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Abstract. The theory of learning in the limit has been a focus of study by several researchers over
the last three decades. There have been several suggestions on how to measure the complexity or
hardness of learning. In this paper we survey the work done in one specific such measure, called
intrinsic complexity of learning. We will be mostly concentrating on learning languages, with only
a brief look at function learning.

1. Introduction

Consider the identification of formal languages from positive data. A machine is fed all the strings and
no nonstrings of a language L, in any order, one string at a time. The machine, as it is receiving strings
of L, outputs a sequence of grammars. The machine is said to identify L just in case the sequence of
grammars converges to a grammar for L. This is essentially the paradigm of identification in the limit
(called TxtEx-identification) introduced by Gold [11]. Identification of total functions from their graphs
can be modeled similarly with the machine receiving as input elements of the graph of the function. Note
that in function learning, a machine can deduce negative data, since presence of (x, y) in the input implies
that (x, z) is not in the input for any z 6= y.

The theory of learning in the limit has been a focus of study by several researchers over the last three
decades. We direct the reader to [15] for an introduction to the area. There have been several suggestions
on how to measure the complexity or hardness of learning. Some of these are:

a) counting the number of mind changes [2, 6, 24] made by the learner before it converges to a final
hypothesis;
∗Address for correspondence: School of Computing, National University of Singapore, Singapore 119260, Republic of
Singapore
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b) measuring the time taken by the machine (“area under the curve”) before converging to the final
hypothesis [7];

c) measuring the amount of (so-called long-term) memory the learner uses [21, 23];
d) number of examples needed before convergence [30]; and
e) intrinsic complexity of learning [9, 10, 17].
The aim of this paper is to survey the work done in intrinsic complexity of learning. As mentioned

above, two models of learning are usually considered in the literature: language learning from texts
(positive data) and function learning from graphs. In some cases, language learning from both positive
and negative data (informants) is also considered. In this survey, we will be concentrating mostly on the
intrinsic complexity of language identification from texts, and only briefly look at function identification
from graphs, and language identification from informants.

The origins of intrinsic complexity of learning date back to a paper by Freivalds [9] and were first
developed for function learning by Freivalds, Kinber and Smith [10]. Jain and Sharma [17] first studied
intrinsic complexity for language learning. We illustrate the notion using learning of some commonly
considered classes of languages.

The following discussion is from [17]. Consider the following three collections of languages over
N , the set of natural numbers.

SINGLE = {L | card(L) = 1}
COINIT = {L | (∃n)[L = {x | x ≥ n}]}
FIN = {L | cardinality of L is finite }

So, SINGLE is the collection of all singleton languages, COINIT is the collection of languages that
contain all natural numbers except a finite initial segment, and FIN is the collection of all finite languages.
Clearly, each of these three classes is identifiable in the limit from only positive data. For example, a
machine M1 that upon encountering the first data element, say n, keeps on emitting a grammar for the
singleton language {n} identifies SINGLE. A machine M2 that, at any given time, finds the minimum
element among the data seen so far, say n, and emits a grammar for the language {x | x ≥ n} can easily
be seen to identify COINIT. Similarly, a machine M3 that continually outputs a grammar for the finite
set of data seen so far identifies FIN.

Now, although all three of these classes are identifiable, it can be argued that they present learning
problems of varying difficulty. One way to look at the difficulty is to ask the question, “At what stage
in the processing of the data can a learning machine confirm its success?” In the case of SINGLE,
the machine can be confident of success as soon as it encounters the first data element. In the case
of COINIT, the machine cannot always be sure that it has identified the language. However, at any
stage after it has seen the first data element, the machine can provide an upper bound on the number of
mind changes that the machine will make before converging to a correct grammar. For example, if at
some stage the minimum element seen is m, then M2 will make no more than m mind changes because
it changes its mind only if a smaller element appears. In the case of FIN, the learning machine can
neither be confident about its success nor can it, at any stage, provide an upper bound on the number of
further mind changes that it may have to undergo before it is rewarded with success. Clearly, these three
collections of languages pose learning problems of varying difficulty where SINGLE appears to be the
least difficult to learn and FIN is seen to be the most difficult to learn with COINIT appearing to be of
intermediate difficulty.
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We next present an informal description of the reductions that are central to our analysis of the
intrinsic complexity of language learning. To facilitate our discussion, we first present some technical
notions about language learning.

Informally, a text for a language L is just an infinite sequence of elements, with possible repetitions,
of all and only the elements of L. A text for L is thus an abstraction of the presentation of positive data
about L. A learning machine is essentially an algorithmic device. Elements of a text are sequentially
fed to a learning machine one element at a time. The learning machine, as it receives elements of the
text, outputs an infinite sequence of grammars. Several criteria for the learning machine to be successful
on a text have been proposed. In the present paper we will concern ourselves with Gold’s [11] criterion
of identification in the limit (referred to as TxtEx-identification). A sequence of grammars, G =
g0, g1, . . ., is said to converge to g just in case, for all but finitely many n, gn = g. We say that the
sequence of grammars, G = g0, g1, . . ., converges just in case there exists a g such that G converges to
g; if no such g exists, then we say that the sequence G diverges. We say that M converges on T (to g), if
the sequence of grammars emitted by M on T converges (to g). If the sequence of grammars emitted by
the learning machine converges to a correct grammar for the language whose text is fed to the machine,
then the machine is said to TxtEx-identify the text. A machine is said to TxtEx-identify a language
just in case it TxtEx-identifies each text for the language.

It is also useful to call an infinite sequence of grammars, g0, g1, g2, . . ., TxtEx-admissible for a text
T just in case the sequence of grammars converges to a single correct grammar for the language whose
text is T .

Our reductions are based on the idea that for a collection of languages L to be reducible to L′, we
should be able to transform texts T for languages inL to texts T ′ for languages inL′ and further transform
TxtEx-admissible sequences for T ′ into TxtEx-admissible sequences for T . This is achieved with
the help of two enumeration operators. Informally, enumeration operators are algorithmic devices that
map infinite sequences of objects (for example, texts and infinite sequences of grammars) into infinite
sequences of objects. The first operator, Θ, transforms texts for languages in L into texts for languages
in L′. The second operator, Ψ, behaves as follows: if Θ transforms a text T for some language in L
into text T ′ (for some language in L′), then Ψ transforms TxtEx-admissible sequences for T ′ into
TxtEx-admissible sequences for T .

To see that the above satisfies the intuitive notion of reduction consider collections L and L′ such
that L is reducible to L′. We now argue that if L′ is identifiable then so is L.

Let M′ TxtEx-identify L′. Let enumeration operators Θ and Ψ witness the reduction of L to L′.
We now describe a machine M that TxtEx-identifies L. M, upon being fed a text T for some language
L ∈ L, uses Θ to construct a text T ′ for a language in L′. It then simulates machine M′ on text T ′

and feeds conjectures of M′ to the operator Ψ to produce its conjectures. It is easy to verify that the
properties of Θ,Ψ, and M′ guarantee the success of M on each text for each language in L.

We also consider a stronger notion of reduction than the one discussed above. The reader should
note that in the above reduction, different texts for the same language may be transformed into texts for
different languages by Θ. If we further require that Θ is such that it transforms every text for a language
into texts for some unique language then we have a stronger notion of reduction. In the context of
function learning these two notions of reduction are the same [10]. However, in the context of language
identification, from texts, this stronger notion of reduction turns out to be different from its weaker
counterpart.



4 S. Jain / Intrinsic Complexity of Learning

In this paper we will survey several results from the literature on intrinsic complexity of learning,
mainly concentrating on structural results, complete classes, and some characterizations. We will only
be giving a few simple sample proofs. We direct the reader to respective papers cited for the proofs.

We now proceed formally.

2. Notation and Preliminaries

Any unexplained recursion-theoretic notation is from [28]. The symbol N denotes the set of natural
numbers, {0, 1, 2, 3, . . .}. Symbols ∅, ⊆, ⊂, ⊇, and ⊃ denote empty set, subset, proper subset, superset,
and proper superset, respectively. D0, D1, . . . , denotes a canonical recursive indexing of all the finite
sets [28, Page 70]. We assume that if Di ⊆ Dj then i ≤ j (the canonical indexing defined by Rogers
[28] satisfies this property). Cardinality of a set S is denoted by card(S). The maximum and minimum
of a set are denoted by max(·),min(·), respectively, where max(∅) = 0 and min(∅) = ∞.

We let 〈·, ·〉 stand for an arbitrary, computable, bijective mapping from N × N onto N [28]. We
assume without loss of generality that 〈·, ·〉 is monotonically increasing in both of its arguments. We
define π1(〈x, y〉) = x and π2(〈x, y〉) = y. 〈·, ·〉 can be extended to n-tuples in a natural way (including
n = 1, where 〈x〉 may be taken to be x). Projection functions π1, . . . , πn corresponding to n-tuples can
be defined similarly (where the tuple size would be clear from context). Due to the above isomorphism
between Nk and N , we often identify the tuple (x1, · · · , xn) with 〈x1, · · · , xn〉.

By ϕ we denote a fixed acceptable programming system for the partial computable functions map-
ping N to N [28, 25]. By ϕi we denote the partial computable function computed by the program with
number i in the ϕ-system. Symbol R denotes the set of all recursive functions, that is total computable
functions. By Φ we denote an arbitrary fixed Blum complexity measure [3, 12] for the ϕ-system. By Wi

we denote domain(ϕi). Wi is, then, the r.e. set/language (⊆ N ) accepted (or equivalently, generated)
by the ϕ-program i. We also say that i is a grammar for Wi. Symbol E will denote the set of all r.e. lan-
guages. Symbol L, with or without decorations, ranges over E . By L, we denote the complement of L,
that is N − L. Symbol L, with or without decorations, ranges over subsets of E . We denote by Wi,s the
set {x ≤ s | Φi(x) < s}.

A class L ⊆ E is said to be recursively enumerable (r.e.) [28], iff L = ∅ or there exists a recursive
function f such that L = {Wf(i) | i ∈ N}. In this latter case we say that Wf(0),Wf(1), . . . is a recursive
enumeration of L. L is said to be 1–1 enumerable iff (i) L is finite or (ii) there exists a recursive function
f such that L = {Wf(i) | i ∈ N} and Wf(i) 6= Wf(j), if i 6= j. In this latter case we say that
Wf(0),Wf(1), . . . is a 1–1 recursive enumeration of L.

A partial function F from N to N is said to be partial limit recursive, iff there exists a recursive
function f from N ×N to N such that for all x, F (x) = limy→∞ f(x, y). Here if F (x) is not defined
then limy→∞ f(x, y), must also be undefined. A partial limit recursive function F is called (total) limit
recursive function, if F is total. ↓ denotes defined or converges. ↑ denotes undefined or diverges.

3. Language Identification

We now present concepts from language learning theory. The next definition introduces the concept of a
sequence of data.
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Definition 3.1. (a) A sequence σ is a mapping from an initial segment of N into (N ∪{#}). The empty
sequence is denoted by Λ.

(b) The content of a sequence σ, denoted content(σ), is the set of natural numbers in the range of σ.
(c) The length of σ, denoted by |σ|, is the number of elements in σ. So, |Λ| = 0.
(d) For n ≤ |σ|, the initial sequence of σ of length n is denoted by σ[n]. So, σ[0] is Λ.

Intuitively, #’s represent pauses in the presentation of data. We let σ, τ , and γ, with or without
decorations, range over finite sequences. We denote the sequence formed by the concatenation of τ at
the end of σ by σ � τ . Sometimes we abuse the notation and use σ � x to denote the concatenation of
sequence σ and the sequence of length 1 which contains the element x. SEQ denotes the set of all finite
sequences.

Definition 3.2. [11] (a) A text T for a language L is a mapping from N into (N ∪ {#}) such that L is
the set of natural numbers in the range of T .

(b) The content of a text T , denoted by content(T ), is the set of natural numbers in the range of T ;
that is, the language which T is a text for.

(c) T [n] denotes the finite initial sequence of T with length n.

We let T , with or without decorations, range over texts. We let T range over sets of texts.
A class T of texts is said to be r.e. if there exists a recursive function f , and a sequence T0, T1, . . . of

texts such that T = {Ti | i ∈ N}, and, for all i, x, Ti(x) = f(i, x).

Definition 3.3. [11] A language learning machine is an algorithmic device which computes a mapping
from SEQ into N .

We let M, with or without decorations, range over learning machines. M(T [n]) is interpreted as the
grammar (index for an accepting program) conjectured by the learning machine M on the initial sequence

T [n]. We say that M converges on T to i, (written M(T )↓ = i) if (
∞
∀ n)[M(T [n]) = i].

There are several criteria for a learning machine to be successful on a language. Below we define
identification in the limit introduced by Gold [11].

Definition 3.4. [11]

(a) M TxtEx-identifies a text T just in case (∃i | Wi = content(T )) (
∞
∀ n)[M(T [n]) = i].

(b) M TxtEx-identifies an r.e. language L (written: L ∈ TxtEx(M)) just in case M TxtEx-
identifies each text for L.

(c) M TxtEx-identifies a class L of r.e. languages (written: L ⊆ TxtEx(M)) just in case M
TxtEx-identifies each language from L.

(d) TxtEx = {L ⊆ E | (∃M)[L ⊆ TxtEx(M)]}.

Other criteria of success are finite identification [11], behaviorally correct identification [8, 27, 5],
and vacillatory identification [27, 4]. In the present survey, we only discuss results about TxtEx-
identification (sometimes with anomalies; see Section 12).
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4. Weak and Strong Reductions

We first present some technical machinery.
We write σ ⊆ τ if σ is an initial segment of τ , and σ ⊂ τ if σ is a proper initial segment of τ .

Likewise, we write σ ⊂ T if σ is an initial finite sequence of text T . Let finite sequences σ0, σ1, σ2, . . .
be given such that σ0 ⊆ σ1 ⊆ σ2 ⊆ · · · and limi→∞ |σi| = ∞. Then there is a unique text T such that
for all n ∈ N , σn = T [|σn|]. This text is denoted by

⋃
n σn. Let T denote the set of all texts, that is, the

set of all infinite sequences over N ∪ {#}.
We define an enumeration operator (or just operator), Θ, to be an algorithmic mapping from SEQ

into SEQ such that for all σ, τ ∈ SEQ, if σ ⊆ τ , then Θ(σ) ⊆ Θ(τ). We further assume that for all
texts T , limn→∞ |Θ(T [n])| = ∞. By extension, we think of Θ as also defining a mapping from T into
T such that Θ(T ) =

⋃
n Θ(T [n]).

A final notation about the operator Θ. Θ(L) = {content(Θ(T )) | T is a text for L}. The reader
should note the overloading of notation because the type of the argument to Θ could be a sequence, a
text, or a language; it will be clear from the context which usage is intended.

We let Θ(T ) = {Θ(T ) | T ∈ T }, and Θ(L) =
⋃

L∈L Θ(L).
We also need the notion of an infinite sequence of grammars. We let α, with or without decorations,

range over infinite sequences of grammars. From the discussion in the previous section it is clear that
infinite sequences of grammars are essentially infinite sequences over N . Hence, we adopt the machinery
defined for sequences and texts over to finite sequences of grammars and infinite sequences of grammars.
So, if α = i0, i1, i2, i3, . . ., then α[3] denotes the sequence i0, i1, i2, and α(3) is i3. Furthermore, we say
that α converges to i if there exists an n such that, for all n′ ≥ n, in′ = i.

Let I be any criterion for language identification from texts, for example I = TxtEx. We say that
an infinite sequence α of grammars is I-admissible for text T just in case α witnesses I-identification of
text T . So, if α = i0, i1, i2, . . . is a TxtEx-admissible sequence for T , then α converges to some i such
that Wi = content(T ); that is, the limit i of the sequence α is a grammar for the language content(T ).

We now formally introduce our reductions.

Definition 4.1. [17] Let L1 ⊆ E and L2 ⊆ E be given. Let identification criteria I1 and I2 be given. Let
T1 = {T | T is a text for L ∈ L1}. Let T2 = {T | T is a text for L ∈ L2}. We say that L1 ≤I1,I2

weak L2

just in case there exist operators Θ and Ψ such that for all T ∈ T1 and for all infinite sequences α of
grammars the following hold:

(a) Θ(T ) ∈ T2 and
(b) if α is an I2-admissible sequence for Θ(T ), then Ψ(α) is an I1-admissible sequence for T .
We say that L1 ≤I

weak L2 iff L1 ≤I,I
weak L2. We say that L1 ≡I

weak L2 iff L1 ≤I
weak L2 and

L2 ≤I
weak L1.

Intuitively, L1 ≤I
weak L2 just in case there exists an operator Θ that transforms texts for languages in L1

into texts for languages in L2 and there exists another operator Ψ that behaves as follows: if Θ transforms
text T (for a language in L1) to text T ′ (for a language in L2), then Ψ transforms I-admissible sequences
for T ′ into I-admissible sequences for T . Thus, informally, the operator Ψ has “to work” only on I-
admissible sequences for such texts T ′. In other words, if α is a sequence of grammars which is not
I-admissible for any text T ′ in {Θ(T ) | content(T ) ∈ L1}, then Ψ(α) can be defined arbitrarily.

Intuitively, for many commonly studied criteria of inference, such as I = TxtEx, if L1 ≤I
weak L2

then the problem of identifying L2 in the sense of I is at least as hard as the problem of identifying L1 in
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the sense of I, since the solvability of the former problem implies the solvability of the latter one. That
is, given any machine M2 which I-identifies L2, it is easy to construct a machine M1 which I-identifies
L1. To see this for I = TxtEx, suppose Θ and Ψ witness L1 ≤I

weak L2. M1(T ), for a text T , is
defined as follows. Let pn = M2(Θ(T )[n]), and α = p0, p1, . . .. Let α′ = Ψ(α) = p′0, p

′
1, . . .. Then let

M1(T ) = limn→∞ p′n. Consequently, L2 may be considered as a “hardest” problem for I-identification
if for all classes L1 ∈ I, L1 ≤I

weak L2 holds. If L2 itself belongs to I, then L2 is said to be complete. We
now formally define these notions of hardness and completeness for the above reduction.

Definition 4.2. [17] Let I be an identification criterion. Let L ⊆ E be given.
(a) If for all L′ ∈ I, L′ ≤I

weak L, then L is ≤I
weak-hard.

(b) If L is ≤I
weak-hard and L ∈ I, then L is ≤I

weak-complete.

It should be noted that if L1 ≤I
weak L2 is witnessed by Θ and Ψ, then there is no requirement that Θ

maps all texts for each language in L1 into texts for a unique language in L2. If we further place such a
constraint on Θ, we get the following stronger notion.

Definition 4.3. [17] Let L1 ⊆ E and L2 ⊆ E be given. We say that L1 ≤I1,I2
strong L2 just in case there

exist operators Θ,Ψ witnessing that L1 ≤I1,I2
weak L2, and for all L1 ∈ L1, there exists an L2 ∈ L2, such

that (∀ texts T for L1)[Θ(T ) is a text for L2].

We say that L1 ≤I
strong L2 iff L1 ≤I,I

strong L2. We say that L1 ≡I
strong L2 iff L1 ≤I

strong L2 and
L2 ≤I

strong L1.

We can similarly define ≤I
strong-hardness and ≤I

strong-completeness.

Proposition 4.1. ([17]) ≤TxtEx
weak , ≤TxtEx

strong are reflexive and transitive.

The above proposition holds for most natural learning criteria. It is also easy to verify the next proposition
stating that strong reducibility implies weak reducibility.

Proposition 4.2. [17] Let L ⊆ E and L′ ⊆ E be given. Let I be an identification criterion. Then
L ≤I

strong L′ ⇒ L ≤I
weak L′.

5. Some Properties of Reductions

In this section we will present some lemmas which illustrate some of the important properties of reduc-
tions. These properties are mainly constraints which have to be satisfied by Θ witnessing a reduction
from some class to another. These properties are often useful in showing nonreducibility results.

Lemma 5.1. [19] Suppose L ⊆ E , L′ ⊆ E and L ≤TxtEx
weak L′ as witnessed by Θ and Ψ. Then

(a) (∀L ∈ L)[Θ(L) ⊆ L′];

(b) (∀L,L′ ∈ L)[L 6= L′ ⇒ Θ(L) ∩Θ(L′) = ∅].

Part (b) of the above lemma essentially says that Θ (witnessing a ≤TxtEx
weak/strong reduction from L to

L′) cannot map (texts for) two distinct languages in L to (texts for) the same language in L′.
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Lemma 5.2. [19] Suppose Θ is an enumeration operator.

(a) Suppose L1 ⊆ L2 ⊆ N , and L′1 ∈ Θ(L1). Then for every finite subset S of L′1, there exists an
L′2 ∈ Θ(L2) such that S ⊆ L′2.

(b) Suppose L1 ⊆ L2 ⊆ N . Suppose further that Θ(L1) consists only of finite languages. Then for
all L′1 ∈ Θ(L1), there exists an L′2 ∈ Θ(L2) such that L′1 ⊆ L′2.

Part (a) of the following Corollary essentially says that “subset” relation is preserved in strong reduc-
tion. That is, if Θ (along with Ψ) witnesses that L ≤TxtEx

strong L′, then L1 ⊆ L2 implies Θ(L1) ⊆ Θ(L2),
for all L1, L2 ∈ L.

A weaker version of above holds for weak reductions (part (b) of the following corollary).

Corollary 5.1. [19] Let L ⊆ E ,L′ ⊆ E .

(a) Suppose L ≤TxtEx
strong L′ as witnessed by Θ and Ψ. Suppose L1, L2 ∈ L and L1 ⊆ L2. Let S1, S2

be such that Θ(L1) = {S1} and Θ(L2) = {S2}. Then S1 ⊆ S2.

(b) Suppose L ≤TxtEx
weak L′ as witnessed by Θ and Ψ. Suppose L1, L2 ∈ L and L1 ⊆ L2. Further

suppose that L′ consists only of finite languages. Then, for every S1 ∈ Θ(L1), there exists an
S2 ∈ Θ(L2) such that S1 ⊆ S2.

The above result can essentially be used to show that several structural properties are preserved by
reductions. We illustrate this using example of chains in Lemma 5.3 below.

We first define chains as follows.

Definition 5.1. [19] A chain is a sequence of languages L1, L2, . . . , Lj , such that L1 ⊂ L2 ⊂ · · · ⊂ Lj .
If L1, L2, . . . , Lj form a chain, then we also refer to them as a j-chain.
We say that two chains L1, L2, . . . , Lj and L′1, L

′
2, . . . , L

′
k are independent iff they do not contain

any language in common.

We say that L contains a j-chain, iff it contains languages L1, L2, . . . , Lj which form a j-chain.
Similarly, we say that L contains k-independent j-chains iff, for 1 ≤ r ≤ k, 1 ≤ i ≤ j, L contains
languages Lr

i , such that, for 1 ≤ r ≤ k, Lr
1, L

r
2, . . . , L

r
j form pairwise-independent chains.

The next lemma gives sufficient condition for nonreducibility in the strong sense. It says forL≤TxtEx
strong

L′, L′ must contain at least as many pairwise-independent j-chains, as L.

Lemma 5.3. [19] Let j > 0. Suppose L contains k pairwise-independent j-chains and L ≤TxtEx
strong L′.

Then L′ also has k pairwise-independent j-chains.

A slightly weaker version of the above lemma holds for weak reduction.

Lemma 5.4. [19] Suppose L,L′ ⊆ E . Suppose L ≤TxtEx
weak L′. Suppose further that L contains k

pairwise-independent j-chains, and L′ consists only of finite languages. Then, L′ contains k pairwise-
independent j-chains.

One can generalize above lemmas to show that several structural constraints must be satisfied in any
reduction. This often allows us to claim nonreduciblity results just based on structure.
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6. Intrinsic Complexity of Natural Classes

In this section we will present some results about the intrinsic complexity relationship among several
natural classes.

Let us first define some natural classes.

Definition 6.1. SINGLE = {L | card(L) = 1}.
COSINGLE = {L | card(N − L) = 1}.
INIT = {L | (∃i ∈ N)[L = {x | x ≤ i}]}.
COINIT = {L | (∃i ∈ N)[L = {x | x ≥ i}]}.
FIN = {L | card(L) < ∞}.

The following theorem shows that SINGLE is strictly simpler learning problem than COINIT with
respect to both ≤TxtEx

strong and ≤TxtEx
weak reductions.

Theorem 6.1. [17] SINGLE ≤TxtEx
strong COINIT ∧ COINIT 6≤TxtEx

weak SINGLE.

The following result justifies the earlier discussion that COINIT is a simpler learning problem than
FIN.

Theorem 6.2. [17] COINIT ≤TxtEx
weak FIN ∧ FIN 6≤TxtEx

weak COINIT.

Proof:
COINIT ≤TxtEx

weak FIN follows from Theorem 7.1 presented later. FIN 6≤TxtEx
weak COINIT follows from

Theorem 9.6 presented later. ut

In contrast to above result the following theorem shows that COINIT 6≤TxtEx
strong FIN.

Theorem 6.3. [17] COINIT 6≤TxtEx
strong FIN.

Proof:
Suppose by way of contradiction that COINIT ≤TxtEx

strong FIN, as witnessed by Θ and Ψ. Then by Corol-
lary 5.1 it follows that (∀L ∈ COINIT)[Θ(L) ⊆ Θ(N)]. Since COINIT is an infinite collection of
languages, it follows that either Θ(N) is infinite or there exist distinct L1 and L2 in COINIT such that
Θ(L1) = Θ(L2). It follows that COINIT 6≤TxtEx

strong FIN. ut

Our next result shows that INIT and FIN are equivalent in the strong sense.

Theorem 6.4. [17] INIT ≡TxtEx
strong FIN.

Next three results establish the position of COSINGLE among the classes SINGLE, INIT, COINIT,
FIN.

Theorem 6.5. [17] SINGLE ≤TxtEx
strong COSINGLE. COSINGLE 6≤TxtEx

weak SINGLE.
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Theorem 6.6. [17] COINIT 6≤TxtEx
strong COSINGLE.

COINIT ≤TxtEx
weak COSINGLE.

COSINGLE 6≤TxtEx
weak COINIT.

Theorem 6.7. [17] COSINGLE ≤TxtEx
strong INIT.

INIT 6≤TxtEx
strong COSINGLE.

INIT ≡TxtEx
weak COSINGLE.

Earlier results about identification in the limit from positive data turned out to be pessimistic because
Gold [11] established that any collection of languages that contains an infinite language and all its finite
subsets cannot be TxtEx-identified. As a consequence of this result no class in the Chomsky hierarchy
can be identified in the limit from texts. However, later, two interesting classes were proposed that could
be identified in the limit from texts. In this section, we describe these classes and locate their status with
respect to the reductions introduced in this paper.

The first of these classes was introduced by Wiehagen [29]. We define, WIEHAGEN = {L | L ∈
E ∧ L = Wmin(L)}.

WIEHAGEN is an interesting class because it can be shown that it contains a finite variant of every
recursively enumerable language. It is easy to verify that WIEHAGEN ∈ TxtEx. It is also easy to see
that there exists a machine which TxtEx-identifies WIEHAGEN and that this machine, while process-
ing a text for any language in WIEHAGEN, can provide an upper bound on the number of additional
mind changes required before convergence. In this connection this class appears to pose a learning prob-
lem similar in nature to COINIT above. This intuition is indeed justified by the following theorem as
these two classes turn out to be equivalent in the strong sense.

Theorem 6.8. [17] COINIT ≡TxtEx
strong WIEHAGEN.

We next consider the class, PATTERN, of pattern languages introduced by Angluin [1].
Suppose V is a countably infinite set of variables and C is a nonempty finite set of constants, such

that V ∩C = ∅. Notation: For a set X over variables and constants, X∗ denotes the set of strings over X ,
and X+ denotes the set of nonempty strings over X . Any w ∈ (V ∪ C)+ is called a pattern. Suppose f
is a mapping from (V ∪C)+ to C+, such that, for all a ∈ C, f(a) = a and, for each w1, w2 ∈ (V ∪C)+,
f(w1 ·w2) = f(w1) ·f(w2), where · denotes concatenation of strings. Let PatMap denote the collection
of all such mappings f .

Let code denote a 1-1 onto mapping from strings in C∗ to N .
The language associated with the pattern w is defined as Lang(w) = {code(f(w)) | f ∈ PatMap}.

Then, PATTERN = {Lang(w) | w is a pattern}.
The following theorem shows that learning PATTERN has the same complexity as COINIT and

WIEHAGEN.

Theorem 6.9. [17] COINIT ≡TxtEx
strong PATTERN.

Proof:
We first show that COINIT ≤TxtEx

strong PATTERN. Let Si = Lang(aix), where a ∈ C and x ∈ V . Let
Θ be such that Θ(L) = Smin(L) = {code(alw) | w ∈ C+ ∧ l = min(L)}. Note that such a Θ can be
easily constructed. Note that code(al+1) ∈ content(Θ(L)) ⇔ l ≥ min(L).



S. Jain / Intrinsic Complexity of Learning 11

Let f(i) denote an index of a grammar (obtained effectively from i) for {x | x ≥ i}. Let Ψ be defined
as follows. Suppose G = g0, g1, . . .. Then Ψ(G) = g′0, g

′
1, . . ., such that, for n ∈ N , g′n = f(min({l |

code(al+1) ∈ Wgn,n})). It is easy to verify that Θ and Ψ witness that COINIT ≤TxtEx
strong PATTERN.

We now show that PATTERN ≤TxtEx
strong COINIT. Note that there exists a recursive indexing L0, L1, . . .

of pattern languages such that
(1) Li = Lj ⇔ i = j.
(2) Li ⊂ Lj ⇒ i > j.
(One such indexing can be obtained as follows. First note that for patterns w1 and w2, if Lang(w1) ⊆

Lang(w2) then length of w1 is at least as large as that of w2. Also for patterns of the same length ⊆
relation is decidable, as shown by Angluin [1]. Thus we can form the indexing as required using the
following method. We consider only canonical patterns [1]. For w1 6= w2, we place w1 before w2 if (a)
length of w1 is smaller than that of w2 or (b) length of w1 and w2 are same, but Lang(w1) ⊇ Lang(w2)
or (c) length of w1 and w2 are same, Lang(w1) 6⊆ Lang(w2) and w1 is lexicographically smaller than
w2.)

Moreover, there exists a machine, M, such that
(a) For all σ ⊆ τ , such that content(σ) 6= ∅, M(σ) ≥ M(τ).
(b) For all texts T for pattern languages, M(T )↓ = i, such that Li = content(T ).
(Angluin’s method of identification of pattern languages essentially achieves this property).
Let τm,n be the lexicographically least sequence of length n, such that content(τm,n) = {x | m ≤

x ≤ n}. Let prev(Λ) = Λ; for w ∈ {N} ∪ {#} and σ = σ′ � w, let prev(σ) denote σ′.
If content(σ) = ∅, then Θ(σ) = σ, else Θ(σ) = Θ(prev(σ)) � τM(σ),|σ|. Note that for a text T for

Li, Θ(T ) would be {x | x ≥ M(T )}.
Let f(i) denote a grammar effectively obtained from i for Li. Let Ψ be defined as follows. Suppose

G = g0, g1, . . .. Then Ψ(G) = g′0, g
′
1, . . ., such that, for n ∈ N , g′n = f(min({n} ∪Wgn,n)). It is easy

to verify that if G converges to a grammar for {x | x ≥ i}, then Ψ converges to a grammar for Li. Thus,
Θ and Ψ witness that PATTERN ≤TxtEx

strong COINIT. ut

There have been several other “natural” classes studied in the literature, for example CONTONn =
{L | card(N − L) = n}. We however will not consider them in this survey. Jain, Kinber and Wiehagen
[14] considered generalization of the above natural classes to multidimensional languages where each
individual dimension is learnable by using one of above strategies (such as INIT, COINIT, COSINGLE).
Recently Jain and Kinber [13] have also considered intrinsic complexity of learning several natural geo-
metrical classes such as semi-hulls and open-hulls.

7. Complete Classes

Complete classes have often been used to identify the hardest problem in a class of problems. In this
section we will study some problems which are known to be complete for weak and strong reductions
for TxtEx identification.

Theorem 7.1. [17] COSINGLE, INIT and FIN are ≤TxtEx
weak -complete.

Proof:
We only show FIN is ≤TxtEx

weak -complete. INIT and COSINGLE can be shown to be ≤TxtEx
weak -complete

in a similar fashion.
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Consider any L ∈ TxtEx. Suppose L ⊆ TxtEx(M). We construct Θ and Ψ which witness that
L ≤TxtEx

weak FIN. Without loss of generality we assume that M(T [0]) =?. Define Θ(T [n]) as follows.
Θ(T [0]) = sequence containing just #.

Θ(T [n + 1]) =

{
Θ(T [n]) �#, if M(T [n]) = M(T [n + 1]);
Θ(T [n]) � 〈M(T [n + 1]), n + 1〉, otherwise.

If M TxtEx-identifies T , then content(Θ(T )) is a nonempty finite set. Let jT = max({n |
(∃i)[〈i, n〉 ∈ content(Θ(T )])}). One can now easily verify that, if M TxtEx-identifies T , then M(T )
is the unique i such that 〈i, jT 〉 ∈ content(Θ(T )).

Suppose α = g0g1g2 . . . is an infinite sequence of grammars. Define Ψ(α) = g′0, g
′
1, g

′
2, . . ., where

g′m is defined as follows. Let jm = max({n | (∃i)[〈i, n〉 ∈ Wgm,m]}). Let g′m = min({i | 〈i, jm〉 ∈
Wgm,m}).

It is easy to verify that, if M TxtEx-identifies T , and α converges to a grammar for content(Θ(T )),
then Ψ(α) converges to M(T ), a grammar for content(T ). It follows that L ≤TxtEx

weak FIN. ut

However, using Theorem 6.3, we have

Corollary 7.1. FIN, COSINGLE, INIT are not ≤TxtEx
strong -complete.

We next consider a natural class which is ≤TxtEx
strong -complete.

Let Q denote the set of all rational numbers ≥ 0. For s, r ∈ Q, let Qs,r = {x ∈ Q | s ≤ x ≤ r}. For
allowing us to consider r.e. sets of rational numbers, let coderat(·) denote an effective bijective mapping
from Q to N .

Definition 7.1. Suppose r ∈ Q0,1.
Let Xr = {coderat(x) | x ∈ Q and 0 ≤ x ≤ r}.

Definition 7.2. Suppose s, r ∈ Q0,1 and s < r.
Let RINITs,r = {Xw | w ∈ Qs,r}.

Theorem 7.2. [14] RINIT0,1 is ≤TxtEx
strong -complete.

8. Characterizations

Characterizations are often useful in theoretical studies and specially in inductive inference (for example
see the survey by Zeugmann and Lange [32]). In this section we will be considering some characteriza-
tions.

We first consider characterization of complete classes. For this we introduce the notion of limiting-
standardizable.

Definition 8.1. [20, 9, 16] A class L of recursively enumerable sets is called limiting standardizable iff
there exists a partial limiting recursive function F such that

(a) For all i such that Wi = L for some L ∈ L, F (i) is defined.



S. Jain / Intrinsic Complexity of Learning 13

(b) For all L,L′ ∈ L, for all i, j such that Wi = L and Wj = L′,

F (i) = F (j) ⇔ L = L′.

Thus, informally, a class L of r.e. languages is limiting standardizable if all the infinitely many grammers
i ∈ N of each language L ∈ L can be mapped (“standardized”) in the limit to some unique grammar
(natural number). Notice that it is not required that this “standard grammar” must be a grammar of L
again. However, standard grammars for different languages from L have to be pairwise different.

The following theorem characterizes the ≤TxtEx
strong -complete classes.

Theorem 8.1. [14] Suppose L ∈ TxtEx. Then, the following three statements are equivalent.
(1) L is ≤TxtEx

strong -complete.
(2) RINIT0,1 ≤TxtEx

strong L.
(3) There exists a recursive function H from Q0,1 to N such that:

(a) {WH(r) | r ∈ Q0,1} ⊆ L.
(b) If 0 ≤ r < r′ ≤ 1, then WH(r) ⊂ WH(r′).
(c) {WH(r) | r ∈ Q0,1} is limiting standardizable.

Intuitively H in part (c) in the above characterization gives a subclass of L, which is in some sense
effectively isomorphic to RINIT0,1.

We next give a characterization of ≤TxtEx
weak -complete classes.

Definition 8.2. [14] A nonempty class L of languages is called quasi-dense iff
(a) L is 1–1 recursively enumerable.
(b) For any L ∈ L and any finite S ⊆ L, there exists an L′ ∈ L, such that S ⊆ L′, but L 6= L′.

Note: (b) can be equivalently replaced by
(b’) For any finite set S, either there exists no language in L extending S, or there exist infinitely

many distinct languages in L extending S.

Theorem 8.2. [14] L is ≤TxtEx
weak -complete iff L ∈ TxtEx and there exists a quasi-dense subclass of L

which is limiting standardizable.

Jain, Kinber and Wiehagen [14] also give several other characterizations of classes which are re-
ducible to natural classes such as INIT, and classes to which natural classes are reducible. For example,
strong-degrees below and above INIT can be characterized as follows:

Definition 8.3. [14] F , a partial recursive mapping from FIN×N to N , is called an up-mapping iff for
all finite sets S, S′, for all j, j′ ∈ N :

If S ⊆ S′ and j ≤ j′, then F (S, j)↓ ⇒ [F (S′, j′)↓ ≥ F (S, j)].

For an up-mapping F and L ⊆ N , we abuse notation slightly and let F (L) denote limS→L,j→∞ F (S, j)
(where by S → L we mean: take any sequence of finite sets S1, S2, . . ., such that Si ⊆ Si+1 and⋃

Si = L, and then take the limit over these Si’s).
Note that F (L) may be undefined in two ways:
(1) F (S, j) may take arbitrarily large values for S ⊆ L, and j ∈ N , or
(2) F (S, j) may be undefined for all S ⊆ L, j ∈ N .
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Theorem 8.3. [14] L ≤TxtEx
strong INIT iff there exist F , a partial recursive up-mapping, and G, a partial

limit recursive mapping from N to N , such that
(a) For any language L ∈ L, F (L)↓ < ∞.
(b) For all L ∈ L, G(F (L)) converges to a grammar for L.

Theorem 8.4. [14] INIT ≤TxtEx
strong L iff there exists a recursive function H such that

(a) {WH(i) | i ∈ N} ⊆ L,
(b) WH(i) ⊂ WH(i+1), and
(c) {WH(i) | i ∈ N} is limiting standardizable.

Several similar characterization for natural classes such as COINIT and COSINGLE were also given
by Jain, Kinber and Wiehagen [14]. The above paper also considers a generalization of classes such
as INIT and COINIT, by considering combinations of INIT and COINIT-like strategies. They give a
hierarchy based on such combinations, and characterize the learning classes so formed.

9. Some structural Results

We now consider some structural results regarding reductions. The next theorem shows that there exists
an infinite hierarchy of more and more complex classes.

Let FINi = {L | card(L) ≤ i}.

Theorem 9.1. [19] For each i ≥ 1, FINi ≤TxtEx
strong FINi+1 and FINi+1 6≤TxtEx

weak FINi.

One can view the reducibility structure as a directed graph, where nodes represent language classes,
and an edge from L to L′ denotes the fact that L is (weak, strong) reducible to L′.

Theorem 9.2 shows that the structure of intrinsic complexity is very rich as any finite acyclic directed
graph can be embedded in this structure.

Theorem 9.2. [19] Every finite directed acyclic graph H can be embedded in the reducibility structure.

Ambainis (private communication) has shown that any recursively enumerable DAG (even infinite)
can be embeded in the reducibility structure.

Although the above theorem shows that the intrinsic complexity of language identification is rich,
the next two results establish that this structure is not dense, that is, there exist two language classes, L
and L′, that satisfy the following properties:

(a) L is strong-reducible to L′ but L′ is not even weak-reducible to L.

(b) There is no language class between L and L′ with respect to either strong or weak reduction.

Theorem 9.3. [19] For i > 0, let Li = {i}. Let L0 = {1, 0}. Let L = {Li | i > 0}. Let L′ = {L0}∪L.
(Note that L ≤TxtEx

strong L′, but L′ 6≤TxtEx
weak L). Then for all S such that L ≤TxtEx

strong S ≤TxtEx
strong L′, either

S ≡TxtEx
strong L or S ≡TxtEx

strong L′.

Theorem 9.4. [19] For i > 0, let Li = {i}. Let L0 = {1, 0}. Let L = {Li | i > 0}. Let L′ = {L0}∪L.
(Note that L ≤TxtEx

strong L′, but L′ 6≤TxtEx
weak L). Then for all S such that L ≤TxtEx

weak S ≤TxtEx
weak L′, either

S ≡TxtEx
weak L or S ≡TxtEx

weak L′.



S. Jain / Intrinsic Complexity of Learning 15

We have seen earlier that FIN is complete with respect to ≤TxtEx
weak reduction. This means that FIN

captures the essence of the most difficult learning problem with respect to weak-reduction. It was also
shown that FIN is not complete with respect to strong-reduction. Below we give an interesting collection
of languages that is trivially identifiable (with 0 mind changes) but is not strong reducible to FIN.

Theorem 9.5. [19] Let L = {L | L 6= ∅ ∧ (∀x ∈ L)[Wx = L]}. Then L 6≤TxtEx
strong FIN.

We now consider connections between topological properties of learnable classes and their intrinsic
complexity. The following notion was introduced by Angluin [1].

Definition 9.1. [1] L has finite thickness just in case for each n ∈ N , card({L ∈ L | n ∈ L}) is finite.

PATTERN has finite thickness. Angluin [1] showed that if L is an indexed family of recursive languages
and L has finite thickness then L ∈ TxtEx.

We now present a theorem that turns out to be very useful in showing that certain classes are not
complete with respect to ≤TxtEx

weak reduction. The theorem states that if a collection of languages L is
such that each natural number x appears in only finitely many languages in L, then FIN is not ≤TxtEx

weak

reducible to L. Since FIN ∈ TxtEx, this theorem immediately implies that classes such as COINIT,
PATTERN, WIEHAGEN are not ≤TxtEx

weak -complete.

Theorem 9.6. [17] Suppose L has finite thickness. Then FIN 6≤TxtEx
weak L.

A more interesting topological notion was introduced by Wright [31] described below (see also paper
by Motoki, Shinohara, and Wright [26]).

Definition 9.2. [31, 26] L has infinite elasticity just in case there exists an infinite sequence of pairwise
distinct numbers, {wi ∈ N | i ∈ N}, and an infinite sequence of pairwise distinct languages, {Ai ∈ L |
i ∈ N}, such that for each k ∈ N , {wi | i < k} ⊆ Ak, but wk 6∈ Ak. L is said to have finite elasticity
just in case L does not have infinite elasticity.

Wright [31] showed that if a classL has finite thickness then it has finite elasticity. He further showed
that if a class L is an indexed family of recursive languages and L has finite elasticity, then L ∈ TxtEx.

Now, language classes that are ≤TxtEx
weak -complete are, in some sense, the most difficult learning

problems. Interestingly, it has been established that ≤TxtEx
weak -completeness is also a sufficient condition

for infinite elasticity.

Theorem 9.7. [18] Suppose L is ≤TxtEx
weak -complete. Then L has infinite elasticity.

Classes that have infinite elasticity are not necessarily identifiable. However, it is interesting to ask:
Are all identifiable classes that have infinite elasticity also ≤TxtEx

weak -complete? The following result
answers this question negatively.

Theorem 9.8. [18] There exist a class L such that L ∈ TxtEx and L has infinite elasticity, but L is not
≤TxtEx

weak -complete.



16 S. Jain / Intrinsic Complexity of Learning

10. Informants

In this section we briefly consider intrinsic complexity of learning from informants. The concepts of
weak and strong reduction can be adopted to language identification from informants. Informally, infor-
mants, first introduced by Gold [11], are texts which contain both positive and negative data. Thus if IL

is an informant for L, then content(IL) = {〈x, 0〉 | x 6∈ L} ∪ {〈x, 1〉 | x ∈ L}.1 Identification in the
limit from informants is referred to as InfEx-identification (we refer the reader to [11] for details). The
definition of weak and strong reduction can be adopted to language identification from informants in a
straightforward way by replacing texts by informants in Definitions 4.1 and 4.3.

For any language L, an informant of special interest is the canonical informant. I is a canonical
informant for L just in case for n ∈ N , I(n) = 〈n, χL(n)〉, where χL denotes the characteristic function
of L.

Since a canonical informant can always be produced from any informant, we have the following:

Proposition 10.1. L1 ≤InfEx
weak L2 ⇐⇒ L1 ≤InfEx

strong L2.

Theorem 10.1. [17] FIN is ≤InfEx
strong complete.

However,

Theorem 10.2. [17] The classes SINGLE, INIT, COSINGLE, COINIT, WIEHAGEN, and PATTERN
are equivalent with respect to ≤InfEx

strong reduction.2

11. Function Learning

In this section we briefly consider intrinsic complexity of function learning. Freivalds, Kinber and Smith
[10] were the first to consider intrinsic complexity of function learning. In this survey we mostly follow
Kinber, Papazian, Smith, and Wiehagen [22].

We first consider some notation and definitions for function identification.
For a function η such that η(x)↓, for x < n, we let η[n] = {(x, η(x)) | x < n}. We let SEG =

{f [n] | f ∈ R}. A function learning machine is an algorithmic mapping from SEG into N .

Definition 11.1. [11, 6]
(a) M Ex-identifies a function f (written f ∈ Ex(M)) just in case (∃i | ϕi =f) (

∞
∀ n)[M(f [n])= i].

(b) M Ex-identifies a class C of recursive functions (written: C ⊆ Ex(M)) just in case M Ex-
identifies each function from C.

(d) Ex = {C ⊆ R | (∃M)[C ⊆ Ex(M)]}.

In considering intrinsic complexity of function learning it is easier to consider Θ as mapping partial
functions to partial functions.

1Alternatively, an informant for a language L may be thought of as a “tagged” text for N such that n appears in the text with
tag 1 if n ∈ L; otherwise n appears in the text with tag 0.
2Actually, it can be shown that any collection of languages that can be finitely identified (i.e., identified with 0 mind changes)
from informants is ≤InfEx

strong SINGLE.
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Definition 11.2. [28] A recursive operator is an effective total mapping Θ from (possibly partial) func-
tions to (possibly partial) functions, which satisfies the following properties:

(a) Monotonicity: For all functions η and η′, if η ⊆ η′, then Θ(η) ⊆ Θ(η′).
(b) Compactness: For all η, if (x, y) ∈ Θ(η), then there exists a finite function α ⊆ η such that

(x, y) ∈ Θ(α).
(c) Recursiveness: For all finite functions α, one can effectively enumerate (in α) all (x, y) ∈ Θ(α).

Admissible sequences for function learning criteria can be defined similarly to the language learning
case.

Definition 11.3. [10, 22]. Suppose C1 ⊆ R, C2 ⊆ R, and identification criteria I1 and I2 are given.
We say that C1 ≤I1,I2 C2 iff there exist recursive operators Θ and Ψ such that for any function f ∈ C1,
1. Θ(f) ∈ C2,
2. for any I2 admissible sequence α for Θ(f), Ψ(α) is an I1 admissible sequence for f .

We say that C1 ≤I C2, iff C1 ≤I,I C2. ≤I-hardness and ≤I-completeness can be defined similarly.
Notice that unlike in the language learning case we haven’t defined weak and strong reductions for

function learning. Reason is that for most natural identification criteria for function learning, these two
reductions are same. (Since one can effectively convert an arbitrary ordering of a total function into
canonical order). Thus we only concentrate on strong reductions.

We next consider a complete class for Ex-identification.
Let FINSUP = {f ∈ R | card({x | f(x) 6= 0}) < ∞}.

Theorem 11.1. [10, 22] FINSUP is ≤Ex-complete.

We now give characterizations for ≤Ex-complete classes.

Definition 11.4. [28] A nonempty class C ⊆ R is said to be recursively enumerable iff there exists a
recursive function f such that C = {ϕf(i) | i ∈ N}.

Definition 11.5. A function f is said to be an accumulation point of C, iff for all n, there exists a g ∈ C
such that f(x) = g(x), for x ≤ n, but f 6= g.

Definition 11.6. [22] C is called dense iff C is nonempty and every f ∈ C is an accumulation point of C.

Theorem 11.2. [22] C is ≤Ex-complete iff C ∈ Ex and C contains an r.e. dense subclass.

Kinber, Papazian, Smith, and Wiehagen [22] also give several results regarding identification criteria
involving mind changes. Freivalds, Kinber and Smith [10] also consider various other formulations of
reductions (such as space bounded reduction). We refer the reader to above two papers for further results
on intrinsic complexity of function identification.
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12. Learning with Anomalies

In this section we briefly discuss some of the results in intrinsic complexity in presence of anomalies in
the final program conjectured by the learner.

Let us first consider some notation. L1∆L2 denotes the symmetric difference of L1 and L2, that is
L1∆L2 = (L1−L2)∪(L2−L1). For a natural number a, we say that L1 =a L2, iff card(L1∆L2) ≤ a.
We say that L1 =∗ L2, iff card(L1∆L2) < ∞. Thus, we take n < ∗ < ∞, for all n ∈ N . If L1 =a L2,
then we say that L1 is an a-variant of L2.

We now define identification with anomalies.

Definition 12.1. [11, 6, 5] Suppose a ∈ N ∪ {∗}.

(a) M TxtExa-identifies a text T just in case (∃i | Wi =a content(T )) (
∞
∀ n)[M(T [n]) = i].

(b) M TxtExa-identifies an r.e. language L (written: L ∈ TxtExa(M)) just in case M TxtExa-
identifies each text for L.

(c) M TxtExa-identifies a class L of r.e. languages (written: L ⊆ TxtExa(M)) just in case M
TxtExa-identifies each language from L.

(d) TxtExa = {L ⊆ E | (∃M)[L ⊆ TxtExa(M)]}.

Note that TxtEx0 = TxtEx. Note that Definition of reduction and completeness we used in Defini-
tion 4.1, Definition 4.3, and Definition 4.2 are general and thus can be used for TxtExa-identification
too.

We next consider complete classes for TxtExa-identification, and their characterization.

Definition 12.2. Suppose r ∈ Q0,1.

Let X
cyl
r = {coderat(2w + x) | x ∈ Q, w ∈ N and 0 ≤ x ≤ r}.

Definition 12.3. Suppose s, r ∈ Q0,1 and s < r.

Let RINITcyl
s,r = {Xcyl

w | w ∈ Qs,r}.

Theorem 12.1. [14] For all a ∈ N , RINITcyl
0,1 is ≤TxtExa

strong -complete.

The following definition is a generalization of the definition of limiting standardizability considered
by Kinber [20], Freivalds [9] and Jain and Sharma [16].

Definition 12.4. [14] Let a ∈ N ∪ {∗}. A class L of recursively enumerable sets is called a-limiting
standardizable iff there exists a partial limiting recursive function F such that

(a) For all i such that Wi =a L for some L ∈ L, F (i) is defined.
(b) For all L,L′ ∈ L, for all i, j such that Wi =a L and Wj =a L′,

F (i) = F (j) ⇔ L = L′.

The following theorem characterizes the ≤TxtExa

strong -complete classes, for all a ∈ N .
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Theorem 12.2. [14] Suppose a ∈ N . Suppose L ∈ TxtExa. Then, the following three statements are
equivalent.

(1) L is ≤TxtExa

strong -complete.

(2) RINITcyl
0,1 ≤TxtExa

strong L.
(3) There exists a recursive function H from Q0,1 to N such that:

(a) {WH(r) | r ∈ Q0,1} ⊆ L.
(b) If 0 ≤ r < r′ ≤ 1, then WH(r) ⊂ WH(r′).
(c) {WH(r) | r ∈ Q0,1} is a-limiting standardizable.

The following theorem characterizes the ≤TxtExa

weak -complete classes, for all a ∈ N ∪ {∗}.

Theorem 12.3. [14] Suppose a ∈ N ∪ {∗}. L is ≤TxtExa

weak -complete iff L ∈ TxtExa and there exists
a quasi-dense subclass of L which is a-limiting standardizable.

For function learning, identification with anomalies can be defined similarly to language learning.
Notation: η1 =a η2, iff card({x | η1(x) 6= η2(x)}) ≤ a.

Definition 12.5. [11, 6] Suppose a ∈ N ∪ {∗}.

(a) MExa-identifies a function f (written f ∈Exa(M) just in case (∃i |ϕi =af)(
∞
∀ n)[M(f [n])= i].

(b) M Exa-identifies a class C of recursive functions (written: C ⊆ Exa(M)) just in case M Exa-
identifies each function from C.

(d) Exa = {C ⊆ R | (∃M)[C ⊆ Exa(M)]}.

FINSUP serves as a complete class even for Exa, for a ∈ N .

Theorem 12.4. [10, 22] Let a ∈ N . FINSUP is ≤Exa
-complete.

For Ex∗-identification complete classes take a slightly different form.
Kinber, Papazian, Smith, and Wiehagen [22] defined functions with quasi-finite support as follows.

f has quasi-finite-support if
(1) For all x ∈ N , if x is 0, 1 or not a power of prime, then f(x) = 0.
(2) For all but finitely many prime numbers p, for all k ∈ N , f(pk) = 0.
(3) For every prime number p, there are y and n ∈ N such that either
f(pk) = y, for all k ≥ 1, OR

f(pk) =

{
y, if 1 ≤ k ≤ n;
0, otherwise.

Let QUASIFINSUP = {f | f has quasi-finite-support }.

Theorem 12.5. [22] QUASIFINSUP is ≤Ex∗
-complete.

Following two theorems give a characterization for ≤Exa
-complete classes.

Theorem 12.6. [22] Suppose a ∈ N . Then C is ≤Exa
-complete iff C ∈ Exa and C contains a r.e. dense

subclass.
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Theorem 12.7. [22] C is ≤Ex∗
-complete iff C ∈ Ex∗ and C contains a r.e. dense subclass S such that

for any two distinct f, g ∈ S, f 6=∗ g.
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[2] Bārzdiņš, J., Freivalds, R.: On the prediction of General Recursive Functions, Soviet Mathematics Doklady,
13, 1972, 1224–1228.

[3] Blum, M.: A Machine-Independent Theory of the Complexity of recursive Functions, Journal of the ACM,
14, 1967, 322–336.

[4] Case, J.: The Power of Vacillation in Language Learning, SIAM Journal on Computing, 28, 1999, 1941–
1969.

[5] Case, J., Lynes, C.: Machine Inductive Inference and Language Identification, Proceedings of the 9th Inter-
national Colloquium on Automata, Languages and Programming (M. Nielsen, E. M. Schmidt, Eds.), 140,
Springer-Verlag, 1982.

[6] Case, J., Smith, C.: Comparison of Identification Criteria for Machine Inductive Inference, Theoretical
Computer Science, 25, 1983, 193–220.

[7] Daley, R., Smith, C.: On the Complexity of Inductive Inference, Information and Control, 69, 1986, 12–40.

[8] Feldman, J.: Some Decidability results on Grammatical Inference and Complexity, Information and Control,
20, 1972, 244–262.

[9] Freivalds, R.: Inductive Inference of Recursive Functions: Qualitative Theory, in: Baltic Computer Science
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