informant is at least as pow-
erful as finite learning from good informant examples in class comprising hy-
pothesis spaces.

Proposition 2. CInfGFin ⊆ InfBc.

Proof. Follows immediately from the corresponding definitions. 2

By means of Theorem 7 we will be able to separate the identification types
PInfGFin, PInfGEx , CInfGFin and CInfGEx from one another. This is ex-
plicitly done in Corollary 4.

Theorem 7. CInfGFin # PInfGEx .

Proof. We first prove PInfGEx \ CInfGFin 6= ∅. This is accomplished by
proving a stronger result, namely that PInfGEx \ InfBc 6= ∅. (This result
will be used again in Corollary 5.) Together with Proposition 2, this yields
PInfGEx \ CInfGFin 6= ∅.

Claim 1. PInfGEx \ InfBc 6= ∅.

We will define a numbering ψ, and partial computable functions Gp and Gn,

from N to FIN . It will be the case that, if W ψ
i is non-empty, then Gp(i)

and Gn(i) are both defined. The diagonalizing class will be formed using the
non-empty languages in Lψ. (We could have directly defined a numbering for
the diagonalizing class. However, the current approach makes the presentation
simpler).

Let g be a total recursive function such that range(g) = {i | W ψ
i 6= ∅}. We

let L = {W ψ
g(0),W

ψ
g(1), . . .}. We will use L as the diagonalizing class. Intu-

itively, L is a suitable ordering of Lψ −{∅}. The good examples for PInfGEx -
identification, will be given by Gp(g(·)) (positive) and Gn(g(·)) (negative).

We now proceed with the definition of ψ, Gp and Gn. It should be noted that
Gp(x), Gn(x) may not be defined if W ψ

x = ∅. However, Gp and Gn will be
defined on x such that W ψ

x 6= ∅.

For each i ∈ N , we will give below the construction (effective in i) of W ψ
〈i,k〉,

k ∈ N . In the construction, we will define a sequence of numbers j i1 < ji2 <

20

This sequence may be finite or infinite. W ψ
〈i,0〉 will be nonempty. For k > 0,

Wψ
〈i,k〉 will be nonempty iff jik is defined. In addition, for each i ∈ N , we will

have the following properties.

(A) For all k ∈ N , if W ψ
〈i,k〉 is nonempty, then W ψ

〈i,k〉 ∩ {〈0, x〉 | x ∈ N} =
{〈0, i〉}.

(B) Wψ
〈i,0〉 ∩ {〈1, x〉 | x ∈ N} = ∅.

(C) For k ≥ 1, if jik+1 is defined then W ψ
〈i,k〉 ∩ {〈1, x〉 | x ∈ N} = {〈1, 0〉};

otherwise W ψ
〈i,k〉 ∩ {〈1, x〉 | x ∈ N} = ∅.

(D) For k ≥ 1, if jik is defined then W ψ
〈i,k〉 ∩ {〈2, x〉 | x ∈ N} = {〈2, jir〉 | 1 ≤

r ≤ k}.
(E) Wψ

〈i,0〉 ∩ {〈2, x〉 | x ∈ N} = {〈2, jik〉 | 1 ≤ k ∧ jik+1 is defined }.

(F) ({W ψ

〈i,k〉 | k ∈ N} \ {∅}) 6⊆ InfBcϕ(Mi).

We will have Gp(〈i, 0〉) = {〈0, i〉}, and Gn(〈i, 0〉) = {〈1, 0〉}. In addition, for
k ≥ 1, if jik is defined, then Gp(〈i, k〉) = {〈0, i〉, 〈2, jik〉}, and Gn(〈i, k〉) = ∅.

It is easy to verify, from properties (A) to (E) that, L ∈ PInfGEx . (For this
consider a machine which, on input τ , first finds an i such that 〈0, i〉 ∈ Pos(τ),
and the maximum k, if any, such that 〈2, jik〉 ∈ Pos(τ). If no such k exists then
the input language must be W ψ

〈i,0〉, so assume that such a k exists. Note that

this restricts the input language to be either W ψ
〈i,0〉 or Wψ

〈i,k〉. Now, the input

language is W ψ
〈i,0〉 iff 〈1, 0〉 ∈ Neg(τ) and W ψ

〈i,k〉 enumerates 〈1, 0〉.)

In addition (F) will imply that L 6∈ InfBc (since InfBcϕ = InfBc).

We now give the construction of W ψ
〈i,k〉, for k ∈ N , and, for W ψ

〈i,k〉 6= ∅, the

definition of Gp(〈i, k〉) and Gn(〈i, k〉). We will define W ψ
〈i,·〉 (and corresponding

Gp and Gn) in stages s = 0, 1, . . .

Definition of W ψ
〈i,k〉, for k ∈ N ,

Stage 0:
(* Intuitively, Ps denotes the set of elements we have decided to keep in
Wψ

〈i,0〉 before stage s. Ns denotes the set of elements we have decided to

keep out of W ψ
〈i,0〉 before stage s. xs denotes max(Ps ∪Ns). *)

Let P1 = {〈0, i〉}.
Let x1 = max({〈1, 0〉, 〈0, i〉}).
Let N1 = {x | x ≤ x1 ∧ x 6= 〈0, i〉}.
Enumerate P1 in Wψ

〈i,0〉.
Let Gp(〈i, 0〉) = {〈0, i〉}.
Let Gn(〈i, 0〉) = {〈1, 0〉}.
Let ji1 be such that 〈2, ji1〉 > x1.
Go to stage 1.

21

Stage s ≥ 1:
1. Let Zi,s = Ps ∪ {〈2, jis〉} ∪ {〈3, x〉 | 〈3, x〉 > xs}.

2. Enumerate Zi,s in Wψ
〈i,s〉.

3. Let Gp(〈i, s〉) = {〈0, i〉, 〈2, jis〉}.
Let Gn(〈i, s〉) = ∅.

4. Let I be the canonical informant for Zi,s.
5. Search for n > jis and y > n, such that y ∈ W ϕ

Mi(I[n]).
6. If and when such n, y are found,

Enumerate 〈1, 0〉 in W ψ
〈i,s〉.

Let xs+1 = y.
Let jis+1 be such that 〈2, jis+1〉 > xs+1.
Let Ps+1 = {z | z < y ∧ z ∈ Zi,s}.
Let Ns+1 = {y} ∪ {z | z < y ∧ z 6∈ Zi,s}.

Enumerate Ps+1 in Wψ
〈i,0〉.

Go to stage s+ 1.
End stage s
End of definition of W ψ

〈i,k〉, for k ∈ N .

Fix i. Consider the construction for the definition of W ψ
〈i,k〉, k ∈ N . It is easy

to verify that the construction satisfies properties (A) to (E). We now show
that ψ satisfies property (F). We consider two cases.

Case 1: There are infinitely many stages.

In this case, let I be a canonical informant for W ψ
〈i,0〉. Now, Mi(I[n]) is not

a ϕ-grammar for W ψ
〈i,0〉 for infinitely many n, (due to success of step 5 and

diagonalization at step 6). Thus Mi does not InfBcϕ identify Wψ
〈i,0〉.

Case 2: Stage s starts but does not finish.

In this case let I be the canonical informant for W ψ
〈i,s〉. Since step 5 did not

succeed, we have that, for all but finitely many n, Mi(I[n]) is a ϕ-grammar
for a finite language. Since W ψ

〈i,k〉 is infinite, we have that Mi does not InfBcϕ

identify Wψ
〈i,k〉.

From the above two cases we have that (F) is satisfied.

This proves Claim 1.

Claim 2. CInfGFin \ PInfGEx 6= ∅.

Theorem 2 gave a class Lfin ⊆ FIN which does not belong to PInfGEx . Since
every subclass of FIN belongs to CInfGFin, the claim follows. 2

22

Corollary 4. (a) PInfGFin ⊂ PInfGEx .
(b) CInfGFin ⊂ CInfGEx .
(c) PInfGFin ⊂ CInfGFin.
(d) PInfGEx ⊂ CInfGEx .

Proof. Immediate from the corresponding definitions and the previous theo-
rem. 2

The next two results suggest that there are major differences in what is learn-
able from good examples – even only considering text examples – and what is
Bc-learnable from informant. We believe that the main reason for this is the
fact that the learning process is “divided” when learning with good examples:
first, the good examples are computed from a description of the language in
question and secondly, the strategy is required to learn only if it receives (a su-
perset of) these examples. When learning Bc-style from informant we require
that the strategy learns from every informant. So the whole learning problem
has to be solved by the strategy, without help from selected examples. On the
other hand, when learning from informant the strategy may get information
on every word it desires, whereas, when learning from good examples, the
strategy only has access to the finite set it receives.

Corollary 5. PInfGEx # InfBc.

Proof. For PInfGEx \ InfBc 6= ∅ consider Claim 1 in the proof of Theorem 7.

InfBc \ PInfGEx 6= ∅, is again witnessed by class Lfin (cf. Theorem 2). 2

Theorem 8. CTxtGEx # InfBc.

Proof. First we will prove CTxtGEx \ InfBc 6= ∅. Let ψ, g, Gp be as defined
in the proof of Claim 1 in Theorem 7.

Define η as follows.

W η
2x = Wψ

g(x) \ {〈1, 0〉}. G
′
p(2x) = Gp(g(x)).

W η
2x+1 =

{

Wψ
g(x) ∪ {〈1, 0〉}, if g(x) 6∈ {〈i, 0〉 | i ∈ N};

∅, otherwise.

G′
p(2x+ 1) =

{

Gp(g(x)) ∪ {〈1, 0〉}, if g(x) 6∈ {〈i, 0〉 | i ∈ N};
∅, otherwise.

It is easy to verify that L = {W ψ
g(0),W

ψ
g(1), . . .} can be CTxtGEx identified using

hypothesis space η, and good examples given by G′
p. To verify this, consider

a machine which, on input σ, first finds an i such that 〈0, i〉 ∈ content(σ),

23

and the maximum k, if any, such that 〈2, jik〉 ∈ content(σ). If no such k exists
then the input language must be W ψ

〈i,0〉, so assume that such a k exists. Note

that this restricts the input language to be either W ψ
〈i,0〉 or Wψ

〈i,k〉. Now, if

〈1, 0〉 ∈ content(σ) then the input language is W ψ
〈i,k〉 (η grammar for which

is 2x + 1, where g(x) = 〈i, k〉). If 〈1, 0〉 6∈ content(σ) and W ψ
〈i,k〉 enumerates

〈1, 0〉 then the input language is W ψ
〈i,0〉 (η grammar for which is 2x, where

g(x) = 〈i, 0〉). If 〈1, 0〉 6∈ content(σ) and W ψ
〈i,k〉 does not enumerate 〈1, 0〉 then

the input language is W ψ
〈i,k〉 (η grammar for which is 2x, where g(x) = 〈i, k〉).

L 6∈ InfBc was shown in Theorem 7.

Finally, InfBc \ CTxtGEx 6= ∅ follows from Theorem 6. 2

Corollary 6. CTxtGEx # PInfGFin.

Proof. For CTxtGEx \ PInfGFin 6= ∅ first note that PInfGFin ⊆ CInfGFin

holds by definition. The assertion now follows immediately, since CInfGFin ⊆
InfBc, by Theorem 2, and Theorem 8 gives a class of languages in CTxtGEx \
InfBc.

PInfGFin \ CTxtGEx 6= ∅ follows from Theorem 6. 2

Theorem 9. CTxtGFin ∩ TxtEx \ PInfGEx 6= ∅.

Proof. Note that every subset of FIN belongs to CTxtGFin∩TxtEx . Theorem
now follows from Theorem 2. 2

Finally, we present some more insight into the strength of class comprising
learning from good examples.

We start with finite identification from good informant examples.

Theorem 10. TxtEx ⊆ CInfGFin.

Proof. Suppose M TxtExϕ-identifies L. Without loss of generality assume
that M is rearrangement independent. For τ ∈ SEG, let H(τ) denote a σ ∈
SEQ such that content(σ) = Pos(τ) and |σ| = 2 ∗ card(Pos(τ) ∪ Neg(τ)).

For τ ∈ SEG, we say that witness(τ,m) iff the following four conditions hold:
(a) Pos(τ) ⊆ W ϕ

m, (b) Neg(τ) ⊆ W ϕ
m, (c) M (H(τ)) = m, and (d) H(τ) is a

locking sequence for M on W ϕ
m.

Note that, if witness(τ,m), then for all τ ′ ⊇ τ consistent with W ϕ
m,

24

witness(τ ′,m).

For τ ∈ SEG, let

Possible = {〈τ,m〉 | Pos(τ) ⊆W ϕ
m ∧ M (H(τ)) = m}, and

Spoiled = {〈τ,m〉 ∈ Possible | ¬witness(τ,m)}.

Note that Possible and Spoiled are r.e. sets.

Without loss of generality assume that Possible is an infinite set. We consider
two cases based on whether N ∈ L or not.

Case 1: N 6∈ L.

Let g be a 1–1 recursive function such that range(g) = Possible. Let ψ be
defined as follows.

Wψ
i =

{

Wϕ
m, if g(i) = 〈τ,m〉 and 〈τ,m〉 6∈ Spoiled;

N, otherwise.

It is easy to verify that ψ is a computable numbering. Moreover, for g(i) =
〈τ,m〉, if witness(τ,m) is true, then W ψ

i = Wϕ
m; otherwise W ψ

i = N (and thus
not in L).

For i such that g(i) = 〈τ,m〉, let Gp(i) = Pos(τ), and Gn(i) = Neg(τ).

Define M ′ as follows. On input τ̂ , M ′ outputs i such that g(i) = 〈τ̂ ,M (H(τ̂))〉.
Consider any W ψ

i ∈ L. Suppose g(i) = 〈τ ′,m′〉. Note that witness(τ ′,m′)
holds. Suppose τ̂ is such that Pos(τ ′) ⊆ Pos(τ̂) ⊆ W ψ

i = Wϕ
m′ , and Neg(τ ′) ⊆

Neg(τ̂) ⊆ W ψ
i = Wϕ

m′ . Thus witness(τ̂ , m′) holds. Hence m′ = M (H(τ̂)), and
i such that g(i) = 〈τ̂ ,M (H(τ̂))〉 is a ψ grammar for W ψ

i . Thus M ′ CInfGFin-
identifies L, using hypothesis space ψ and good positive and negative examples
given by Gp and Gn, respectively.

Case 2: N ∈ L.

Recall that, for all i ∈ N , Xi = {x | x ≤ i} and INIT = {Xi | i ∈ N}.
Applying Lemma 2, one easily verifies that INIT ∩ L is finite, since N ∈ L.
Hence, there is a n ∈ N such that, for all i ≥ n, Xi /∈ L.

Let g be a 1–1 recursive function such that range(g) = Possible. Let ψ be
defined as follows.

Wψ
i =

{

Wϕ
m, if g(i) = 〈τ,m〉 and 〈τ,m〉 6∈ Spoiled;

Xj, otherwise, for some j ≥ n.

25

Note that, for the second clause above, W ψ
i can just enumerate some initial

segment of N , once it discovers that 〈τ,m〉 ∈ Spoiled. Thus, ψ is a computable
numbering. Moreover, for g(i) = 〈τ,m〉, if witness(τ,m) is true, then W ψ

i =
Wϕ

m; otherwise W ψ
i = Xj, for some j ≥ n and thus not in L.

For i such that g(i) = 〈τ,m〉, let Gp(i) = Pos(τ), and Gn(i) = Neg(τ).

Define M ′ as follows. On input τ̂ , M ′ outputs i such that g(i) = 〈τ̂ ,M (H(τ̂))〉.
Now as in Case 1, one can verify that M ′ CInfGFin-identifies L, using hypoth-
esis space ψ and good positive and negative examples given by Gp and Gn,
respectively. 2

Interestingly, even class comprising finite learning (from good text examples)
can outperform TxtEx inference provided that the target class contains only
infinite languages.

Theorem 11. Suppose L ∈ TxtEx consists of only infinite languages. Then,

L ∈ CTxtGFin.

Proof. Suppose M TxtExϕ-identifies L. Without loss of generality assume
that M is rearrangement independent. For σ ∈ SEQ, let H(σ) denote a σ′ ∈
SEQ such that content(σ′) = content(σ) and |σ′| = 2 ∗ card(content(σ)).

For σ ∈ SEQ, we say that witness(σ,m) iff the following three conditions hold:
(a) content(σ) ⊆ W ϕ

m, (b) M (H(σ)) = m, and (c) H(σ) is a locking sequence
for M on W ϕ

m.

The rest of the proof can now be done essentially in the same manner as in
the proof of Theorem 10. We omit the details. 2

Finally, we show the power of limit learning from good informant examples in
class comprising hypothesis spaces.

Before proving the next theorem, we define the following predicates and point
to some of their properties.

m is a minimal grammar iff m = min({j | W ϕ
j = Wϕ

m}).

We say consistent(τ, j), iff Pos(τ) ⊆W ϕ
j , and Neg(τ) ⊆ W ϕ

j .

We say that bndincons(τ, j), iff Pos(τ) 6⊆W ϕ
j , or Neg(τ) 6⊆ W ϕ

j,|τ |.

Note that if bndincons(τ, j), then consistent(τ, j) is false; however, the con-
verse is not always true. Intuitively, bndincons(τ, j) just puts some computabil-
ity constraints on inconsistency.

26

The following proposition is easy to prove.

Proposition 3. (a) Suppose m is a minimal grammar. Then, there exists a

τ such that consistent(τ,m) and (∀j < m)[bndincons(τ,m)].
(b) Suppose τ,m meeting consistent(τ,m) and (∀j < m)[bndincons(τ,m)].

Then, (∀τ ′ ⊇ τ)[consistent(τ ′,m) ⇒ (∀j < m)[bndincons(τ ′, j)]].
(c) Suppose τ,m meeting consistent(τ,m) and (∀j < m)[bndincons(τ,m)].

Then, m = min({j | consistent(τ, j)}).
(d) Suppose m is not a minimal grammar. Then, there exists no τ such that

consistent(τ,m) and (∀j < m)[bndincons(τ,m)].

Intuitively, part (a) says that if m is a minimal grammar for some language,
then there exists a ‘witness’ to this fact. Part (b) says that if τ is a ‘witness’
to m being a minimal grammar, then all consistent extensions of τ are also
a witness. Part (c) gives a mechanism to find the minimal grammar using a
witness.

Let Possible = {〈τ,m〉 | Pos(τ) ⊆W ϕ
m ∧ Neg(τ) ⊆ W ϕ

m,|τ |}.

Intuitively, Possible consists of 〈τ,m〉 such that it is possible for τ to be a
witness for m to be a minimal grammar. Now we define Spoiled as follows.

Let Spoiled = {〈τ,m〉 | 〈τ,m〉 ∈ Possible ∧ ¬[consistent(τ,m) ∧ (∀j <
m)[bndincons(τ, j)]]}.

Intuitively, Spoiled consists of those (τ,m) in Possible, such that τ is not a
witness to m being minimal grammar. Clearly, Possible is r.e. Moreover, after
a bit of reflection one verifies that Spoiled is r.e. as well.

We are now ready to prove the final theorem.

Theorem 12. TxtBc ⊆ CInfGEx.

Proof. Note that, for any L ∈ TxtBc, either N 6∈ L, or INIT ∩ L is finite.
Theorem now follows using Lemmas 3 and 4. 2

Lemma 3. Let L = E \ {N}. Then L ∈ CInfGEx.

Proof. Note that Possible is an infinite r.e. set. Let g be a 1–1, total recursive
function such that range(g) = Possible. ψ is defined as follows:

Wψ
i =

{

Wϕ
m, if g(i) = 〈τ,m〉 and 〈τ,m〉 6∈ Spoiled;

N, otherwise.

It is easy to verify that ψ is a computable numbering. Moreover, for g(i) =
〈τ,m〉, if τ is a witness to m being a minimal grammar, then W ψ

i = Wϕ
m;

27

otherwise W ψ
i = N (and thus not in L).

For i such that g(i) = 〈τ,m〉, let Gp(i) = Pos(τ), and Gn(i) = Neg(τ).

Define M as follows. On input τ̂ , M converges, in the limit, to i, such that
g(i) = 〈τ̂ , m〉, where m = min({j | consistent(τ̂ , j)}). It is now easy to verify,
using Proposition 3, that M CInfGEx -identifies L, using hypothesis space
ψ and good positive and negative examples given by Gp and Gn, respec-
tively. 2

Lemma 4. Suppose n ∈ N . Let Xi = {x | x < i}. Let L = E \ {Xi | i ≥ n}.
Then L ∈ CInfGEx.

Proof. This proof is similar to that of Lemma 3. Let g be a 1–1, total recursive
function such that range(g) = Possible. ψ is defined as follows:

Wψ
i =

{

Wϕ
m, if g(i) = 〈τ,m〉 and 〈τ,m〉 6∈ Spoiled;

Xj, otherwise, for some j ≥ n.

Note that, for the second clause above, W ψ
i can just enumerate some initial

segment of N once it discovers that 〈τ,m〉 ∈ Spoiled. Thus, ψ is a computable
numbering. Moreover, for g(i) = 〈τ,m〉, if τ is a witness to m being a minimal
grammar, then W ψ

i is Wϕ
m; otherwise W ψ

i = Xj, for some j ≥ n (and thus not
in L).

For i such that g(i) = 〈τ,m〉, let Gp(i) = Pos(τ), and Gn(i) = Neg(τ).

Define M as follows. On input τ̂ , M converges, in the limit, to i such that
g(i) = 〈τ̂ , m〉, where m = min({j | consistent(τ̂ , j)}). It is now easy to verify,
using Proposition 3, that M CInfGEx -identifies L, using hypothesis space
ψ and good positive and negative examples given by Gp and Gn, respec-
tively. 2

6 Concluding Remarks

As experience shows, in learning from examples there are important examples
and less important ones. In order to solve the learning problem it often suffices
to see the important examples rather than as much examples as possible. The
approach of learning from good examples formalizes this intuitive idea.

In this paper we studied learning from good examples for indexed families
of recursively enumerable languages. We considered the relationship between

28

different criteria based on (i) whether the good examples contain only elements
of the target language (so-called text examples) or the good examples contain
both elements and non-elements of the target language (so-called informant
examples), on (ii) whether the good examples are computed with respect to
some class preserving or some class comprising hypothesis space, and on (iii)
whether the learner has, when fed any superset of the good examples, to learn
finitely or in the limit. Moreover, we related the resulting models of learning
from good examples to the standard learning models in the context of Gold-
style language learning.

We showed that the learning power of finite and limit learning from good text
examples coincides in the class preserving case. On the other hand, in the class
comprising case, limit learning from good text examples is more powerful than
finite inference from good text examples. When learning from good informant
examples is considered, limit learning is more powerful than finite inference,
both in the class preserving and in the class comprising case. These results
provide an answer to an open question posed by Lange, Nessel and Wiehagen
in a similar study about learning indexed families of reursive languages from
good examples (cf. [15]).

It turned out that learning from good examples may sometimes outperform
learning in the limit and even behaviourally correct inference from text and
informant, respectively. This additional power mainly comes from the follow-
ing sources: the knowledge of the language to be learnt when computing the
good examples to it and, in a sense simultaneously, the careful choice of an
appropriate hypothesis space.

Furthermore, the results obtained allows to clarify the relation between fi-
nite learning from good examples and the standard models of finite identifi-
cation from text (TxtFin) and finite identification from informant (InfFin),
cf. Gold [12]. It is easy to see that TxtFin ⊂ PTxtGFin. Furthermore, it
can be shown that InfFin ⊆ CTxtGFin. Since InfFin ⊆ TxtEx , as a corol-
lary to Theorem 3 (b) we get, PTxtGFin \ InfFin 6= ∅. On the other hand,
an easy modification of the proof of Theorem 2 can be used to verify that
InfFin \ PInfGEx 6= ∅.

Finally, let us point to the relevant open problems. The most important ques-
tions are whether or not TxtBc ⊆ CTxtGEx and InfBc ⊆ CInfGEx , respec-
tively, hold. Besides that, we don’t know whether CInfGFin ⊂ InfBc holds.

29

7 Acknowledgements

We thank Arun Sharma and Rolf Wiehagen for helpful discussions. We also
thank the anonymous referees for ALT’97 and this journal, whose comments
helped to improve the paper.

References

[1] D. Angluin, Finding patterns common to a set of strings, Journal of Computer

and System Sciences 21 (1980) 46–62.

[2] D. Angluin, Inductive inference of formal languages from positive data,
Information and Control 45 (1980) 117–135.

[3] G. Baliga, J. Case and S. Jain, Language learning with some negative
information, Journal of Computer and System Sciences 51 (1995) 273–285.

[4] M. Blum, A machine independent theory of the complexity of recursive
functions, Journal of the ACM 14 (1967) 322–336.

[5] L. Blum and M. Blum, Toward a mathematical theory of inductive inference,
Information and Control 28 (1975) 125–155.

[6] J. Case, S. Jain, S. Lange and T. Zeugmann, Incremental concept learning for
bounded data mining, DOI Technical Report, DOI-TR-136, Kyushu University,
Japan, 1997.

[7] J. Case and C. Lynes, Machine inductive inference and language identification,
in: M. Nielsen and E.M. Schmidt, eds., Proc. 9th Intern. Colloquium on

Automata, Languages and Programming, Lecture Notes in Computer Science,
Vol. 140 (Springer-Verlag, Berlin, 1982) 107–115.

[8] J. Case and C. Smith, Comparison of identification criteria for machine
inductive inference, Theoretical Computer Science 25 (1983) 193–220.

[9] D. de Jongh and M. Kanazawa, Angluin’s theorem for indexed families of
r.e. sets and applications, in: A. Blum and M. Kearns, eds., Proc. 9th Annual

Conference on Computational Learning Theory (ACM Press, New York, 1996)
193–203.

[10] R. Freivalds, E.B. Kinber and R. Wiehagen, On the power of inductive inference
from good examples, Theoretical Computer Science 110 (1993) 131–144.

[11] M.A. Fulk, Prudence and other conditions on formal language learning,
Information and Computation 85 (1990) 1–11.

[12] E.M. Gold, Language identification in the limit, Information and Control 10

(1967) 447–474.

30

[13] S.A. Goldman and H.D. Mathias, Teaching a smarter learner, Journal of

Computer and System Sciences 52 (1996) 255–267.

[14] S. Jain and A. Sharma, Elementary formal systems, intrinsic complexity and
procrastination, Information and Computation 132 (1997) 65–84.

[15] S. Lange, J. Nessel and R. Wiehagen, Language learning from good examples,
in: S. Arikawa and K.P. Jantke, eds., Proc. 5th Intern. Workshop on Algorithmic

Learning Theory, Lecture Notes in Artificial Intelligence, Vol. 872 (Springer-
Verlag, Berlin, 1994) 423–437.

[16] T. Motoki, Inductive inference from all positive and some negative data,
Information Processing Letters 39 (1991) 177–182.

[17] H. Rogers, Theory of Recursive Functions and Effective Computability

(McGraw-Hill, New York, 1967; reprinted by MIT Press, Cambridge,
Massachusetts, 1987).

[18] G. Schäfer-Richter, Über Eingabeabhängigkeit und Komplexität von
Inferenzstrategien, Dissertation, Rheinisch Westfälische Technische Hochschule
Aachen, 1984.

[19] A. Shinohara and S. Miyano, Teachability in computational learning, New

Generation Computing 8 (1991) 337–347.

[20] T. Zeugmann and S. Lange, A guided tour across the boundaries of learning
recursive languages, in: K.P. Jantke and S. Lange, eds., Algorithmic Learning

for Knowledge-Based Systems, Lecture Notes in Artificial Intelligence, Vol. 961
(Springer-Verlag, Berlin, 1995) 190–258.

[21] T. Zeugmann, Lange and Wiehagen’s pattern language learning algorithm: An
average-case analysis with respect to its total learning time, RIFIS Technical
Report, RIFIS-TR-CS-111, RIFIS, Kyushu University, Japan, 1995.

31

