
Learning Pattern Languages Over Groups

Rupert Hölzl1, Sanjay Jain2 ? and Frank Stephan2 3 ??

1 Institute 1, Faculty of Computer Science, Universität der Bundeswehr München,
Werner-Heisenberg-Weg 39, 85577 Neubiberg, Germany

Email: r@hoelzl.fr
2 School of Computing, National University of Singapore, Singapore 117417.

Email: sanjay@comp.nus.edu.sg
3 Department of Mathematics, National University of Singapore, Singapore 119076.

Email: fstephan@comp.nus.edu.sg

Abstract. This article studies the learnability of classes of pattern lan-
guages over automatic groups. It is shown that the class of bounded
unions of pattern languages over any finitely generated Abelian auto-
matic group is explanatorily learnable. Furthermore, patterns are con-
sidered in which variables occur at most n times. The classes of the
languages generated by such patterns as well as the bounded unions of
such languages are, for finitely generated automatic groups, explanatorily
learnable by an automatic learner. On the other hand, the unions of up to
two arbitrary pattern languages over the integers cannot be learnt by any
automatic learner. Furthermore, there is an algorithm which provides for
every automatic group G, given by the automata describing the group, a
learning algorithm MG such that either MG explanatorily learns all the
pattern languages over that group or there is no such learner at all, even
not a non-recursive one. For some automatic groups, non-learnability
results of natural classes of pattern languages are provided.

1 Introduction

Gold [9] introduced inductive inference, a model for learning classes of languages
L (a language is a subset of Σ∗ for some alphabet Σ) from positive data; this
model was studied extensively in the subsequent years [1, 2, 7, 8, 23]. Inductive
inference can be described as follows; see Section 2 for the formal details: The
learner reads, one by one as input, elements of a language L from a class L of
languages; these elements are provided in an arbitrary order and with arbitrarily
many repetitions and pauses; such a presentation of data is called a text for the
language. While reading the data items from the text, the learner conjectures a
sequence of hypotheses (grammars), one hypothesis at a time; subsequent data
may lead to revision of earlier hypotheses. The learner is considered to have learnt

? S. Jain is supported in part by NUS grants R146-000-181-112, R252-000-534-112 and
C252-000-087-001.

?? F. Stephan is supported in part by NUS grants R146-000-181-112 and R252-000-
534-112.

the target language L if the sequence of hypotheses converges syntactically to
a grammar for L. The learner is said to learn the class L of languages if it
learns each language in L. The above model of learning is often referred to as
explanatory learning (Ex-learning) or learning in the limit.

Angluin [2] introduced one important concept studied in learning theory,
namely the concept of (non-erasing) pattern languages. Shinohara [27] gener-
alised it to the concept of erasing pattern languages in which the variables are
allowed to be substituted by empty strings. Suppose Σ is an alphabet set (usu-
ally finite) and X is an infinite set of variables. A pattern is a string over Σ∪X.
A substitution is a mapping from X to Σ∗. Using different substitutions for
variables, different strings can be generated from a pattern. The language gen-
erated by a pattern is the set of all the strings that could be obtained from
the pattern using some substitution. Angluin showed that when substitutions
allowed for variables are non-empty strings, then the class of pattern languages
is Ex-learnable; Lange and Wiehagen [17] provided a polynomial time learner
for non-erasing pattern languages. On the other hand, Reidenbach [25] showed
that if arbitrary strings (including empty strings) are allowed for substitutions
of variables, then the class of pattern languages is not Ex-learnable.

This paper explores learnability of pattern languages over groups; pattern
languages and verbal languages (that are languages generated by patterns with-
out constants) have been used in group theory extensively, for example in the
work showing the decidability of the theory of the free group [13, 14]. Mias-
nikov and Romankov [19] studied when verbal languages are regular (in certain
representations of the group).

In the following, consider a group (G, ◦). The constants used for the patterns
are then the members of the group G and the substitutions map variables to
group elements; for example,

L(xax−1yyab) = {x ◦ a ◦ x−1 ◦ y ◦ y ◦ ab : x, y ∈ G}

and bab−1a−3b ∈ L(xax−1yyab) by letting x = b and y = a−2. So the concatena-
tion in the pattern is replaced by the group operation ◦ and in this way a pattern
generates a subset of the group G. Note that the replacement of variables by the
identity element of G is allowed.

This paper considers when pattern languages over groups and their bounded
unions are Ex-learnable, where the focus is on automatic groups. Informally,
an automatic group or more generally an automatic structure can be defined as
follows (see Section 2 for formal details). Consider a structure (A,R1, R2, . . .),
where A ⊆ Σ∗ and R1, R2, . . . are relations over Σ∗ (an n-ary function can be
considered as a relation over n+ 1 arguments — n inputs and one output). The
structure is said to be automatic if the set A is regular and each of the relations
is regular, where multiple arguments are given to the automata in parallel with
shorter inputs being padded by some special symbol to make the lengths of all
inputs the same. An automatic group is an automatic structure (A,R), where
A is a representation of G (that is, there exists a one-one and onto mapping
rep from G to A) and the relation R = {(rep(x), rep(y), rep(z)) : x, y, z ∈ G

2

and x ◦ y = z}. Automatic groups in this paper follow the original approach by
Hogdson [10, 11] and later by Khoussainov and Nerode [16] and Blumensath and
Grädel [4, 5]; automatic groups have also been studied by Nies, Oliver, Thomas
and Tsankov [20–22, 28].

In some cases, automatic groups allow to represent the class of all pattern
languages over the group or some natural subclass of it as an automatic family,
(Le)e∈E , which is given by an automatic relation {(e, x) : e ∈ E ∧ x ∈ Le}
for some regular index set E. Automatic families allow to implement learners
which are themselves automatic; such learners satisfy some additional complex-
ity bound and results in a restriction though many complexity bounds in learning
theory are not restrictive [6, 12, 24]. The use of automatic structures and families
has the further advantage that the first-order theory of these structures is de-
cidable and that first-order definable functions and relations are automatic [10,
16]; see the surveys of Khoussainov and Minnes [15] and Rubin [26] for more
information.

Theorem 6 below strengthens Angluin’s characterisation [1] result on the
learnability of indexed families of languages by showing that for the class of
pattern languages over an automatic group to be learnable, it is already sufficient
that they satisfy Angluin’s tell-tale criterion non-effectively (see Section 3 for
definition of the tell-tale criterion). It follows from Angluin’s work that this
non-effective version of the tell-tale criterion is necessary. Note that for general
indexed families, this non-effective version of tell-tale criterion is not sufficient
and gives rise only to a behaviourally correct learner [3].

Section 4 explores the learnability of the class of pattern languages when the
number of occurrences of variables in the pattern is bounded by some constant.
Let Patn(G) denote the class of pattern languages over group G where the
number of occurrences of the variables in the pattern is bounded by n. Then,
Theorem 7 shows that Pat1(G) is Ex-learnable for all automatic groups G,
though Pat2(G) is not Ex-learnable for some automatic group G. This group G
has infinitely many generators. Theorem 10 shows that Patn(G) is Ex-learnable
for all finitely generated automatic groups G (in fact, for any fixed m, even the
class of unions of upto m such pattern languages is Ex-learnable).

Sections 5 and 6 consider learnability of the class of all pattern languages.
Theorem 16 shows that for some automatic group G generated by two elements,
Pat(G), the class of all pattern languages over G, is not Ex-learnable. On the
other hand, Theorem 20 shows that for finitely generated Abelian groups G,
Pat(G) as well as the class of unions of upto m pattern languages over G is
Ex-learnable, for any fixed m. Theorem 14 shows that for the class of pattern
languages over finitely generated Abelian groups the learners can even be made
automatic using a suitable representation of the group and hypothesis space
(see Section 2 for the definition of automatic learners), though this hypothesis
space cannot in general be an automatic family. However, the class of unions
of upto two pattern languages over the integers with group operation + is not
automatically Ex-learnable (see Theorem 18).

Some proofs are omitted due to space constraints.

3

2 Preliminaries

The symbol N = {0, 1, 2, . . .} denotes the set of natural numbers and Z =
{. . . ,−2,−1, 0, 1, 2, . . .} denotes the set of integers.

For any alphabet set Σ, Σ∗ denotes a set of strings over Σ. Σ@ denotes
the set of strings over Σ, where inverses of the members of Σ are also allowed
in the string (this is useful when considering groups). The length of a string
w is denoted by |w|. w(i) denotes the i-th character of the string, that is w =
w(0)w(1)w(2) . . . w(|w| − 1), where each w(i) is in Σ (or Σ ∪Σ−1 depending on
the context).

The convolution of two strings u and v is defined as follows. Let m =
max({|u|, |v|}). Let ♦ 6∈ Σ be a special symbol used for padding words. If i < |u|
then let u′(i) = u(i) else let u′(i) = ♦; similarly, if i < |v| then let v′(i) = v(i)
else let v′(i) = ♦. Now, conv(u, v) = w is the string of length m such that, for
i < m, w(i) = (u′(i), v′(i)). The convolution over n-tuples of strings is defined
similarly. The convolution is useful when considering relations with two or more
inputs like the graph of a function.

A function f is said to be automatic if {conv(x, f(x)) : x in domain of f}
is regular. An n-ary relation R is said to be automatic if {conv(x1, x2, . . . , xn) :
(x1, x2, . . . , xn) ∈ R} is regular. A structure (A,R1, R2, . . . , f1, f2, . . .) is said to
be automatic, if A is a regular domain of the structure, f1, f2, . . . are automatic
functions from Ak to A for some k and R1, R2, . . . are automatic relations over
the domain Ah for some h. A class L of languages over alphabet Σ is said
to be an automatic family if there eixsts a regular index set I and there exist
languages Lα, α ∈ I, such that L = {Lα : α ∈ I} and the set {conv(α, x) :
α ∈ I, x ∈ Σ∗, x ∈ Lα} is regular. For x, y ∈ Σ∗ for a finite alphabet Σ, let
x <ll y iff |x| < |y| or |x| = |y| and x is lexicographically before y, where some
fixed ordering among symbols in Σ is assumed. Let ≤ll, >ll and ≥ll be defined
analogously. The relation <ll is called the length-lexicographical order on Σ.
The following fact is useful for showing that various relations or functions are
automatic.

Fact 1 (Blumensath and Grädel [5], Hodgson [10, 11], Khoussainov
and Nerode [16]). Any relation or function that is first-order definable from
existing automatic relations and functions is automatic.

A group is a set of elements G along with an operation ◦ such that the following
conditions hold:

– (closure) for all a, b ∈ G, a ◦ b ∈ G;
– (associativity) for all a, b, c ∈ G, (a ◦ b) ◦ c = a ◦ (b ◦ c);
– (identity) there exists an identity element ε ∈ G such that for all a ∈ G,
a ◦ ε = ε ◦ a = a;

– (inverse) for all a ∈ G, there is an a−1 ∈ G such that a ◦ a−1 = a−1 ◦ a = ε.

Often when referring to the group G, the group operation ◦ is implicit. A group
(G, ◦) is said to be commutative or Abelian if for all a, b ∈ G, a ◦ b = b ◦ a. When

4

considering groups, a string over G is identified with the element of G obtained
by replacing concatenation with ◦: thus for a, b, c ∈ G, ab−1c represents the
group element a ◦ b−1 ◦ c.

Σ is a set of generators for a group (G, ◦) if all members of G can be written
as a finite string over members of Σ and their inverses, where the concatenation
operation is replaced by ◦. Note that, in general, the set of generators may be
finite or infinite. An Abelian group (G, ◦) is said to be a free Abelian group gen-
erated by a finite set {a1, a2, . . . , an} of generators iff G = {am1

1 ◦a
m2
2 ◦ . . .◦amn

n :
m1,m2, . . . ,mn ∈ Z} and for each group element the choice of m1,m2, . . . ,mn

is unique.
Usually a group (G, ◦) is represented using a set of representatives over a

finite alphabet Σ via a one-one function rep from G to Σ∗. Then, rep(α) is said
to be the representative of α ∈ G. For L ⊆ G, rep(L) = {rep(a) : a ∈ L}. Often
a group member is identified with its representative, and thus L ⊆ G is also
identified with rep(L).

A group (G, ◦) is said to be automatic if there exists a one-one function
rep from G to Σ∗, where rep(α) is the representative of α ∈ G, such that the
following conditions hold:

– A = {rep(α) : α ∈ G} is a regular subset of Σ∗.
– The function f(rep(α), rep(β)) = rep(α ◦ β) is automatic.

In this case (A, ◦) is called an automatic presentation of the group (G, ◦); in
the following, for the ease of notation, the groups are identified with their auto-
matic presentation. Note that the second clause above implies that the function
mapping α 7→ α−1, computing inverses, is also automatic, as it can be defined
using a first order formula over automatic functions. Without loss of generality
it is assumed that ε ∈ Σ∗ is the representative of ε ∈ G. An example of an
automatic group is (Z,+), where + denotes addition. The representation used
for this automatic group is the reverse binary representation of numbers where
the leftmost bit is the least significant bit (the sign of the number can be repre-
sented using a special symbol). In the above group, the order given by < is also
automatic and so the entire automatic structure (Z,+, <) is often used.

Angluin [2] introduced the concept of pattern languages in the field of learning
theory. This concept is adapted to the notion of pattern languages over groups
as follows. Fix a group (G, ◦). A pattern π is a string over G ∪ {x1, x2, . . .} ∪
{x−11 , x−12 , . . .}, where X = {x1, x2, . . .} is a set of variables. Sometimes the
symbols x, y, z are also used for variables. The members of G appearing in a
pattern are called constants. A substitution is a mapping from X to G. Note
that the substitution of variables by ε is allowed. Let sub(π) denote the string
formed from π by using the substitution sub, that is, by replacing every variable
x by sub(x) and x−1 by (sub(x))−1 in the pattern π. The language generated
by π, denoted L(π), is the set L(π) = {sub(π) : sub is a substitution}. Two
patterns π1 and π2 are said to be equivalent (with respect to the group G) iff
L(π1) = L(π2). A pattern language (over a group G) is a language generated by
some pattern π. In case the pattern π does not contain any constants, then the
language L(π) generated by π is called a verbal language. Let Pat(G) denote

5

the class of all pattern languages over the group (G, ◦) and Patm(G) denote the
class of all unions of upto m pattern languages over the group G. Let Patn(G)
denote the class of pattern languages generated by patterns containing up to
n occurrences of variables or inverted variables and correspondingly Patmn (G)
denote the class of all unions of upto m pattern languages generated by patterns
containing up to n occurrences of variables or inverted variables.

Proposition 2. The classes Patn(G) and Patmn (G) are automatic families for
all automatic groups (G, ◦) and m,n ∈ N.

Gold [9] introduced the model of learning in the limit which is described below.
Fix a group (G, ◦). A text T for a language L is a mapping from N to rep(G)∪{#},
where as mentioned earlier members of G are identified with rep(G), and thus
a text can be viewed as a sequence of elements of G ∪ {#}. A finite sequence is
an initial segment of a text. Λ denotes the empty sequence. Let |σ| denote the
length of sequence σ. The content of a text T , denoted content(T), is the set
of members of G in the range of T , that is, content(T) = {T (i) : T (i) 6= #}.
Similarly, the content of a finite sequence σ, denoted content(σ), is {σ(i) : i <
|σ| and σ(i) 6= #}. Intuitively, #’s denote pauses in the presentation of data. T
is a text for L ⊆ G iff content(T) = L. Let T [n] denote the initial segment of T
of length n.

Intuitively, a learner reads from the input, one element at a time, some text
T for a target language L. Based on this new element, the learner updates its
memory and conjecture. The learner has some initial memory and conjecture
before it has received any data. Note that a text denotes only positive data
being presented to the learner; the learner is never given information about
what is not in the target language L. The learner uses some hypothesis space
H = {Hα : α ∈ J} for its conjectures. It is assumed for this paper that the
hypothesis space is uniformly recursive, that is, {(α, x) : α ∈ J, x ∈ Hα} is
recursive.

More formally, a learner is defined as follows. Parts (d) to (f) of the definition
give a basic learning criterion called explanatory learning.

Definition 3 (Based on Gold [9]). Fix a group (G, ◦). Suppose I and J are
some index sets (regular sets of strings over some finite alphabet).

Suppose L = {Lα : α ∈ I} is a class to be learnt and H = {Hβ : β ∈ J} is a
hypothesis space, with Lα, Hβ ⊆ G for all α ∈ I and β ∈ J .

Suppose ∆ is a finite alphabet used for storing memory by the learner and ?
is a special symbol not in J ∪∆∗ used for null hypothesis as well as null memory.

(a) A learner is a recursive mapping from (∆∗ ∪ {?}) × G ∪ {#}) to (∆∗ ∪
{?})× (J ∪ {?}). A learner has initial memory mem0 ∈ ∆∗ ∪ {?} and initial
conjecture hyp0 ∈ J ∪ {?}.

(b) Suppose a learner M with initial memory mem0 and initial hypothesis hyp0
is given. Suppose a text T for a language L ⊆ G is given.
– Let memT

0 = mem0 and hypT0 = hyp0.

6

– Let (memT
n+1, hyp

T
n+1) = M(memT

n , T (n)).
Intuitively, memT

n+1 and hypTn+1 denote the memory and conjecture of the
learner M after receiving input T [n+ 1].

(c) M converges on T to a hypothesis hyp iff for all but finitely many n, hypTn =
hyp.

(d) M is said to Ex-learn a language L with respect to hypothesis space H iff for
all texts T for L, M converges on T to a hypothesis hyp such that Hhyp = L.

(e) M is said to Ex-learn a class L of languages with respect to hypothesis space
H iff M Ex-learns each L ∈ L with respect to hypothesis space H. In this
case M is said to be an Ex-learner for L.

(f) L is said to be Ex-learnable iff there exists a recursive learner M and a
hypothesis space H such that M Ex-learns L with respect to hypothesis
space H.

The notation Ex in the above definition stands for “explanatory learning” and
was first introduced by Gold [9]. Often, reference to the hypothesis space H is
dropped and is implicit. Furthermore, in some cases when learning automatic
families, some automatic family is used as the hypothesis space.

A learner M is said to make a mind change [7, 8] at T [n], if ? 6= hypTn 6=
hypTn+1 as defined in the above definition. A learner makes at most m mind
changes on a text T iff {n : ? 6= hypTn 6= hypTn+1} ≤ m.

A learner is said to be automatic if its updating function is automatic, that
is, if the relation {conv(old mem, datum, new mem, hypothesis) : M(old mem,
datum) = (new mem, hypothesis)} is automatic.

For ease of presentation of proofs, sometimes it is informally described how
the learner updates its memory and hypothesis when a new datum is presented.
Furthermore, sometimes a language is directly used as hypothesis rather than
an index; the index conjectured is implicit in such a case.

The following lemma by Gold is useful to show some of the results below.

Lemma 4 (Gold [9]). Suppose L0 ⊂ L1 ⊂ . . . and L =
⋃
i∈N Li. Then the

class {L} ∪ {L0, L1, . . .} is not Ex-learnable.

3 A Characterisation

A tell-tale set [1] for a language L with respect to a class L, is a finite subset D
of L such that, for every L′ ∈ L, D ⊆ L′ ⊆ L implies L′ = L. A class L satisfies
Angluin’s tell-tale condition non-effectively iff every language L in L has a tell-
tale set with respect to L. A class L = {Li : i ∈ I} satisfies Angluin’s tell-tale
condition effectively iff for each i ∈ I, a tell-tale set D for Li with respect to L
can be enumerated effectively in i. Furthermore, L is called an indexed family
iff there exists an indexing L = {Li : i ∈ I}, where I is a recursive set, such that
{〈i, x〉 : x ∈ Li} is recursive.

Proposition 5 (Angluin [1]). An indexed family L is Ex-learnable iff it sat-
isfies Angluin’s tell-tale condition effectively.

7

Baliga, Case and Jain [3] gave a similar characterisation for behaviourally cor-
rect learning (using an acceptable numbering as hypothesis space) for indexed
families satisfying Angluin’s tell-tale condition non-effectively. Angluin’s result
is now used to obtain a characterisation for learnability of Patm(G), for any
automatic group G.

Theorem 6. Given an automatic group G, if Patm(G) satisfies Angluin’s tell-
tale condition non-effectively, then Patm(G) is Ex-learnable.

Thus, Patm(G) is Ex-learnable iff it satisfies Angluin’s tell-tale condition non-
effectively. The above result also holds when considering Patmn (G) instead of
Patm(G). Note that the above result implies that the Ex-learnability of Patm(G)
or Patmn (G) does not depend on the automatic representation chosen for the
group; however, the learnability by an automatic learner might still depend on
it.

4 Learning Patterns with up to n Variable Occurrences

In this section it is shown that the class Patmn (G) is Ex-learnable for all finitely
generated automatic groups G. For non-finitely generated automatic groups,
Pat1(G) is Ex-learnable, but Pat2(G) is not Ex-learnable.

Theorem 7. For every automatic group (G, ◦), the class Pat1(G) can be Ex-
learnt by an automatic learner which makes at most one mind change. There is,
however, an automatic group (G, ◦) such that Pat2(G) cannot be Ex-learnt by
any learner.

In the following, it will be shown that for finitely generated automatic groups,
for all n ∈ N, the class Patn(G) has an automatic learner. For this result, it is
necessary to recall some facts from group theory:

Oliver and Thomas [22] showed that a finitely generated group is automatic
iff it is Abelian by finite, that is, it has an Abelian subgroup of finite index. They
furthermore noted [22, Remark 3] that if any group has an Abelian subgroup of
finite index, then it also has an Abelian normal subgroup of finite index. Also
note that if a finitely generated group has a normal subgroup of finite index,
then this normal subgroup is finitely generated.

Thus, given an automatic finitely generated group (G, ◦), it can be assumed
without loss of generality that there is a finite subset H of G and generators
b1, . . . , bm of a normal Abelian subgroup H ′ of G, such that every group element
of G is of the form

a ◦ b`11 ◦ b
`2
2 ◦ . . . ◦ b`mm

where a ∈ H and `1, `2, . . . , `m ∈ Z. Furthermore, for each a ∈ H and generator
bi, there are ja,1, . . . , ja,m with

bi ◦ a = a ◦ bja,1

1 ◦ bja,2

2 ◦ . . . ◦ bja,m
m .

8

Therefore it can be assumed without loss of generality that the group is rep-
resented as a convolution of a ∈ H and `1, . . . , `m ∈ Z in some automatic
presentation of (Z,+, <). Then this allows to automatically carry out various
group operations such as ◦, testing membership in H ′ and finding, for an ele-
ment of H ′, a corresponding coordinate tuple from Zh with respect to fixed h
group elements generating H ′.

For G,H,H ′ as above, let S be a finite set of generators of H ′; note that
for each S′ ⊆ S, the set generated by members of S′ is a regular subset of H ′.
Furthermore, let R be a finite set of regular subsets of G with the property that
for every U ∈ R and β, β′ ∈ H ′, either U ◦β = U ◦β′ or U ◦β ∩U ◦β′ = ∅. Now
the following family is automatic for each constant n:

Qn(R, H ′) = {(U1 ◦ β1) ∪ (U2 ◦ β2) ∪ . . . ∪ (Uh ◦ βh) : h ≤ n and
U1, U2, . . . , Uh ∈ R and β1, β2, . . . , βh ∈ H ′}.

Here, a member of Qn(R, H ′) can be represented as follows. As R is finite, its
members can be represented using finitely many symbols. Each pair (U, β) can
be represented using conv(u, β), where u is a single symbol representing the
member U of R and β is a representation of the corresponding group element.
Each member of Qn(R, H ′) can now be represented using a convolution of the
representation of up to n pairs (U, β).

Proposition 8. For every n, the class Qn(R, H ′) has an automatic Ex-learner
using Qn(R, H ′) as the hypothesis space.

Proof. The learner in its memory maintains a set of candidate conjectures,
where each candidate conjecture is of the form

(U1 ◦ β1) ∪ (U2 ◦ β2) ∪ . . . ∪ (Uh ◦ βh),

with h ≤ n, each Ui ∈ R and each βi ∈ H ′. It will be the case that the number of
candidates in the set is bounded by some constant c. The set of candidates can
be memorised using a convolution of the representation of each of the candidates.

The conjecture of the learner at any stage is the minimal candidate (subset
wise) among all the candidates. In case of several minimal candidates, the candi-
date with the length-lexicographically smallest representation is used. Note that
the above is an automatic operation.

Initially the learner has only one candidate which is the empty union. At any
stage of the learning process, when a new input w is processed, the following is
done for each candidate in the current set. If a candidate (U1 ◦ β1)∪ (U2 ◦ β2)∪
. . .∪ (Uh ◦ βh) with h < n does not contain w, then the candidate is replaced by
a set of candidates of the form

(U1 ◦ β1) ∪ (U2 ◦ β2) ∪ . . . ∪ (Uh ◦ βh) ∪ (Uh+1 ◦ βh+1),

which satisfy that Uh+1 is a member of R and βh+1 exists and is the length-
lexicographically least member of H ′ such that w ∈ Uh+1 ◦ βh+1. If no such
Uh+1, βh+1 exist, then (U1◦β1)∪(U2◦β2)∪ . . .∪(Uh◦βh) is simply dropped from

9

the candidate set. Note that all the above operations are automatic. Furthermore,
note that for each replaced candidate, at most |R| new candidates are added in.
As none of these unions has more than n terms, the overall number of candidates
considered through the runtime of the algorithm is at most 1 + |R|+ . . .+ |R|n;
if c is chosen equal to this number then never more than c candidates need to
be memorised.

Now, suppose T is a text for L ∈ Qn(R, H ′). For all candidates which are
not supersets of the language L to be learnt, the learner will eventually see a
counter example and remove the candidate from the candidate set. Thus only
candidates containing all elements of L will survive in the limit in the candidate
set maintained by the learner.

Suppose L = (U1◦β1)∪(U2◦β2)∪. . .∪(Uh◦βh), where h ≤ n is minimal. With-
out loss of generality assume that βi are length-lexicographically least member β′i
of H ′ such that Ui◦βi = Ui◦β′i. Then eventually, (U1◦β1)∪(U2◦β2)∪. . .∪(Uh◦βh)
is added to the candidate set by the learner. This can be shown by induction
as follows. When the first datum different from # is observed by the learner,
it adds (Ui1 ◦ βi1) in the candidate set, for some i1 ∈ {1, 2, . . . , h}. Now, sup-
pose the learner has placed (Ui1 ◦ βi1) ∪ (Ui2 ◦ βi2) ∪ . . . ∪ (Uik ◦ βik) in the
candidate set with k < h and {i1, i2, . . . , ik} ⊂ {1, 2, . . . , h}. Then, eventu-
ally it will add (Ui1 ◦ βi1) ∪ (Ui2 ◦ βi2) . . . ∪ (Uik ◦ βik) ∪ (Uik+1

◦ βik+1
) to

the candidate set where {i1, i2, . . . , ik} ⊂ {i1, i2, . . . , ik, ik+1} ⊆ {1, 2, . . . , h}.
This happens at the stage when the learner is first presented an element w ∈
L − (Ui1 , βi1) ∪ (Ui2 , βi2) ∪ . . . ∪ (Uik , βik). Thus, by induction the learner will
eventually put (U1 ◦ β1) ∪ (U2 ◦ β2) ∪ . . . ∪ (Uh ◦ βh), in the candidate set. As
(U1, β1)∪(U2, β2)∪. . .∪(Uh, βh) is never dropped from the candidate set, eventu-
ally the learner only outputs the length-lexicographically least correct conjecture
(among the conjectures that it has in its candidate set). Thus, the learner Ex-
learns L. As L was an arbitrary member of Qn(R, H ′), it follows that the learner
Ex-learns Qn(R, H ′). �

Proposition 9. Every automatic finitely generated group (G, ◦) has a normal
Abelian subgroup H ′ of finite index such that, for each n, there is a set R of
finitely many regular languages and an n′ such that Patn(G) ⊆ Qn′(R, H ′).

Note that if an automatic learner can learn an automatic family L using L as the
hypothesis space and L′ ⊆ L is an automatic subfamily, then there is another
automatic learner which learns L′ using L′ as the hypothesis space. This holds
as there is an automatic function which translates any index in L for a language
L ∈ L′ into an index for L in L′ (see [12]); furthermore the domain of this
function is regular, as a finite automaton can determine whether an index of a
member of L is for a language in L′. Thus Proposition 8 and Proposition 9 give
the following theorem.

Theorem 10. Let (G, ◦) be a finitely generated automatic group. Then, for each
n, there is an automatic Ex-learner for the class Patn(G). Furthermore, for
each m,n ∈ N, there is an automatic Ex-learner for the class Patmn (G) using
Patmn (G) itself as the hypothesis space.

10

5 Automatic Learning of all Patterns

If (G, ◦) is Abelian automatic group, then, in some cases, the class of all pat-
tern languages is learnable by an automatic learner. For this, sometimes a non-
automatic family must be considered as the hypothesis space, as the class of
pattern languages may not always form an automatic family.

Example 11. The group (Z,+) does not have any automatic presentation (A,+)
in which there is an automatic family {Ai : i ∈ I} of Pat(G).

The following two propositions will be crucial in this and the subsequent section.

Proposition 12. Suppose L is a pattern language over an Abelian group (G, ◦).
Then L is generated by a pattern of the form αxn for some α ∈ G and n ∈ N.
Furthermore, α can be chosen as any member of L.

Proposition 13. Suppose L is a pattern language over a finitely generated free
commutative group and β1, β2 are two distinct members of L. Then, effectively
from β1 and β2, a finite set of patterns can be found, one of which generates L.

In the case that a group is finite, the class of its pattern languages is obviously
Ex-learnable simply by maintaining a list of all elements observed. So for the
following result, only the case where the group is infinite is interesting.

Theorem 14. Let (G, ◦) be a finitely generated Abelian automatic group. Then
the class Pat(G) of its pattern languages has, in a suitable representation of
the group, an automatic Ex-learner which uses a suitable automatic hypothesis
space.

Proof. If the group (G, ◦) is finite then there is clearly an automatic Ex-learner
for Pat(G). So assume that the group is infinite, Abelian and finitely gener-
ated; all such groups are automatic. Furthermore, such a group is isomorphic to
(Z,+)× (A, •) for some automatic group (A, •). Without loss of generality, the
first coordinate (from Z) is represented in reverse binary and also has an auto-
matic ordering < for its elements; the second coordinate (from A) is represented
in any automatic way. The group element is represented as a convolution of the
representation of the respective coordinates. The learner keeps in memory:

– The first datum (z, a) different from # observed in the input;
– (z′, a), if S = {z′′ : (z′′, a) has appeared in the input text so far and z′′ > z}

is non-empty and z′ = min(S).

Note that all data (z′′, a′) with a′ 6= a can be ignored. If only one element (z, a) is
in the memory, then the learner conjectures the constant pattern which generates
{(z, a)}. If two elements (z, a) and (z′, a) are in the memory, where z′ > z, then
the learner conjectures (z, a) ◦ xz′−z. Note that the elements (z, a), (z′, a) can
be generated by any pattern of the form (z, a) ◦ xn iff z′ − z is a multiple of n.

11

Now, it is easy to verify that the above learner Ex-learns (Z,+) × (A, •). This
completes the proof. �

In the above theorem, if another hypothesis space or representation of the group
G is chosen, then the learner might fail to be automatic.

Remark 15. Note that the learning algorithm of Proposition 14 works for every
automatic Abelian group of the form (Z,+)× (A, •), independently of what the
second part of the direct product is. This gives a more general learning algorithm
which covers many automatic groups, but not all of them; for example, the Prüfer
group is not of this form. Furthermore, for some Abelian groups like ({mn : n > 0
and n does not contain any prime factor twice},+) the class of pattern languages
is not learnable. However, it is unknown whether this group is automatic; most
likely, this group is not automatic.

Theorem 16. There exists an automatic group G generated by two elements
such that Pat(G) is not Ex-learnable.

Proof. Consider the group with two generators a, b and the following equations
for the group operation ◦:

– a ◦ b = b−1 ◦ a;
– a ◦ a = ε.

Thus every group element is either of the form bi or abi for some i ∈ Z. Further-
more, consider the pattern languages

– L(x1ax
−1
1 a) = {b2i : i ∈ Z};

– L(bx1b
−1x−11) = {ε, b2};

– Li = L(b−2i ◦ (bx1b
−1x−11) ◦ . . . ◦ (bx2ib

−1x−12i)) = {b−2i, b−2i+2, . . . , b−2, ε,
b2, . . . , b2i−2, b2i}.

It is easy to see that L1 ⊂ L2 ⊂ L3 ⊂ . . . and
⋃
i∈N Li = L(x1ax

−1
1 a). Thus,

Pat(G) is not Ex-learnable by Lemma 4. �

The class of verbal languages over the group used in the above theorem is Ex-
learnable, however for some group G, the class of verbal languages is not Ex-
learnable.

Proposition 17. There is a finitely generated automatic group where the class
of verbal languages is not Ex-learnable.

6 Learning Bounded Unions of Patterns

Recall that the Prüfer group is the group of all rationals of the form m/2n

with 0 ≤ m < 2n and the rule that when x + y ≥ 1 for group elements, one
identifies this number with x+ y− 1. In the Prüfer group, all patterns are either
singletons or the full group; thus the bounded unions of the pattern languages
have an automatic learner. In contrast to this, the automatic learnability of
unions of two pattern languages fails already for the group of the integers.

12

Theorem 18. Consider the group (Z,+). The class Pat2(Z) of unions of up to
two pattern languages over the integers does not have an automatic Ex-learner
for any automatic representation of the group.

Though there is no automatic Ex-learner for unions of two pattern languages
over Z, the next results will show that for finitely generated commutative groups,
there is a recursive (non-automatic) Ex-learner for unions of pattern languages.

Theorem 19. Suppose G is a finitely generated free commutative group. Then
Patk(G) is Ex-learnable.

Proof. Let Σ be the finite set of generators for G. Suppose T is a text for
L ∈ Patk(G). Let PG be a set of at most k patterns such that L =

⋃
π∈PG

L(π).
Without loss of generality assume that the number of patterns in PG generating
at least two elements is minimised. The learner M keeps the following memory:

(a) the full input sequence T [n] seen so far and
(b) a finite labeled tree; the labels on the nodes of the tree are patterns that

generate at least two elements of G, except for the root which has an empty
label; the tree is finitely branching and has depth of at most k.

For any leaf z in the tree, the language Sz associated with the leaf is the union
of the languages generated by the labels on the nodes in the simple path from
the root to z (excluding the root, but including z if it is not the root).

Initially, the tree in the memory of the learner M has only one node, the
root. On input T (n), the learner updates the tree as described in (A).

(A) For any leaf z in the tree, let Xz = content(T [n+ 1])− Sz. If z is at depth
r < k, where the root is at depth 0, and card(Xz) ≥ k − r + 1, then using
Proposition 13 find the finite number of possible patterns which contain a
pattern equivalent to any pattern that generates at least two elements of
Xz. Each of these finitely many patterns is added as a child of z in the tree.

As the tree in the memory of the learner is of bounded depth, has a finite
branching degree and only leaf nodes can be expanded, the tree stabilizes as n
goes to infinity. The learner’s conjecture is computed as follows:

(B) For the tree as above after receiving T [n+1], define the language Yz for any
leaf z at depth r of the tree as follows. Let Xz = content(T [n + 1]) − Sz.
Let Yz = Sz ∪Xz, if card(Xz) ≤ k − r. Otherwise, Yz = Σ∗ (in this later
case, Yz can be considered as spoiled).

(C) Conjecture minimal Yz where z is a leaf of the tree (minimal is taken subset
wise, as observed for strings in Σ0 ∪Σ1 ∪ . . .∪Σn). Here minimal language
Yz is not computable, so the learner just considers each language Yz on
strings (over Σ) of length at most n, and then chooses the minimal based
on this. In case of multiple such minimal Yz, choose the z which is leftmost
in the tree. Note that the set of at most k patterns generating the language
Yz can be correspondingly computed.

13

To see that M Ex-learns Patk(G), note that, by induction, for each n, after
seeing input T [n+ 1], for each leaf z in the tree, for r, Yz, Xz as defined in (B):

(i) content(T [n+ 1]) ⊆ Yz;
(ii) if card(Xz) > k− r, then the depth of z is k (as otherwise, children would

have been added to the leaf z in (A));
(iii) the pattern labels on the simple path from the root to z generate pairwise

distinct languages;
(iv) for some leaf z′, the simple path from the root to z′ (excluding the root)

is labeled only using patterns equivalent to some patterns in PG.

Thus, for large enough n, for z′ as given by item (iv) above, Yz′ ⊆ L ⊆ Yz′ . It
follows that, for large enough n, the conjecture of M is L. �

As every finitely generated Abelian group has a normal divisor of the form
(Zk,+) of finite index, the following theorem can be shown.

Theorem 20. Consider any finitely generated commutative group (not neces-
sarily free commutative group) G. Then Patk(G) is Ex-learnable using some
representation of the elements of the group.

7 Conclusions

In this paper the learnability of pattern languages over groups was studied. It
was shown that for every finitely generated automatic group G, the class of
pattern languages over G generated by patterns having a bounded number of
variable occurrence is Ex-learnable. The same holds for bounded unions of such
languages. Furthermore, for finitely generated Abelian groups G, the class of all
pattern languages over G (and their bounded unions) is Ex-learnable. However,
for some non-Abelian automatic group G generated by two elements, the class
of pattern languages over G is not Ex-learnable. Similarly, for some infinitely
generated group G, even the class of pattern languages over G generated by
patterns having at most two occurrences of variables is not Ex-learnable.

Wiehagen [29] called a learner iterative if its memory is identical to the most
recent hypothesis. Proposition 8, Theorem 10, Theorem 14, Theorem 19 and
Theorem 20 can be shown using iterative learners which use class-preserving
hypothesis spaces [18]. It is an open question whether all Ex-learnable classes
of pattern languages can be learnt iteratively.

References

1. Dana Angluin. Inductive inference of formal languages from positive data. Infor-
mation and Control 45:117–135, 1980.

2. Dana Angluin. Finding patterns common to a set of strings. Journal of Computer
and System Sciences, 21:46–62, 1980.

3. Ganesh Baliga, John Case and Sanjay Jain. The synthesis of language learners.
Information and Computation, 152:16–43, 1999.

14

4. Achim Blumensath. Automatic structures. Diploma thesis, RWTH Aachen, 1999.
5. Achim Blumensath and Erich Grädel. Automatic structures. Fifteenth Annual

IEEE Symposium on Logic in Computer Science, Santa Barbara, LICS 2000, pages
51-62. IEEE Computer Society Press, Los Alamitos, CA, 2000.

6. John Case, Sanjay Jain, Yuh Shin Ong, Pavel Semukhin and Frank Stephan. Au-
tomatic learners with feedback queries. Journal of Computer and System Sciences,
80:806–820, 2014.

7. John Case and Chris Lynes. Machine inductive inference and language identifica-
tion. Proceedings of the Nineth International Colloquium on Automata, Languages
and Programming, ICALP 1982, Springer LNCS 140:107–115, 1982.

8. John Case and Carl Smith. Comparison of identification criteria for machine in-
ductive inference. Theoretical Computer Science, 25:193–220, 1983.

9. E. Mark Gold. Language identification in the limit. Information and Control,
10:447–474, 1967.

10. Bernard R. Hodgson. Théories décidables par automate fini. Ph.D. thesis, Univer-
sity of Montréal, 1976.

11. Bernard R. Hodgson. Décidabilité par automate fini. Annales des sciences
mathématiques du Québec, 7(1):39–57, 1983.

12. Sanjay Jain, Yuh Shin Ong, Shi Pu and Frank Stephan. On automatic families.
Proceedings of the eleventh Asian Logic Conference in honour of Professor Chong
Chitat on his sixtieth birthday, pages 94–113, World Scientific, 2012.

13. Olga Kharlampovich and Alexei Myasnikov. Elementary theory of free non-Abelian
groups. Journal of Algebra, 302(2):451–552, 2006.

14. Olga Kharlampovich and Alexei Myasnikov. Definable subsets in a hyperbolic
group. International Journal of Algebra and Computation, 23(1):91–110, 2013.

15. Bakhadyr Khoussainov and Mia Minnes. Three lectures on automatic structures.
Proceedings of Logic Colloquium 2007. Lecture Notes in Logic, 35:132–176, 2010.

16. Bakhadyr Khoussainov and Anil Nerode. Automatic presentations of struc-
tures. Logical and Computational Complexity (International Workshop LCC 1994).
Springer LNCS 960:367–392, 1995.

17. Steffen Lange and Rolf Wiehagen. Polynomial time inference of arbitrary pattern
languages. New Generation Computing, 8:361–370, 1991.

18. Steffen Lange and Thomas Zeugmann. Incremental learning from positive data.
Journal of Computer and System Sciences, 53:88–103, 1996.

19. Alexei Myasnikov and Vitaly Romankov. On rationality of verbal subsets in a
group. Theory of Computing Systems, 52(4):587–598, 2013.

20. André Nies. Describing groups. Bulletin of Symbolic Logic, 13:305–339, 2007.
21. André Nies and Richard M. Thomas. FA-presentable groups and rings. Journal of

Algebra, 320:569–585, 2008.
22. Graham Oliver and Richard M. Thomas. Automatic presentations for finitely gen-

erated groups. Twentysecond Annual Symposium on Theoretical Aspects of Com-
puter Science (STACS 2005), Stuttgart, Germany, Proceedings. Springer LNCS,
3404:693–704, 2005.

23. Daniel Osherson, Michael Stob and Scott Weinstein. Systems That Learn, An
Introduction to Learning Theory for Cognitive and Computer Scientists. Bradford
— The MIT Press, Cambridge, Massachusetts, 1986.

24. Lenny Pitt. Inductive inference, DFAs, and computational complexity. Analogical
and Inductive Inference, Proceedings of the Second International Workshop, AII
1989. Springer LNAI 397:18–44, 1989.

25. Daniel Reidenbach. A non-learnable class of E-pattern languages. Theoretical
Computer Science, 350:91–102, 2006.

15

26. Sasha Rubin. Automata presenting structures: a survey of the finite string case.
The Bulletin of Symbolic Logic, 14:169–209, 2008.

27. Takeshi Shinohara. Polynomial time inference of extended regular pattern lan-
guages. RIMS Symposia on Software Science and Engineering, Kyoto, Japan, Pro-
ceedings. Springer LNCS 147:115–127, 1982.

28. Todor Tsankov. The additive group of the rationals does not have an automatic
presentation. The Journal of Symbolic Logic, 76(4):1341–1351, 2011.

29. Rolf Wiehagen. Limes-Erkennung rekursiver Funktionen durch spezielle Strategien.
Journal of Information Processing and Cybernetics (EIK), 12(1–2):93–99, 1976.

16

