
On a Question of Nearly Minimal Identification of Functions

Sanjay Jain

School of Computing

National University of Singapore

Singapore 119260

sanjay@comp.nus.edu.sg

Abstract

Suppose A and B are classes of recursive functions. A is said to be an m-cover (∗-cover)
for B, iff for each g ∈ B, there exsits an f ∈ A such that f differs from g on at most m

inputs (finitely many inputs). C, a class of recursive functions, is a-immune iff C is infinite and
every recursively enumerable subclass of C has a finite a-cover. C is a-isolated iff C is finite or
a-immune.

Chen [Che81] conjectured that every class of recursive functions that is MEx∗

m
-identifiable

is ∗-isolated. We refute this conjecture.

1 Introduction

Formal definitions of notions informally discussed below are given in Section 3. Gold’s [Gol67]
criterion of identification of functions may be described as follows: A learning machine M is said
to identify (or learn) a function f just in case M, when presented with the graph of f , outputs
a sequence of programs that converges (in the limit) to a program for f . The above criterion
of identification is called Ex-identification (Ex stands for explains). Freivalds [Fre75] (see also
[Che81, Che82]) introduced the notion of nearly minimal identification, by placing an additional
restriction on size of the final programs. In this criterion, the learning machine is required to
converge to a program whose size is within a recursive factor of the size of the smallest program
for the input function.

The above notions of identification can be extended in the following two directions:

• Error Bound ([BB75, CS83]): The above model may be relaxed by allowing the learning
machine to converge to a program which may make some errors in computing the input
function. An error bound of a natural number m means that the final program makes at
most m errors in computing the input function. An error bound of ∗ means that the final
program makes at most finitely many errors in computing the input function.

• Mind-Change Bound ([CS83, BF74]): The above model may be restricted by placing a
bound on the number of mind changes allowed by the learning machine. A mind change
bound of a natural number m means that the learning machine may make at most m mind
changes before converging to the final program. A mind change bound of ∗ means that the
learning machine may make at most finitely many mind changes before converging to the final
program (note that ∗-mind change bound is equivalent to the Gold’s notion of identification
in the limit).

1

Chen [Che81] showed that the recursively enumerable (r.e.) classes of functions that can be
identified in the nearly minimal sense with m-errors and with a mind change bound of n (where
m and n are natural numbers) are not very complex — they can be “approximated” with at most
m-errors using a finite class of functions. For a recursively enumerable classes, this latter notion
of being approximated with at most m-errors, by a finite class of functions, is referred to as being
m-isolated. Chen [Che81] also showed that classes of functions which can be nearly-minimally-
identified with ∗-errors, but with only 0-mind changes, are ∗-isolated. The question of ∗-errors, but
with mind change bound of n > 0, was left open by Chen. He conjectured that such classes would
also be ∗-isolated.

In this paper we refute Chen’s conjecture. Thus complex r.e. classes can be identified in the
nearly-minimal sense with ∗-errors and a nonzero mind change bound.

We now proceed formally.

2 Notation

Recursion-theoretic concepts not explained below are treated in [Rog67]. N denotes the set of
natural numbers, {0, 1, 2, . . .}. All conventions regarding range of variables apply, with or without
decorations1, unless otherwise specified. The symbols i, j, k, l, m, n, s, t, u, x, y, and z, range over
natural numbers unless otherwise specified. card(S) denotes the cardinality of a set S. ∗ denotes a
nonmember of N and is assumed to satisfy (∀n ∈ N)[n < ∗ < ∞]. Thus, card(S) ≤ ∗ means that
cardinality of the set S is finite. a and b range over N ∪ {∗}. max(),min() denote the maximum
and minimum of a set, respectively. By convention max(∅) = 0 and min(∅) = ∞.

R denotes the set of all total recursive functions. A, B, C, and S range over subsets of R.
h, f, and g range over total recursive functions. η ranges over partial functions. domain(η) denotes
the domain of η. For a ∈ N ∪ {∗}, we say that η1 =a η2 (read: η1 is an a-variant of η2) iff
card({x | η1(x) 6= η2(x)}) ≤ a. Thus, η1 =∗ η2 means that η1 and η2 are finite variants of each
other.

We let ϕ denote a standard acceptable programming system. ϕi denotes the partial recursive
function computed by the ith program in the standard acceptable programming system ϕ. We
often refer to the ith program as program i. p ranges over total functions, with its range being
interpreted as programs. For a recursive function f , MinProg(f) denotes the minimal program for
f (in the ϕ system), i.e., MinProg(f) = min({i | ϕi = f}).

A class S of recursive functions is said to be recursively enumerable iff there exists a recursive
set Z such that S = {ϕi | i ∈ Z}.

〈i, j〉 stands for an arbitrary computable one to one encoding of all pairs of natural numbers
onto N [Rog67].

The quantifiers ‘∃’, ‘∀’, ‘∀∞’, and ‘∃∞’ respectively denote ‘there exists’, ‘for all’, ‘for all but
finitely many’, and ‘there exist infinitely many’.

3 Learning Paradigms

For any partial function η and any natural number n such that, for each x < n, η(x)↓, we let η[n]
denote the finite initial segment {(x, η(x)) | x < n}. Let SEQ = {f [n] | f ∈ R ∧ n ∈ N}.

1Decorations are subscripts, superscripts, primes and the like.

2

Definition 1 [Gol67] A learning machine is an algorithmic device which computes a mapping from
SEQ into N ∪ {?} such that, if M(f [n]) 6=?, then M(f [n + 1]) 6=?.

We let M, with or without decorations, range over learning machines. In Definition 1 above,
‘?’ denotes the situation when M outputs “no conjecture” on some member of SEQ.

In Definition 2 below we spell out what it means for a learning machine to converge in the limit.

Definition 2 Suppose M is a learning machine and f is a computable function. M(f)↓ (read:
M(f) converges) just in case (∃i)(∀∞n) [M(f [n]) = i]. If M(f)↓, then M(f) is defined = the
unique i such that (∀∞n)[M(f [n]) = i], otherwise we say that M(f) diverges (written: M(f)↑).

3.1 Explanatory Function Identification

We now formally define the criteria of inference considered in this paper.

Definition 3 [Gol67, CS83, BB75, BF74] Suppose a, b ∈ N ∪ {∗}.

(1) A learning machine M is said to Exa
b -identify f ∈ R (written: f ∈ Exa

b (M)) just in case
(∃i | ϕi =a f) (∀∞n)[M(f [n]) = i] and card({n |? 6= M(f [n])6= M(f [n + 1])}) ≤ b.

(2) Exa
b = {C | (∃M)[C ⊆ Exa

b (M)]}.

For a given f and M, we refer to each instance of the case, ? 6= M(f [n]) 6= M(f [n + 1]) as a
mind change by M on f . Intuitively, in Exa

b , the superscript a refers to the error bound on the
final program, and subscript b refers to the mind change bound. We often refer to Exa

∗ as Exa,
Ex0

b as Exb and Ex0
∗ as Ex.

3.2 Nearly Minimal Identification

We next consider nearly minimal identification criteria.

Definition 4 [Fre75, Che82] Suppose a, b ∈ N ∪ {∗}.

(1) Suppose h is a recursive function. A learning machine M is said to h-MExa
b -identify f ∈ R

(written f ∈ h-MExa
b (M)) iff M Exa

b -identifies f and M(f) ≤ h(MinProg(f)).

(2) MExa
b = {C | (∃M)(∃h ∈ R)[C ⊆ h-MExa

b (M)]}.

We often refer to MExa
∗ as MExa, MEx0

b as MExb and MEx0
∗ as MEx.

Theorem 5 [Che82, Fre75, Jai95] For all m,n ∈ N , a ∈ N ∪ {∗}.

(1) Ex −MExm 6= ∅.

(2) Ex0
0 −MEx∗

n 6= ∅.

(3) Exa
n ⊆ MExa.

(4) Ex∗ = MEx∗.

(5) MEx0
n+1 − Ex∗

n 6= ∅.

(6) MExm+1
0 −Exm 6= ∅.

3

3.3 Isolated Classes

Definition 6 [Che81] Suppose A and B are classes of recursive functions. B is an a-cover of A iff
for each g ∈ B, there exists an f ∈ A, such that f =a g.

Definition 7 [Che81, Rog67] C is a-immune iff (a) C is infinite and (b) every recursively enumerable
subclass of C has a finite a-cover.

Definition 8 [Che81] C is a-isolated iff C is finite or C is a-immune.

Chen [Che81] established the following two results.

Theorem 9 [Che81] Suppose m,n ∈ N , and S ∈ MExm
n . Then S is m-isolated.

Theorem 10 [Che81] Suppose S ∈ MEx∗
0. Then S is ∗-isolated.

Based on above results, Chen conjectured that, for n ∈ N , every S ∈ MEx∗
n is ∗-isolated. We

surprisingly refute his conjecture.

4 Main Theorem

Theorem 11 There exists an infinite recursively enumerable class S ∈ MEx∗
1 such that S is not

∗-isolated.

Proof. Let
C1 = {f | ϕf(〈0,0〉) =∗ f ∧ f(〈0, 0〉) ≤ MinProg(f) ∧ (∀x)[f(〈1, x〉) = 0]},
C2 = {f | (∀∞x)[f(x) = 0] ∧ (∃x)[f(〈1, x〉) 6= 0]},
and C = C1 ∪ C2.
Intuitively, C1 is a class of (nearly) self-describing functions, where a small program for a finite

variant of the function is coded into the function itself. C2 is a subclass of almost everywhere 0
functions. Additionally, we code into the functions (using {〈1, x〉 | x ∈ N}) whether it is from C1

or C2.
It is easy to verify that C is in MEx∗

1. We will construct the required S as an appropriate
recursively enumerable subset of C. Intuitively, the idea is to use an appropriate subclass of C1 to
ensure that S is ∗-isolated. C2 is added to this subclass, to ensure that S is recursively enumerable.
We now continue with the formal construction of S.

Using Operator Recursion Theorem [Cas74] we will define a recursive, 1–1, increasing function
p such that the functions ϕp(i) satisfy the following four properties:

(A) For all x, ϕp(i)(〈0, x〉) = p(i);
(B) For all x, ϕp(i)(〈1, x〉) = 0;
(C) ϕp(i) is undefined on exactly one input; let this input be called ui;
(D) For all j < p(i), either ϕj is non-total, or there exists an x < ui such that ϕj(x) 6= ϕp(i)(x).

Let fi be defined as follows:

fi(x) =

{

ϕp(i)(x), if x 6= ui;
0, otherwise.

Let S = {fi | i ∈ N} ∪ C2.

4

It is easy to verify that S is recursively enumerable. Moreover, by property (A) S is not ∗-
isolated. It is also easy to verify (using properties (A)–(D)) that fi ∈ C1. Thus, S ⊆ C and
S ∈ MEx∗

1.
We now give the construction of ϕp(i) satisfying the properties (A) to (D) above. By operator

recursion theorem [Cas74] there exists a 1–1, recursive, increasing function p such that ϕp(i) may
be defined in stages as follows.

Let u0
i = min(N − {y, x} | y ∈ {0, 1} ∧ x ∈ N). Let Cancel0i = ∅. Intuitively, us

i denotes the
intended value of ui as at the beginning of stage s. Cancelsi is used to keep track of programs
< p(i), against which ϕp(i) has diagonalized against before stage s. Go to stage 0.

Stage s

1. Dovetail steps 2 and 3 until step 2 succeeds. If and when step 2 succeeds, go to step 4.

2. Search for a j < p(i), such that j 6∈ Cancelsi , and ϕj(u
s
i)↓.

3. For z = 0 to ∞ Do

If z 6= us
i and ϕp(i)(z) has not been defined upto now, Then

Let ϕp(i)(z) = p(i), if z = 〈0, x〉 for some x ∈ N ;
Let ϕp(i)(z) = 0, if z = 〈y, x〉 for some x ∈ N and y 6= 0;

EndFor

4. If and when step 2 succeeds, then let j be as in step 2.

Let Cancels+1
i = Cancelsi ∪ {j}.

Let ϕp(i)(u
s
i) = ϕj(u

s
i) + 1.

Let us+1
i be the minimum number z such that ϕp(i)(z) has not been defined upto now, and

z 6∈ {〈y, x〉 | y ∈ {0, 1} ∧ x ∈ N}.

Go to stage s + 1.

End Stage s

We now argue that ϕp(i) defined above satisfies properties (A) to (D) above. First note that
there are only finitely many stages. This is so since each time a new stage > 0 is entered, step 4 in
the previous stage must have diagonalized against a new program j < p(i). Since there are at most
finitely many programs less than p(i), there are at most finitely many stages that are executed.
Let s be the last stage that is entered but never finished. Let ui = us

i and Canceli = Cancelsi . It
is now easy to verify that (A), (B) and (C) are satisfied. Also, for all j < p(i), either j ∈ Canceli,
or ϕj(ui)↑. In case j ∈ Canceli, then by step 4 of the construction, there exists a z < ui such that
ϕj(z)↓ 6= ϕp(i)(z)↓. Thus, (D) is satisfied. This completes the proof of the theorem.

Corollary 12 For all n > 0, there exists a recursively enumerable class S ∈ MEx∗
n such that S is

not ∗-isolated.

5 Acknowledgements

We thank an anonymous referee for several helpful suggestions which improved the presentation
of the paper. Specially acknowledged are his suggestions for improving the Introduction section to
make it accessible to a wider audience.

5

References

[BB75] L. Blum and M. Blum. Toward a mathematical theory of inductive inference. Information
and Control, 28:125–155, 1975.

[BF74] J. Bārzdiņš and R. Freivalds. Prediction and limiting synthesis of recursively enumerable
classes of functions. Latvijas Valsts Univ. Zimatm. Raksti, 210:101–111, 1974.

[Cas74] J. Case. Periodicity in generations of automata. Mathematical Systems Theory, 8:15–32,
1974.

[Che81] K. J. Chen. Tradeoffs in Machine Inductive Inference. PhD thesis, SUNY/Buffalo, 1981.

[Che82] K. J. Chen. Tradeoffs in inductive inference of nearly minimal sized programs. Information
and Control, 52:68–86, 1982.

[CS83] J. Case and C. Smith. Comparison of identification criteria for machine inductive inference.
Theoretical Computer Science, 25:193–220, 1983.

[Fre75] R. Freivalds. Minimal Gödel numbers and their identification in the limit. In Mathematical
Foundations of Computer Science, volume 32 of Lecture Notes in Computer Science, pages
219–225. Springer-Verlag, 1975.

[Gol67] E. M. Gold. Language identification in the limit. Information and Control, 10:447–474,
1967.

[Jai95] S. Jain. On a question about learning nearly minimal programs. Information Processing
Letters, 53(1):1–4, 1995.

[Rog67] H. Rogers. Theory of Recursive Functions and Effective Computability. McGraw-Hill,
1967. Reprinted by MIT Press in 1987.

6

