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Abstract

Most studies modeling inaccurate data in Gold style learning consider cases in which
the number of inaccuracies is finite. The present paper argues that this approach is not
reasonable for modeling inaccuracies in concepts that are infinite in nature (for example,
graphs of computable functions).

The effect of infinite number of inaccuracies in the input data in Gold’s model of learning
is considered in the context of identification in the limit of computer programs from graphs
of computable functions. Three kinds of inaccuracies, namely, noisy data, incomplete data,
and imperfect data, are considered. The amount of each of these inaccuracies in the input is
measured using certain density notions. A number of interesting hierarchy results are shown
based on the densities of inaccuracies present in the input data. Several results establishing
tradeoffs between the density and type of inaccuracies are also derived.
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1 Introduction

Consider the scenario in which a subject is attempting to learn its environment. At any given
time, the subject receives a finite piece of data about its environment, and based on this
finite information, conjectures an explanation about the environment. The subject is said to
learn its environment just in case the explanations conjectured by the subject become fixed
over time, and this fixed explanation is a correct representation of the subject’s environment.
Computational learning theory provides a framework for the study of the above scenario when
the subject is an algorithmic device. The above model of learning is based on the work initiated
by Gold [9] and has been used in inductive inference of both functions and languages. We refer
the reader to [1, 3, 6, 14, 12] for background material in this field.

Most learning situations involve the presence of inaccuracies in the data presented to a
learner. In the context of linguistic development, children are likely to face both ungrammati-
cal intrusions and omission of some grammatical sentences from the ambient language; it is to
be expected that minor perturbations of this kind would not influence the outcome of linguistic
development. Similarly, in the context of scientific discovery, the business of science progresses
despite experimental errors and unfeasibility of performing certain experiments. Several at-
tempts have been made to model inaccuracies in Gold’s paradigm [7, 8, 14, 18]. Each of these
studies, however, only consider cases in which the number of inaccuracies is finite. Now, this
may be a suitable approach if the data available about the concepts to be learned is finite in
nature, but not when the nature of data is infinite.

A problem of interest is identifying in the limit computer programs from graphs of com-
putable functions. Now, the graph of a computable function is an infinite set of ordered pairs.
Considering only finite number of errors in the graph is not a very realistic model of inaccu-
racies because this may imply that all the inaccuracies are, in some sense, restricted to some
small region of the graph. A more suitable model would allow for the inaccuracies to be spread
throughout the graph of the function such that “density” of these errors is bounded.

The present paper investigates precisely such models of identification from inaccurate data.
To measure the amount of inaccuracy present in the input data when they might be infinite in
number we use notions of density from [17] (see also [19]).

We discuss three forms of inaccuracies that may be present in the input. For each of these we
give a hierarchy of inference criteria based on the density of inaccuracy present in the input. We
also give results comparing the three types of inaccuracies with each other. Even though some
of our results and arguments also apply to language identification we will mainly be concerned
with function inference in this paper.

In section 2 we discuss notation and fundamental inference paradigms. In section 3 we
discuss inaccurate information sequences and inference paradigms based on them. In sections 4
and 5 we give our results.

2 Preliminaries

2.1 Notation

Recursion-theoretic concepts not explained below are treated in [16]. N denotes the set of
natural numbers, {0, 1, 2, 3, . . .}, and N+ denotes the set of positive integers, {1, 2, 3, . . .}. ∈,
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⊆, and ⊂ denote, respectively, membership, containment, and proper containment for sets
(including sets of ordered pairs). e, i, j, k, l, m, n, r, s, x, y, z, with or without decorations1,
range over N. ∗ is a non-member of N satisfying (∀n ∈ N)[n < ∗ < ∞]. a, b, c, with or
without decorations, range over N ∪ {∗}. d, with or without decorations, ranges over the real
interval [0, 1]. We let A, B, R, S, W, X, Y, Z, with or without decorations, range over subsets
of N. card(S) denotes the cardinality of S. So then, ‘card(S) ≤ ∗’ means that card(S) is finite.
min(S) and max(S) respectively denote the minimum and maximum element in S. We take
min(∅) to be ∞ and max(∅) to be 0. S1∆S2 denotes (S1 − S2) ∪ (S2 − S1), the symmetric
difference of S1 and S2.

Let λx, y 〈x, y〉 denote a fixed pairing function (a recursive, bijective mapping: N×N → N)
[16]. 〈·, ·〉 can be extended to pairing function for multiple arguments in a natural way.

f, g, h, p, F , with or without decorations, range over total functions. C and S, with or
without decorations, range over sets of total functions. graph(f) denotes the set {(x, f(x)) |
x ∈ N}. η and ξ range over partial functions. For a ∈ N ∪ {∗}, η1 =a η2 means that card({x |
η1(x) 6= η2(x)}) ≤ a. η1 6=a η2 means ¬[η1 =a η2]. domain(η) and range(η) respectively
denote the domain and range of partial function η. f(A) = y is used as a shorthand for
(∀x ∈ A)[f(x) = y]. ↓ denotes defined and ↑ denotes undefined.

We fix ϕ to be an acceptable programming system [15, 16, 13] for the partial recursive
functions: N → N. ϕi denotes the partial recursive function computed by ϕ-program i. R
denotes the class of all total recursive functions. Let Φ be an arbitrary Blum complexity
measure [4] associated with acceptable programming system ϕ; such measures exist for any
acceptable programming system [4]. MinProg(f) denotes min({i | ϕi = f})

The quantifiers ‘
∞
∀ ’ and ‘

∞
∃ ’ mean ‘for all but finitely many’ and ‘there exist infinitely many,’

respectively.

2.2 Information Sequences and Learning Machines

An information sequence is a mapping from N or an initial segment of N, into {(x, y) | x, y ∈
N}. We let G and T , with or without decorations, range over infinite information sequences.
We let σ, τ range over finite information sequences. By σ ⊆ τ we mean that σ is an initial
sequence of τ . G[n], denotes the initial sequence of G of length n. |σ| denotes the length of σ.
f [n], denotes the finite information sequence σ such that

σ(x) =

{

(x, f(x)), if x < n;
↑, otherwise.

The content of an information sequence G, denoted content(G) is range(G). content(σ) is
defined similarly. An information sequence, G, is for a function f if content(G) = graph(f).

An inductive inference machine (IIM) is an algorithmic mapping from finite information
sequences into N. We let M, with or without decorations, range over IIMs. σ1 � (x, y) denotes
the concatenation of (x, y) at the end of the information sequence σ1; i.e. σ = σ1 � (x, y) is
defined as follows:

σ(i) =











σ1(i), if i < |σ1|;
(x, y), if i = |σ1|;
↑, otherwise.

1Decorations are subscripts, superscripts, primes and the like.
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2.3 Fundamental Function Identification Paradigms

In Definition 1 below we spell out what it means for an IIM to converge (in the limit) on an
information sequence.

Definition 1 Suppose M is an IIM and G is an information sequence. M(G)↓ (read: M(G)

converges; M converges on G) ⇐⇒ (∃i)(
∞
∀ n) [M(G[n]) = i]. If M(G)↓, then M(G) is defined

= the unique i such that (
∞
∀ n)[M(G[n]) = i], otherwise we say that M(G) diverges (written:

M(G)↑).

We now introduce two different criteria for an IIM to successfully infer a function.

Definition 2 [9, 3, 6] Let a ∈ N ∪ {∗}.
(a) M Exa-identifies f (written: f ∈ Exa(M)) ⇐⇒ (∀ information sequences G for f)(∃i |
ϕi =a f)[M(G)↓ = i].
(b) Exa = {C | (∃M)[C ⊆ Exa(M)]}.

Ex in the above definition stands for explanatory.
Case and Smith [6] introduced another infinite hierarchy of identification criteria which we

describe below. “Bc” stands for behaviorally correct . Barzdin [2] essentially introduced Bc0.

Definition 3 [6] Let a ∈ N ∪ {∗}.

(a) M Bca-identifies f (written: f ∈ Bca(M)) ⇐⇒ (∀ information sequences G for f)(
∞
∀

n)[ϕM(G[n]) =a f ].
(b) Bca = {C | (∃M)[C ⊆ Bca(M)]}.

We usually write Ex for Ex0 and Bc for Bc0. For function identification with accurate
data, identification (for criteria of inference discussed in this paper) from arbitrary information
sequences is equivalent to identification from the canonical information sequence. Theorem 4
below describes some of the basic results about the two kinds of function identification criteria
described above.

Theorem 4 For all a ∈ N,
(a) Exa ⊂ Exa+1.
(b)

⋃

a∈N Exa ⊂ Ex∗.
(c) Ex∗ ⊂ Bc.
(d) Bca ⊂ Bca+1.
(e)

⋃

a∈N Bca ⊂ Bc∗.
(f) R ∈ Bc∗.

Parts (a), (b), (d), and (e) are due to Case and Smith [6]. John Steel first observed that
Ex∗ ⊆ Bc and diagonalization in part (c) is due to Harrington and Case [6]. Part (f) is due
to Harrington [6]. Blum and Blum [3] first showed that Ex ⊂ Ex∗. Barzdin [2] independently
showed Ex ⊂ Bc.
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3 Inaccurate Data

We consider three kinds of inaccuracies that could creep into natural environments of learners.

• Noisy data: Ungrammatical intrusions into the language presented to the child is a very
reasonable assumption about a child’s environment. Similarly, experimental error caused
by a faulty equipment could result in spurious data that is not representative of the reality
under investigation.

• Incomplete data: Natural linguistic environments may omit sentences from the ambi-
ent language, and it is possible that the child’s learning function can identify a natural
language despite the systematic omission of sentences from its environment. Similarly,
some experiments cannot be performed either due to technological limitations or due to
ethical considerations.

• Imperfect data: Most natural linguistic environments are likely to be victims of both
ungrammatical intrusions and omission of sentences from the ambient language. Such
environments that contain a mixture of noisy and incomplete inaccuracies are referred to
as environments with imperfect data. Similarly, in most experimental investigations, the
inaccuracies are a mixture of both noisy and incomplete data.

The three kinds of inaccuracies discussed above yield three kinds of information sequences—
noisy, incomplete, and imperfect. However, a further distinction is made based on whether the
number of inaccuracies in an information sequence is finite or infinite. In [8, 14, 18] the case of
finite number of inaccuracies was discussed. In this paper we examine the case when inaccuracies
are infinite in number. We first introduce the definitions related with inference from finitely
inaccurate information sequence.

It should be noted that the inaccuracies discussed here model spurious data and unavail-
ability of data; they don’t say anything about situations like “data is correct within 10% of
actual value.” Moreover, for our identification criteria in presence of inaccuracies, we require
identification on all input information sequences where the amount of inaccuracies is bounded
appropriately: thus the inaccuracies are not random but can be considered to be generated by
an adversary.

3.1 Information Sequences with Finite Number of Inaccuracies

Pursuant to the classification of inaccuracies, we define three kinds of inaccurate information
sequences for functions.

Definition 5 [8, 14] Let a ∈ N ∪ {∗}.
(a) An information sequence G is a-noisy for f ⇐⇒ graph(f) ⊆ content(G) and
card(content(G) − graph(f)) ≤ a.
(b) An information sequence G is a-incomplete for f ⇐⇒ content(G) ⊆ graph(f) and
card(graph(f) − content(G)) ≤ a.
(c) An information sequence G is a-imperfect for f ⇐⇒ card(graph(f)∆content(G)) ≤ a.
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An a-noisy information sequence for f can be viewed as an information sequence for f
into which up to a “extra” pairs have been inserted. Note that any single such intrusion may
occur infinitely often in G. Similarly, a-incomplete information sequences, have at most a pairs
removed from them and a-imperfect information sequences have at most a pairs inserted/deleted
from them.

In the above definitions, a = ∗ case implies that the number of inaccuracies is any finite
number. The other a ∈ N cases model situations when a scientist may be aware, apriori, of an
upper bound on the number of inaccuracies infesting its environment; possible sources of such
information could be previous experience and nature of instruments used.

Note that in the case of noisy information sequences for functions, two incorrect values for
f(n) count as two distinct noise points, i.e., if the correct value of f(n) = x and both (n, y) and
(n, z), where x, y and z are distinct, are present in an inaccurate information sequence for f ,
then the data points (n, y) and (n, z) contribute separately to noise count. Also, if the actual
value of f(n) = y, but (n, y) doesn’t appear in an information sequence and instead (n, z),
y 6= z, appears, then these contribute two to imperfection count.

We now introduce the learning criteria based on finite number of inaccuracies in the input.

Definition 6 [8, 14] Let a, b ∈ N ∪ {∗}.
(a.1) M NaExb-identifies f (written: f ∈ NaExb(M)) ⇐⇒
(∀ a-noisy information sequences G for f)[M(G)↓ ∧ ϕM(G) =b f ].

(a.2) NaExb = {C | (∃M)[C ⊆ NaExb(M)]}.
(b.1) M InaExb-identifies f (written: f ∈ InaExb(M)) ⇐⇒
(∀ a-incomplete information sequences G for f)[M(G)↓ ∧ ϕM(G) =b f ].

(b.2) InaExb = {C | (∃M)[C ⊆ InaExb(M)]}.
(c.1) M ImaExb-identifies f (written: f ∈ ImaExb(M)) ⇐⇒
(∀ a-imperfect information sequences G for f)[M(G)↓ ∧ ϕM(G) =b f ].

(c.2) ImaExb = {C | (∃M)[C ⊆ ImaExb(M)]}.

Similar to the above definitions one can define the function identification paradigms: NaBcb,
InaBcb, ImaBcb.

We now turn our attention to potentially infinite number of inaccuracies.

3.2 Information Sequences with Infinite Number of Inaccuracies

We first define density notions needed to measure the amount of inaccuracy in the input. These
notions of “density” are from [17]. Similar notions were also used by Smith and Velauthapillai
[19] in the context of inductive inference.

Definition 7 (S. Tennenbaum: see page 156 in [16], [17])
(a) Suppose that A ⊆ N and that B is a finite, nonempty subset of N. We define the density
of A in B (denoted: den(A;B)) as card(A ∩ B)/card(B).
(b) The density of a set A (denoted: den(A)) is limn→∞ inf({den(A; {z | z ≤ x}) | x ≥ n}).

Intuitively, den(A;B) can be thought of as the probability of selecting an element of A
when choosing an arbitrary element from B.

Note that, even if den(A) is 1, A may have “large holes”. To overcome this situation, we
consider the notion of “uniform density” from [17].
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Definition 8 [17] The uniform density of a set A in intervals of length ≥ n (denoted: udenn(A))
is inf({den(A; {z | x ≤ z ≤ y}) | x, y ∈ N and y − x ≥ n}). Uniform density of A (denoted:
uden(A)) is limn→∞ udenn(A).

We now define the inaccurate information sequences with certain density.

Definition 9 Suppose 0 ≤ d ≤ 1. An information sequence G is d-Dnoisy for a total function
f if

(a) graph(f) ⊆ content(G),
(b) den(N− {x | (∃y)[(x, y) ∈ content(G) − graph(f)]}) ≥ 1 − d and
(c) (∀x)[card({(x, y) | (x, y) ∈ content(G) − graph(f)}) < ∞].

D in Dnoisy indicates that the density of inaccuracy is considered. Note the difference in
the way the inaccuracies in the information sequence are counted for finite inaccuracies and
infinite inaccuracies. Instead of the definition used in clause (b) above we may want to define
the density of the noise in an information sequence as the limiting value of the ratio:

number of erroneous elements in the information sequence for inputs≤x
x+1 .

We feel that this is not a natural definition for infinite inaccuracies, since, for such a defini-
tion, the density of noise can be infinite. Clause (c) has been added since we believe that the
number of possible outcomes, even allowing for errors, in any particular experiment is bounded.
Some of our proofs are dependent on clause (c).

The following definitions give the corresponding notions for incomplete and imperfect infor-
mation sequences.

Definition 10 Suppose 0 ≤ d ≤ 1. An information sequence G is d-Dincomplete for a total
function f if

(a) content(G) ⊆ graph(f) and
(b) den(N− {x | (∃y)[(x, y) ∈ graph(f) − content(G)]}) ≥ 1 − d.

Definition 11 Suppose 0 ≤ d ≤ 1. An information sequence G is d-Dimperfect for a total
function f if den(N− {x | (∃y)[(x, y) ∈ content(G)∆graph(f)]}) ≥ 1 − d.

Note that the equivalent of clause (c) in the definition of Dnoisy information sequence is
not necessary for the definition of Dincomplete and Dimperfect information sequences and thus
has been dropped.

Similarly by considering uniform density one can define d-UDnoisy, d-UDincomplete, and
d-UDimperfect information sequences.

3.3 Identification Criteria on Infinitely Inaccurate Information Sequences

We now define the corresponding notions of function identification.

Definition 12 Suppose 0 ≤ d ≤ 1 and a ∈ N ∪ {∗}.
(a.1) M DNdExa identifies f (written: f ∈ DNdExa(M)) iff
(∀ d-Dnoisy information sequences G for f)[M(G)↓ ∧ ϕM(G) =a f ].

(a.2) DNdExa = {C | (∃M)[C ⊆ DNdExa(M)]}.
(b.1) M DIndExa identifies f (written: f ∈ DIndExa(M)) iff
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(∀ d-Dincomplete information sequences G for f)[M(G)↓ ∧ ϕM(G) =a f ].

(b.2) DIndExa = {C | (∃M)[C ⊆ DIndExa(M)]}.
(c.1) M DImdExa identifies f (written: f ∈ DImdExa(M)) iff
(∀ d-Dimperfect information sequences G for f)[M(G)↓ ∧ ϕM(G) =a f ].

(c.2) DImdExa = {C | (∃M)[C ⊆ DImdExa(M)]}.

We can similarly define UDNdExa,UDIndExa,UDImdExa,
DNdBca, DIndBca,DImdBca,UDNdBca,UDIndBca, and UDImdBca.

4 Hierarchy Results

The following theorem demonstrates the disadvantages of increasing the density of noise. It
establishes that there are collections of functions that can be Ex-identified with noise of a
particular density, but cannot be identified if the density of noise is increased, even if the noise
is of uniform type and a more liberal criterion of success is used.

Theorem 13 Suppose 0 ≤ d1 < d2 ≤ 1. DNd1Ex − [UDNd2Ex∗ ∪
⋃

l∈N UDNd2Bcl] 6= ∅.

Corollary 14 Suppose 0 ≤ d1 < d2 ≤ 1. DNd1Ex − UDNd2Ex∗ 6= ∅.

Proof of Theorem 13. Without loss of generality assume d1 = j/n, d2 = (j + 4)/n, where
n > j + 4 and j, n ∈ N. Consider the following classes of functions

C0 = {f | ϕf(0) = f ∧ (
∞
∃ x)[f(x) 6= 0]}, and C1 = {f | (

∞
∀ x)[f(x) = 0]}.

It was shown in [6] that C0 ∪ C1 6∈ Ex∗ ∪
⋃

l∈N Bcl. We will use a modification of C0 ∪ C1 as
our diagonalizing class.
Let N0 = 0 and, for i > 0, Ni = ni.
Let X = {x | (∃r)[N2r ≤ x < N2r+1]}, X0 = X ∩ {x | (x mod n) < (j + 4)}, and X1 = X −X0.
Let Rk,j = {x | [N2·〈k,j〉+1 ≤ x < N2·〈k,j〉+2]}, and Sk =

⋃

j∈N Rk,j .
Now for f ∈ C0 ∪ C1 define a function Ff as follows.

Ff (Sk) = f(k).
Ff (X1) = 0.
Ff (X0) = 0, if f ∈ C0; Ff (X0) = 1, otherwise.

Let C = {Ff | f ∈ C0 ∪ C1}.

Claim 15 C ∈ DNd1Ex.

Proof. Suppose G is a d1-Dnoisy information sequence for Ff ∈ C.

Thus we have:

1. (∀x ∈ N)[(x, Ff(x)) ∈ content(G)]

2. (∀y)[ [(∀x ∈ X0)[(x, y) ∈ content(G)]] ⇒ Ff (X0) = y ]

(This holds because: for large enough r, the fraction of noisy points less than N2r+1,
is bounded by (j + 1)/n. Now since X0 ∩ {x | x < N2r+1}, consists of at least
(j + 4)/n fraction of points less than N2r+1, there exists a point in X0 which is
noise free.)
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3. (
∞
∀ 〈j, k〉)(∀y)[ [(∀x ∈ Rj,k)[(x, y) ∈ content(G)]] ⇒ Ff (Sj) = y ].

(Let 〈j, k〉 be large enough, such that the fraction of noisy points below max(Rj,k) is
bounded by (j +1)/n. Now since Rj,k consists of (n−1)/n fraction of points below
max(Rj,k), there exists a point in Rj,k which is noise free.)

Since (1, 2) hold, it is easy to determine Ff (X0) in the limit from G. Also, since (1, 3) hold,
it is easy to determine Ff (S0) in the limit. Now if Ff (X0) = 0, then i defined as follows is a
program for Ff ,

ϕi(x) =







0, if x ∈ X0;
0, if x ∈ X1;
ϕFf (S0)(k), if x ∈ Sk.

If Ff (X0) = 1, then W = {k | Ff (Sk) 6= 0} can be determined in the limit (since (1, 3) hold).
A program for Ff can then easily be constructed from W . Thus C ∈ DNd1Ex. 2

Claim 16 C 6∈ [UDNd2Ex∗ ∪
⋃

l∈N UDNd2Bcl].

Proof. For f ∈ C0 ∪ C1, we will show (i) how to convert an information sequence for f to an
d2-UDnoisy information sequence for Ff and (ii) (for a ∈ N ∪ {∗}) how to convert an a-error
program for Ff into an a-error program for f .

Assuming this we have [C ∈ UDNd2Ex∗∪
⋃

l∈N UDNd2Bcl] ⇒ [C0∪C1 ∈ Ex∗∪
⋃

l∈N Bcl].

Since, [C0 ∪ C1 6∈ Ex∗ ∪
⋃

l∈N Bcl] we conclude that C 6∈ UDNd2Ex∗ ∪
⋃

l∈N UDNd2Bcl.
From an information sequence, G, for f a d2-UDnoisy information sequence can be con-

structed for Ff , by forming an information sequence GFf
such that content(GFf

) = {(x, 0) |
x ∈ X} ∪ {(x, 1) | x ∈ X0} ∪ {(x, f(k)) | x ∈ Sk}. Note, that this construction can be done
effectively.

Also, since f(k) = Ff (Sk) = Ff (N2·〈k,j〉+1), it is easy to convert an a-error program for Ff

into an a-error program for f . This completes the proof of the claim 2

It can be similarly shown that C defined in the above proof is in DInd1Ex− [UDInd2Ex∗∪
⋃

l∈N UDInd2Bcl] and DImd1/2Ex − [UDImd2/2Ex∗ ∪ UDImd2/2Bcl]. Thus we have,

Theorem 17 Suppose 0 ≤ d1 < d2 ≤ 1.
[DNd1Ex ∩ DInd1Ex ∩DImd1/2Ex]−
[(UDNd2Ex∗ ∪ UDInd2Ex∗ ∪ UDImd2/2Ex∗) ∪

⋃

l∈N(UDNd2Bcl ∪ UDInd2Bcl ∪

UDImd2/2Bcl)] 6= ∅.

Corollary 18 Suppose 0 ≤ d1 < d2 ≤ 1. DInd1Ex − UDInd2Ex∗ 6= ∅.

Corollary 19 Suppose 0 ≤ d1 < d2 ≤ 1/2. DImd1Ex − UDImd2Ex∗ 6= ∅.

Thus identification criteria based on inaccurate information form a strict hierarchy based
on the density of inaccuracy.

Let C be a class of functions such that there exist functions f1, f2, such that f1 6=2a f2.
Then it is easy to see that C 6∈ UDIm1/2Bca (since the input information sequence may be
1/2-UDimperfect for both f1 and f2). For d < 1/2 we do not know if DImdEx − DN2dEx is
empty or not.
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We now consider the advantages of a uniformity restriction on the density of inaccuracies
over the situation where such a restriction is not there. The next result demonstrates this
advantage in the context of noise by showing that there are collections of functions that can
be Ex-identified on information sequences with a uniform noise density < 1, but cannot be
Ex∗-identified even with 0-density noise if the uniformity constraint on the density of noise is
removed.

Theorem 20 Suppose 0 ≤ d < 1. UDNdEx − DN0Ex∗ 6= ∅.

Proof. Without loss of generality let d = (n− 2)/n, where n > 2. Let C0 and C1 be as defined
in the proof of Theorem 13. We will use a modification of C0 ∪ C1 as our diagonalizing class.
Let N0 = 0, N2i+1 = N2i + (i + 1) ∗ n, and N2i+2 = N2i+1 ∗ n.
Let X = {x | (∃j)[N2j ≤ x < N2j+1]}, Rj,k = {x | N2·〈j,k〉+1 ≤ x < N2·〈j,k〉+2}, and Sj =
⋃

k∈N Rj,k.
Now for f ∈ C0 ∪ C1, define Ff as follows. Ff (Sj) = f(j). Ff (X) = 0, if f ∈ C0; Ff (X) = 1

otherwise.
Let C = {Ff | f ∈ C0 ∪ C1}.
Now proceeding in a way similar to that of Theorem 13 it can be shown that C ∈ UDNdEx−

DN0Ex∗.

We can similarly show that

Theorem 21 Suppose 0 ≤ d < 1.
[UDNdEx ∩UDIndEx ∩ UDImd/2Ex]−
[(DN0Ex∗ ∪ DIn0Ex∗) ∪

⋃

l∈N(DN0Bcl ∪ DIn0Bcl)] 6= ∅.

Corollary 22 Suppose 0 ≤ d < 1. UDIndEx − DIn0Ex∗ 6= ∅.

Corollary 23 Suppose 0 ≤ d < 1/2. UDImdEx − DIm0Ex∗ 6= ∅.

The next result compares the case of finite number of errors with infinite number of errors. It
demonstrates that there are collections of functions that can be Ex-identified from information
sequences that contain a finite number of imperfections, but cannot be learned from uniform
0-density noise even if a more liberal criterion of identification is used.

Theorem 24 Im∗Ex − [UDN0Ex ∪
⋃

l∈N UDN0Bcl].

Proof. Let C0 and C1 be as defined in the proof of Theorem 13.
We will use a modification of C0 ∪ C1 as our diagonalizing class.
Let X = {2n + 1 | n ≥ 1}. Let Sk = {2 · 〈k, z〉 | z ∈ N}. Let Z = N− (X ∪

⋃

k Sk).
For f ∈ C0 ∪ C1, define a function Ff as follows.
Ff (Sk) = f(k),
Ff (Z) = 0,
Ff (X) = 0, if f ∈ C0; Ff (X) = 1, otherwise.
Let C = {Ff | f ∈ C0 ∪ C1}.

Claim 25 C ∈ Im∗Ex.
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Proof. Suppose G is a ∗-imperfect information sequence for Ff ∈ C. Thus, it is easy to
determine Ff (X) and Ff (S0), in the limit from G. Now if Ff (X) = 0, then i defined as follows
is a program for Ff ,

ϕi(x) =







0, if x ∈ X;
0, if x ∈ Z;
ϕFf (S0)(k), if x ∈ Sk.

If Ff (X) = 1, then W = {k | Ff (Sk) 6= 0} can be determined in the limit (since G is ∗-imperfect
information sequence for Ff ). A program for Ff can then easily be constructed from W . Thus
C ∈ Im∗Ex. 2

Claim 26 C 6∈ [UDN0Ex ∪
⋃

l∈N UDN0Bcl].

Proof. For f ∈ C0 ∪ C1, we will show (i) how to convert an information sequence for f to an
0-UDnoisy information sequence for Ff and (ii) (for a ∈ N ∪ {∗}) how to convert an a-error
program for Ff into an a-error program for f .

Assuming this we have [C ∈ UDN0Ex∗ ∪
⋃

l∈N UDN0Bcl] ⇒ [C0 ∪ C1 ∈ Ex∗ ∪
⋃

l∈N Bcl].

Since, [C0 ∪ C1 6∈ Ex∗ ∪
⋃

l∈N Bcl] we conclude that C 6∈ UDN0Ex∗ ∪
⋃

l∈N UDN0Bcl.
From an information sequence, G, for f a 0-UDnoisy information sequence can be con-

structed for Ff , by forming an information sequence GFf
such that content(GFf

) = {(x, 0) |
x ∈ X ∪ Z} ∪ {(x, 1) | x ∈ X} ∪ {(x, f(k)) | x ∈ Sk}. Note, that this construction can be done
effectively.

Also, since f(k) = Ff (Sk) = Ff (2 · 〈k, 0〉), it is easy to convert an a-error program for Ff

into an a-error program for f . This completes the proof of the claim 2

The next result parallels the above theorem for incomplete data.

Theorem 27 Im∗Ex − [UDIn0Ex ∪
⋃

l∈N UDIn0Bcl].

As a corollary to results in this section and results from [8] we have,

Corollary 28 Suppose 0 ≤ d < d′ ≤ 1, a ∈ N ∪ {∗}. Then, Exa ⊃ N1Exa ⊃ · · · ⊃ N∗Exa ⊃
DN0Exa ⊃ DNdExa ⊃ DNd′Exa.

Similar corollaries can be obtained for incomplete information, imperfect information and for
uniform inaccuracies.

5 Comparison Between Different Types of Inaccuracies

We now compare the effects of different kinds of inaccuracies. The following theorem demon-
strates the advantages of noise over missing data by establishing that there are collections of
functions that can be Ex-identified with high noise density but cannot be identified from infor-
mation sequences in which a single data is missing even if the final program is allowed to make
a finite number of errors.

Theorem 29 Suppose 0 ≤ d < 1. DNdEx − In1Ex∗ 6= ∅.

11



Proof. Without loss of generality let d = (n − 2)/n.
For i ∈ N, let Ni = ni.

Let Rj,k = {x | N〈j,k〉 ≤ x < N〈j,k〉+1]}, and Sj =
⋃

k∈N Rj,k.
Now for f ∈ R, define Ff as follows. Ff (Sj) = f(j). Ff (0) = 〈i, 〈err0, err1, err2, . . . , erri−1〉〉,

where i = MinProg(f), and for j < i, errj = min({x | ϕj(x) 6= f(x)}).
Let C = {Ff | f ∈ R}.

Claim 30 C 6∈ In1Ex∗.

Proof. For f ∈ R, we will show below (i) how to convert an information sequence for f to an
1-incomplete information sequence for Ff , and (ii) how to convert a ∗-error program for Ff to
a ∗-error program for f . From this it follows that, C ∈ In1Ex∗ ⇒ R ∈ Ex∗. Since R 6∈ Ex∗,
we conclude that C 6∈ In1Ex∗.

Given an information sequence G for f ∈ R, let G′ be an information sequence such that
content(G′) = {(x, f(k)) | x ∈ Sk}. Note that such a G′ can be effectively computed from G.
Also since f(k) = Ff (Sk) = Ff (N〈k,0〉), a ∗-error program for Ff can be easily converted to a
∗-error program for f . 2

Claim 31 C ∈ DNdEx.

Proof. We describe an IIM M which DNdEx-identifies C.
Suppose f ∈ R and G is an d-Dnoisy information sequence for Ff (∈ C). We describe how

M computes its output on G[n]. For this we first describe, Xn, Y j
n , Zn, en, zn (which depend

on G,n). Let
Xn = {x | (0, x) ∈ content(G[n])},
Y j

n = {〈k, y〉 | (∀x ∈ Rj,k)[(x, y) ∈ content(G[n])]},
Zn = {(j, y) | (∃k)[〈k, y〉 = max(Y j

n )]}.

Note that
card(Rj,k)

1+max(Rj,k) =
N〈j,k〉+1−N〈j,k〉

N〈j,k〉+1
= n−1

n . Thus, for all but finitely many 〈j, k〉, if

(∀x ∈ Rj,k)[(x, y) ∈ content(G[n])], then f(j) must be equal to y. Thus, for large enough n,
Zn ⊆ graph(f).

Let en = max({i | (∃err0, err1, . . . , erri−1 | 〈i, 〈err0, err1, err2, . . . , erri−1〉〉 ∈ Xn)[(∀j <
i)[Φj(errj) > n ∨ (errj , ϕj(errj)) 6∈ Zn]]}).

It is easy to see that, for large enough n, en = MinProg(f).
Let zn = 〈en, 〈errn

0 , . . . , errn
en−1〉〉,

where, for j < en, errn
j = min({n}∪{x < n | Φj(x) > n ∨ Φen(x) > n ∨ ϕj(x) 6= ϕen(x)}).

From the definition of Ff , it follows that for large enough n, zn = Ff (0).
Let h be a recursive function such that, for all e, z, j, ϕh(e,z)(0) = z and ϕh(e,z)(Sj) = ϕe(j).

Let M(G[n]) = h(en, zn). It is easy to see that, Ff ∈ DNdEx(M). Since Ff was an arbitrary
member of C, we have C ⊆ DNdEx(M). 2 (Theorem 29)

Similarly we can establish the following result.

Theorem 32 Suppose 0 ≤ d < 1. DNdEx −
⋃

j∈N In1Bcj 6= ∅.

The following theorem shows the advantages of incomplete information sequences over im-
perfect information sequences.

12



Theorem 33 Suppose 0 ≤ d < 1. DIndEx∗ − (Im∗Ex∗ ∪
⋃

j∈N Im∗Bcj) 6= ∅.

Proof. Consider the following class of functions:
C = {f | (∀y ∈ range(f))[ϕy =∗ f ]}.
Clearly C ∈ DIndEx∗. We argue that C 6∈ Im∗Ex∗. (The argument that C is not in any of

the Im∗Bcj classes is similar and we omit the details). Suppose by way of contradiction that
M Im∗Ex∗-identifies C. Then by Operator Recursion Theorem [5] there exists a 1-1 recursive
p such that the functions ϕp(·) may be described as follows. Let xs denote the least x such that
ϕp(0)(x) is not defined before stage s. Let ϕp(0)(0) = p(0). Let σ1 = ((0, p(0))). The following
properties will be maintained in the construction.

(A) At the beginning of stage s, ϕp(2s) and ϕp(2s+1) are not defined on any input.
(B) σs = ϕp(0)[xs].
(C) For each i, if p(i) is in the range of ϕp(0), then ϕp(i) =∗ ϕp(0).

Go to stage 1.

Stage s

1. For all x < xs, let ϕp(2s)(x) = p(2s).

Dovetail steps 2, 3, 4 until step 3 or 4 succeeds. If step 3 succeeds before step 4 does, if ever,
then go to step 5. If step 4 succeeds before step 3 does, if ever, then go to step 6.

2. Let z = xs. Go to substage 0.

Substage s′

Let ϕp(2s)(z) = p(2s).
Let z = z + 1.
Go to substage s′ + 1.

End substage s′.

3. Search for y > xs such that ϕM(σs)(y)↓ = p(2s).

4. Search for y > xs such that M(σs) 6= M(σs � (xs, p(2s)) � . . . � (y, p(2s))).

5. Let y be as found in step 3.

For xs ≤ x ≤ y, let ϕp(0)(x) = p(2s + 1).

For x ≤ y, let ϕp(2s+1)(x) = ϕp(0)(x). Let ϕp(2s+1) follow ϕp(0) from now on (i.e. whenever
ϕp(0)(x) gets defined for x > y, let ϕp(2s+1)(x) = ϕp(0)(x)).

Let σs+1 = σs � (xs, p(2s + 1)) � . . . � (y, p(2s + 1)).

Go to stage s + 1.

(Note that if p(i) is in the range of ϕp(0), then ϕp(i) =∗ ϕp(0)).

6. Let y be as found in step 4. Let z be as at the beginning of the last substage executed in
step 2.

Let y′ = max({y, z}).

For xs ≤ x ≤ y′, let ϕp(0)(x) = ϕp(2s)(x) = p(2s).

Let ϕp(2s) follow ϕp(0) from now on.

Let σs+1 = σs � (xs, p(2s)) � . . . � (y′, p(2s)).

Go to stage s + 1.

(Note that if p(i) is in the range of ϕp(0), then ϕp(i) =∗ ϕp(0)).

End Stage s

13



Now consider the following cases:
Case 1: All stages halt.

In this case let f = ϕp(0). Clearly, f ∈ C.
Case 1a: M does not converge on G =

⋃

s∈N σs, which is an information sequence for f .
In this case M does not Im∗Ex∗ identify f .

Case 1b: M on G =
⋃

s∈N σs converges.
In this case the only way infinitely many stages can exist is by execution of step 5 infinitely

often. But then ϕM(G) is infinitely different from f .
Case 2: Stage s starts but never halts.

In this case let f = ϕp(2s). Clearly, f ∈ C. Let G = σs � (xs, p(2s)) � (xs + 1, p(2s)) . . . .
Thus G is a ∗-imperfect information sequence for f . But M on G converges to M(σs), and, for
all but finitely many x, ϕM(σs)(x) 6= p(2s). Thus M does not Im∗Ex∗-identify f .

From the above cases we have that M does not Im∗Ex∗ identify C.

We do not know if the above theorem can be improved. However we would like to bring
to the reader’s attention the following theorem from [10] (which limits how much the above
theorem can be improved).

Theorem 34 [10] (∀i, j ∈ N)[In4iExj ⊆ Im2iEx2j ].

Now we consider the possibility of whether noisy data can hurt more than incomplete data.
The following theorem almost answers the question negatively. It shows that if a class of
functions can be identified from incomplete information sequences then it can also be identified
from noisy information sequences as long as the density of inaccuracies is slightly reduced.

Theorem 35 Suppose 0 ≤ d1 < d2 ≤ 1. (∀a ∈ N ∪ {∗})[DInd2Exa ⊆ DNd1Exa].

Proof. This proof is a complex modification of the proof of Theorem 14 in [8]. In this case
we cannot just try to remove the multiple valued points from the input information sequence
(as done in the proof of Theorem 14 in [8]), since the number of such points may be infinite.
However we know that if we wait long enough, all initial segments can be made noise free.
Moreover the density of noise beyond a certain point is always smaller than d2. We use these
facts to simulate an IIM M, which DInd2Exa identifies C.

Let G be a d1-Dnoisy information sequence for f ∈ C. Without loss of generality we
can assume that, for all n, content(G[2n]) ⊆ {(x, y) | x ≤ n} and (∀x ≤ n)(∃y)[(x, y) ∈
content(G[2n])] (otherwise such a G can be effectively constructed from the input information
sequence). Let S = {(x, z) | card({(x, y) ∈ content(G) | y ∈ N}) = 1 ∧ (x, z) ∈ content(G)}.
Let G′ be the subsequence of G formed by deleting from G all elements not in S. Now if
both (x1, y1) and (x2, y2) are in content(G′), where x1 < x2, then (x1, y1) appears before
(x2, y2) in G′. Let σn denote the smallest initial segment of G′ such that, for all x ≤ n,
(x, y) ∈ content(G′) ⇒ (x, y) ∈ content(σn).

Let Good(n) be true iff, for all n′ > n, there exists a subsequence τ (extending σn) of σn′

such that,
(A) card({x | (∃y)[(x, y) ∈ content(σn)]})/(n + 1) > (1 − (d1 + d2)/2)
(B) For n ≤ n′′ ≤ n′, card({x ≤ n′′ | (∃y)[(x, y) ∈ content(τ)]})/(n′′ +1) > (1− (d1 +d2)/2)

and
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(C) M(σn) = M(τ ′) for σn ⊆ τ ′ ⊆ τ .
Clearly, there exists an n such that Good(n). Also given σn, one can determine if Good(n)

holds in the limit (from G). To see this, first note that, if for some σ′
n′ , a supersequence of σn′

the following are satisfied:

(i) σ′
n′ extends σn, and

(ii) no subsequence τ , extending σn, of σ′
n′ satisfies (A), (B), and (C),

then ¬Good(n). Thus, given σn, if ¬Good(n) then one can find a witness for this using G and
M. It follows that one can determine in the limit if Good(n) holds.

Let n0 be the least n such that Good(n). Based on the discussion above, an IIM M′ can
determine n0, and thus M(σn0

), in the limit. We now claim that M(σn0
) is a program for an

a-variant of f . To see this consider the tree formed by considering all subsequences τ of G′

(with a corresponding n′) extending σn0
such that (B) and (C) are satisfied. Clearly this tree

is infinite. Moreover the branching factor, in this tree, at any particular node is finite (due
to density constraint in (B)). Thus there exists an infinite branch in this tree. Let G′′ be the
information sequence formed using this infinite branch. Clearly G′′ is d2-Dincomplete for f .
Also M(G′′) = M(σn0

). Thus M(σn0
) is a program for an a-variant of f .

Similarly we also have

Theorem 36 Suppose 0 ≤ d1 < d2 ≤ 1. (∀a ∈ N ∪ {∗})[UDInd2Exa ⊆ UDNd1Exa].

We leave it as an open question whether, for a ∈ N ∪ {∗} and d ∈ [0, 1), [DIndExa ⊆
DNdExa] and [UDIndExa ⊆ UDNdExa]. We also leave it open whether, [DIndBca ⊆
DNdBca] and [UDIndBca ⊆ UDNdBca].

6 Conclusions

In this paper we considered the effects of infinite number of inaccuracies in the input data on
the learning power of IIMs. For d < 1/2 it is open whether DImdEx−DN2dEx (or DIn2dEx)
is empty or not. It is also open whether, for a ∈ N∪{∗} and d ∈ [0, 1), [DIndExa ⊆ DNdExa]
or [UDIndExa ⊆ UDNdExa].
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