
Hypothesis Spaces for Learning

Sanjay Jaina,1

aDepartment of Computer Science, National University of Singapore, Singapore 117417,
Republic of Singapore. Email: sanjay@comp.nus.edu.sg

Abstract

In this paper we survey some results in inductive inference showing how learn-
ability of a class of languages may depend on the hypothesis space chosen.
Additionally, optimal hypothesis spaces, usable for every learnable class, are
considered. We also discuss results which consider how learnability is effected
if one requires learning using every suitable hypothesis space.

1. Introduction

A learning scenario can be described as follows. Consider a learner (a com-
putable device) receiving data, one piece at a time, about some target concept
(which is from a class of possible concepts). As the learner is receiving its data,
it conjectures a possible description of the target concept. One may consider
the learner to be successful if its sequence of conjectures converges to a correct
description of the target concept.

In this paper we will be mostly concerned with language learning. A language
is some recursively enumerable (r.e.) subset of a universal set. By appropriate
coding, one may take the universal set to be the set of natural numbers, N =
{0, 1, 2, . . .}.

For learning languages, the data provided to the learner is usually the set
of elements (positive data) of the language, one element at a time, where all
the elements are eventually provided and no non-elements of the language are
provided. This form of data presentation is called a text for the language.
Another model of data presentation is called informant, where the learner is
presented with all the elements of the universal set, one element at a time,
appropriately labeled as positive or negative with respect to the target language.
The model for presenting only positive data to the learner originates from the
observation that in many natural situations the learner gets essentially only
positive data. In some scientific studies such as in astronomy [18], one can only
observe events that happen, and do not explicitly know what cannot happen
(except inferring it by absence). Furthermore, with respect to child learning
a language, Gold [20] pointed out that the psycholinguistic literature indicates

1Supported in part by NUS grant number R252-000-308-112.

Preprint submitted to Elsevier October 17, 2011

that children are rarely informed of grammatical errors. Though some of these
claims are open to doubt, see for example [9, 14].

The conjectures of the learner take the form of a grammar from some hy-
pothesis space. We always assume that the hypothesis space is an r.e. indexing
of r.e. languages; in some cases we additionally assume that membership ques-
tion for a hypothesis i is decidable algorithmically in i — in these cases the
hypothesis space is an indexed family of recursive languages.

A criterion of success, as considered above, is for the sequence of grammars to
converge to a grammar for the target language. This is essentially the criterion of
learning first considered by Gold [20], and commonly called explanatory learning
(abbreviated TxtEx-learning, for explanatory learning from text, and InfEx-
learning, for explanatory learning from informant). Note that the learner is
expected to succeed on all possible orders of presentation of the elements of the
target language. Learning of one language is usually not much interesting, as
some learner, which always outputs the grammar for this language, will succeed.
What is more interesting is whether some learner can learn all the languages
from a class L of languages.

We now formally define the criterion described above. A sequence is a map-
ping from N or an initial segment of N to N ∪ {#}. Content of a sequence
σ, denoted content(σ), is range(σ) − {#}. # is considered as a pause symbol,
representing no data; this is useful, for example, when one considers presenting
data for the empty language. We let length(σ) denote the length of the se-
quence σ. Let SEQ denote the set of all finite sequences. An infinite sequence
T is a text for a language L iff content(T) = L. We let T (with or without
subscripts/superscripts) range over texts. T [n] denotes the finite sequence con-
sisting of the first n elements of the sequence T .

A learning machine M (also called a learner) is an algorithmic mapping
(possibly partial) from SEQ to N ∪ {?}. One can view M(T [0]), M(T [1]),
M(T [2]), . . . as the indices output (in that order) by M on T . A learner M
converges on a text T to i ∈ N (denoted M(T)↓ = i) iff for all but finitely many
n, M(T [n]) = i.

Here one interprets the output of the learner as an index for some language
in a hypothesis space. Thus output i would represent the conjecture Hi, where
(Hj)j∈N is the hypothesis space used by the learner. The output of ? denotes
that the learner is not making a formal conjecture (this is useful when one
considers some special cases, such as bounding the number of mind changes
made by the learner). We will always assume that the hypothesis space is a r.e.
family: that is, {〈i, x〉 : x ∈ Hi} is recursively enumerable. Here the pairing
function, 〈·, ·〉, is some computable, 1–1 and onto mapping from N×N to N. In
some cases we even consider uniformly recursive family (indexed family) as a
hypothesis space. In this case, {〈i, x〉 : x ∈ Hi} is recursive.

We now give the formal definition for TxtEx-identification.

Definition 1. [20] Fix a hypothesis space H = (Hi)i∈N.
(a) A learner M TxtExH-identifies a language L (written: L ∈ TxtExH(M))
iff for all texts T for L, (i) M(T [n]) is defined for all n, and (ii) there exists an

2

i such that M(T)↓ = i and Hi = L.
(b) A learner M TxtExH-identifies a class L of languages (written: L ⊆
TxtExH(M)) iff it TxtExH-identifies all languages in the class L.
(c) TxtExH = {L : (∃ learner M)[M TxtExH-identifies L]}.
(d) L is TxtEx-learnable (written L ∈ TxtEx) if some learner TxtExV -learns
L using some hypothesis space V = (Vi)i∈N.

One can similarly define InfEx-identification, where one replaces texts in the
above definition by informants.

As the learner has seen only finitely many inputs before it converges to its
final hypothesis, some form of learning must have taken place. We use the terms
identify, learn, infer as synonyms for this reason.

Let min(S) denote the minimum of the set S, where we take min(∅) = ∞.
Let max(S) denote the maximum of the set S, where we take max(∅) = 0.
Some examples of TxtEx-learnable classes (using a suitable hypothesis space)
include the class of all finite sets: {D : D is finite }, the class of all graphs of
primitive recursive functions and the class of self-describing sets, {L : L 6= ∅
and Wmin(L) = L}. Some non-learnable classes are the class of all graphs of
all computable functions, and the class of all finite sets plus the set N (see
[20]). The class of all finite sets plus the set N becomes learnable under the
criterion InfEx, however the class of all graphs of all computable functions
remains unlearnable even under the criterion InfEx (see [20]).

Note that in the above model of learning, the learner need not know when
it has converged to its final hypothesis. If one additionally requires this kind
of ability from the learner, then the learning criterion is equivalent to finite
learning, where the learner is allowed to make only one conjecture.

Definition 2. [20] Fix a hypothesis space H = (Hi)i∈N.
(a) A learner M TxtFinH-identifies a language L (written: L ∈ TxtFinH(M))
iff for all texts T for L, there exist i, n such that (i) Hi = L, (ii) (∀m <
n)[M(T [m]) =?], and (iii) (∀m ≥ n)[M(T [m]) = i].
(b) A learner M TxtFinH-identifies a class L of languages (written: L ⊆
TxtFinH(M)) iff it TxtFinH-identifies all languages in the class L.
(c) TxtFinH = {L : (∃ learner M)[M TxtFinH-identifies L]}.
(d) L is TxtFin-learnable (written: L ∈ TxtFin) if some learner TxtFinV -
learns L using some hypothesis space V = (Vi)i∈N.

One can similarly define InfFin-identification. Let E = {2x : x ∈ N}. The
class, {L : card(L ∩ E) = 1 and [2x ∈ L ⇒ Wx = L]} is TxtFin-learnable
using a suitable hypothesis space. However the class of all finite sets is not
TxtFin-learnable using any hypothesis space.

Since Gold [20], various other criteria of learning have been explored in
the literature, especially those which require some additional properties on the
conjectures of the learner. We will consider some of these in Section 2. We refer
the reader to the textbook [22] and the papers [3, 7, 13, 48, 50, 53] for some
literature on the topic.

3

We now define some of the possible hypothesis spaces that we will be consid-
ering. A programming system (numbering) for recursively enumerable languages
is a recursively enumerable sequence V = (Vi)i∈N of recursively enumerable sets
(that is, {〈i, x〉 : x ∈ Vi} is recursively enumerable). Here, i is also called
a grammar or index for Vi (in V programming system). Thus, a hypothesis
space is a programming system in the above sense. An universal program-
ming system (or universal numbering) is a programming system (Vi)i∈N such
that, {Vi : i ∈ N} contains every recursively enumerable set. A universal pro-
gramming system (Vi)i∈N is called a Friedberg programming system (Friedberg
numbering) (see [17]) if Vi 6= Vj for i 6= j. A programming system (Vi)i∈N is
called an acceptable programming system (acceptable numbering), if for any
programming system (Ui)i∈N, there exists a computable function r such that,
for all i, Vr(i) = Ui. Thus, acceptable programming systems are maximal in the
sense that grammars from other programming systems can be algorithmically
converted to grammars in an acceptable programming system. Most common
programming languages are acceptable programming systems. We fix a stan-
dard acceptable programming system W0,W1, . . . for the rest of the paper. A
programming system (Vi)i∈N is said to be K-acceptable [11, 29] iff for any pro-
gramming system (Ui)i∈N, there exists a limiting computable function f such
that for all i, Vf(i) = Ui. Here a function f is said to be limiting computable
iff there exists a computable function g of two arguments such that, for all i,
f(i) = limt→∞ g(i, t). A universal programming system (Vi)i∈N, is called a Ke-
programming system [24] if the set {〈i, j〉 : Vi = Vj} is limiting decidable, that
is, if the grammar equivalence problem in (Vi)i∈N is limiting decidable.

Note that the hypothesis space chosen for interpreting the conjectures of the
learner may play a crucial role in whether the learner is successful in identifying
the language. A commonly used hypothesis space is a acceptable programming
system. Every class which is TxtEx-identifiable using some hypothesis space
is also TxtEx-identifiable using every acceptable programming system as a
hypothesis space; hence the set of TxtEx-learnable classes does not depend
on the exact acceptable programming system chosen. This is the main reason
why researchers often consider some fixed acceptable programming system as a
hypothesis space.

However, acceptable programming systems have their own problems, such
as difficulty of checking semantic equivalence of hypotheses, determining mem-
bership and so on. Thus for certain applications, it is advantageous to consider
special programming systems for which such questions might be easier to solve.
For example in Friedberg programming systems [17], one can trivially check
whether two hypotheses are equivalent.

On the other hand, when one considers non-acceptable programming systems
such as Friedberg programming systems [17] as hypothesis spaces or requires
some other properties about hypothesis spaces (such as membership question
being algorithmically decidable, or the hypothesis space not being allowed to
contain languages other than those in the class of languages being learnt), then
it may effect the classes which are learnable. This paper surveys some of the
recent results which show how learnability depends on the type of hypothesis

4

spaces allowed.
In Section 2 we define some commonly used criteria of learning. In Sec-

tion 3 we consider the special case of learning indexed families, where often
the hypothesis space allowed depends on the class of languages being learnt.
In Section 4 we consider hypothesis spaces being restricted programming sys-
tems, such as Friedberg programming systems. In Section 5 we consider optimal
hypothesis spaces in the sense that if learning a class is possible using some hy-
pothesis space, then the class can be learnt using the given hypothesis space. In
Section 6 we consider whether learning is at all possible if one requires learning
in all (reasonable) possible hypothesis spaces. In Section 7 we briefly discuss
how presence or absence of certain control structures in hypothesis spaces effects
learnability of certain classes.

In the rest of the paper, for ease of notation, we will often omit the hypothesis
space from the subscript of learning criterion, and it will be implicit (the allowed
hypothesis space may be constrained in some cases due to conventions of the
section). We will provide some sample proofs, and refer the reader to the original
papers for the other proofs.

2. Some Further Criteria of Learning

Below we consider the criteria mainly for learning from texts. Similar defi-
nitions can be made for learning from informants also. Below, let H = (Hi)i∈N
be the hypothesis space used by the learner.

We first consider two generalizations of explanatory learning. The following
generalization considers semantic convergence rather than syntactic convergence
to the correct hypothesis by the learner. A learner M is said to behaviourally
correctly learn (abbreviated: TxtBc-learn) [6, 12, 39] a language L iff for all
texts T for L, for all but finitely many n, HM(T [n]) = L. One can similarly define
TxtBc-learning of a class, and the set TxtBc of all behaviourally correctly
learnable classes. It can be shown that TxtBc is a strict generalization of
TxtEx-learning if one allows arbitrary hypothesis spaces [6, 12, 13, 39].

The following criterion is somewhere between explanatory and behaviourally
correct learning. It allows the learner to eventually vacillate between finitely
many correct hypotheses. A learner M is said to vacillatorily learn (abbrevi-
ated: TxtFex-learn; Fex stands for finite explanatory learning) [10] a language
L iff it TxtBc-learns the language L and on all texts T for L, it outputs at
most finitely many distinct grammars (in other words, the learner eventually
vacillates between finitely many correct grammars for the language). One can
similarly define TxtFex-learning of a class, and the set TxtFex of all vacilla-
torily learnable classes.

We now consider some natural requirements on the learner and its hypothe-
ses. A learner M is said to be conservative [2] on L if for all texts T for L,
for all n > m, if M(T [n]) 6= M(T [m]), then content(T [n]) 6⊆ HM(T [m]). That
is, M changes its hypothesis only if it finds evidence of inconsistency of its
earlier conjecture. Learner M conservatively learns (Conserv-identifies) L if

5

it TxtEx-identifies L and is conservative on L. Conserv-identification of a
class of languages and the class Conserv can be defined similarly. When using
acceptable programming systems as hypothesis spaces, requiring learners to be
conservative is a restriction on the learning capabilities of the machines [2].

A learner M is consistent [1, 5, 7] on L if for all texts T for L, for all n,
content(T [n]) ⊆ HM(T [n]). Consistency seems like a natural requirement, as if
the hypothesis is not consistent, then it is obviously wrong. However, when using
general hypothesis spaces such as acceptable programming systems, it can be
shown that requiring consistency restricts learning capabilities of the machines
[5, 7]. A learner M is confident [38] if it converges on every text, even if the
text is for a language outside the class of languages being learnt. Confidence
is restrictive: it can be shown that even simple classes, such as the class of all
finite languages, cannot be learnt confidently. One can define the corresponding
learning criteria for learners satisfying consistency and confidence properties (for
I-learning) similarly. These criteria are called respectively ConsI and ConfI.

In AI, often one requires that the conjectures grow monotonically. For exam-
ple, one often requires that more data imply the “set of truths” derivable from
the hypothesis/axioms formed should increase. In inductive inference three
forms of monotonicity have been studied. A learner M is said to be strongly
monotonic [28] on L if for all texts T for L, for all n > m, HM(T [m]) ⊆ HM(T [n]).
Wiehagen considered a relaxation of the strong monotonicity requirement, by
requiring monotonicity of conjectures only within the language being learnt. A
learner M is said to be monotonic [49] on L if for all texts T for L, for all
n > m, HM(T [m]) ∩L ⊆ HM(T [n]) ∩L. Finally, in the third version one requires
monotonicity only as long as the hypothesis is consistent with the data seen so
far. A learner M is said to be weakly monotonic [28] on L if for all texts T for
L, for all n > m, if content(T [n]) ⊆ HM(T [m]), then HM(T [m]) ⊆ HM(T [n]) (that
is the learner behaves strongly monotonically as long as the input data does not
contradict the hypothesis conjectured). The criteria of learning corresponding
to the above properties being satisfied by the learner (on texts for the language
being learnt), in addition to TxtEx-learning the target language, are respec-
tively called SMon, Mon and WMon. The class of all finite sets can be learnt
strongly monotonically. The class L = {L0, L1, . . .}, where L0 = {2x : x ∈ N},
and Ln+1 = {2x : x ≤ n}∪{2n+1} is monotonically learnable but not strongly
monotonically learnable. The class of cosingletons, {L : card(N − L) = 1}, is
weakly monotonically but not monotonically learnable.

Let L denote N − L, the complement of L. [34] considered the dual of
above monotonic requirements, where for dual strongly monotonic learning of
L by M one requires that for all texts T for L, for all n > m, HM(T [m]) ⊆
HM(T [n]). Similarly, for dual monotonic learning of L one requires that for all
texts T for L, for all n > m, HM(T [m]) ∩ L ⊆ HM(T [n]) ∩ L, and for dual weakly
monotonic learning of L one requires that for all texts T for L, for all n > m, if
content(T [n]) ⊆ HM(T [m]), then HM(T [m]) ⊆ HM(T [n]). The criteria of learning
corresponding to the above properties being satisfied by the learner, in addition
to TxtEx-learning the target language, are respectively called DSMon, DMon

6

and DWMon.
[34] explore the relationship between the above (dual) monotonic criteria of

learning.
Here note that the restrictions considered above are class versions, that is,

the restrictions (such as consistency, monotonicity etc) considered are required
by the learner only for the texts of languages in the class to be learnt — the
learner need not satisfy the restrictions for texts of languages outside the class
to be learnt.

We next consider two restrictions on how data is used by the learner. A
learner M is set-driven [37, 46] if content(σ) = content(τ) implies M(σ) =
M(τ). That is the output of the learner depends only on the content of the
input, and not on its length or order. When using acceptable programming
systems as hypothesis spaces, it can be shown that set drivenness restricts the
learning capabilities of machines [44]. A learner M is rearrangement-independent
[7, 19, 44] if content(σ) = content(τ) and length(σ) = length(τ) implies M(σ) =
M(τ). That is the output of the learner depends only on the content and
length of the input, and not on the order of the elements in it. Unlike most
other requirements considered, rearrangement independence is not restrictive
for explanatory learning [19, 44], when one considers acceptable programming
systems as hypothesis spaces. One can define the corresponding learning criteria
for learners satisfying set drivenness and rearrangement independence (for I-
learning) similarly. These criteria are called s-I and r-I.

For any of the learning criteria I discussed in this paper, one can give a
recursive enumeration M0,M1, . . . of learning machines such that, if L ∈ I, then
there exists an i such that Mi witnesses that L ∈ I.

3. Learning Indexed Families

Angluin [2] considered learnability of indexed families of recursive languages.
A class L of languages consisting of languages L0, L1, . . . (with the corresponding
indexing) is said to be an indexed family iff there exists a computable function
f such that f(i, x) = 1 iff x ∈ Li. Many of the commonly studied classes of
languages, such as the class of regular languages or context-free languages, are
indexed families.

For learning indexed families, the hypothesis space is usually considered
to be an indexed family also. Additionally, one often considers the following
requirements on the hypothesis space H = (Hi)i∈N (see [29, 31]):

(a) the hypothesis space is the class being learnt (with the corresponding index-
ing) itself; this is called exact learning;

(b) the hypothesis space is class-preserving, that is {H0,H1, . . .} = {L0, L1, . . .};
this is called class-preserving learning;

(c) the hypothesis space is class-comprising, that is {H0,H1, . . .} ⊇ {L0, L1, . . .};
this is called class-comprising learning.

7

Note that in (b) and (c), there are several possible hypothesis spaces that
might be used — if learning can be successfully done using at least one such
hypothesis space, then one considers the class to be learnable according to the
corresponding criterion.

We prefix E, ε or C (where ε denotes empty string) to the names of the
criteria of learning to denote whether we are considering exact, class-preserving
or class-comprising learning. This convention on criteria names is for this section
only.

Lange and Zeugmann [29, 31] showed that ETxtEx = TxtEx = CTxtEx
and ETxtFin = TxtFin = CTxtFin. Thus, for explanatory and finite learn-
ing, choosing an appropriate hypothesis space (in the sense of exact, class-
preserving or class-comprising) is not so crucial.

However, for monotonic learning, the choice of different kind of hypothesis
spaces makes a critical difference. As the following theorem shows, for all (dual)
monotonic criteria of learning, except for strong dual monotonic learning, we get
a strict hierarchy from exact, to class-preserving to class-comprising learning.
For strong dual monotonic learning, exact and class-preserving learning are the
same (and equal to finite learning). Class-comprising dual strong monotonic
learning is strictly more general than class-preserving dual strong monotonic
learning.

Theorem 3. (a) [29] ESMon ⊂ SMon ⊂ CSMon.
(b) [29] EWMon ⊂ WMon ⊂ CWMon.
(c) [29] EDWMon ⊂ DWMon ⊂ CDWMon.
(d) [29] EDSMon = DSMon ⊂ CDSMon.
(e) [30, 34] EMon ⊂ Mon ⊂ CMon.
(f) EDMon ⊂ DMon ⊂ CDMon.

We refer the reader to [29, 34] for the proof of parts (a) to (e) above. As an
idea of the techniques involved, we give the classes witnessing the separations
in part (a) above.

Let ϕ0, ϕ1, . . . denote a fixed acceptable programming system for partial
recursive functions [41]. Let Φ denote a Blum complexity measure for the ϕ
system [7].

Let

Ai,j =
{
{〈i, x〉 : x ∈ N}, if j < Φi(i)
{〈i, x〉 : x ≤ Φi(i)}, otherwise.

Let A = {Ai,j : i, j ∈ N}. Then A is in SMon−EMon.
Let

Bi,j =
{
{〈i, x〉 : x ∈ N}, if j < Φi(i)
{〈i, x〉 : x ≤ Φi(i) or x > j}, otherwise.

Let B = {Bi,j : i, j ∈ N}. Then, B is in CSMon− SMon.
The proof of Theorem 4 in [30] shows that EDMon ⊂ DMon. We do not

know if anyone has explicitly shown that DMon ⊂ CDMon, but it can be
shown as follows. As every hypothesis space can be translated algorithmically

8

to any acceptable programming system, for ease of presentation, in the fol-
lowing we consider the hypothesis space of the learner (for the diagonalization
against DMon-learnability) to be an acceptable programming system, where
the learner only conjectures grammars for the languages in the class being learnt.
One can extend the pairing function to coding of multiple arguments by taking
〈x1, x2, . . . , xn〉 = 〈x1, 〈x2, . . . , xn〉〉.

Let Li = {〈i, 0, x〉 : x ∈ N}, Li,j = {〈i, 0, x〉 : x ≤ j}, Xi,j,k = Li,j∪{〈i, 1, x〉 :
x ≥ k}, and Xi,j,k,k′ = Li,j ∪ {〈i, 1, x〉 : k ≤ x ≤ k′} ∪ {〈i, 2, k〉}.

Let M0,M1, . . . denote a recursive enumeration of all learning machines.
Let Ti be the canonical text for Li given by Ti(j) = 〈i, 0, j〉. Let si > 0
denote the first s found, if any in some standard algorithmic search, such that
content(Ti[s]) ∪ {〈i, 0, s〉} ⊆ WMi(Ti[s]). Note that 〈i, 0, s〉 6∈ content(Ti[s]). Let
ri denote the time needed to find si, if defined (where we assume without loss
of generality that ri ≥ si).

Let L = {Li : i ∈ N and for all s, content(Ti[s]) ∪ {〈i, 0, s〉} 6⊆ WMi(Ti[s])} ∪
{Li,ri : i ∈ N and si is defined} ∪ {Xi,si−1,ri : i ∈ N and si is defined} ∪
{Xi,si−1,ri,k′ : i ∈ N and si is defined, k′ ≥ ri}.

It is easy to verify that L is an indexed family. Note that if si is defined
then Li,ri is the only language in L which contains 〈i, si〉.

We first show that L cannot be DMon-identified. If si is not defined, then
Mi does not TxtEx-identify Li ∈ L. If si is defined then Mi on input Ti[si]
outputs a conjecture which contains 〈i, si〉, and thus this conjecture must be
for Li,ri . Thus, Mi on Ti[si] has already conjectured a language which omitted
every element in {〈i, 1, x〉 : x ∈ N}. Now consider a text T for Xi,si−1,ri which
extends Ti[si]. Let t > si be such that Mi(T [t]) is a grammar for Xi,si−1,ri

.
Let k′ be such that k′ ≥ max({ri} ∪ {k : 〈i, 1, k〉 ∈ content(Ti[t])}). Then,
let T ′, extending T [t], be a text for Xi,si−1,ri,k′ . Then, Mi converges on T ′ to
a grammar for Xi,si−1,ri,k′ . But then Mi is not dual monotonic on T ′, as it
changes its conjecture from Li,ri to Xi,si−1,ri and then to Xi,si−1,ri,k′ , but Li,ri

and Xi,si−1,ri,k′ do not contain 〈i, 1, k′ + 1〉, whereas Xi,si−1,ri
does.

On the other hand, with class-comprising hypothesis space, the following
learner M can dual monotonically learn L.

If content(σ) = ∅, then M(σ) =?. Otherwise, let i be such that content(σ) ⊆
〈i, ·, ·〉. If the learner cannot verify within length(σ) steps that si is defined,
then M(σ) is a (canonical) grammar for Li ∪ (Xi,si−1,ri ∪ {〈i, 2, ri〉}) (where
(Xi,si−1,ri ∪ {〈i, 2, ri〉}) is taken to be empty set, if si does not get defined).

If the learner can verify within length(σ) steps that si is defined then, if
〈i, 0, si〉 ∈ content(σ), then M(σ) is a (canonical) grammar for Li,ri

; otherwise,
if 〈i, 1, ri〉 ∈ content(σ), but 〈i, 2, ri〉 6∈ content(σ), then M(σ) is a (canonical)
grammar for Li,si−1,ri ; otherwise if {〈i, 1, ri〉, 〈i, 2, ri〉} ⊆ content(σ), then M(σ)
is a (canonical) grammar for Li,si−1,ri,k′ , where k′ is the largest number such
that 〈i, 1, k′〉 ∈ content(σ); otherwise, (that is neither 〈i, 1, ri〉 nor 〈i, 2, ri〉 is in
content(σ)) the learner repeats its previous hypothesis.

It is easy to verify that M would CDMon-identify L. This completes the
proof for DMon ⊂ CDMon.

9

[52] gave some interesting characterization of classes which are (strong, weak)
monotonically learnable in dependence of hypothesis space used.

Even though TxtEx does not depend on whether one uses class-preserving,
exact or class-comprising hypothesis space, if one considers restricting the num-
ber of mind changes to a non-zero value, then learnability does depend on what
kind of hypothesis space one chooses. Let TxtExm (see [13]) denote the crite-
rion of learning where the learner is allowed at most m mind changes (here a
change from ? to a proper conjecture (member of N) is not counted as a mind
change).

Theorem 4. Suppose m ≥ 1.
(a) [31] ETxtExm ⊂ TxtExm.
(b) TxtExm ⊂ CTxtExm.

We do not know if anyone has explicitly shown that TxtExm ⊂ CTxtExm,
but it can be shown as follows.

Consider the class L = {D : card(D) = 2 or (card(D) = 1 and D ⊆ K ′)},
where K is the halting problem and K ′ is the halting problem relative to K.
Note that L is an indexed family. To see this, first note that there is a two-place
computable function g with x ∈ K ′ iff g(x, y) = 1 for almost all y and x /∈ K ′

iff g(x, y) = 0 for infinitely many y. Now let

L2〈x,y〉 = {x, x + y + 1} and

L2〈x,y〉+1 =

 {x, x + z + 1}, if z is the least number with
z > y and g(x, z) 6= 1;

{x}, if g(x, z) = 1 for all z > y.

It is easy to verify that {L0, L1, . . .} = L, and witnesses that L is an indexed
family.

Also, L can easily be TxtEx1-learnt using a hypothesis space consisting of
all the sets with cardinality 1 or 2.

Now suppose by way of contradiction that some learner M TxtExm-identifies
L using a class preserving hypothesis space H. Then one can define the K-
recursive function f with f(x) being the hypothesis to which M converges on
the text x∞ (for the purposes of the proof, if M converges on x∞ to ?, then
we take M(x∞) = 0). If x ∈ K ′ then Hf(x) = {x} as M learns this set. If
x /∈ K ′ then Hf(x) 6= {x} as no hypothesis in H equals {x}. The test whether
Hf(x) = {x} is also K-recursive. This would give a contradiction to K ′ 6≤T K.
Thus there is no class-preserving TxtExm-learner for L.

[34] also studied how the structure of relationship between various versions
of (dual) monotonicity changes if one considers class-comprising hypothesis
space as opposed to class-preserving/exact hypothesis spaces. For example,
CTxtFin ⊂ CDMon, though TxtFin = DMon. Similarly, CDWMon =
CTxtEx, though DWMon ⊂ TxtEx. Furthermore, DSMon ⊂ SMon,
though CDSMon and CSMon are incomparable. Thus, not only do the classes
learnable (under a learning criterion) depend on the kind of hypothesis spaces

10

that are allowed, but even the relationship among the learning criteria depend
on what kind of hypothesis spaces are allowed.

If one considers iterative learning (where the learner’s hypotheses depend
only on its last hypothesis and current datum, rather than all the data it has
seen so far) [32, 47], then [32] showed that for certain classes and particular
class-comprising hypothesis spaces iterative learning may outperform conserva-
tive learning, though in general iterative learning is contained in conservative
learning (when arbitrary class-comprising hypothesis spaces are allowed).

In [33] the authors study set driven and rearrangement independent learning
in dependence of hypothesis space for indexed families (where hypothesis spaces
are indexed families too). They showed that for set driven and rearrangement
independent learning, the classes that can be TxtFin-learnt do not depend on
the type of hypothesis spaces allowed (among the types, exact, class-preserving
and class-comprising).

Theorem 5. [33] r-ETxtFin = s-ETxtFin = ETxtFin = TxtFin = CTxtFin.

For explanatory learning, set driven learning forms a hierarchy depending on
the type of hypothesis space allowed, whereas for rearrangement independent
learning, it does not depend on the type of hypothesis space allowed.

Theorem 6. [33]
(a) s-ETxtEx ⊂ s-TxtEx ⊂ s-CTxtEx ⊂ ETxtEx = TxtEx = CTxtEx.
(b) r-ETxtEx = r-TxtEx = r-CTxtEx = ETxtEx = TxtEx = CTxtEx.

For monotonic learning (all three types) we get a proper hierarchy for both set
driven as well as rearrangement independent learning.

Theorem 7. [33]
(a) s-ESMon ⊂ s-SMon ⊂ s-CSMon.
(b) s-EMon ⊂ s-Mon ⊂ s-CMon.
(c) s-EWMon ⊂ s-WMon ⊂ s-CWMon.
(d) r-ESMon ⊂ r-SMon ⊂ r-CSMon.
(e) r-EMon ⊂ r-Mon ⊂ r-CMon.
(f) r-EWMon ⊂ r-WMon ⊂ r-CWMon.

We refer the reader to [51] for several other results and characterizations for
learning indexed families in dependence on hypothesis spaces.

[35] considered the situation where the learner may make queries regarding
certain kind of relationship between a potential hypothesis and the input lan-
guage. The queries allowed are subset, superset or disjointness queries. The
learner, after making a finite number of such queries, outputs a single hypothe-
sis which must be correct for languages in the class being learnt. They showed
that the learnability of a class depends very much on whether the hypothesis
space (query space) chosen is an indexed family, recursively enumerable (r.e.)
family or a limiting r.e. family. [21] extended above work to learning r.e. classes
of r.e. languages.

11

4. Special Hypothesis Spaces

In this section we revert back to learning recursively enumerable languages
using some fixed hypothesis spaces. Criteria I (such as TxtEx, TxtBc, TxtFin,
or TxtFex) without a specified hypothesis space refers to using acceptable pro-
gramming system as a hypothesis space.

Freivalds, Kinber and Wiehagen [15] considered learning of functions using
Friedberg programming systems as hypothesis spaces. Later Jain and Stephan
[24] considered learning using Friedberg programming systems or Ke-programming
systems as hypothesis spaces. For a criterion I of learning, let FrI (KeI) de-
note the class of languages which can be learnt under the criterion I using
some Friedberg programming system (some Ke-programming system) as a hy-
pothesis space. [11, 24] showed that every TxtEx-learnable class can be learnt
using some Friedberg programming system as a hypothesis space. However,
no single Friedberg programming system is enough to be used as a hypothesis
space for all TxtEx-learnable classes. On the other hand, for TxtFin-learning,
there are classes of languages which can be TxtFin-learnt (using acceptable
programming system as a hypothesis spaces), but which cannot be learnt using
any Friedberg programming system as a hypothesis space. In contrast, every
TxtFin-learnable class can be learnt using some Ke-programming system as a
hypothesis space.

Theorem 8. (a) [11, 24] FrTxtEx = KeTxtEx = TxtEx.
(b) [24] FrTxtFin ⊂ TxtFin.
(c) [24] KeTxtFin = TxtFin.

Proof. We give the proof for part (b) from [24], and refer the reader to the
above paper for the proof of parts (a) and (c).

Let L = {L : (∀x ∈ L)[Wx = L]}. Clearly, L ∈ TxtFin. Suppose by way
of contradiction that some learner M TxtFin-identifies L using a Friedberg
programming systemH as a hypothesis space. Without loss of generality assume
that M does not output more than one distinct conjecture on any text. Then,
by Smullyan’s double recursion theorem [41], there exist distinct e1, e2 such that
We1 ,We2 may be defined as follows.

Let We1 = {e1, e2} and We2 = {e1, e2}, if there exist finite sequences τ1, τ2 ∈
SEQ such that content(τi) ⊆ {ei} for i ∈ {1, 2}, M(τ1)↓ 6=?,M(τ2)↓ 6=? and
M(τ1)↓ 6= M(τ2)↓; otherwise, let We1 = {e1} and We2 = {e2}. It is easy to
verify that both We1 and We2 are members of L. Now suppose, for some p, M
outputs either ? or p, on all sequences τ1, τ2 ∈ SEQ such that content(τ1) ⊆
{e1} and content(τ2) ⊆ {e2}. Then clearly We1 6= We2 and thus M does not
TxtFinH-identify L — as M outputs only p or ? on the texts for both We1 and
We2 . On the other hand, suppose there exist τ1, τ2 such that content(τ1) ⊆ {e1},
content(τ2) ⊆ {e2}, M(τ1)↓ 6=?,M(τ2)↓ 6=? and M(τ1)↓ 6= M(τ2)↓. Then
We1 = We2 and M does not TxtFinH-identify L — as M outputs at least two
distinct conjectures on (different) texts for We1 , but at most one of them can be
a grammar for We1 (as H is a Friedberg programming system). Thus, in either

12

case, M does not TxtFinH-identify L. This completes the proof for part (b).
�

Even though every TxtEx-learnable class can be learnt using some Friedberg
programming system as a hypothesis space, these hypothesis spaces very much
depend on the class being learnt — the classes L1 = {L : L 6= ∅ and Wmin(L) =
L} and L2 = {L : card(L) ≥ 2 and Wmin(L−{min(L)}) = L} can be FrTxtEx-
learnt, but cannot be FrTxtEx-learnt using the same Friedberg programming
system as a hypothesis space! (We refer the reader to [24] for a proof).

An interesting result shown by [24] is that a recursively enumerable class can
be TxtFin-learnt using some Friedberg programming system as a hypothesis
space iff it is 1–1 recursively enumerable and TxtFin-learnable.

The situation changes for vacillatory and behaviourally correct learning. For
vacillatory learning, there are vacillatorily learnable classes which cannot be
vacillatorily learnt in any Ke-programming system. In particular, every class
which can be vacillatorily learnt in some Ke-programming system is explana-
torily learnable!

Theorem 9. [24] FrTxtFex = KeTxtFex = TxtEx ⊂ TxtFex.

Here TxtEx ⊂ TxtFex was shown by [10].
Similarly, there exist behaviourally correctly learnable classes which cannot

be behaviourally correctly learnt in any Friedberg programming system.

Theorem 10. [24] FrTxtBc ⊂ KeTxtBc.

It is open at this point whether every behaviourally correctly learnable class is
behaviourally correctly learnable in some Ke-programming system.

Even though every TxtEx-learnable class is learnable using some Friedberg
programming system, the learner may not satisfy some desirable properties. For
example, consider prudent learning. Prudent learning requires that a learner
only outputs hypotheses describing languages it is able to learn [38]. Every
TxtEx-learnable class can also be learnt prudently [19]. However, even simple
classes, such as the class of all finite sets, cannot be prudently learnt using
any Friedberg programming system as a hypothesis space. This is so, since
otherwise, one would get a Σ1 procedure for enumerating all infinite r.e. sets,
a contradiction to a well-known result [41]. On the other hand, one can do
prudent learning of every TxtEx-learnable class using some Ke-programming
system as a hypothesis space.

Similar results regarding learning the class of finite sets can also be shown
for non-U-shaped learning, conservative learning and monotonic learning. Here
a learner is non-U-shaped if it never abandons a correct hypothesis [4]. U-shaped
learning is a learning behaviour in which the learner first learns the correct be-
haviour, then abandons the correct behaviour and finally returns to the correct
behaviour once again. This pattern of learning behaviour has been observed
by cognitive and developmental psychologists in a variety of child development
phenomena, for example language learning [8, 36, 45]. Note that every TxtEx-
learnable class can also be learnt in a non-U-shaped way using some acceptable
programming system as a hypothesis space [4].

13

In contrast to the above result, for consistent learning [1, 5] one can use
some Friedberg programming system as a hypothesis space for every class of
languages which can be consistently learnt using some hypothesis space.

Even though usage of Friedberg programming systems in general as a hy-
pothesis space, for TxtEx-learning, is quite powerful, there are some Friedberg
programming systems which make learning almost impossible: only TxtEx-
learnable classes which contain finitely many infinite languages could be (ex-
planatorily, behaviourally correctly, or vacillatorily) learnt using such Friedberg
programming systems as a hypothesis space. Similarly, there exist Friedberg
programming systems, using which as a hypothesis space, only inclusion free
finite classes of languages can be TxtFin-learnt (a class is inclusion free if no
language in the class is included in another language in the class). We refer
the reader to [24] for further results on learning using Friedberg programming
systems or Ke-programming systems as hypothesis spaces.

5. Optimal Hypothesis Spaces

As we have seen, chosen hypothesis spaces play a crucial role in whether a
learner is able to learn the target class of languages. Thus it is interesting to
explore optimal hypothesis spaces H in the sense that any class learnable using
some hypothesis space is also learnable using the hypothesis space H. This
would allow one to use the same hypothesis space for learning various classes
of languages. Optimality may (and does) of course depend on the learning
criterion under investigation. Furthermore, we consider whether a hypothesis
space being optimal for a particular learning criterion implies it being optimal
for some other learning criterion. Such studies were done by [25].

For a criterion of learning I, a hypothesis space H is said to be optimal if
any class L, I-learnable using some hypothesis space, is also I-learnable using
H as the hypothesis space. The hypothesis space H is said to be algorithmically
optimal for a criterion I if given any learner M using a hypothesis space H′,
one can algorithmically find a learner M ′ using H as a hypothesis space (for the
class of languages which was I-learnt by M using H′ as a hypothesis space).

Clearly, all acceptable programming systems are optimal for TxtEx,TxtFin,TxtBc,TxtFex.
. Are there other optimal programming systems?

Definition 11. [25] A programming system A0, A1, A2, . . . is called nearly ac-
ceptable iff there is a computable function f such that Af(d,e) = We whenever
d ∈ We.

The nearly acceptable programming systems are algorithmically optimal
for explanatory, vacillatory and behaviourally correct learning. They are also
optimal for TxtFin-learning, but not necessarily algorithmically optimal for
TxtFin-learning. Note that one can easily construct nearly acceptable pro-
granming systems which are not acceptable.

The algorithmically optimal programming systems for finite, explanatory
and vacillatory learning are easy to characterize.

14

Theorem 12. [25] A hypothesis space H = (Hi)i∈N of all r.e. sets is
(a) algorithmically optimal for TxtFin-learning iff H is acceptable;
(b) algorithmically optimal for TxtEx-learning iff H is K-acceptable;
(c) algorithmically optimal for TxtFex-learning iff there is a limiting-computable
function g such that, for all d, there is an e ≤ g(d) with He = Wd.

[11] also showed part (b) above.
The following theorem gives the relation between optimal programming sys-

tems for finite, explanatory, behaviourally correct and vacillatory learning.

Theorem 13. [25]
(a) For each I ∈ {TxtEx,TxtFin,TxtBc,TxtFex}, there are programming
systems which are optimal but not algorithmically optimal for I.
(b) For any two distinct I and J in {TxtEx,TxtFin,TxtBc,TxtFex}, there
is a programming system which is optimal for I but not optimal for J.

In (b) above, if I 6= TxtFin and (I 6= TxtEx or J 6= TxtFex), then we can
even take the corresponding programming system to be algorithmically optimal
for I.

[11] had also shown that there are programming systems which are optimal
but not algorithmically optimal for TxtEx and that there are K-acceptable,
but not acceptable, programming systems which are optimal for TxtFin.

Another interesting result is that every (algorithmically) optimal program-
ming system for TxtEx is also (algorithmically) optimal for consistent learning.
On the other hand, there are programming systems which are algorithmically
optimal for consistent learning but not optimal for finite, explanatory, vacilla-
tory or behaviourally correct learning.

In learning with additional information, in addition to a text for the lan-
guage, a learner is also provided with an upper bound on a (code for) grammar
(in the hypothesis space) for the target language [16, 23]. It was shown in [25]
that the Ke-programming systems are exactly those hypothesis spaces which
are optimal for learning with additional information.

6. Prescribed Learning

Until now we have been mostly concentrating on learning using some suitable
hypothesis space, perhaps with some constraints such as being class-preserving,
class-comprising or being a Friedberg programming system. What if one requires
that learning has to happen using every suitable hypothesis space? This kind of
situation is useful if one expects that the seller provides a learner which works
based on the programming system used by any potential buyer, rather than
only with the programming system used by the seller. Here one may distinguish
between two cases, one where there exists a learner for each of the suitable
hypothesis spaces and another one where one expects the same learner (with
hypothesis space being a parameter) to work for all hypothesis spaces. The issue
here is of being able to algorithmically generate a learner given a description

15

of the suitable hypothesis space. Jain, Stephan and Ye [26, 27] considered the
above situation.

We say that a class L is prescribed I-learnable, if for every hypothesis space
H = (Hi)i∈N, such that {Hi : i ∈ N} ⊇ L, L can be learnt according to the
criterion I using H as a hypothesis space.

We say that a class L is class-preserving-prescribed I-learnable, if for every
class-preserving hypothesis space H = (Hi)i∈N (that is hypothesis space satis-
fying {Hi : i ∈ N} = L), L can be learnt according to criterion I using H as a
hypothesis space.

We say that L is uniformly I-learnable, if there exists an algorithmic listing
M0,M1,M2, . . . of learners such that given a program i describing the hypothesis
spaceH = (Hj)j∈N such that {Hj : j ∈ N} ⊇ L, L can be learnt by Mi according
to criterion I using H as the hypothesis space. Here we say that the program
i describes the hypothesis space H = (Hj)j∈N if ϕi(j, x) = 1 iff x ∈ Hj (where,
when considering indexed family as a hypothesis space, we require ϕi to be
total). In above, ϕi denotes the function computed by the i-th program in some
standard acceptable programming system for partial recursive functions.

One can define uniformly class-preserving learning similarly.
For general learnability of r.e. languages, where hypothesis spaces are r.e.

classes (rather than indexed families) prescribed learning is quite weak as in
some Friedberg programming systems only restricted classes can be learnt.
Thus, for r.e. languages one normally considers class-preservingly-prescribed
(uniformly class-preserving) learning only. Note that the concept classes being
considered here would be r.e. classes of r.e. languages.

For finite and explanatory learning, uniform learning can very much be done.

Theorem 14. [27] Every TxtFin-learnable r.e. class of languages is also uni-
formly class-preservingly TxtFin-learnable.

Proof. We give a proof from [27].
Suppose M is a TxtFin-learner for L = {L0, L1, . . .} (using some hypothesis

space). Let e be an index for a hypothesis space H = (Hi)i∈N, that is, We =
{〈j, x〉 : x ∈ Hj}. Further suppose {Hi : i ∈ N} = L. We give the learner Me

which TxtFin-learns L using the hypothesis space H as follows. Let Hj,n =
{x : x < n and x is enumerated in Hj within < n steps}. Me(T [n]) is defined
as follows.

(1) If there exists an m < n with Me(T [m]) 6=?, then Me(T [n]) = Me(T [m])
for the least such m;

(2) Else If there exist m ≤ n and j ≤ n with M(T [m]) 6=? and content(T [m]) ⊆
Hj,n, then Me(T [n]) = j for the least such j;

(3) Otherwise Me(T [n]) =?.

By step (1) above, Me outputs at most one hypothesis (besides ?) on any text
T . Also, it follows from the definition of TxtFin-learning that Hj = Hj′

whenever M(T [m]) 6=?, content(T [m]) ⊆ Hj and content(T [m]) ⊆ Hj′ . Hence

16

the j chosen in step (2) is a correct hypothesis, whenever the condition in step
(2) holds. Furthermore, for all texts for languages in L, the condition in step
(2) would eventually hold, as M TxtFin-learns L. Thus we have that L is
uniformly TxtFin-learnable. �

Theorem 15. [27] Every TxtEx-learnable r.e. class of languages is also uni-
formly class-preservingly TxtEx-learnable.

For confident learning, there are classes which are class-comprisingly confi-
dently learnable but not class-preservingly confidently learnable. So we have a
restricted version of the above theorems for confident learning.

Theorem 16. [27] Every class-preservingly confidently TxtEx-learnable r.e.
class of languages is also uniformly class-preservingly confidently TxtEx-learnable.

[27] also consider behaviourally correct learning and vacillatory learning.
Though these criteria are similar to explanatory learning (in semantic sense),
it was shown that there are classes which are behaviourally correctly (vac-
illatorially) learnable using class-preserving hypothesis spaces but not class-
preservingly-prescribed behaviourally correctly (vacillatorially) learnable. It is
open at this point whether uniform and non-uniform prescribed version of class-
preserving learning for behaviourally correct learning are same. Similar question
for vacillatory learning is also open.

On the other hand, for conservative learning, prescribed and uniform learn-
ing are a restriction and are separated from each other.

Theorem 17. [27]
(a) The class {D : |D| ≤ 1} is class-preservingly-prescribed conservatively but
not uniformly class-preservingly conservatively TxtEx-learnable.
(b) The class {D : |D| < ∞} is class-preservingly conservatively but not class-
preservingly-prescribed conservatively TxtEx-learnable.
(c) The class {D : |D| = 2 ∨ (|D| = 1 ∧D ⊆ K ′)} is class-comprisingly conser-
vatively but not class-preservingly conservatively TxtEx-learnable.

We now turn our attention to prescribed learning of indexed families. The
rest of the section considers learning of indexed families only. Thus, as in
Section 3, the hypothesis spaces are assumed to be indexed families.

For TxtFin-learning, prescribed and uniform learning are very restricted.
However, uniform class-preserving learning can be done for all TxtFin-learnable
indexed families.

Definition 18. Define S = ∪n=0,1,2,...Jn, where Jn contains for each e < n the
first element (found in some algorithmic search), if any, of We enumerated from
In = {2n − 1, 2n, 2n + 1, . . . , 2n+1 − 2}. Then: S is recursively enumerable; S
intersects with every infinite recursively enumerable set; for every n there is an
m in In which is not in S. In other words, S is a simple set [?]. Let St be the
set of elements enumerated into S within t steps via some standard algorithmic
procedure. Here we take S0 = ∅.

17

In the following, a canonical text Ti for a language Li (from a class L =
{L0, L1, . . .} of languages) is some fixed standard text for Li which can be
obtained algorithmically from i.

Theorem 19. [26] Suppose L is an indexed family.
(a) If L 6= ∅, then L is not uniformly TxtFin-learnable.
(b) L is uniformly class-preservingly TxtFin-learnable iff L is TxtFin-learnable.
(c) L is prescribed TxtFin-learnable iff L is finite and inclusion free.

Proof. We give a proof from [26].
Suppose L = {L0, L1, . . .}, where one can algorithmically decide (in i) mem-

bership questions for Li, and Li 6= Lj for i 6= j.
(a) Let Ge = Le if e < |L|; otherwise let Ge be some recursive set outside L.
Note that the programming system G0, G1, . . . is introduced in order to handle
finite and infinite classes uniformly (for infinite L, note that Gi = Li). Suppose
L is uniformly TxtFin-learnable as witnessed by the recursive enumeration of
learners M0,M1,M2, Let F be a recursive set such that no finite variant of
F is in L. By Kleene’s recursion theorem [41], there exists an e such that for
every d ∈ N and c ∈ {0, 1},

ϕe(2d + c, x) =

 F (x), if Me outputs 2d + c as first grammar on the
canonical text Td for Gd within x steps;

Gd(x), otherwise.

For this e, ϕe defines an indexed family hypothesis space H which is a superclass
of L. By construction, Me does not TxtFin-learn any language in L using the
given hypothesis space H.
(b) Follows from Theorem 14.
(c) If L = {L0, . . . , Ln} for some n ∈ N and Li 6⊆ Lj for all i, j < n + 1 with
i 6= j, then L is prescribed TxtFin-learnable as follows. Given a hypothesis
space H, let i0, . . . , in be indices for L0, . . . , Ln in H respectively. Let xk,l be
an element in Lk − Ll for all k, l ≤ n with k 6= l. On input T [t], search for
the least k such that xk,l ∈ content(T [t]) for all l ≤ n with l 6= k. If such a k
is found, output ik and stop; otherwise output ?. It is easy to verify that the
above learner TxtFin-learns L using hypothesis space H.

Suppose L = {L0, L1, . . .} is prescribed TxtFin-learnable but infinite and
Li 6= Lj whenever i 6= j. Let S, In be as in Definition 18. Let H = (Hm)m∈N,
where Hm is defined as follows. For each m ∈ N, let n ∈ N be the number such
that m ∈ In, then

Hm(x) =

 1− Lx−m−t(x), if x ≥ m + t and m ∈ St+1 − St for some
t ∈ {0, 1, . . . , x};

Ln(x), otherwise.

Note that {Hi : i ∈ N} ⊇ L and H is an indexed family. Let M be a TxtFin-
learner for L using hypothesis space H. For each i ∈ N, let f(i) be the first

18

index which M outputs on the canonical text Ti for Li. Thus, Hf(i) = Li.
Consequently, f(i) /∈ S and f(i) ∈ Ii. Hence f(i) 6= f(j) for distinct i, j.
Thus f(0), f(1), f(2), . . . is an infinite r.e. subset of S, a contradiction. Hence,
any prescribed TxtFin-learnable class L must be finite. In addition, there
do not exist i, j with i 6= j and Li ⊂ Lj for any TxtFin-learnable class L =
{L0, L1, . . .} — otherwise, a σ such that, (i) content(σ) ⊆ Li and (ii) the learner
on σ outputs a hypothesis for Li, can be extended to a text for Lj ; thus the
learner fails to TxtFin-learn Lj . �

For conservative learning, there are infinite classes which can be uniformly
conservatively learnt. One such example is the class L = {La : a ∈ N}, where
La = N − {a}. Note that all the languages in this class are cofinite. In fact
this is unavoidable as for conservative learning, uniform and prescribed learning
imply that (almost) all the languages in the class are cofinite.

Theorem 20. [26]
(a) If L is uniformly conservatively TxtEx-learnable, then every L ∈ L is
cofinite.
(b) If L is prescribed conservatively TxtEx-learnable, then all but finitely many
languages L ∈ L are cofinite.

Proof. We only give the proof of part (a) from [26]. We refer the reader to [26]
for the proof of part (b).

Let S be as in Definition 18. Suppose L = {L0, L1, . . .}, where Li 6= Lj for
i 6= j. Furthermore, let Ga = La if a < |L| and Ga = N otherwise.

We define a sequence of hypothesis spaces H0,H1,H2, . . ., where for each
n ∈ N the hypothesis space Hn = (Hn

m)m∈N is defined as follows:

Hn
〈i,j〉 =

 Gi, if j /∈ S and j > n;
Gi ∪ {t + 1, t + 2, t + 3, . . .}, if j ∈ St+1 − St and j > n;
N, if j ≤ n.

Note that the case distinction covers all cases as S0 = ∅. Furthermore, H0,H1, . . .
is a recursive enumeration of indexed families. Since L is uniformly conserva-
tively learnable, there exists a recursive enumeration of learners M0,M1,M2, . . .
such that for all n, Mn conservatively learns L using hypothesis space Hn.

For all a < |L| and n ∈ N, let e = 〈v(a, n), w(a, n)〉 be the first number found
(in some algorithmic search) such that Mn outputs e on the canonical text Ta

of La and one of the following conditions hold:

(a) w(a, n) ∈ S and La ⊆ Hn
〈v(a,n),w(a,n)〉 (note that this can be verified by

finding a t with w(a, n) ∈ St and checking La(x) ≤ Hn
〈v(a,n),w(a,n)〉(x) for

all x ≤ t);

(b) v(a, n) = a;

(c) w(a, n) ≤ n.

19

Note that such e = 〈v(a, n), w(a, n)〉 exists for all n.
Now note that, for every a < |L|, there is an n such that either w(a, n) ≤ n

or w(a, n) ∈ S: otherwise the set {w(a, n) : n ∈ N} would be an infinite r.e. set
disjoint to S, a contradiction as S is simple.

Now for each a < |L|, let na be such that w(a, na) ≤ n or w(a, na) ∈ S.
Then, it follows that La ⊆ Hna

〈v(a,na),w(a,na)〉 (by definition of Hn and the defini-
tion of v(a, na), w(a, na)), and H〈v(a,na),w(a,na)〉 is cofinite (by definition of Hn).
Thus, as Mn is conservative and learns La, it follows that La = Hn

〈v(a,na),w(a,na)〉
and thus La is cofinite. This completes the proof of part (a). �

Furthermore, uniformly class-preserving conservative learning and prescribed
conservative learning are incomparable.

Theorem 21. [26]
(a) There exists a class L which is uniformly class-preservingly conservatively
TxtEx-learnable, but not prescribed conservatively TxtEx-learnable.
(b) There exists a class L which is prescribed conservatively TxtEx-learnable
but not uniformly class-preservingly conservatively TxtEx-learnable.

We now consider the effect of prescribing the hypothesis space for monotonic
learning.

Theorem 22. [26]
(a) L is prescribed strongly monotonically TxtEx-learnable iff L is finite.
(b) Any non-empty L is not uniformly strongly monotonically TxtEx-learnable.

Proof. We give the proof of the theorem from [26].
(a) If L is finite, then it is easily seen to be prescribed strongly monotonically

learnable.
Now assume that L is infinite. Let odd(x) = 1 for odd x and odd(x) = 0 for

even x. Furthermore even(x) = 1− odd(x). Let M0,M1,M2, . . . be a recursive
enumeration of all learners. Suppose L = {L0, L1, . . .} is an infinite indexed
family, where Li 6= Lj for i 6= j. We define an indexed family hypothesis
space H = (Hi)i∈N such that L is not strongly monotonically learnable using
hypothesis space H. Let F be a recursive set such that F differs from each set
in L on infinitely many even and infinitely many odd inputs. Let Ti denote the
canonical text for Li, obtained algorithmically from i. Let

H〈i,j〉(x) =

max({even(x), F (x)}), if 〈i, j〉 is the first index, if any, with
the first component being i, output by
Mi on Ti within x steps;

min({odd(x), F (x)}), if 〈i, j〉 is the second distinct index, if
any, with the first component being i,
output by Mi on Ti within x steps;

Li(x), otherwise.

Clearly, H is an indexed family hypothesis space which contains L. Furthermore,
note that either H〈i,j〉 = Li, or H〈i,j〉 6∈ L (as, either H〈i,j〉 never follows the
first (second) clause, or it follows it for all but finitely many x).

For i ∈ N, consider the behaviour of Mi on the canonical text Ti for Li:

20

1. If Mi does not output an index of the form 〈i, j〉, then Mi fails to learn Li

because from the definition of H, only indices of such form can be indices
for Li.

2. If Mi outputs only one such index, then from the definition of H, the index
is not for any L ∈ L, thus not for Li.

3. If Mi outputs at least two different such indices, say 〈i, j1〉 and 〈i, j2〉
being the first and second one respectively, then from the definition of H,
H〈i,j1〉 6⊆ H〈i,j2〉, because H〈i,j1〉 contains all even numbers larger than x
while H〈i,j2〉 does not, where x is the number of steps needed for Mi to
output 〈i, j2〉.

Hence, Mi fails to learn Li strongly monotonically from Ti. Thus, no learner
learns L strongly monotonically using hypothesis space H, a contradiction.
Hence, L must be finite.

(b) Suppose L = {L0, L1, . . .}, where Li 6= Lj for i 6= j. Let Ge = Le if e < |L|
and let Ge be some recursive set outside L otherwise. To see that L is not uni-
formly strongly monotonically learnable, suppose by way of contradiction that
there exists a recursive enumeration of learners M0,M1, . . . such that whenever
ϕi defines a hypothesis space H which contains L, then Mi learns L strongly
monotonically using hypothesis space H. Let F be a recursive set such that
F differs from each set in L on infinitely many even and infinitely many odd
inputs. Let Ti denote a standard text for Gi, obtained algorithmically from i.
By Kleene’s recursion theorem [41], there exists an e such that:

ϕe(〈i, j〉, x) =

max({even(x), F (x)}), if 〈i, j〉 is the first index, if any,
with the first component being i,
output by Me on Ti within x steps;

min({odd(x), F (x)}), if 〈i, j〉 is the second distinct index,
if any, with the first component
being i, output by Me on Ti

within x steps;
Gi(x), otherwise.

It can be verified that Me does not strongly monotonically learn L using hy-
pothesis space defined by ϕe in a way similar to part (a). �

On the other hand, the class L = {Li : i ∈ N}, where Li = {i}, is uniformly
monotonically learnable.

In contrast to conservative learning, for monotonic learning, uniform learn-
ability implies that the languages in the class are finite.

Theorem 23. [26]
(a) If L is uniformly monotonically TxtEx-learnable, then L contains only
finite sets.
(b) If L is prescribed monotonically TxtEx-learnable, then L contains only
finitely many infinite sets.

The following theorem gives relationship between uniformly class-preserving
and prescribed (strong) monotonic learning.

21

Theorem 24. [26] (a) There exists a class L which is uniformly class-
preservingly strongly monotonically TxtEx-learnable but not prescribed mono-
tonically TxtEx-learnable.
(b) There exists a class L which is prescribed monotonically TxtEx-learnable
but not uniformly class-preservingly monotonically TxtEx-learnable.
(c) Every prescribed strongly monotonically TxtEx-learnable class is also uni-
formly class-preservingly strongly monotonically TxtEx-learnable.

7. Control Structures in Hypothesis Spaces

Case, Jain and Suraj [11] considered whether presence or absence of some
control structures (see [40, 42, 43]) in hypothesis spaces is needed for being able
to learn certain classes. In this section we will only be concerned with universal
programming systems.

An extensional (denotational) control structure [40, 42, 43] is given by
(Θ,m, n), where Θ is an enumeration operator [41], which maps m sets and
n natural numbers to a set. For example, the control structure union takes as
input two sets A and B, and gives as output A ∪B. Here are few more control
structures, some of which take both sets and natural numbers as input, whereas
some take only natural numbers as input.

• fin(x) = Dx, where Dx is the x-th finite set in some 1–1 computable listing
of all finite sets;

• coinit(x) = {y : y ≥ x};

• cosingle(x) = N− {x};

• proj(S, j) = {k : 〈j, k〉 ∈ S}.

An implementation of an extensional control structure (Θ,m, n) in a univer-
sal programming system H = (Hi)i∈N is given by a function f such that, for all
i1, i2, . . . , im, x1, x2, . . . , xn,

Hf(i1,i2,...,im,x1,x2,...,xn) = Θ(Hi1 ,Hi2 , . . . ,Him
, x1, . . . , xn).

This function f may or may not be computable or even limiting computable
depending on the universal programming system H chosen. It can be shown
that acceptable programming systems support all extensional control structures
via a computable function f .

For a control structure C, we say that H ` C, if there is a computable
function f which implements C in H. We say that H ` lim-C, if there is a
limiting computable function f which implements C in H.

[11] showed that the class of finite sets is TxtEx-learnable using a universal
programming system H = (Hi)i∈N as a hypothesis space iff H ` lim-fin. Simi-
larly, {{y : y ≥ x} : x ∈ N} is TxtEx-learnable using H as a hypothesis space
iff H ` lim-coinit, and {N − {x} : x ∈ N} is TxtEx-learnable using H as a
hypothesis space iff H ` lim-cosingle.

22

Note that the class of finite sets is TxtEx-learnable using every universal
programming system H as a hypothesis space. Thus, for every universal pro-
gramming system H, H ` lim-fin. However, there are universal programming
systems H,H′ such that H 6` lim-coinit and H′ 6` lim-cosingle. Thus the class
of cosingletons and the class of coinitial segements of N are not TxtEx-learnable
using some universal programming system.

[11] gave the following characterizations of acceptable and K-acceptable pro-
gramming systems:

Theorem 25. [11] A universal programming system H is an acceptable pro-
gramming system iff [TxtFinH = TxtFin and H ` proj].

Theorem 26. [11] A universal programming system H is an K-acceptable pro-
gramming system iff [TxtExH = TxtEx and H ` lim-proj].

Acknowledgements: We thank Frank Stephan for several helpful discussions
and comments on the paper. We also thank the anonymous referees for several
helpful comments.

References

[1] D. Angluin. Finding patterns common to a set of strings. Journal of
Computer and System Sciences, 21(1):46–62, 1980.

[2] D. Angluin. Inductive inference of formal languages from positive data.
Information and Control, 45:117–135, 1980.

[3] D. Angluin and C. Smith. Inductive inference: Theory and methods. Com-
puting Surveys, 15:237–289, 1983.

[4] G. Baliga, J. Case, W. Merkle, F. Stephan, and R. Wiehagen. When
unlearning helps. Information and Computation, 206(5):694–709, 2008.

[5] J. Bārzdiņš. Inductive inference of automata, functions and programs. In
Proceedings of the 20th International Congress of Mathematicians, Van-
couver, pages 455–460, 1974. In Russian. English translation in American
Mathematical Society Translations: Series 2, 109:107-112, 1977.

[6] J. Bārzdiņš. Two theorems on the limiting synthesis of functions. In Theory
of Algorithms and Programs, vol. 1, pages 82–88. Latvian State University,
1974. In Russian.

[7] L. Blum and M. Blum. Toward a mathematical theory of inductive infer-
ence. Information and Control, 28(2):125–155, 1975.

[8] M. Bowerman. Starting to talk worse: Clues to language acquisition
from children’s late speech errors. In S. Strauss and R. Stavy, editors,
U-Shaped Behavioral Growth. Developmental Psychology Series. Academic
Press, New York, 1982.

23

[9] R. Brown and U. Bellugi. Three processes in the child’s acquisition of
syntax. Harvard Educational Review, 34:133–151, 1964.

[10] J. Case. The power of vacillation in language learning. SIAM Journal on
Computing, 28(6):1941–1969, 1999.

[11] J. Case, S. Jain, and M. Suraj. Control structures in hypothesis spaces:
The influence on learning. Theoretical Computer Science, 270(1–2):287–
308, 2002.

[12] J. Case and C. Lynes. Machine inductive inference and language iden-
tification. In M. Nielsen and E. M. Schmidt, editors, Proceedings of the
9th International Colloquium on Automata, Languages and Programming,
volume 140 of Lecture Notes in Computer Science, pages 107–115. Springer-
Verlag, 1982.

[13] J. Case and C. Smith. Comparison of identification criteria for machine
inductive inference. Theoretical Computer Science, 25:193–220, 1983.

[14] P. Dale. Language Development, Structure and Function. Holt, Reinhart,
and Winston, New York, 1976.

[15] R. Freivalds, E. Kinber, and R. Wiehagen. Inductive inference and com-
putable one-one numberings. Zeitschr. f. math. Logik und Grundlagen d.
Math. Bd., 28:463–479, 1982.

[16] R. Freivalds and R. Wiehagen. Inductive inference with additional infor-
mation. Journal of Information Processing and Cybernetics (EIK), 15:179–
195, 1979.

[17] R. Friedberg. Three theorems on recursive enumeration. Journal of Sym-
bolic Logic, 23(3):309–316, 1958.

[18] M. Fulk. A Study of Inductive Inference Machines. PhD thesis,
SUNY/Buffalo, 1985.

[19] M. Fulk. Prudence and other conditions on formal language learning. In-
formation and Computation, 85(1):1–11, 1990.

[20] E. M. Gold. Language identification in the limit. Information and Control,
10(5):447–474, 1967.

[21] S. Jain, S. Lange, and S. Zilles. A general comparison of language learn-
ing from examples and from queries. Theoretical Computer Science A,
387(1):51–66, 2007. Special Issue on Algorithmic Learning Theory, 2005.

[22] S. Jain, D. Osherson, J. Royer, and A. Sharma. Systems that Learn: An
Introduction to Learning Theory. MIT Press, Cambridge, Mass., second
edition, 1999.

24

[23] S. Jain and A. Sharma. Learning with the knowledge of an upper bound
on program size. Information and Computation, 102:118–166, 1993.

[24] S. Jain and F. Stephan. Learning in Friedberg numberings. Information
and Computation, 206(6):776–790, 2008.

[25] S. Jain and F. Stephan. Numberings optimal for learning. In Y. Freund,
L. Györfi, G. Turán, and T. Zeugmann, editors, Algorithmic Learning The-
ory: 19th International Conference (ALT’ 2008), volume 5254 of Lecture
Notes in Artificial Intelligence, pages 434–448. Springer-Verlag, 2008.

[26] S. Jain, F. Stephan, and N. Ye. Prescribed learning of indexed families.
Fundamenta Informaticae, 83(1–2):159–175, 2008.

[27] S. Jain, F. Stephan, and N. Ye. Prescribed learning of r.e. classes. Theo-
retical Computer Science, 410:1796–1806, 2009.

[28] K. Jantke. Monotonic and non-monotonic inductive inference. New Gen-
eration Computing, 8:349–360, 1991.

[29] S. Lange and T. Zeugmann. Language learning in dependence on the space
of hypotheses. In Proceedings of the Sixth Annual Conference on Compu-
tational Learning Theory, pages 127–136. ACM Press, 1993.

[30] S. Lange and T. Zeugmann. The learnability of recursive languages in
dependence on the space of hypotheses. Technical Report 20/93, GOSLER-
Report, FB Mathematik und Informatik, TH Lepzig, 1993.

[31] S. Lange and T. Zeugmann. Learning recursive languages with bounded
mind changes. International Journal of Foundations of Computer Science,
4:157–178, 1993.

[32] S. Lange and T. Zeugmann. Incremental learning from positive data. Jour-
nal of Computer and System Sciences, 53(1):88–103, 1996.

[33] S. Lange and T. Zeugmann. Set-driven and rearrangement-independent
learning of recursive languages. Mathematical Systems Theory, 29:599–634,
1996.

[34] S. Lange, T. Zeugmann, and S. Kapur. Monotonic and dual monotonic
language learning. Theoretical Computer Science A, 155:365–410, 1996.

[35] S. Lange and S. Zilles. Comparison of query learning and Gold-style learn-
ing in dependence of the hypothesis space. In Shai Ben-David, John Case,
and Akira Maruoka, editors, Algorithmic Learning Theory: 15th Interna-
tional Conference (ALT’ 2004), volume 3244 of Lecture Notes in Artificial
Intelligence, pages 99–113. Springer-Verlag, 2004.

25

[36] G. Marcus, S. Pinker, M. Ullman, M. Hollander, T. Rosen, and F. Xu.
Overregularization in Language Acquisition. Monographs of the Society for
Research in Child Development, vol. 57, no. 4. University of Chicago Press,
1992. Includes commentary by Harold Clahsen.

[37] D. Osherson, M. Stob, and S. Weinstein. Learning strategies. Information
and Control, 53:32–51, 1982.

[38] D. Osherson, M. Stob, and S. Weinstein. Systems that Learn: An Intro-
duction to Learning Theory for Cognitive and Computer Scientists. MIT
Press, 1986.

[39] D. Osherson and S. Weinstein. Criteria of language learning. Information
and Control, 52:123–138, 1982.

[40] G. Riccardi. The independence of control structures in abstract program-
ming systems. Journal of Computer and System Sciences, 22:107–143, 1981.

[41] H. Rogers. Theory of Recursive Functions and Effective Computability.
McGraw-Hill, 1967. Reprinted by MIT Press in 1987.

[42] J. Royer. A Connotational Theory of Program Structure, volume 273 of
Lecture Notes in Computer Science. Springer-Verlag, 1987.

[43] J. Royer and J. Case. Subrecursive programming systems: Complexity &
succinctness. Birkhäuser, 1994.

[44] G. Schäfer-Richter. Über Eingabeabhängigkeit und Komplexität von Inferen-
zstrategien. PhD thesis, RWTH Aachen, 1984.

[45] S. Strauss and R. Stavy. U-Shaped Behavioral Growth. Developmental
Psychology Series. Academic Press, New York, 1982.

[46] K. Wexler and P. Culicover. Formal Principles of Language Acquisition.
MIT Press, 1980.

[47] R. Wiehagen. Limes-Erkennung rekursiver Funktionen durch spezielle
Strategien. Journal of Information Processing and Cybernetics (EIK),
12(1–2):93–99, 1976.

[48] R. Wiehagen. Zur Theorie der Algorithmischen Erkennung. PhD thesis,
Humboldt University of Berlin, 1978.

[49] R. Wiehagen. A thesis in inductive inference. In J. Dix, K. Jantke, and
P. Schmitt, editors, Nonmonotonic and Inductive Logic, 1st International
Workshop, volume 543 of Lecture Notes in Artificial Intelligence, pages
184–207. Springer-Verlag, 1990.

[50] R. Wiehagen and T. Zeugmann. Learning and consistency. In K. P. Jantke
and S. Lange, editors, Algorithmic Learning for Knowledge-Based Systems,
(GOSLER) Final Report, volume 961 of Lecture Notes in Artificial Intelli-
gence, pages 1–24. Springer-Verlag, 1995.

26

[51] T. Zeugmann and S. Lange. A guided tour across the boundaries of learn-
ing recursive languages. In K. Jantke and S. Lange, editors, Algorithmic
Learning for Knowledge-Based Systems, volume 961 of Lecture Notes in
Artificial Intelligence, pages 190–258. Springer-Verlag, 1995.

[52] T. Zeugmann, S. Lange, and S. Kapur. Characterizations of monotonic and
dual monotonic language learning. Information and Computation, 120:155–
173, 1995.

[53] T. Zeugmann and S. Zilles. Learning recursive functions: A survey. The-
oretical Computer Science A, 397(1–3):4–56, 2008. Special Issue on Forty
Years of Inductive Inference. Dedicated to the 60th Birthday of Rolf Wieha-
gen.

27

