The Structure of Intrinsic Complexity of Learning

Sanjay Jain
Department of Information Systems and Computer Science
National University of Singapore
Singapore 119260, Republic of Singapore
Email: sanjay@Qiscs.nus.sg

Arun Sharma
School of Computer Science and Engineering
The University of New South Wales
Sydney, NSW 2052, Australia
Email: arun@cse.unsw.edu.au

March 11, 2007

Abstract

Limiting identification of r.e. indexes for r.e. languages (from a presentation of elements
of the language) and limiting identification of programs for computable functions (from a
graph of the function) have served as models for investigating the boundaries of learnability.
Recently, a new approach to the study of “intrinsic” complexity of identification in the limit
has been proposed. This approach, instead of dealing with the resource requirements of the
learning algorithm, uses the notion of reducibility from recursion theory to compare and
to capture the intuitive difficulty of learning various classes of concepts. Freivalds, Kinber,
and Smith have studied this approach for function identification and Jain and Sharma have
studied it for language identification.

The present paper explores the structure of these reducibilities in the context of language
identification. It is shown that there is an infinite hierarchy of language classes that represent
learning problems of increasing difficulty. It is also shown that the language classes in this
hierarchy are incomparable, under the reductions introduced, to the collection of pattern
languages.

Richness of the structure of intrinsic complexity is demonstrated by proving that any
finite, acyclic, directed graph can be embedded in the reducibility structure. However, it is
also established that this structure is not dense. The question of embedding any infinite,
acyclic, directed graph is open.

1 Introduction

Recently, a new approach to the study of “intrinsic” complexity of learning has been proposed.
This approach can be traced to the work of Freivalds [Fre91] and was proposed for identification
in the limit of functions by Freivalds, Kinber, and Smith [FKS95] and for identification in the
limit of languages by Jain and Sharma [JS94, JS96].

Instead of concentrating on the resource requirement complexity of the learning algorithm,
this approach uses the notion of reducibility from recursion theory to compare the learning
difficulty of the concept classes being learned. Since the treatment of languages turns out
to be more general than that of functions (as functions can be treated as single valued total
languages), we limit our investigation to languages in the present paper.

The main idea of the approach is to introduce reductions between learnable classes of lan-
guages. If a collection of languages, £1, can be reduced to another collection of languages, Lo,
then the learnability of £; is no more difficult than that of £5. Moreover, an algorithm for
learning L5 can be transformed into an algorithm for learning £;. Based on these reductions,
one can define the notion of hardness and completeness. We present an informal description of
these reductions. To facilitate our discussion, we first introduce some technical details about
language identification in the limit.

L, with or without decorations, ranges over recursively enumerable languages over the set
of natural numbers. An r.e. index for a language L is referred to as a grammar (acceptor) for
L. Informally, a text for a language L is just an infinite sequence, with possible repetitions,
of all and only the elements of L. A learning machine is an algorithmic device. Elements of a
text are sequentially fed to a learning machine one element at a time. The learning machine,
as it receives elements of the text, outputs an infinite sequence of grammars. If the sequence
of grammars emitted by the learning machine converges to a single correct grammar for the
language whose text is fed to the machine, then the machine is said to identify the text. A
machine is said to identify a language just in case it identifies each text for the language. This
is essentially Gold’s [Gol67] criterion of identification in the limit.

It is also useful to call an infinite sequence of grammars, go, g1, g2, - - ., admissible for a text
T just in case the sequence of grammars converges to a single correct grammar for the language
whose text is T'.

The reductions are based on the idea that for a collection of languages £ to be reducible
to L', we should be able to transform texts T for languages in £ to texts T’ for languages in
L' and further transform admissible sequences for T’ into admissible sequences for T. This
is achieved with the help of two enumeration operators. Informally, enumeration operators
are algorithmic devices that map infinite sequences of objects (for example, texts and infinite
sequences of grammars) into infinite sequences of objects. The first operator, O, transforms
texts for languages in £ into texts for languages in £’. The second operator, ¥, behaves as
follows: if © transforms a text T for some language in £ into text 7" (for some language in £'),
then ¥ transforms admissible sequences for 7" into admissible sequences for T'.

To see that the above satisfies the intuitive notion of reduction, consider collections £ and
L' such that £ is reducible to £’. We now argue that if £’ is identifiable then so is £. Let
learning machine M’ identify £’. Let enumeration operators © and ¥ witness the reduction of
L to L. Then we describe a learning machine M that TxtEx-identifies £. M, upon being fed
a text T for some language L € L, uses © to construct a text T” for a language in £'. It then
simulates machine M’ on text 7" and feeds conjectures of M’ to the operator ¥ to produce its
conjectures. It is easy to verify that the properties of ©, ¥, and M’ guarantee the success of
M on each text for each language in L.

The above reduction has been used to show that the following three collections of languages,
each of which is identifiable, pose learning problems of increasing difficulty.

(a) SINGLE, the collection of singleton languages;

(b) COINIT = {L | (3n)[L = {x | * > n}]} (essentially, COINIT is the collection of those
languages that contain all the natural numbers except a finite initial segment);

(c) FIN, the collection of finite languages.

According to the above reduction SINGLE is reducible to COINIT but COINIT is not
reducible to SINGLE and COINIT is reducible to FIN but FIN is not reducible to COINIT.
It was discussed in [JS94, JS96] that this reduction captures an intuitive sense in which these
classes represent learning problems of increasing difficulty. The class SINGLE can be identified

by a learning machine that can confirm its success. The class COINIT cannot be identified
by any machine that can confirm its success, but it can be identified by a machine, that after
inspecting an element of the language, provides an upper bound on the number of mind changes
it will make before converging to a correct grammar. FIN, on the other hand, can neither be
identified by a machine that confirms its success nor can it be learned by a machine that provides
an upper bound on the number of mind changes after inspecting an element of the language.
In fact according to the reduction described above, FIN is complete—it poses the most difficult
learning problem. It was also shown that the class COINIT was equivalent to PATTERN, the
class of pattern languages introduced by Angluin [Ang80a]. Pattern languages are a useful class
of languages and will be described later in the paper.

In the present paper we investigate the structure of the above reductions. We present a series
of results that provide sufficient conditions for when a collection of languages is not reducible
to another. Using these results we show that there is an infinite chain of language classes that
represent learning problems of increasing difficulty. We give an informal description of this
chain of languages.

For ¢ > 1, let FIN; denote the collection of languages with cardinality less than or equal to
i. Then for each 7 > 1, FIN; is reducible to FIN;;1 but FIN,;; is not reducible to FIN;. This
means that FIN;y; is a strictly more difficult learning problem than FIN,. We also provide
an insight into the classes FIN; and identification in the limit with bounded number of mind
changes. If a collection of languages £ can be identified in the limit with no more than n mind
changes then L is reducible to FIN,, 1. That is, we can use an algorithm that learns FIN,
to design an algorithm that learns L.

It is interesting to investigate the relationship between identification in the limit with
bounded number of mind changes and identification in the limit where a learning machine
can provide an upper bound on the number of mind changes after inspecting an element of
the language being learned. In other words, we would like to find out how FIN;, i > 1, and
PATTERN (or, COINIT) compare with respect to the above reduction. It turns out that
PATTERN is incomparable to FIN;, for each i > 1, with respect to the above reduction. In
other words, for each ¢ > 1, FIN; is not reducible to PATTERN and PATTERN is not reducible
to FIN;.

We demonstrate the richness of this reducibility structure by showing that any finite directed
acyclic graph can be embedded in the reducibility structure. However, we also show that the
reducibility structure is not dense as there are language classes between which there is nothing.
More specifically, we show that there exist language classes £ and £’ such that

e L is reducible to £ and £’ is not reducible to £, and

e for all £” such that £ is reducible to £” and £” is reducible to £’, either £” is equivalent
to L or L” is equivalent to £’.

We also consider a finer notion of reduction called strong reduction in which texts for
the same language are mapped to texts for a unique language. Under this stronger version
of reduction, it turns out that FIN is not complete. We demonstrate an interesting class of
languages that is trivially learnable (with 0 mind changes) but is not strong-reducible to FIN.

We also note that the question of embedding any infinite, acyclic, directed graph in the
reducibility structure is open.

We now proceed formally.

2 Notation and Preliminaries

Any unexplained recursion theoretic notation is from [Rog67]. The symbol N
denotes the set of natural numbers, {0,1,2,3,...}. Unless otherwise specified,
e, g, 1,4, k, 1, m,n,q,r s, t w, x, vy, with or without decorations!, range over N. Unless oth-
erwise specified all conventions in this paper regarding range of variables apply for variables
with or without decorations. Symbols (), C, C, D, and D denote empty set, subset, proper
subset, superset, and proper superset, respectively. Symbols A, L and S range over sets of
numbers.

Cardinality of a set S is denoted by card(S). The maximum and minimum of a set are
denoted by max(-), min(-), respectively, where max()) = 0 and min()) = co. (-,-) denotes
an arbitrary, computable, 1-1, onto pairing function from N x N onto N. Similarly, one can
define (-,...,-) for encoding multiple tuples of natural numbers onto N. Unless otherwise
specified, letters f, I’ and h range over total functions with arguments and values from V.
Symbol R denotes the set of all total computable functions. By ¢ we denote a fixed acceptable
programming system for the partial computable functions: N — N [Rog67, MY78]. By ¢;
we denote the partial computable function computed by the program with number ¢ in the
p-system. The letter, p, in some contexts ranges over programs; in other contexts p ranges over
total functions with its range being construed as programs. By ® we denote an arbitrary fixed
Blum complexity measure [Blu67, HU79] for the p-system. By W; we denote domain(y;). W;
is, then, the r.e. set/language (C N) accepted (or equivalently, generated) by the p-program
1. We also say that ¢ is a grammar for W;. Symbol £ will denote the set of all r.e. languages.
Symbols £ and S range over subsets of £. We denote by W7 the set {z < s | ®;(z) < s}. |
denotes defined. T denotes undefined.

We now present concepts from language learning theory. The definition below introduces
the concept of a sequence of data.

Definition 1

(a) A sequence o is a mapping from an initial segment of N into (N U{#}). Empty sequence
is denoted by A.

(b) The content of a sequence o, denoted content(o), is the set of natural numbers in the
range of o.

(c¢) The length of o, denoted by |o|, is the number of elements in . So, |A| = 0.
(d) For n < |o|, the initial sequence of o of length n is denoted by o[n]. So, o[0] is A.

Intuitively, #’s represent pauses in the presentation of data. We let o, 7, and v range over
finite sequences. SEQ denotes the set of all finite sequences.

Definition 2 A language learning machine is an algorithmic device which computes a mapping
from SEQ into N.

We let M range over learning machines.

Definition 3 A text T for a language L is a mapping from N into (N U {#}) such that L is
the set of natural numbers in the range of 7. The content of a text T, denoted content(7), is
the set of natural numbers in the range of T'. T'[n] denotes the finite initial sequence of T" with
length n.

'Decorations are subscripts, superscripts and the like.

M(T'[n]) is interpreted as the grammar (index for an accepting program) conjectured by learning
machine M on initial sequence T'[n].

We also need the notion of an infinite sequence of grammars. We let G range over infinite
sequences of grammars. Clearly infinite sequences of grammars are essentially infinite sequences
over N. Hence, we adopt the machinery defined for sequences and texts over to finite sequences
of grammars and infinite sequences of grammars. So, if G = g9, 91, g2, 3, - - ., then G[3] denotes
the sequence go, g1, g2, G(3) is g3.

Below we define identification in the limit introduced by Gold [Gol67].

Definition 4 [Gol67]
(a) M TxtEx-identifies a text T" just in case (3i | W; = content(T")) (Ovo n)[M(T[n]) = i].

(b) M TxtEx-identifies L (written: L € TxtEx(M)) just in case M TxtEx-identifies each
text for L.

(c) TxtEx ={L£C & | (IM)[L C TxtEx(M)]}.

Definition 5 We say that an infinite sequence of grammars go, g1, - - - s TxtEx-admissible for
text T just in case
(3n)[W,, = content(T") A (Vn' > n)gn = gnll-

3 Reductions and Previous Results

We first present some technical machinery.

We write “o C 77 if ¢ is an initial sequence of 7, and “o C 7”7 if ¢ is a proper initial sequence
of 7. Likewise, we write 0 C T if o is an initial finite sequence of text T. Let finite sequences
o, !, 02,... be given such that 0° C ¢! C 02 C --- and lim; . |0?| = co. Then there is a
unique text 7" such that for all n € N, ¢" C T. This text is denoted J,, ¢". Let TEXTS

denote the set of all texts, that is, the set of all infinite sequences over N U {#}.

Definition 6 An enumeration operator, ©, is an algorithmic mapping from SEQ into SEQ
such that the following two conditions are satisfied

(i) for all o, 7 € SEQ, if 0 C 7, then ©(0) C O(7);

(ii) For all texts T, lim;, . |O(T[n])| = oc.

By extension, we think of © as also defining a mapping from TEXTS into TEXTS such
that ©(T) = U,, ©(T[n]). Furthermore we define ©(L) = {content(0(T)) | T is a text for L}.
Intuitively, ©(L) denotes the set of languages to whose texts © maps texts of L. The reader
should note the overloading of this notation because the type of the argument to © could be a
sequence, a text, or a language; it will be clear from the context which usage is intended.

We now introduce our first reduction.

Definition 7 Let £ C £ and L' C & be given. Let 7 = {T | (3L € L)[T is a text for L]|}. Let
T'={T | (3L € L)[T is a text for L]}.

We say that £ §$§‘;Ex L' just in case there exist operators © and ¥ such that for all T € T
and for all infinite sequence of grammars G = g, g1, - . ., the following two conditions hold:

(a) ©(T) € T’ and

(b) if G is an TxtEx-admissible sequence for ©(T), then V(@) is an TxtEx-admissible
sequence for T'.

In the above case, we also say that © and ¥ witness £ Sg;‘at}?x L'. We say that L E;IV‘;‘;E" L
iff £ <TxtEx [,/ and Ll <TxtEx L.

—weak —weak

The next definition describes the notions of hardness and completeness for the above reduction.
Definition 8 Let £ C £ be given.

(a) We say that £ is <TXtEX_pard iff for all £/ € TxtEx, £/ <IxtEx £

—weak —weak

(b) We say that £ is <TXtEx_complete iff £ is <TXtEX_hard and £ € TxtEx.

—weak weak

It should be noted that there is no requirement that © map every text for a language in £
into texts for a unique language in Lo. If we further place such a constraint on O, we get the
following stronger notion.

Definition 9 Let £ C £ and £’ C & be given. We say that £ §;[t‘§‘(;‘£gx L' just in case there
exist operators ©, ¥ such that

(a) © and ¥ witness that £ <TxtEx £/ and

—weak

(b) for all L € £, ©(L) contains exactly one language. In other words, for all L € £, there
exists an L' € L', such that (V texts T for L)[O(T) is a text for L’|.

In the above case, we also say that © and ¥ witness £ ggt‘i‘(fgx L. We say that £ 55;‘&%" L
iff £ <TXEEx £ and L1 <TXEEx L.

We can similarly define S;{;‘(fr]lag"—hardness and S;Ef(frg"—completeness.
Since TxtEx is the only learning paradigm considered in the present paper, we refer to
g};;‘;fx and §£f§r§gx by <weak and <grong, repectively in the sequel. The following theorem

summarizes the relevant results about the above reductions.

Theorem 1 [JS94, JS96]

(a) SINGLE < COINIT and COINIT £, SINGLE.

strong

(b) COINIT <., FIN and FIN £, COINIT.

(¢) FIN is <_.,.-complete, but not <

<wea -complete.

strong

The reader is referred to [JS94, JS96] for additional examples and for a collection of languages
that is complete with respect to strong reduction.

4 Results

To begin with, we present a series of lemmas that give sufficient conditions for when a collection
of languages is not reducible to another collection of languages. First, the following simple
lemma:

Lemma 1 Suppose LCE, L1 CE and L <., L' as witnessed by © and V. Then

(a) (VL C N)(Vo | content(c) C L)(3L' € O(L))[content(O(c)) C L'];
(b) (VL € L)[O(L) C L];

(c) (VL,L' € £)[L # L' = ©(L)nO(L) = 0].

PrOOF. Part (a) follows from definition of ©(L). Part (b) follows from the definition of <.
For part (c) suppose by way of contradiction that L,L" € £, L # L' and ©(L) N O(L") # 0.
Let T be a text for L and T” be a text for L’ such that content(©(T")) = content(0O(T")). Let G
be an admissible sequence of grammars for ©(7"). Therefore G is also an admissible sequence
for ©(T"). Thus, since ©, ¥ witness L <., £, ¥(G) must be admissible sequence for both T'
and 7”. But this is impossible, since content(7) = L # L’ = content(7"). 1

Lemma 2 Suppose O is an enumeration operator.

(a) Suppose L C N and L' € ©(L). Then (V finite S C L')(3o | content(c) C L)[S C
content(©(c)) C L'].

(b) Suppose L1 C Ly C N, and L} € ©(Ly). Then for every finite subset S of L}, there exists
an Ly € ©(Lg) such that S C L.

(¢) Suppose Ly C Lo C N. Suppose further that ©(L1) consists only of finite languages. Then
for all L} € ©(Ly), there exists an L) € ©(La) such that L) C L.

PROOF. (a) Assume the hypothesis. Thus there exists a text 7" for L such that content(©(T)) =
L’. Let n be such that content(O(7'[n])) D S (there exists such an n, since some finite initial
segment of ©(T') contains all the elements of S). Taking T'[n] as o satisfies part (a).

(b) Assume the hypothesis. Consider any finite subset S of L}. By part (a) there exists
a o such that content(c) C L;, and content(©(c)) O S. Consider a text T for Lo such that
T5 is an extension of o. Note that there exists such a 75 since, content(c) C L1 C Ly. Now
content (O (7)) 2 content(O(o)) 2 S. Since content(O(1:)) € O(Lz), part (b) follows.

(c) follows from part (b). |

Corollary 1 Let LC E,L CE.

(a) Suppose L <y ong L' as witnessed by © and V. Suppose Li,Ls € L and L1 C Ly. Let
S1,S2 be such that O(Ly) = {S1} and ©(Ly) = {S2}. Then S; C Ss.

(b) Suppose L < ... L as witnessed by © and V. Suppose L1,Ly € L and Ly C Ly. Further

suppose that L' consists only of finite languages. Then, for every S; € ©(Ly), there exists
an Sy € O(Lsy) such that S; C So.

PRrROOF. Part (a) follows using Lemma 2(b). Part (b) follows using Lemma 2(c). i

We next introduce a technical definition about a structural property of collections of lan-
guages:

Definition 10 A chainis a sequence of languages L1, Lo, ..., Lj, suchthat L1 C Ly C --- C Lj.
If L1, Lo, ..., L;j form a chain, then we also refer to them as a j-chain.
We say that two chains Ly, Lo,...,L; and L}, L5, ..., L} are independent iff they do not
contain any language in common.

We say that £ contains a j-chain, iff it contains languages L1, Lo, ..., L; which form a j-
chain. Similarly, we say that £ contains k-independent j-chains iff, for 1 <r < k, 1 <i < j,
L contains languages L}, such that, for 1 < r <k, L7, L5, .. .,L; form pairwise-independent
chains.

The next lemma gives sufficient condition for non-reducibility in the strong sense. It says

for £ <gtrong L', £ must contain at least as many pairwise-independent j-chains, as L.

Lemma 3 Let j > 0. Suppose L contains k pairwise-independent j-chains and L <y ong L.
Then L' also has k pairwise-independent j-chains.

PROOF. Suppose © and ¥ witness that £ < L. Suppose L contains k pairwise-independent
j-chains.

For,1 <r <k,1<i<y,let L] be distinct languages in £ such that

strong

(Vr|1<r<Ek)(Vi|l<i<j)[LiCLi]

Now, O(L!) (which is a subset of £’) contains exactly one language. Let S! denote the
language in ©(L]). By Lemma 1(c) we have that S] are pairwise distinct. Moreover, by
Corollary 1(a) we have that

(Vr[1<r <k)(Vi|1<i<fS] < Sil]
It follows that £’ contains k pairwise-independent j-chains. |

A slightly weaker version of the above lemma holds for weak reduction.

Lemma 4 Suppose L, L' C E. Suppose L < ... L. Suppose further that L contains k pairwise-
independent j-chains, and L' consists only of finite languages. Then, L' contains k pairwise-
independent j-chains.

PROOF. This lemma can be proved along the lines of the proof of Lemma 3, except that this
time we use Corollary 1(b). We omit the details. 1

Using Lemma 4 we now show that there exists an infinite sequence of language classes,
L1, Lo, ..., such that, for each i > 1, £; is strong-reducible to £;11 but £;;1 is not even weak-
reducible to £;. Consider the following definition:

Definition 11 Fori > 1, let FIN; = {L | card(L) < i}.

Theorem 2 For each t Z 1, FINl S FINZ'_H and FINZ'_H gweak FINZ

strong

PROOF. Since FIN; C FIN;1; we have FIN; <y, FIN;+1. Now, FIN; 11 contains an (i+2)-
chain whereas FIN; does not. The theorem follows using Lemma 4. |

The above result describes an infinite sequence of language classes that represent learning
problems of increasing difficulty. It can be shown that if a collection of languages, £, can be
identified with no more than n mind changes, then £ <, FIN; .

We next briefly consider the class, PATTERN, of pattern languages introduced by Angluin
[Ang80a]. Suppose V' is a countably infinite set of variables and C is a nonempty finite set
of constants, such that V. N C = (). Notation: For a set X over variables and constants, X*
denotes the set of strings over X, and X denotes the set of non-empty strings over X. Any
w € (VUC)T is called a pattern. Suppose f is a mapping from (V U C)T to CT, such that,
for all @ € C, f(a) = a and, for each wy,we € (VUC)Y, f(wy - we) = f(wy) - f(ws), where -
denotes concatenation of strings. Let PatMap denote the collection of all such mappings f.

Let code denote a 1-1 onto mapping from strings in C* to N. The language associated with
the pattern w is defined as L(w) = {code(f(w)) | f € PatMap}. Then, PATTERN = {L(w) |
w is a pattern}.

Angluin [Ang80b] showed that PATTERN € TxtEx. It was shown in [JS94, JS96] that
COINIT =g,,,, PATTERN. This result yielded the insight that pattern languages and co-
initial languages have similar structure so far as learnability is concerned. Indeed, a machine

learning the class PATTERN can be modified to calculate an upper bound on the number of
mind changes after examining the first element of the language being identified. This is because
the pattern that generates the language being identified is of length less than or equal to the
length of the element examined. This knowledge can be translated into an upper bound on the
number of mind changes that the learner may make before converging to the correct pattern.
So, from Theorem 1, it is clear that SINGLE is strong-reducible to PATTERN but PATTERN

is not even weak-reducible to SINGLE, thereby implying that PATTERN is a strictly more
difficult learning task than SINGLE. It is interesting to investigate where PATTERN lies with
respect to FIN;, i > 1. The next theorem shows that for ¢ > 1, PATTERN is incomparable to
FIN; with respect to weak-reduction.

Theorem 3 Leti > 1. Then,

(a) PATTERN %, FIN;;

wea.

(b) FIN; £, PATTERN.

PROOF. The class of pattern languages has an j-chain for each j > 1 (consider the patterns
ar, aar, aaar, ..., where a is a constant and x is a variable). However, the class FIN; does
not contain an (i + 2)-chain. It follows using Lemma 4 that PATTERN is not weak-reducible
to FIN;.

We next show that FIN is not weak-reducible to PATTERN. Suppose by way of contra-
diction that © and ¥ witness FINy <, PATTERN. Let o be such that content(c) = {1},
and content(©(o)) # 0. There exists such a o, since {1} € FINy, and () ¢ PATTERN.

Now consider any language L € FIN, such that {1} C L. By Lemma 2(b), we have that
content(©(c)) C L', for some L' € ©(L). Moreover, these L’ must be distinct for distinct L
(Lemma 1(c)). Thus, since there are infinitely many languages in FINy which have {1} as a
subset, we must have infinitely many pattern languages which have content(@(a)) as a subset.
But this is not true. It follows that © and ¥ cannot witness FINy < . PATTERN. |

—wea

A slightly complicated modification of idea used in the above proof can be used to show
that there are language classes that are between SINGLE and FIN2 but are incomparable to
PATTERN.

One can view the reducibility structure as a directed graph, where nodes represent language
classes, and an edge from £ to £’ denotes the fact that £ is (weak, strong) reducible to £'.

Theorem 4 shows that the structure of intrinsic complexity is very rich as any finite acyclic
directed graph can be embedded in this structure. Theorem 4 uses the following lemma.

Lemma 5 Suppose n > 1 is given. Then there exist language classes L1, Lo, ..., Ly, such that
(VZ | I1<:< n) [[’Z gweak U ‘C]]
1<j<n,j#i
PROOF.

Let Lﬂl ={{j,i,z) | x < 1}.

Let Sjay = { Ly |1 <3}

Note the following properties, (A) — (E), of S; -

(A) Languages in S(;; form a j-chain;

(B)IfLeS”> andL’ES< iy, then LOL #0 <= (j=7" N i=1i);
(C) Sik,iy, for k < j does not contain a j-chain.

(D) For k > j, S(i4), does not contain 1 + L]J pairwise-independent j-chains.

(E) All languages in S(; ;) are finite.

Now define £; = U; . ,3(nt+1-5) S(jii)-

Due to property (B) above, every nonempty chain in Ui<j<n £; is contained in some L;.
Now we have:

(F) Number of j-chains in £; is n3("+1=7).

(G) Number of j-chains in U;<;<y, ;z; Li 18

Z LEJ * IR < gk p3(0m0) < 3t
i J
J<k<n

Lemma now follows using Lemma 4. |

Theorem 4 FEvery finite acyclic directed graph H can be embedded in the reducibility structure.

PrOOF. Without loss of generality assume that H is transitive (otherwise just take the tran-
sitive closure of H). Let n denote the number of nodes in H. Let L1, Lo, ..., L, be languages
classes such that,

(VZ ’ 1<i< n) [[’Z gweak U ‘CJ]
1<j<n,j#i

There exist such L1, Lo, ..., L,, by Lemma 5.

Let the nodes of the directed graph H be labeled 1 to n. Let E denote the edges of H. We
now define the classes S;, 1 < j < n.

Define S; = £; UU(; j)er Li- It is easy to see from the property of £;’s that

[(717.7) EE=S; Sstrong ‘SJ]
and
[(Zaj) g E=S; gweak SJ]
Theorem follows. |
Although the above theorem shows that the intrinsic complexity of language identification

is rich, the next result establishes that this structure is not dense, that is, there exist two
language classes, £ and £’, that satisfy the following properties:

(a) L is strong-reducible to £’ but £’ is not even weak-reducible to L.

(b) There is no language class between £ and £’ with respect to either strong or weak reduc-
tion.

We give the proof only for strong reduction. Straightforward modification of the proof works
for weak reduction.

Theorem 5 Fori >0, let Ly = {i}. Let Lo = {1,0}. Let L={L; | ¢ > 0}. Let L' = {Lo}UL.
(Note that L <y ong L', but L' £ £). Then for all S such that £ <y, one S Sgtrong L5 €ither
S Estrong LorS Estrong El'

PROOF. Clearly, £ < L and by Lemma 4, £" £ .. L. Suppose S is such that £ <

strong strong
S Zitrong L. We now show that either S =trong £ 0T S =¢prong L
Suppose © and ¥ witness that £ <y, S and ©’ and ¥’ witness that S <y, ong £'-
Since S <gyong £'; by Lemma 3, we have that S contains no 3-chain and contains at most

one 2-chain. We consider two cases.
Case 1: There is exactly one 2-chain in S.

10

Case

In this case we show that £ < .. S. Let S1 C Sp be the 2-chain in S. Clearly, by
Lemma 3, we must have ©'(Sy) = {Lo} and ©’(S1) = {L1}. Since Ly, L; are finite,
there exist 0p, 01 such that content(og) C Sp, content(o1) C S1, content(©(0g)) =

Lo, and content(©'(01)) = L1. Let S}, = content(cy) and S} = content (o).
0 1

Claim 1 (a) For all L€ S —{Sy}, S) £ L.
(b) For all L € S —{So, 51}, S1 L L.

PrOOF. We show part (a). Part (b) can be shown similarly.

Suppose by way of contradiction, S, C L, where L € S—{Sp}. Then, there exists
a text T for L such that oy C T. But then we have Ly C content(©'(T)). This, by
definition of £’ implies Ly = content(©'(7)) € ©(L). But then ©(Sp) NO(L) # 0,
a contradiction to Lemma 1. O

Let m =max({i | i >1 A [So € ©O(L;) V S1 € ©(L;)]}). Note that m is well
defined since Sy or S; can belong to at most one ©(L;) (Lemma 1).

We now describe two operators ©” and ¥” that witness the strong-reduction of
L to S. ©” and ¥ will be suitable modifications of © and ¥ to accommodate Ly,
L. Let ©” be such that the following is satisfied. Note that it is easy to construct
such a ©".

(a) ©"(Lo) = So;
(b) ©"(Ly) = Si:
(¢) For k> 1, ©"(Lg) = O(Lgsm)-

We now construct U”. Let f be a recursive function such that f(7) is a grammar
for L;. Suppose G = ¢o,91,92,.... Suppose U(G) = ¢{, 4}, g5,.... We define
V"(G) =g3,9], 5, .. as follows:

£(0), it SpC W
g" =4 f(1), iSyZ W and § C W ;
f(k), if Sy € Wg. and S} £ Wi and k +m = min(W,).
We now claim that ©”, ¥ witness that L' <y,.,, S. Clearly, for all i, ©"(L;)
contains exactly one language. Moreover, ©”(L;) are pairwise disjoint (since, ©(L;)
are pairwise disjoint, and we know that Sy, S do not belong to (L.,), for k > 1,
by definition of m).

Now if G is admissible sequence for ©”(Ly) = Sy, then clearly, for large enough
n, gn as defined above is f(0).

If G is admissible sequence for ©”(L) = Sy, then clearly, for large enough n, g/
as defined above is f(1).

If G is admissible sequence for ©”(Ly) = O(Lyu4k), k > 1, then ¥(G) is ad-
missible sequence for L, , and thus, for large enough n, g/ as defined above is
7(k).

It follows that ©” and ¥ witness that £’ < S

—strong “~

i

2: There is no 2-chain in £”.

In this case we show that & <y, qn,
Ly € ©/(Sy), for some Sy € S (otherwise, ©', ¥’ witness that S <
consider two subcases.

Subcase 2.1: For all S1 € S, L1 & ©'(S1).

L. Assume without loss of generality that
L). We now

strong

11

The idea for this subcase is to treat Lo as L; and grammars for L; as
grammars for Lg. Let ©” be defined so that, for all o, content(0”(c)) =
content(©'(0)) — {0}.

Let f be a recursive function such that

1 if 1.¢ Wy
o) = 1wy u{o}, if1ew,.

Now define ¥ as follows: ¥"(go, 91,92, ---) = ¥'(f(90), f(91), f(g2),--.)-
It is easy to verify that ©”, " witness that S < L.

—strong

Subcase 2.2: For some S1 € S, L1 € ©/(S51).

Let o¢ be such that content(og) C Sy and content(©’(0g)) = Lg. Let o1

be such that content(c;) C S; and content(©(o1)) = L;. Note that there

exist such o¢ and o7. Let S; = content(cp). Let S; C S; be a finite

superset of content(o) such that S] € Sp. Note that there exists such a
1, since S1 Z Sp. Moreover, we have,

(VL € S = {So})[So £ L] and (VL € S — {S1})[S1 € L]

We describe O and ¥ that witness S < L. ©" and ¥ will be
suitable modifications of © and ¥’.
Let ©” be defined so that, for all o,

—strong

0, if content(©'(0)) = 0;

{i +1}, if content(©'(c)) = {i} and i > 1;

{1}, if {0} C content(©’(0)) C {0,1}
content(0” (0)) = and S ¢ content(o);

{2}, if content(@’(a)) = {1} and S] C content(o);

0, if content(©’(0)) = {1} and S Z content(o);

don’t care, otherwise.

Where, the don’t care entry means that we do not care what happens
in this case. So let ©" be defined so that it is consistent with definition
of ©" on initial segments of o.

It is easy to verify that, for all S € S, if ©'(S) = {L;}, then ©"(S) =
{Lit1}

We now describe . Let f be a recursive function such that

{i — 1}, %f Wg = {i}, where i > 1;
Wf(ng) {0,1}, if W; ={1};
don’t care, otherwise.

Let U be defined so that ¥ (g, g1,-..) = ¥ (f(0,90), f(1,91),---)-
It is easy to verify that ©" and ¥ witness S <, 0 £- |

Theorem 6 Fori >0, let L; = {i}. Let Lo = {1,0}. Let L ={L; | i > 0}. Let L' = {Lo}UL.

(Note that L <

S=

weak

L orS=

Zstrong L5 but L L o £). Then for all S such that £ < S < eu £'5 either

L.

weak

12

An easy modification of the proof for Theorem 5 can be used to show the above theorem. We
omit the details.

FIN has been shown to be complete with respect to weak-reduction [JS94, JS96]. This
means that FIN captures the essence of the most difficult learning problem with respect to
weak-reduction. It was also shown that FIN is not complete with respect to strong-reduction
[JS94, JS96]. Below we give an interesting collection of languages that is trivially identifiable
(with 0 mind changes) but is not strong reducible to FIN.

Theorem 7 Let L={L|L#0 N (Vo € L)W, = L[}. Then L £Long FIN.

PROOF. Suppose by way of contradiction there exist enumeration operators © and ¥ that
witness £ < one FIN. Then using the operator recursion theorem [Cas74], there exists a 1-1,
increasing recursive function p such that languages, Wy, Wp1), Wp(2), - - -, can be defined in
stages > 0, as follows.

Let go = 0. Go to Stage 0.

begin Stage s
1. For gs <i<gs+2°+2, let Wy;) enumerate p(i).
2. For gs <1 < g5+ 2° + 2, search for sequences 7; such that

content(r;) = {p(7)}, and
card(Uyj|q, <i<q,+2s-+23content(O(7;))) > s.

3. If and when such 7;’s are found let S = {p(j) | 7 < gs +2° + 2}.
4. For j < gs+ 2°+ 2, enumerate S in Wpy;.

5. Let gs41 =qs +2° 4+ 3.

6. Go to Stage s+ 1.

end Stage s

There are two cases.
Case 1: Stage s starts but does not finish.

In this case, for gs <@ < g5 +2°+2, Wy, € L. For g5 <1 < g5 +2°+2, let 5
be such that ©(W),;)) = {S;}. Since the search in step 2 did not succeed, we have
card(Uy, <i<q,+2:4+25i) < s. Now, since there are only 2° distinct subsets of a set of
size s, there exist distinct i and j such that S; = S;. But then ©(W,;)) = O(Wy;),
contradicting Lemma 1(c). Thus ©, ¥ cannot witness £ < FIN.

strong

Case 2: Each stage halts.

Let L = W)). It is easy to see that for all 4, L = W),;) € L. Suppose O(L) = {S}.
Now, by the success of step 2 in each stage s, we have that, card(S) > s, for all s.
Hence S is infinite. Thus, ©, ¥ do not witness £ < FIN.

strong

5 Conclusion

The results presented in this paper describe the structure of the intrinsic complexity of language
identification. It was shown that this structure contains an infinite hierarchy of language classes
that represent learning problems of increasing difficulty. For ¢ > 1, it was also shown that
pattern languages are incomparable to FIN; (language classes having < i elements).

13

It was also shown that the structure of intrinsic complexity is rich as any finite directed
acyclic graph can be embedded into the reducibility structure. It is open at this stage if
any infinite directed acyclic graph can be embedded in the reducibility structure. It was also
demonstrated that the reducibility structure is not dense.

It can be shown that the reducibility structure forms an upper semi lattice. To see this
let E and O be mappings from 2% into 2%V such that for L C N, E(L) = {2z | * € L} and
O(L) ={2zx+ 1| x € L}. For any two classes £1 and Ls, it can be shown that {E(L) | L €
L1}U{O(L) | L € L3} is the least upper bound for £, and Lo (with respect to both <__, and
Zstrong): 1t would be interesting to find out whether the reducibility structure forms a lattice.

It is felt that the results presented in this paper illustrate the intrinsic complexity of learning.
Future work needs to concentrate on improving the fidelity of the operators so that a more
illuminating structure can be brought to focus.

Acknowledgements

We thank the referee for helpful suggestions.

References

[Ang80a] D. Angluin. Finding patterns common to a set of strings. Journal of Computer and
System Sciences, 21:46-62, 1980.

[Ang80b] D. Angluin. Inductive inference of formal languages from positive data. Information
and Control, 45:117-135, 1980.

[Blu67] M. Blum. A machine independent theory of the complexity of recursive functions.
Journal of the ACM, 14:322-336, 1967.

[Cas74] J. Case. Periodicity in generations of automata. Mathematical Systems Theory, 8:15—
32, 1974.

[FKS95] R Freivalds, E. Kinber, and C. H. Smith. On the intrinsic complexity of learning. In
Paul Vitanyi, editor, Proceedings of the Second European Conference on Computa-
tional Learning Theory, pages 154-169. Springer-Verlag, March 1995. Lecture Notes
in Artificial Intelligence 904.

[Fre91] R. Freivalds. Inductive inference of recursive functions: Qualitative theory. In
J. Barzdins and D. Bjorner, editors, Baltic Computer Science. Lecture Notes in Com-
puter Science 502, pages 77-110. Springer-Verlag, 1991.

[Gol67] E. M. Gold. Language identification in the limit. Information and Control, 10:447—
474, 1967.

[HU79] J. Hopcroft and J. Ullman. Introduction to Automata Theory Languages and Com-
putation. Addison-Wesley Publishing Company, 1979.

[JS94] S. Jain and A. Sharma. On the intrinsic complexity of language identification. In
Proceedings of the Seventh Annual Conference on Computational Learning Theory,
New Brunswick, New Jersey, pages 278-286. ACM-Press, July 1994.

[JS96] S. Jain and A. Sharma. On the intrinsic complexity of language identification. Journal
of Computer and System Sciences, 1996. Accepted.

14

[MY78] M. Machtey and P. Young. An Introduction to the General Theory of Algorithms.
North Holland, New York, 1978.

[Rog67] H. Rogers. Theory of Recursive Functions and Effective Computability. McGraw Hill,
New York, 1967. Reprinted, MIT Press 1987.

15

