
On the Role of Update Constraints and Text-Types in
Iterative Learning

Sanjay Jain1,?, Timo Kötzing2, Junqi Ma1 and Frank Stephan1,3,??

1 Department of Computer Science, National University of Singapore,
Singapore 117417, Republic of Singapore

sanjay@comp.nus.edu.sg,ma.junqi@nus.edu.sg
2 Friedrich-Schiller University, Jena, Germany

timo.koetzing@uni-jena.de
3 Department of Mathematics, National University of Singapore,

Singapore 119076, Republic of Singapore
fstephan@comp.nus.edu.sg

Abstract. The present work investigates the relationship of iterative learning with
other learning criteria such as decisiveness, caution, reliability, non-U-shapedness,
monotonicity, strong monotonicity and conservativeness. Building on the result of
Case and Moelius that iterative learners can be made non-U-shaped, we show that
they also can be made cautious and decisive. Furthermore, we obtain various special
results with respect to one-one texts, fat texts and one-one hypothesis spaces.

1 Introduction

In this paper we consider inductive inference, a branch of algorithmic learning theory. This
branch analyses the problem of algorithmically learning a description for a formal language (a
recursively enumerable subset of the set of natural numbers) when presented successively all and
only the elements of that language. For example, a learnerM might be presented more and more
even numbers. After each new number,M outputs a description for a language as its conjecture.
The learner M might decide to output a program for the set of all multiples of 4, as long as all
numbers presented are divisible by 4. Later, when M sees an even number not divisible by 4, it
might change this guess to a program for the set of all multiples of 2.

Gold, in his seminal paper [Gol67], introduced this idea of learning a language in the limit
formally. His first and simple learning criterion was TxtGEx-learning4, where a learner is suc-
cessful iff, on every text for L (listing of all and only the elements of L) it eventually stops
changing its conjectures, and its final conjecture is a correct description (an explanation) for the
input sequence. Trivially, each single, describable language L has a suitable constant function as
a TxtGEx-learner (this learner constantly outputs a description for L). Thus, we are interested
? Supported by NUS grants C252-000-087-001 and R146-000-181-112.

?? Supported in part by NUS grant R146-000-181-112.
4 Txt stands for learning from a text of positive examples; G stands for Gold, who introduced this model, and is used
to indicate full-information learning; Ex stands for explanatory.

1



in analyzing for which classes of languages L there is a single learner h learning each member
of L. This framework is also sometimes known as language learning in the limit and has been
studied extensively, using a wide range of learning criteria similar to TxtGEx-learning (see, for
example, the textbook [JORS99]).

It is easy to see from the definition of TxtGEx-learning that the learner can be arbitrarily
inefficient: the learner can postpone computations and decisions until more data has been shown;
no restrictions on the computing time (beyond linear) in each update step will restrict the
learner’s abilities. One way to address this problem is to restrict the access to past data. The
most common formalization of this idea is iterative learning (TxtItEx) [Wie76], where the
learner, in each iteration, gets to see only the new data item and its previous hypothesis. Due to
the padding lemma, this memory of the previous hypothesis is still not void, but finitely many
data can be memorised by padding the hypothesis. In effect, syntactic changes of the hypothesis,
which do not affect its semantics, are used as a memory.

There are several approaches which aim to make updates more meaningful. One direction is
to consider one-one hypothesis spaces where the learner cannot do padding without changing the
semantics of the previous hypothesis. Other restrictions on the updates are requiring that they
respect some semantic constraints towards preserving already achieved quality of the previous
hypothesis and avoiding obvious errors. For example,

− updates have to be motivated by inconsistent data observed (syntactic conservativeness)
[Ang80,OSW86],

− semantic updates have to be motivated by inconsistent data observed (semantic conserva-
tiveness) [GJS13],

− updates cannot repeat semantically abandoned conjectures (decisiveness) [OSW82],
− updates cannot go from correct to incorrect hypotheses (non-U-shapedness) [BCMSW08],
− later conjectures cannot be proper subsets of earlier conjectures (cautiousness) [OSW86] or
− conjectures have to contain all the data observed so far (consistency) [Bar74].

In particular those constraints in the list which rule out updates without a semantic improve-
ment of the hypothesis do in some cases effectively hinder padding and are therefore restrictive
compared to plain iterative learning.

There is already a quite comprehensive body of work on how iterativeness relates with various
combinations of these constraints [CK10,GL04,JMZ13,JORS99,Köt09,LG02,LG03,LZ96,LZZ08].
However, the work in this area had two shortcomings: (a) it was not clear how strong an update
restriction is necessary to actually restrict the learning power below full iterative learning; and
(b) there was no complete picture of the relations of the mentioned update restrictions in the
setting of iterative learning. With this paper we eliminate these shortcomings: Regarding (a), we
show that strong decisiveness, but not decisiveness restricts iterative learning in learning power.
Regarding (b) we completely characterise the relationship of the iterative learning criteria with
the different restrictions. This is depicted in the diagramme in Figure 1, representing a map of
the update constraints and their relations. A black line between two learning criteria indicates
a trivial inclusion (where the inclusion follows directly from the definition of the restriction). A
gray box around criteria indicates equality of these criteria, as found in this work.

2



It

Ex

NUSh

Dec

SMon

Mon

WMon

Caut

SDec

SNUSh

Consv

Fig. 1. Relation of criteria combined with iterative learning.

Our work extends a breakthrough result by Case and Moelius [CM08b] who showed that iterative
learners can be made non-U-shaped. The present work improves this result by showing that
iterative learners can also be made decisive — this stands in contrast to the case of the usual
non-iterative framework where decisiveness is a real restriction in learning [BCMSW08]. This
result is given in Theorem 10 in Section 4. Also in that section are the other results giving the
complete characterisation indicated in Figure 1.

Further sections give additional results, complementing the statements shown in Section 4.
Section 5 considers alternative text-types, such as fat texts and one-one texts. Here a text is fat
if every datum appears infinitely often and is one-one if every datum appears exactly once. It
is interesting to see that, for iterative learning from fat texts, the divide between decisive and
strongly decisive learning vanishes and instead neither update constraint restricts the learning
power of iterative learning. Section 6 considers class preserving hypothesis spaces while Section 7
considers a semantic variant of conservative learning.

We proceed with Section 2, which gives mathematical definitions, followed by Section 3 which
formally defines learning criteria.

2 Mathematical Preliminaries

Unintroduced notation follows the textbook of Rogers [Rog67] on recursion theory. The set of
natural numbers is denoted by N = {0, 1, 2, . . .}. The symbols ⊆, ⊂, ⊇, ⊃ respectively denote

3



the subset, proper subset, superset and proper superset relation between sets. The symbol ∅
denotes both the empty set and the empty sequence. For two sets A and B, their join is defined
as: A⊕B = {2x | x ∈ A} ∪ {2x+ 1 | x ∈ B}. Let De denote the finite set with canonical index
e: that is, e =

∑
x∈De

2x. Note that D0 = ∅.
With dom and range we denote, respectively, domain and range of a given function. We

sometimes denote a partial function f of n > 0 arguments x1, . . . , xn in lambda notation (as in
Lisp) as λx1, . . . , xn f(x1, . . . , xn). For example, with c ∈ N, λx c is the constantly c function
of one argument.

We let 〈x, y〉 = (x+y)(x+y+1)
2

+ x be Cantor’s Pairing function which is an invertible, order-
preserving function from N × N → N. We can extend the pairing function to triple by using
〈x, y, z〉 = 〈x, 〈y, z〉〉. One can similarly code any tuples. Whenever we consider tuples of natural
numbers as input to a function, it is understood that the general coding function 〈·, ·〉 is used
to code the tuples into a single natural number. We similarly fix a coding for finite sets and
sequences, so that we can use those as input as well.

If a function f is not defined for some argument x, then we denote this fact by f(x)↑ and we
say that f on x diverges ; the opposite is denoted by f(x)↓ and we say that f on x converges. If
f on x converges to p, then we denote this fact by f(x)↓ = p.
P and R denote, respectively, the set of all partial recursive and the set of all recursive

functions (mapping N→ N). We let ϕ be any fixed acceptable numbering for P (an acceptable
numbering could, for example, be based on a natural programming language such as C or Java).
Further, we let ϕp denote the partial-recursive function computed by the ϕ-program with code
number p. A set L ⊆ N is recursively enumerable (r.e.) iff it is the domain of a partial recursive
function. We let E denote the set of all r.e. sets. We let W be the mapping such that ∀e : We =
dom(ϕe). W is, then, a mapping from N onto E . We say that e is an index, or program, (in W )
for We. Let We,s denote We enumerated in s steps in some uniform way to enumerate all the
We’s. We let pad be a 1–1 padding function such that for all e and finite sets D, Wpad(e,D) = We.

For any function f and all i, we use f [i] to denote the sequence f(0), . . . , f(i−1) (the empty
sequence if i = 0 and undefined, if one of these values is undefined).

3 Learning Criteria

In this section we formally introduce our setting of learning in the limit and associated learning
criteria. We follow Kötzing [Köt09] with his “building-blocks” approach for defining learning
criteria.

A language is an r.e. set L ⊆ N. Any total function T : N → N ∪ {#} is called a text. A
text can also be considered as an infinite sequence of elements. Intuitively, # denotes pause in
the presentation of data, that is, “no new input data in the text.” For each (possibly infinite)
sequence q with its range contained in N∪{#}, let content(q) = (range(q)\{#}). For any given
language L, a text for L is a text T such that content(T ) = L. We let σ and τ range over initial
segments of texts. The length of σ is denoted by |σ|. We let T [n] denote the initial segment of T
of length n, and for n ≥ |σ|, σ[n] the initial segment of σ of length n. We let SEQ denote the set

4



of all initial segments of all texts. Concatenation of two initial segments σ and τ is denoted by
σ � τ . If σ ⊆ τ (respectively, σ ⊆ T ), then we also say that τ extends σ (respectively, T extends
σ). For a given set of texts F , we let TxtF (L) denote the set of all texts in F for L.

A learner is a partial recursive function from SEQ to N∪{?}. Intuitively, one can consider a
learner M as being given a text as an input, one element at a time, and M(T [n]) as the learner’s
hypothesis after having received the input T [n]. Intuitively, ? denotes “no change in hypothesis”,
that is, the learner repeats its previous hypothesis (or in the case of no earlier hypothesis, the
learner does not have enough information to form a hypothesis). By using an appropriate coding,
we assume that ? and # can be handled by partial recursive functions.

In special cases, such as for iterative learners [Wie76], we consider a modification of the above
definition of learners. Intuitively, a learner as defined above is iterative if its new conjecture
depends only on its previous conjecture and the new datum, that is, for all σ, τ ∈ SEQ and
x ∈ N∪ {#}: M(σ) =M(τ) implies M(σ � x) =M(τ � x). Thus, for ease of notation and based
on convention, we consider iterative learners as receiving two inputs, the previous conjecture
and the new datum, and outputting a new conjecture. That is, an iterative learner is a mapping
from (N ∪ {?})× SEQ to (N ∪ {?}). The initial conjecture of the iterative learner is denoted by
M(∅).

More precisely, one can formalise these concepts using an interaction operator, which is an
operator β taking as arguments a function M (the learner) and a text T , and that outputs a
function p. We call p the learning sequence (or sequence of hypotheses) ofM given T . Intuitively,
β defines how a learner can interact with a given text to produce a sequence of conjectures.

We define the sequence generating operators G and It (corresponding to the learning criteria
discussed in the introduction) as follows. Gold [Gol67] started the study of general learners,
wheras iterative learners were first considered by Wiehagen [Wie76]. For all learners M , texts T
and all i,

G(M,T )(i) =M(T [i]);

It(M,T )(i) =

{
M(∅), if i = 0;

M(It(M,T )(i− 1), T (i− 1)), otherwise;

where M(∅) denotes the initial conjecture made by M . Thus, in iterative learning, the learner
has access to the previous conjecture, but not to all previous data as in G-learning. With any
iterative learner M we associate a learner M∗ such that

M∗(∅) =M(∅) and
∀σ, x :M∗(σ � x) =M(M∗(σ), x).

Intuitively, M∗ on a sequence σ returns the hypothesis which M makes after being fed the
sequence σ in order. Note that, for all texts T , G(M∗, T ) = It(M,T ). We letM(T ) (respectively
M∗(T )) denote limn→∞M(T [n]) (respectively, limn→∞M

∗(T [n])) if it exists.
We say that M made a mind change at T [n + 1], if M(T [n + 1]) 6= M(T [n]) (respectively,

M∗(T [n+ 1]) 6=M∗(T [n]) for iterative learners).

5



Successful learning requires the learner to observe certain restrictions, for example conver-
gence to a correct index. These restrictions are formalised in our next definition.

A learning restriction is a predicate δ on a learning sequence and a text. We give the im-
portant example of explanatory learning (Ex, [Gol67]) and that of vacillatory learning (Fex,
[CL82,OW82,Cas99]) defined such that, for all sequences of hypotheses p and all texts T ,

Ex(p, T )⇔ [∃n0∀n ≥ n0 : p(n) = p(n0) ∧Wp(n0) = content(T )];

Fex(p, T )⇔ [∃n0∃ finite D ⊂ N
∀n ≥ n0 : p(n) ∈ D ∧ ∀e ∈ D : We = content(T )].

Furthermore, we formally define the restrictions discussed in Section 1 in Figure 2. Consis-
tency (Cons) was first considered by Bārzdins [Bar74], Conservativeness (Consv) was intro-
duced by Angluin [Ang80], and cautiousness (Caut) was first considered by Osherson, Stob
and Weinstein [OSW86]. Decisiveness (Dec) was introduced by Osherson, Stob and Weinstein
[OSW82], whereas Non-U-shapedness (NUSh) was first studied by Baliga et. al. [BCMSW08].
Study of monotonicity requirements in conjectures is motivated by the fields of monotonic and
non-monotonic logic. Strong monotonicity (SMon) and Weak monotonicity (WMon) were in-
troduced by [Jan91], and monotonicity (Mon) was introduced by [Wie90].

Consv(p, T )⇔ [∀i : content(T [i+ 1]) ⊆Wp(i) ⇒ p(i) = p(i+ 1)];

Caut(p, T )⇔ [∀i, j : Wp(i) ⊂Wp(j) ⇒ i < j];

NUSh(p, T )⇔ [∀i, j, k : i ≤ j ≤ k ∧ Wp(i) = Wp(k) = content(T )⇒Wp(j) = Wp(i)];

Dec(p, T )⇔ [∀i, j, k : i ≤ j ≤ k ∧ Wp(i) = Wp(k) ⇒Wp(j) = Wp(i)];

SNUSh(p, T )⇔ [∀i, j, k : i ≤ j ≤ k ∧ Wp(i) = Wp(k) = content(T )⇒ p(j) = p(i)];

SDec(p, T )⇔ [∀i, j, k : i ≤ j ≤ k ∧ Wp(i) = Wp(k) ⇒ p(j) = p(i)];

SMon(p, T )⇔ [∀i, j : i < j ⇒Wp(i) ⊆Wp(j)];

Mon(p, T )⇔ [∀i, j : i < j ⇒Wp(i) ∩ content(T ) ⊆Wp(j) ∩ content(T )];

WMon(p, T )⇔ [∀i, j : i < j ∧ content(T [j]) ⊆Wp(i) ⇒Wp(i) ⊆Wp(j)].

Fig. 2. Definitions of learning restrictions.

We combine any two sequence acceptance criteria δ and δ′ by intersecting them; we denote this
by juxtaposition (for example, all the restrictions given in Figure 2 are meant to be always used
together with Ex).

For any set of texts F , interaction operator β and any (combination of) learning restrictions
δ, TxtFβδ is a learning criterion. A learner M TxtFβδ-learns all languages in the class

TxtFβδ(M) = {L ∈ E | ∀T ∈ TxtF (L) : δ(β(M,T ), T )}

and we use TxtFβδ to denote the set of all TxtFβδ-learnable classes (learnable by some learner).
Note that we omit the superscript F whenever F is the set of all texts.

6



In some cases, we consider learning using an explicitly given particular hypothesis space
(He)e∈N instead of the usual acceptable numbering (We)e∈N. For this, one replaces We by He in
the respective definitions of learning as above. In this paper, it will always be assumed that the
hypothesis spaces are uniformly r.e., that is, {〈e, x〉 | x ∈ He} is an r.e. set.

A sequence σ is said to be a locking sequence [BB75] forM on a language L iff (a) content(σ) ⊆
L, (b) for all τ such that content(τ) ⊆ L, M(σ) = M(σ � τ), and (c) M(σ) is a grammar for L
(in the hypothesis space used by the learner M). If σ only satisfies (a) and (b) above, then it is
called a stabilising sequence [Ful90] for M on L.

When considering iterative learners, we use the definition of locking sequence with respect
to M∗, but for ease of notation still call σ to be a locking sequence for M on L.

4 Plain-Text Learning

In this section we first show that, for iterative learning, the convergence restrictions Ex and
Fex allow for learning the same sets of languages. After that we give the necessary theorems
establishing the diagramme given in Figure 1.

Theorem 1. TxtItFex = TxtItEx.

Proof. Clearly, TxtItEx ⊆ TxtItFex. Suppose a learner M TxtItFex-learning a class L is
given. Intuitively, the new learner N is constructed as follows: N keeps track of all the past
conjectures of M and does not change its mind if M changes its mind to a conjecture made in
the past. The conjectures of N are of the form pad(p,D), where D is a finite set of conjectures
made earlier by N .

Now, we formally and more precisely define N . N(∅) = pad(i, ∅), where i = M(∅), is the
initial conjecture of M . If M(p, x) ∈ D ∪ {p}, then let N(pad(p,D), x) = pad(p,D), else let
N(pad(p,D), x) = pad(M(p, x), D ∪ {p}).

Now, it is shown that N TxtItEx-learns L. Consider a text T = x0 � x1 � x2 � . . . for a
language L ∈ L. We will define below another text T ′ = x0 � τ0 � x1 � τ1 . . . such that for all n,

(E1) N∗(x0 � x1 � . . . xn−1) = pad(M∗(x0 � τ0 � x1 � τ1 . . . xn−1 � τn−1), {N∗(∅), N∗(x0),
N∗(x0 � x1), . . . , N∗(x0 � x1 � . . . � xn−1)} − {N∗(x0 � x1 � . . . � xn−1)})

where for n = 0, we take the input sequences for M and N as empty in the above equation.
Note that (E1) holds by definition for n = 0. So suppose we have defined τ0, τ1, . . . , τm−1

and (E1) holds for all n ≤ m. Then, consider n = m + 1. Suppose N∗(x0 � x1 � . . . � xm−1) =
pad(p,D). If M(p, xm) 6∈ D ∪ {p}, then let τm = ∅. If M(p, xm) ∈ D ∪ {p}, then let m′ < m
be least such that N∗(x0 � x1 � . . . � xm′) = pad(M(p, xm), D

′), for some finite set D′; then,
let τm = xm′+1 � τm′+1 � xm′+2 � τm′+2 � . . . � xm−1 � τm−1, where if m′ = m − 1, then τm = ∅.
It is easy to verify that (E1) holds. Furthermore, note that τm only consists of elements from
x0, x1, . . . , xm−1.

Let T ′ = x0 � τ0 � x1 � τ1 . . .; note that T ′ is also a text for content(T ) = L. For i ∈ N, let
pi, di be such that pad(pi, Ddi) = N∗(x0 � x1 � . . . � xi−1). Now it follows from the definition of N
and (E1) that, for all i,

7



(i) Ddi ⊆ Ddi+1
⊆ Ddi ∪ {pi},

(ii) p0, p1, . . . is a subsequence of the sequence of conjectures of M on T ′ and
(iii) if pi 6= pi+1, then di+1 6= di.

By (ii) andM TxtItFex-learning L, it follows that {p0, p1, . . .} is finite, and thus by (i), d0, d1, . . .
converges. Thus, by (iii) the sequence p0, p1, . . . also converges. AsM TxtItFex-learns L, by (ii),
all but finitely many elements in the sequence p0, p1, . . . are grammars for L. Thus, N TxtItEx-
learns L.

Next we give separating theorems for monotone learning and first show that there is a class
which can be learnt iteratively by a learner which is strongly decisive, conservative, monotone
and cautious while on the other hand, there is no learner which, even non-iteratively, learns the
same class strongly monotonically. The proofs of the next two theorems are based on the proofs
of TxtMonEx 6⊆ TxtSMonEx and TxtWMonEx 6⊆ TxtMonEx from [LZ93].

Theorem 2. TxtItSDecConsvMonCautEx 6⊆ TxtGSMonEx.

Proof. Let L0 = {0, 2, 4, . . .} and for all n, Ln+1 = {2m | m ≤ n} ∪ {2n+1}. Let L = {Ln | n ∈
N}. Let e be a recursive function computing an r.e. index for Ln: We(n) = Ln. Let M ∈ P be the
iterative learner which memorises a single state in its conjecture (using padding) and has the
following state transition diagramme (an edge labeled x

e
means that the edge indicates a state

transition on input x with conjecture output e).

0 1

i∈2N,#
e(0)

2n+1
e(n+1)

i∈N,#
e(n+1)

Clearly,M is a TxtItSDecConsvMonCautEx-learner for L. The class L is not strongly mono-
tonically learnable. To see this, suppose by way of contradiction that a learnerN TxtGSMonEx-
learns L. SupposeN conjectures grammar for L0 after having seen some input σ with content(σ) ⊆
L0 (note that there must exist such a σ). Let n be larger than any element in content(σ). Then,
for any text T for Ln+1, for some τ such that σ ⊆ τ ⊆ σ �T , N(τ) must be a grammar for Ln+1.
But then, N is not strongly monotonic as it changed its conjecture from L0 to Ln+1, which is
not a superset for L0.

Note that one can modify the protocol in the above proof such that M only memorises the
state (and not its conjecture); however, M then has to output a special symbol for repeating
the previous conjecture. The next result shows that there is a class of languages which can be
learnt by an iterative learner which is strongly decisive, conservative and cautious; on the other
hand, there is no learner, even non-iterative one, that learns the class monotonically.

Theorem 3. TxtItSDecConsvCautEx 6⊆ TxtGMonEx.

8



Proof. We consider L0 = {0, 2, 4, . . .} and, for all n, L2n+1 = {2m | m ≤ n} ∪ {4n + 1} and
L2n+2 = {2m | m ≤ n+ 1} ∪ {4n+ 1, 4n+ 3}. We let L = {Ln | n ∈ N}.

Let e be a recursive function such that, for all n, We(n) = Ln. Let M ∈ P be the iterative
learner which memorises a single state in its conjecture (using padding) and has the following
state transition diagramme (an edge labeled x

e
means that the edge indicates a state transition

on input x with conjecture output e).

0 1 2

i∈2N,#
e(0)

4n+1
e(2n+1)

i∈N−{4n+3},#
e(2n+1)

4n+3
e(2n+2)

4n+3
e(2n+2)

i∈N,#
e(2n+2)

Clearly, M fulfills all the desired requirements for TxtItSDecConsvCautEx-learning L. To
see that L is not in TxtGMonEx, suppose by way of contradiction that N witnesses that L is
in TxtGMonEx. Let σ be such that content(σ) ⊆ L0 and N(σ) is a grammar for L0 (note that
there exists such a σ). Let n be larger than any element in content(σ). Then, let τ be such that
content(τ) ⊆ L2n+1, and N(σ � τ) is a grammar for L2n+1 (note that there must exist such a τ
as N learns L2n+1). Furthermore, let τ ′ be such that content(τ ′) ⊆ L2n+2 and N(σ � τ � τ ′) is a
grammar for L2n+2 (again, note that there must exist such a τ ′ as N learns L2n+2). But then,
N is not monotonic on L2n+2, as N(σ) contained 2n+ 2, N(σ � τ) does not contain 2n+ 2, but
N(σ � τ � τ ′) again contains 2n+ 2 which is a member of L2n+2.

The next result shows that there is a class of languages which is simultaneously iteratively,
monotonically, decisively, weakly monotonically and cautiously learnable, but not iteratively
strongly non-U-shapedly learnable.

Theorem 4. TxtItMonDecWMonCautEx 6⊆ TxtItSNUShEx.

Proof. Case and Kötzing [CK10] provided a class which separates TxtItNUShEx from
TxtItSNUShEx and also shows this more general theorem. The result furthermore also follows
from Theorem 27 below which does not only diagonalise against conservative learners but also
against learners which never update a correct hypothesis.

The next result shows that there is an iteratively and strongly monotonically learnable class
which does not have any iterative learner which is strongly non-U-shaped, that is, which never
revises a correct hypothesis.

Theorem 5. TxtItSMonEx 6⊆ TxtItSNUShEx.

Proof. Let M0,M1, . . . denote a recursive listing of all partial recursive iterative learning ma-
chines. Consider a class L consisting of the following sets for each e and d ∈ N (where F (·), G(·)
are recursively enumerable sets in the parameters described later):

9



− {2e} ⊕ F (e),
− {2e, 2d+ 1} ⊕G(e, d),
− {2e, 2d+ 1} ⊕ N.

Let αs denote the sequence 1 �# � 3 �# . . . � 2s + 1. Now we define the sets F (e) and G(e, d)
based on the following cases.

(a) If there exists an s such that M∗
e (4e � αs) = M∗

e (4e � αs′), for all s′ > s, then F (e) =
{0, 1, 2, . . . , s}, for the least such s, else F (e) = N.

(b) If F (e) = N or max(F (e)) > d, then G(e, d) = N. Otherwise, if there exists a k > d and
r ∈ N such thatM∗

e (4e�αmax(F (e))�#�4d+2�#r) =M∗
e (4e�αmax(F (e))�#�4d+2�#r�#) 6=

M∗
e (4e � αmax(F (e)) �# � 4d+ 2 �#r �# � 2k + 1), then G(e, d) = F (e) ∪ {k} for first such k

found in some algorithmic search, else G(e, d) = F (e).

Now, the above class is TxtItSMonEx learnable, as the learner can remember seeing 4e, 4d+2
in the input text, if any:

- Having seen only 4e, the learner outputs a grammar for {2e} ⊕ F (e);
- Having seen 4e, 4d+2, the learner outputs a grammar for {2e, 2d+1}⊕G(e, d) until it sees,
(after having seen 4e, 4d + 2), two more odd elements bigger than 2d in the input, at which
point the learner switches to outputting a grammar for {2e, 2d+ 1} ⊕ N.

It is easy to verify that the above learner will TxtItSMonEx learn L.
Now we show that L is not TxtItSNUShEx-learnable. Suppose by way of contradiction

that Me TxtItSNUShEx-learns L. Then the following statements hold:

− There exists an s as described in the definition of F (e) above and thus F (e) is finite, as
otherwise Me does not learn {2e} ⊕ F (e) = {2e} ⊕ N;

− For d > max(F (e)), there exists a k > d as described in the definition of G(e, d), as otherwise
Me does not learn at least one of {2e, 2d+ 1} ⊕G(e, d) and {2e, 2d+ 1} ⊕ N;

− Now the learner Me has two different hypotheses on the segments (4e � αmax(F (e)) �# � 2k +
1 �# � 4d+2 �#r) and (4e �αmax(F (e)) �# � 2k+1 �# � 4d+2 �#r � 2k+1) and first of them
must be a correct hypothesis for {2e, 2d+1}⊕G(e, d), as otherwise the learner Me does not
learn it from the text — 4e � αmax(F (e)) �# � 2k + 1 �# � 4d + 2 �#r �#∞ — see part (b)
in the definition of G(e, d), whereas second is a mind change, after the correct hypothesis by
Me on {2e, 2d+ 1} ⊕G(e, d).

Thus, Me does not TxtItSNUShEx-learn L.

For our following proofs we will require the notion of a canny learner [CM08b].

Definition 6 (Case and Moelius [CM08b]). For all iterative learners M , we say that M is
canny iff

1. M never outputs ?,
2. for all e, M(e,#) = e and

10



3. for all x, τ and σ, if M∗(σ � x) 6=M∗(σ) then M∗(σ � x � τ � x) =M∗(σ � x � τ).

Case and Moelius [CM08b] showed that, for TxtItEx-learning, learners can be assumed to be
canny.

Lemma 7 (Case and Moelius [CM08b]). For all L ∈ TxtItEx there exists canny iterative
learner M such that L ⊆ TxtItEx(M).

The term “sink-locking” means that on any text for a language to be learnt the learner converges
to a sink, a correct hypothesis which is not abandoned on any continuation of the text. The
following result does not only hold for the case where all texts are allowed but also for the case
where only fat texts are allowed (see Section 5). As both proofs are similar, only the standard
case of all texts is given.

Theorem 8. Let L be sink-lockingly TxtItEx-learnable. Then L is TxtItConsvEx, TxtItSDecEx
and TxtItWMonEx-learnable.

Proof. Let M be a sink-locking TxtItEx-learner for L. Using the S-m-n Theorem, we let
f ∈ R be a one-one recursive function such that

∀e : Wf(e) = {x ∈ We |M(e, x) = e}.

Let N be such that N∗(σ) = f(M∗(σ)) for all sequences σ. From M sink-locking we now
immediately get that N is a conservative and weakly monotone iterative learner for L. Again
using the S-m-n Theorem we let g ∈ R be a one-one recursive function such that, for all σ,

Wg(σ) =


∅, if σ = ∅ (Case 1);
{x | x ≤ 2|σ|} \ {σ(0)}, if σ 6= ∅ and N∗(σ) 6= N∗(σ �#) (Case 2);
WN∗(σ) ∪ content(σ), otherwise (Case 3).

We let O be an iterative learner with initial conjecture g(∅) and, given the previous conjecture,
g(σ) and a new datum x,

O(g(σ), x) =


g(∅), if σ = ∅ and x = #;

g(σ), if N∗(σ) = N∗(σ � x);
g(σ � x), otherwise.

As N is iterative and conservative, it is straightforward to see that O TxtItEx-learns L. Next
we show that O is strongly decisive. To that end we observe that, for each hypothesis g(σ) made
by O, either σ = ∅ or σ(0) 6= #.

Now consider any two distinct hypothesis g(σ) and g(σ � y � τ) output by O. If σ = ∅, then
clearly, y 6= # and Wg(σ) 6= Wg(σ�y�τ) by definition of g. If both Wg(σ) and Wg(σ�y�τ) are defined
via Case 2 in the definition of g, then clearly, these are semantically different hypothesis, as
{z | z ≤ 2 · |σ|} \ {σ(0)} 6= {z | z ≤ 2 · |σ � y � τ |} \ {σ(0)}. If σ 6= ∅, and exactly one of Wg(σ)

11



and Wg(σ�y�τ) is defined via Case 2 in the definition of g, then again, one of them contains σ(0),
while the other does not and so these hypotheses are semantically different. Now, consider the
remaining case of both g(σ) and g(σ �y � τ) being defined via Case 3 in the definition of g. Thus,
N∗(σ) = N∗(σ � #), N∗(σ � y � τ) = N∗(σ � y � τ � #), y 6= #, and g(σ) and g(σ � y � τ) are
both defined via Case 3 in the definition of g. Note that this also implies that O at some point
conjectures g(σ � y) and thus N∗(σ) 6= N∗(σ � y). We now have that y ∈ Wg(σ�y�τ) \Wg(σ) (y is in
the first set due to the construction of g and not in the second set due to N being conservative).
Thus, O is strongly decisive.

The previous theorem gives us the following immediate corollary which states that a class is
iteratively strongly decisive learnable from text iff it is iteratively conservatively learnable from
text iff it is iteratively strongly non-U-shaped learnable from text.

Corollary 9. TxtItSDecEx = TxtItConsvEx = TxtItSNUShEx.

Proof. We have that strongly decisive or conservative (iterative) learnability trivially implies
strongly non-U-shaped learnability. Using Theorem 8 it remains to show that strongly non-U-
shaped learnability implies sink-locking learnability. But this is trivial, as the learner can never
converge to a correct conjecture that might possibly be abandoned on the given language, as
this would contradict strong non-U-shapedness.

Case and Moelius [CM08b] showed that TxtItNUShEx = TxtItEx; we finally show that this
proof can be extended to also cover decisiveness, weak monotonicity and caution.

Here is a brief reason for the complications in doing the simulation and the intuition be-
hind our proof. In non-iterative learning, often simulations are done by searching for a locking
sequence. However, in iterative learning, it is not possible to search for a locking sequence as
iterative learners forget data. A standard trick to address this, for an iterative simulator N to
simulate an iterative learner M , on input text T , is to keep track of γn defined as follows: γ0 = ∅
and, for n > 0, if M∗(γn−1 � T (n− 1)) 6= M∗(γn−1), then γn = γn−1 � T (n− 1), else γn = γn−1.
That is, γ’s are constructed to keep track of elements which caused a mind change in M . It is
easy to verify that M∗(γn) = M∗(T [n]), and the sequence (γn)n∈N converges. The above allows
one to obtain in the limit a grammar for the target language.

For maintaining properties such as weak monotonicity or decisiveness, one would like to
constrain or spoil intermediate conjectures output before the final hypothesis. Thus, one would
like to simulate WM∗(γn), and if M changes its mind on some extension γn � τ , with content(τ) ⊆
WM∗(γn), we would like to “stop further enumeration” in the conjecture of N obtained from γn.
In iterative learning this causes the following problem: It is possible that some element x causes
a mind change for M if given right after γn, but not if given after some proper initial segment
of γn. Thus, the learner N may not see x in the future in the input text T after having seen
T [n] (and may have forgotten having seen it earlier). Thus, it cannot safely spoil the conjecture
corresponding to γn. To address this, one would like to ignore such x, pretending that they had
come earlier and forgotten. However, this works only if there are only finitely many such x, and
causes problems for learning infinite languages when there maybe infinitely many such x.

12



To address this, in the proof used below (which gets its inspiration from the work of Case and
Moelius [CM08b] for non-U-shaped iterative learning), we will use a bound mn on the x’s which
we tentatively ignore as above. Thus, we will split γn as above into σn and αn, where elements
in content(αn) which cause a mind change for M when given right after σn will be bounded by
mn (for technical ease, for maintaining some length properties, we may actually have some extra
elements in σn �αn, which do not cause any mind change for M when inserted at that position).
The value of mn may be increased when it is safe to do so (see case (iv) in the definition of N
in the proof below). The details of when it is safe are complicated and are stated more formally
in the proof below. On the other hand, when N gets as input an element x which is not safe to
ignore (as it causes a mind change on all initial segments of σn, or is too big etc.), we will reset
σn+1 to be σn �αn � x, αn+1 to ∅ and mn+1 to 0 (see cases (ii) and (v) in the definition of N). In
case (iii) of the definition of N it is tentatively safe to ignore x as it is bounded by mn or does
not cause a mind change. In case (vi) of the definition of N it is safe to ignore the input x as it
does not cause any mind change nor gives enough time to discover a harmful mind change using
the previous conjecture. The conjecture corresponding to the parameters σn,mn, αn used by N
is f(σn,mn, αn).

The above almost works, but we need additionally some tricks to make sure that learnability
happens. In some cases we do not spoil/constrain the conjecture f(σn,mn, αn) completely on
seeing a potentially harmful x ∈ WM∗(γn), but just temporarily suspend the simulation until
we discover that future conjectures of N on the language WM∗(γn) also enumerate elements of
WM∗(γn): then it is safe to enumerate these elements (see step 2(b) in the definition of f in the
proof). We now proceed with the formal result.

Theorem 10. TxtItEx = TxtItDecEx = TxtItWMonEx = TxtItCautEx.

Proof. Suppose M is a canny iterative learner which learns a class L. Below we will construct
an iterative learner N which is weakly monotonic (decisive, cautious) and learns L. Let

CM(σ) = {x ∈ N ∪ {#} |M∗(σ � x)↓ =M∗(σ)↓};
BM(σ) = {x ∈ N ∪ {#} |M∗(σ � x)↓ 6=M∗(σ)↓};
B∩M(σ) =

⋂
0≤i≤|σ|

BM(σ[i]);

CBM(σ) =
⋃

0≤i<|σ|

CM(σ[i]) ∩BM(σ).

Intuitively, BM(σ) and CM(σ) respectively denote the set of elements on which M changes/does
not change its mind, when these elements are received by M just after σ. B∩M(σ) is then the set
of elements on which M would make a mind change, when received after any initial segment of
σ. Members of B∩M are thus crucial in the simulation and cannot be ignored. CBM(σ) is the set
of elements in BM(σ)− B∩M(σ). Finitely many elements of CBM(σ) appearing later in the text
may be ignored. We note the following property:

13



Claim 11. Suppose L ∈ L and content(σ) ⊆ L. If B∩M(σ)∩(L−content(σ)) = ∅ and L−CM(σ)
is finite, then M∗(σ) is a grammar for L.

To see the above claim note that if we construct a sequence τ from σ by inserting elements
x ∈ [L − (content(σ) ∪ CM(σ))] after the initial segment σ′ of σ such that x ∈ CM(σ′), then
M∗(σ) = M∗(τ). Thus, M∗(σ) = M∗(σ � T ′) = M∗(τ � T ′), where T ′ is a text for CM(σ). It
follows that M∗(σ) must be a grammar for L. This completes the proof of Claim 11.

We will now describe our learner N which simulates M . The conjectures of the learner N will
be of the form f(σ,m, α), where f is a recursive function mapping SEQ × N × SEQ to N, and
is defined later below.

For testing whether the parameters (σ,m, α) are good (in the sense that the elements of the
language WM(σ,m,α) which are greater than m do not belong to CBM(σ)), we use the following
predicate P . Here x can be considered as a time bound for checking.

Let P be such that for all σ ∈ SEQ, m ∈ N and x ∈ N ∪ {#}, P (σ,m, x) iff

(i) x 6= # and
(ii) (∃w)[M∗(σ � w) converges in x steps, WM∗(σ) enumerates w in x steps, w ∈ CBM(σ) and

m < w ≤ x].

Now we define the learner N :
N(∅) = f(∅, 0, ∅). N(f(σ,m, α), x) is defined as follows (that is, for previous conjecture

f(σ,m, α) and new datum x, N outputs as follows):

↑, (i) if M∗(τ)↑ for some τ ∈ {σ, σ � α, σ � x, σ � α � x};
f(σ � α � x, 0, ∅), (ii) if ¬ (i) and (x ∈ B∩M(σ) or (x ∈ CBM(σ) and x > m));

f(σ,m, α � x), (iii) if ¬ ((i) or (ii)) and
x ∈ CBM(σ � α)

f(σ, x, ∅), (iv) if ¬ ((i) or (ii)) and
x ∈ CM(σ � α) and P (σ,m, x) and α = ∅;

f(σ � α � x, 0, ∅), (v) if ¬ ((i) or (ii)) and
x ∈ CM(σ � α) and P (σ,m, x) and α 6= ∅;

f(σ,m, α), (vi) if ¬ ((i) or (ii)) and
x ∈ CM(σ � α) and ¬P (σ,m, x).

Here Wf(σ,m,α) is defined as follows. Note that Wf(σ,m,α) does not depend on α; usage of α in the
proof is mainly for memorising some mind change points of M .

1. Enumerate content(σ)
In the following, if the needed M∗(·) (to compute various parameters), is not defined, then
do not enumerate any more.

2. Go to stage 0.

14



Stage s:
Let As = content(σ) ∪WM∗(σ),s

(a) If there exists an x ∈ As such that x ∈ B∩M(σ), then no more elements are enumerated.
(b) If there exists an x ∈ As such that x > m, and [x ∈ CBM(σ) or P (σ,m, x)], then:

If all τ with content(τ) ⊆ As, |τ | ≤ |As| + 1, τ not containing # and τ starting with
a y in CBM(σ) satisfy As ⊆ Wf(σ�τ,0,∅),
then enumerate As and go to stage s+ 1;
otherwise, no more elements are enumerated.
(* Intuitively, we would like not to enumerate elements which cause a mind change to
ensure cautiousness, weak monotonicity and decisiveness. However, this causes prob-
lems in learnability (specially of finite languages). Thus, this step is used to include
“safe elements” which are known to be included in “future conjectures” (see cases (ii),
(iv) and (v) in the definition of N). This “inclusion” allows learnability of finite lan-
guages, as discussed later below, without violating cautiousness, weak monotonicity
and decisiveness (see Case 2 in the analysis below). *)

(c) If the condition “there exists an x ∈ As such that x ∈ B∩M(σ)” in (a) and the condition
“there exists an x ∈ As such that x > m, and [x ∈ CBM(σ) or P (σ,m, x)]” in (b) both
fail, then enumerate As, and go to stage s+ 1.

End stage s

Now let T be a text for L ∈ L, and let f(σn,mn, αn) be the output of N∗(T [n]). By definition
of N it is easy to verify that

- content(σn � αn) ⊆ content(T [n]),
- σn ⊆ σn+1,
- σn � αn ⊆ σn+1 � αn+1,
- if σn 6= σn+1, then αn+1 = ∅, and
- if σn = σn+1, then mn+1 ≥ mn.

Furthermore, note that on input T (n), if the choice in the definition of N is Case (iv) or (vi)
then, M∗(σn �αn) =M∗(σn �αn �x). Using this and above mentioned properties of N , it is easy
to verify by induction on n that M∗(T [n]) =M∗(σn � αn).

Now, if σn�αn 6= σn+1�αn+1, thenM∗(T [n]) =M∗(σn�αn) 6=M∗(σn+1�αn+1) =M∗(T [n+1]).
Thus, asM∗ converges on T , we immediately have that limn→∞ σn�αn exists and thus limn→∞ σn
and limn→∞ αn exist. Let n0 be large enough so that, for all n ≥ n0, σn = σn0 and αn = αn0 .
Note that, for all n ≥ n0 (as Case (ii) in the definition of N would not apply), T (n) 6∈ B∩M(σn0).

For showing that N TxtItEx-learns L, we split our analysis based on whether L is finite or
infinite.

Suppose L is a finite language. First note by Claim 11 that if content(σ) ⊆ L and L∩B∩M(σ) =
∅, thenWM∗(σ) = L. Thus for σ and α such that content(σ)∪content(α) ⊆ L, and L∩B∩M(σ) = ∅,
using reverse induction on the number of mind changes made by M∗ on σ (which is bounded
by card(L) due to M being canny), we show that Wf(σ,m,α) = L. To see this, note that for such

15



σ, in the definition of f , 2(a) never applies. Now, for the base case of induction, if the number
of mind changes made by M on σ is card(L), then as M is canny, CBM(σ) = ∅, and thus in
the definition of f step 2(b) also does not apply. Thus, Wf(σ,m,α) = WM∗(σ) = L. Inductively,
assuming that for all σ′ ⊇ σ such that content(σ′) ⊆ L and M∗ makes more mind changes on σ′
than on σ, Wf(σ′,0,∅) = L, we get from 2(b) in the definition of f that Wf(σ,m,α) will enumerate
L. It follows that, for all n ≥ n0, Wf(σn,mn,αn) is a grammar for L. Furthermore, for n ≥ n0, mn

is monotonically non-decreasing and mn cannot be greater than max(L) (by definition of N).
Thus, limn→∞mn exists and hence N TxtItEx-learns L.

Now, suppose L is an infinite language in L. If αn0 6= ∅, then clearly m = limn→∞mn

also exists (as Case (iv) in the definition of N does not apply for inputs T (n0), T (n0 + 1), . . .).
Furthermore, as B∩M(σn0) ∩ L = ∅, by Claim 11 we also have WM∗(σn0 )

= L. If αn0 = ∅, then as
M∗(T ) = M∗(σn0), we have that WM∗(σn0 )

= L and all but finitely many of the elements of L
do not belong to BM(σn0). Thus, in this case also m = limn→∞mn exists (as P (σn,mn, T (n))
does not hold for large enough mn). In both cases, m bounds all the elements of L which are
in BM(σn0). Thus, f(σn0 ,m, αn0) is a grammar for L (as item 2(c) in the definition of f would
apply).

Now we show that N is weakly monotonic on the text T . Note that, for all σ, α,m, Wf(σ,m,α)

⊆ content(σ) ∪WM∗(σ). Also, note that
Wf(σ,m,α) ⊆ Wf(σ,m′,α′) for m ≤ m′ and all α, σ, α′ ∈ SEQ — (P1)
Thus,Wf(σn,mn,αn) ⊆ Wf(σn+1,mn+1,αn+1), if Case (iii), (iv) or (vi) applied in the definition of N

when input T (n) was considered. Now suppose Case (ii) or (v) is used when N reads input T (n).
Thus, σn+1 = σn � αn � T (n) and either T (n) ∈ B∩M(σn) or [T (n) > mn and (T (n) ∈ CBM(σn)
or P (σn,mn, T (n)))] holds.
Case 1: content(αn � T (n)) 6⊆ Wf(σn,mn,αn).

In this case clearly content(T [n+1]) ⊇ content(σn �αn �T (n)) and thus, content(T [n+1]) 6⊆
Wf(σn,mn,αn), so mind change is safe (weak monotonic).
Case 2: content(αn � T (n)) ⊆ Wf(σn,mn,αn).

Let s be least such that content(αn � T (n)) is contained in As as in stage s of Wf(σn,mn,αn).
Then, the definition ofWf(σn,mn,αn) step 2(b) ensures thatWf(σn,mn,αn) enumerates At, t ≥ s, only
if At is contained in Wf(σn�αn�T (n),0,∅) (note that the case of At = content(σn), already satisfies
At ⊆ Wf(σn�αn�T (n),0,∅)).

It follows from the above analysis that either the new input is not contained in the previous
conjecture of N , or the previous conjecture is contained in the new conjecture. Thus, N is weakly
monotonic.

It follows from the above construction that N is also decisive and cautious. To see this,
note that whenever mind change of N falls in Case 1 above, for all n′ > n, Wf(σn′ ,mn′ ,αn′ )

contains content(σn′), which contains content(αn�T (n)). Thus, N never returns to the conjecture
Wf(σn,mn,αn), which does not contain content(αn � T (n)). On the other hand, the mind changes
due to Case 2 or mind changes due to N outputting f(σ,m′, α′) after outputting f(σ,m, α), are
strongly monotonic (see the discussion in Case 2, as well as property (P1) mentioned above).
The theorem follows.

16



5 Learning from Fat-Texts and Other Texts

In this section we deal with special kinds of texts. A text is called fat iff every datum appears
infinitely often in that text. A text T is called one-one iff for all x ∈ content(T ), there exists a
unique n such that T (n) = x. We let fat denote the set of all fat texts and one− one the set of
all one-one texts. The main result is given in Theorem 15, showing that anything that can be
iteratively learnt can be so learnt conservatively or strongly decisively from fat text. It basically
follows from the observation that, on fat text, every learner is sink-locking (see Theorem 8).

First we note that the proof of Theorem 1 also shows that TxtfatItFex = TxtfatItEx.
Furthermore, fat text can always be simulated in the full-information setting, which is the state-
ment of the next lemma. This requires a technical condition which is concerned with “skipping”
hypotheses for which we make a definition.

Definition 12. We say that a learning restriction δ allows for simulation on consistent text
iff, for all (p, T ) ∈ δ, r strictly monotone increasing and a text T ′ with ∀i : content(T [r(i)]) =
content(T ′[i]), we have (p ◦ r, T ′) ∈ δ.

Intuitively, p ◦ r “skips” some hypotheses, for example because a learner is simulated by showing
many data (which were shown previously). Note that all learning restrictions given in this paper
allow for simulation on consistent text, and that the set of all learning restrictions allowing for
simulation on consistent text is closed under intersection.

Lemma 13. Let δ allow for simulation on consistent text. Then we have

TxtfatItδEx ⊆TxtGδEx;

Txtone−oneItδEx ⊆TxtGδEx.

Standard techniques can be used to show the following result.

Theorem 14. TxtItEx ⊂ TxtfatItEx ⊂ TxtGEx.

Proof. The first inequality is easy to see using the class L = {{1, 2, 3, . . .}} ∪ {L | 0 ∈ L,L is
finite}. Clearly, L is in TxtfatItEx, as the learner can just output a grammar for {1, 2, 3, . . .},
until it sees the element 0. From then on, the learner can just output the set of elements seen in
the input after having seen the element 0. It is well-known [CCJS07] that L /∈ TxtItEx.

Regarding the second inequality, let L and H be a recursively inseparable pair of languages
[Rog67]. Consider the class L = {L,N}∪{L∪{x} | x ∈ H}. L is TxtGEx-learnable: the learner
would first conjecture L and then change to L ∪ {x} whenever it turns out that some x seen so
far is enumerated into H and make another mind change to N whenever it turns out that two
elements seen in the input are enumerated into H.

However, L is notTxtfatItEx-learnable. Suppose by way of contradiction thatM TxtfatItEx-
learns L. Let σ be a locking sequence forM on L (existence of such a σ can be shown for learning
from fat texts in a way similar to the corresponding result for learning from arbitrary texts from
[BB75]). Suppose M∗(σ) = e. Now define a function f as follows: if M(e, x) = e then f(x) = 1

17



else f(x) = 0. The function f is total recursive, as N ∈ L and therefore the learner M has to
be total, and thus the condition defining f can be evaluated by simulating M . Furthermore,
f(x) = 1 for all x ∈ L as σ is a locking sequence for M on L. In addition, f(x) = 1 for some
x ∈ H, as L and H are not recursively separable. It follows that σ is also a stabilising sequence
[BB75,Ful90] for M on L ∪ {x}, and thus M does not TxtfatItEx-learn the language L ∪ {x}.
Thus, M cannot TxtfatItEx-learn L.

The above result shows that iterative learners have not only information-theoretic limitations in
that they forget past data and cannot recover them (on normal text), but also computational
limitations which cannot be compensated by having fat text. Next we show that fat text always
allows for learning conservatively (as well as strongly decisively) for iterative learners.

Theorem 15. TxtfatItEx = TxtfatItConsvEx = TxtfatItSDecEx.

Proof. Note that an iterative learner learning from fat text is sink-locking on fat texts: When-
ever the learner M learns L and there is for the current hypothesis e an x ∈ L with M(e, x) 6= e
then this x will eventually appear in the fat text and the learner will eventually make a mind
change; thus the learner only converges to a hypothesis e if M(e, x) = e for all x ∈ L. Thus one
can apply Theorem 8 and sees that the learner N constructed there learns, from fat texts, the
same languages as the original learnerM and is, in addition, conservative and weakly monotonic.
Furthermore, one can follow the arguments there to see that the learner can be made strongly
decisive.

The following proposition follows from Lemma 13 and Theorems 2 and 3.

Proposition 16. (a) There exists a class of languages which is TxtItMonEx, TxtItSDecEx,
TxtItConsvEx-learnable but not TxtfatSMonEx-learnable.

(b) There is a class which is TxtItSDecEx-learnable (and therefore also TxtItConsvEx-
learnable) but not TxtfatItMonEx or Txtone−oneItMonEx-learnable.

The proof of Theorem 5 can be easily modified to show the following result.

Theorem 17. TxtItSMonEx 6⊆ TxtfatItSNUShEx.

We next show that learning from one-one texts is equivalent to learning from arbitrary text for
a number of possible learning restrictions. For giving our result we need the following definition
(which is now given in the form for language learning).

Definition 18 (Kötzing [Köt14]). For all p ∈ R, we let

Sem(p) = {p′ ∈ R | ∀i : Wp(i) = Wp′(i)};
Mc(p) = {p′ ∈ R | ∀i : (p(i) = p(i+ 1)⇒ p′(i) = p′(i+ 1))}.

A sequence acceptance criterion δ is said to be a semantic restriction iff, for all (p, g) ∈ δ and
p′ ∈ Sem(p), (p′, g) ∈ δ. A sequence acceptance criterion δ is said to be a pseudo-semantic
restriction iff, for all (p, g) ∈ δ and p′ ∈ Sem(p) ∩Mc(p), (p′, g) ∈ δ.

18



Intuitively, semantic restrictions allow for arbitrarily changing the syntax of the conjectures,
as long as the semantics stay the same. Pseudo-semantic restrictions further require that no
additional mind changes are introduced this way.

Note that all learning restrictions given in this paper except Fex are pseudo-semantic re-
strictions.

Theorem 19. Let δ be a pseudo-semantic restriction allowing for simulation on consistent text
(see Definition 12). Then we have, for each set of languages L, L is Txtone−oneItδ-learnable iff
it is TxtItδ-learnable.

Proof. Clearly, if L is TxtItδ-learnable, then it is Txtone−oneItδ-learnable.
Now supposeM is aTxtone−oneItδEx-learner for L. Define learnerN as follows. Intuitively,N

will keep track of “elements which caused mind change” by using padding. The initial conjecture
of N is pad(M(∅), ∅) and, for all e,D and x,

N(pad(e,D), x) =

{
pad(M(e,#), D), if x ∈ D ∪ {#} or M(e, x) = e;

pad(M(e, x), D ∪ {x}), otherwise.

We now claim that if M Txtone−oneItEx-learns L, then N TxtItEx-learns L. To see this,
consider any arbitrary text T for L, and consider the behaviour of N on T . Note that for any
x 6= #, the second case in the definition of N can apply at most once. Let now T ′ be the text
derived from T such that

− if the second case in the definition of N applies once for x, then replace all except the
corresponding occurrence of x in T by #;

− if the second case never applies for x, then replace the first occurrence of x in T by the two
symbols x and # and all other occurrences of x by #.

Now the new text T ′ as formed above is a one-one text for L, and N simulates M on T ′,
possibly skipping ahead with hypotheses whenever an occurrence of x was replaced by x#. The
hypotheses output by N are semantically equivalent to those given byM , and new mind changes
are not introduced. Thus, N TxtItδ-learns L.

Theorem 20. There exists a class L which is Txtone−oneItFex-learnable but not Txtone−oneEx-
learnable. Therefore L is not TxtItEx-learnable (and hence not TxtItFex-learnable).

Proof. Let L consist of the languages Le,z, z ≤ e, e, z ∈ N, where Le,z = {(e, x, y) | x = z or
x+ y < |We|}.

The learner on seeing any input element (e, x, y), outputs a grammar (obtained effectively
from (e, x)) for Le,min({e,x}).

If We is infinite, then Le,e = Le,z for all z ≤ e, and thus all the (finitely many) grammars
output by the learner are for Le,e.

If We is finite, then Le,z contains only finitely many elements which are not of the form
(e, z, ·), and thus on any one-one text for Le,z, the learner converges to a grammar for Le,z.

19



We now show that L is not TxtEx-learnable. Suppose otherwise that some learner TxtEx-
learns L. Then, for e ≥ 2, We is infinite iff the learner has a stabilising sequence [BB75,Ful90]
τ on the set {(e, x, y) | x, y ∈ N} and the largest sum x + y, for some (e, x, y) occurring in τ ,
is below |We|. Thus it would be a Σ2 condition to check whether We is infinite in contradiction
to the fact that checking whether We is infinite is Π2 complete. Thus such a learner does not
exist.

Theorem 21. There exists a class of languages which is iteratively learnable using texts where
every element which is maximal so far is marked, but is not TxtItEx-learnable.

Proof. Let a class L contain, for all n ∈ N, the following sets:

L0 = {2m | m ∈ N},
L2n+1 = {2m | m ∈ N,m ≤ n} ∪ {2n+ 1} and
L2n+2 = {2m | m ∈ N,m ≤ n+ 1} ∪ {2n+ 1}.

To see that L is iteratively learnable from texts where every maximal element is marked, note
that the learner can initially output grammar for L0. If and when it sees an odd element 2n+1,
it outputs a grammar for L2n+1, if 2n + 1 was the maximal element; otherwise it outputs a
grammar for L2n+2. From then on, it changes its mind to L2n+2 iff it sees 2n+ 2 in the input.

Now we show that L is not TxtItEx-learnable. Suppose by way of contradiction that M
TxtItEx-learns L. Suppose σ is a locking sequence for M on L0. Without loss of generality
assume that content(σ) = {2m | m ≤ n} for some n. Now, M∗(σ � 2n + 2 � 2n + 1 � #r) =
M∗(σ � 2n+1 �#r), for all r, and thus M fails to identify at least one of L2n+1 and L2n+2.

6 Class Preserving Hypotheses Spaces

A one-one hypothesis space might be considered in order to prevent that an iterative learner
cheats by storing information in the hypothesis. A hypothesis space (He)e∈N is called class pre-
serving (for learning L) [LZ93] iff {He | e ∈ N} = L. A learner is class preserving, if the
hypothesis space used by it is class preserving. The following lemma is useful when considering
one-one hypothesis spaces.

Lemma 22. Suppose M TxtItEx-learns L using one-one class preserving hypothesis space
H = {He | e ∈ N} for L. Then, for all e, for all x ∈ He ∪ {#}, M(e, x) = e.

Proof. Let σ be locking sequence for M on He. Then, since e is the only grammar for He,
M∗(σ) = e. Furthermore, M(e, x) = e for all x ∈ He ∪ {#}.

The next result shows that the usage of one-one texts increases the learning power of those
iterative learners which are forced to use one-one class preserving hypothesis spaces, that is,
which cannot store information in the hypothesis during the learning process.

20



Theorem 23. There exists a class L having a one-one class preserving hypothesis space such
that the following conditions hold:

(a) L can be Txtone−oneItEx-learnt using any fixed one-one class preserving hypothesis space
for L;

(b) L cannot be TxtItEx-learnt using any fixed one-one class preserving hypothesis space for
L.

Proof. For each e, define L2e and L2e+1 based on a recursive enumeration of all pairs of learners
and hypothesis spaces, where the e-th pair is 〈Me,He〉:
1. Initially, let L2e contain {〈e, 2x〉 | x ∈ N} and L2e+1 contain {〈e, 2x+ 1〉 | x ∈ N}.
2. Search for σ2e, σ2e+1 such that
− content(σ2e) ⊆ {〈e, 2x〉 | x ∈ N} and
− content(σ2e+1) ⊆ {〈e, 2x+ 1〉 | x ∈ N} and
− M∗

e (σ2e) 6=M∗
e (σ2e+1) and

− both He
M∗e (σ2e)

and He
M∗e (σ2e+1)

enumerate some (possibly different) element of the form
〈e, ·〉.

3. If and when such σ2e and σ2e+1 are found, enumerate the set content(σ2e) ∪ content(σ2e+1)
into both L2e and L2e+1. Search for an element 〈e, xe〉 such thatM∗

e (σ2e�〈e, xe〉) 6=M∗
e (σ2e+1�

〈e, xe〉).
4. If and when such an 〈e, xe〉 is found, enumerate 〈e, xe〉 in both L2e and L2e+1.

This completes the definition of L2e and L2e+1. Note that by construction L contains exactly
two languages, L2e and L2e+1, which contain any element of the form 〈e, ·〉.

Now, if the e-th pair 〈Me,He〉 witnesses that L is TxtItEx-learnt by Me using one-one class
preserving hypothesis space He for L, then we get a contradiction as follows. Note that step 2 in
the construction of L2e and L2e+1 must succeed, as otherwise, Me does not identify at least one
of L2e = {〈e, 2x〉 | x ∈ N} or L2e+1 = {〈e, 2x + 1〉 | x ∈ N}. As He is one-one class preserving
hypothesis space for L, we must have that exactly one of M∗

e (σ2e) and M∗
e (σ2e+1) is a grammar

(in hypothesis space He) for L2e and the other one is a grammar for L2e+1. Now, step 3 must also
succeed to find 〈e, xe〉 as both L2e and L2e+1 contain content(σ2e) ∪ content(σ2e+1). But then,
both L2e and L2e+1 contain 〈e, xe〉 and thus Me violates Lemma 22.

Now we show that L is Txtone−oneItEx-learnable using any fixed one-one class preserving
hypothesis space H = (Hi)i∈N for L. To see this consider any one-one class preserving hypothesis
space for L. Let he be the unique grammar for Le in hypothesis space H = (Hi)i∈N.

On any input element 〈e, x〉, the learner M searches for a grammar h such that Hh con-
tains 〈e, x〉, and then outputs h. It is easy to verify that on any one-one input text T for L2e

(respectively L2e+1), the learner M will output h2e infinitely often and h2e+1 only finitely often
(respectively, h2e+1 infinitely often and h2e only finitely often). Thus, M Txtone−oneItEx-learns
L using hypothesis space H.

Theorem 2 and Theorem 3 witness that the hierarchy SMonEx ⊆MonEx ⊆WMonEx holds
for iterative learners. It is easy to see that one can use one-one class preserving hypothesis spaces
for the learners in these theorems.

21



We now consider learning by reliable learners. A learner is reliable (see [BB75,Min76]) if it
is total and for any text T , if the learner converges on T to a hypothesis e, then e is a correct
grammar for content(T ). We denote the reliability constraint on the learner by using Rel in the
criterion name. For the following result, we assume (by definition) that if a learner converges to
? on a text, then it is not reliable. The next result shows that there is exactly one class which
has a reliable iterative learner using a one-one class preserving hypothesis space and this is the
class FIN = {L | L is finite}.

Theorem 24. If L is TxtItRelEx-learnable using a one-one class preserving hypothesis space
then L must be FIN.

Proof. It is easy to see that FIN is TxtItRelEx-learnable using a class preserving one-one
hypothesis space.

Now, suppose M is TxtItRelEx-learner for L using one-one class preserving hypothesis
space H = (He)e∈N.

If L contains an infinite language L, then let σ be locking sequence for M on L. Then, M
converges on σ �#∞ to a grammar for L, and thus is not reliable. Thus, L ⊆ FIN.

Now suppose L does not contain some finite set S. Let σ be such that content(σ) = S. Then,
as M does not converge on σ �#∞, for some r, M∗(σ �#r) = e 6=?. Now, M∗(σ �#r �#) = e
(by Lemma 22). Thus M converges on σ �#∞, a contradiction.

Theorem 25. There exists a subclass of FIN which is not TxtItEx-learnable using a one-one
class preserving hypothesis space.

Proof. Let L = {L | 2 ≤ card(L) ≤ 3}. Suppose by way of contradiction that M TxtItEx-
learns L using a one-one class preserving hypothesis space H = (Hi)i∈N.

Note that for any σ and τ containing at most three distinct elements, it is not possible that
content(σ) 6= content(τ) and M∗(σ) = M∗(τ). To see this, note that if both σ and τ contain at
least two distinct elements, thenM∗(σ�#∞) =M∗(τ �#∞), but σ�#∞ and τ �#∞ are texts for
different languages in L. If at least one of σ and τ contains at most one distinct element, then let
w, z be such that content(σ) ∪ {w, z} 6= content(τ) ∪ {w, z} and card(content(σ) ∪ {w, z}) ≤ 3
and card(content(τ)∪{w, z}) ≤ 3. Note that there exist such w, z (if τ contains at least as many
elements as σ, and y ∈ content(τ) − content(σ), then we can choose w, z to be different from
y such that card(content(τ) ∪ {w, z}) ≤ 3). Now, M∗(σ � (w � z)∞) = M∗(τ � (w � z)∞) even
though σ � (w � z)∞ and τ � (w � z)∞ are texts for different languages in L.

In particular we may assume without loss of generality that M does not output ? on any
non-empty input, as we may ignore from consideration elements of the only set S of cardinality
at most 3, such that some sequence σ with content(σ) = S may lead to ? output.

Let a ∈ N be any element.
Case 1: M∗(a) = p, where Hp does not contain a or card(Hp) = 3. Then, using Lemma 22,

M fails to learn {a, b}, where b ∈ Hp − {a}, from the text a � b �#∞.
Case 2: M∗(a) = p, where Hp = {a, b}.

22



Let c 6∈ Hp.
Case 2.1: M∗(a � c) = p′, where Hp′ 6= {a, c}. Then, using Lemma 22 M fails to learn {a, c}

from the text a � c �#∞.
Case 2.2: M∗(a� c) = p′, where Hp′ = {a, c}. Then, using Lemma 22 M fails to learn {a, b, c}

from the text a � b � c �#∞.
Thus, M cannot TxtItEx-learn L using a one-one class preserving hypothesis space.

Note that in learning theory without loss of generality one assumes that classes are not empty.
The next theorem characterises when a class can be iteratively and reliably learnt using a class
preserving hypothesis space: it is the case if and only if the set of canonical indices of the
languages in the class is recursively enumerable. Note that the hypothesis space considered here
is not one-one and that padding is a natural ingredient of the learning algorithm.

Theorem 26. A class L has a class preserving iterative and reliable learner iff it does not
contain infinite languages and the set X = {e | De ∈ L} of its canonical indices is recursively
enumerable.

Proof. It is well known that classes containing infinite languages do not have a reliable learner.
Furthermore, it is easy to see that a set De is learnt by an iterative reliable learnerM using class
preserving hypothesis space iff there is a sequence σ with range De such that M(M∗(σ), x) =
M∗(σ) for all x ∈ De ∪ {#}; thus the set of all canonical indices in the class learnt by M is
recursively enumerable.

For the converse direction, assume that L ⊆ FIN is nonempty and the set X of its canonical
indices is recursively enumerable. Now it is shown that L is TxtItRelEx-learnable using the
hypothesis space H consisting of sets H〈e,s〉 which are defined as follows: Let Xs denote the
elements enumerated into X within s steps; if e ∈ Xs then H〈e,s〉 = De else H〈e,s〉 is some default
finite set in L.

The iterative learner always conjectures indices of the form 〈e, s〉 where e is maintained such
that De contains exactly the data observed so far and s is a parameter which is used to enforce
syntactic divergence in the case that e is not yet enumerated into X and which either grows or
stabilises. The initial hypothesis of the iterative learner is 〈0, 0〉. Given a previous hypothesis
〈d, s〉 and observing datum x, the new hypothesis is computed as follows:

− Let e be the unique index satisfying De = Dd ∪ {x} − {#};
− If e ∈ Xs then the new hypothesis is 〈e, s〉 else the new hypothesis is 〈e, s+ 1〉.

It is easy to see by induction that the current hypothesis always is a pair 〈e, s〉 such that De

consists of exactly the data observed so far. In the case that the set to be learnt is infinite,
the parameter e will grow unboundedly and the sequence of hypotheses is therefore divergent
and reliability is assured. In the case that the set to be learnt is finite, from some time on the
parameter e will stabilise at the correct value. In the case that e /∈ X the parameter s will —
after the correct value for e is reached — increase in every step and the learner will diverge. In
the case that e ∈ X the parameter s will stop growing once e ∈ Xs is reached and from that

23



point onwards the learner has converged to a hypothesis 〈e, s〉 such that De is the set to be learnt
and e ∈ Xs; therefore H〈e,s〉 = De and the hypothesis is correct.

In summary, the learner converges to some hypothesis 〈e, s〉 if and only if the set to be learnt
is finite and in the class to be learnt; furthermore, in the case of convergence, H〈e,s〉 = De and De

is equal to the set to be learnt. As the hypothesis space H is class preserving, the given learner
satisfies all required conditions.

7 Syntactic versus Semantic Conservativeness

A learnerM is called semantically conservative iff wheneverWM∗(σ) 6= WM∗(σ�τ) then content(σ�
τ) 6⊆ WM∗(σ). This notion coincides with syntactic conservative learning in the case of standard
explanatory learning; however, in the special case of iterative learning, it is more powerful than
the usual notion of conservative learning.

Theorem 27. There is a class L which can be learnt iteratively and strongly monotonically and
semantically conservatively but which does not have an iterative and syntactically conservative
learner.

Proof. Let the class L consist of the following languages constructed for each n:

− First one constructs a text Tn starting with 3n + 1 � 0 and then extended by sequences of
numbers of the form 3m such that the text is extended by a new piece whenever this new
piece causes the n-th iterative learner Mn to make a mind change. L3n is the content of this
text Tn (or the finite part of it constructed).

− In the case that Tn is a complete text then L3n+1 and L3n+2 are equal to L3n.
− In the case that only a finite part σn of Tn is constructed, let m be the canonical index for this

sequence σn. Let L3n+1 consist of content(σn) ∪ {3m+ 2} plus the first number 3h found (if
any) such that there is a finite sequence τn ∈ 0∗ for which Mn outputs on σn �3h�3m+2� τn
and σn � 3h � 3m + 2 � τn � 0 the same hypothesis en while it outputs a different hypothesis
on σn � 3h � 3m+ 2 � τn � 3h. Furthermore, L3n+2 consists of 3n+ 1, 3m+ 2 and all numbers
of the form 3k.

Now one shows that no learner Mn iteratively and syntactically conservatively learns the class
L. First, in the case that the text Tn is total, the learner Mn fails to converge on this text for
L3n and therefore does not learn L3n.

Second, in the case that only a finite part σn of Tn is constructed and 3h is not enumerated
into L3n+1 then either Mn does not converge on the text σ �3m+2�0∞ for L3n+1 or it converges
to a hypothesis en which is later not revised when seeing any number of the form 3k. In the
first subcase (the nonconvergence case) the learner fails to learn the set L3n+1 and in the second
subcase the learner converges on some texts for L3n+1 and L3n+2 to the same index and fails to
learn at least one of these sets.

Third, in the case that only a finite part σn of Tn is constructed and 3h is enumerated into
L3n+1, then the witnesses for this enumeration testify that either en is not the correct index

24



(although the learner converges on the text σn � 3h � 3m + 2 � τn � 0∞ for L3n+1 to this index)
or there is a mind change witnessing that Mn is not syntactically conservative on the text
σn � 3h � 3m+2 � τn � 3h � 0∞ for L3n+1. This case-distinction completes the proof that each Mn

fails to learn the class in an iterative and syntactically conservative manner.
Furthermore, an iterative and strongly monotonic learner for L can work as follows. It con-

jectures grammar for ∅ until either the number 3n + 1 or 3m + 2 are observed in the input
(note that the latter one codes the number 3n + 1 by coding σn). In the first case the learner
conjectures the set L3n whose index can be computed from n. In the second case or whenever
later 3m + 2 has appeared in the input, the learner updates its conjecture to L3n+1 as an r.e.
index for this language can be computed from m. If the learner sees one number 3k outside
content(σn)∪ {3m+ 2} then the learner pads this number into the previous hypothesis without
making a semantic mind change. If it sees a further number 3k′ outside content(σn)∪{3k, 3m+2}
then the learner updates to a hypothesis for L3n+2 which again can be computed from m. Note
that these updates are all strongly monotonic as long as the learner sees only data from sets in
the class. Furthermore, note that given the choices of the algorithm, all updates are semantically
conservative. The element 3m + 2 guarantees that L3n+1 is a proper superset of L3n and that
furthermore it has at most one element outside content(σn) ∪ {3m + 2} and therefore also the
second semantic mind change is semantically conservative and strongly monotonic.

8 Conclusion

We considered iterative learning in the limit and gave a complete map of various update con-
straints in this setting (Figure 1). In particular, we showed that even decisive learning does not
reduce learning power below unconstrained learning, but strongly decisive learning does.

However, as the proofs have shown, many intricate tricks to fulfill these requirements had to
be employed which might not be possible in more applied settings (for example it was heavily
exploited that W -indices were used as hypotheses and not, for instance, regular expressions for
learning a subclass of regular languages). While it was important to characterize the relations of
the learning criteria in this very general setting, further work should address other, more specific
settings. As a first step we gave some results concerning class preserving hypothesis spaces in
Section 6, but clearly more work can be done towards the end of understanding the impact of
the hypothesis space used in iterative learning.

Acknowledgements. A preliminary version of this paper appeared at the conference ALT 2014
[JKMS14]. We thank the referees of the journal and of ALT 2014 for several helpful comments.

References

[Ang80] Dana Angluin. Inductive inference of formal languages from positive data. Infor-
mation and Control, 45:117–135, 1980.

25



[Bar74] J. Bārzdiņš. Inductive inference of automata, functions and programs. In Pro-
ceedings of the 20th International Congress of Mathematicians, Vancouver, pages
455–460, 1974. In Russian. English translation in American Mathematical Society
Translations: Series 2, 109:107-112, 1977.

[BB75] Lenore Blum and Manuel Blum. Toward a mathematical theory of inductive infer-
ence. Information and Control, 28:125–155, 1975.

[BCMSW08] Ganesh Baliga, John Case, Wolfgang Merkle, Frank Stephan and Rolf Wiehagen.
When unlearning helps. Information and Computation, 206:694–709, 2008.

[CCJS07] Lorenzo Carlucci, John Case, Sanjay Jain and Frank Stephan. Results on Memory-
Limited U-Shaped Learning. Information and Computation, 205:1551–1573, 2007.

[Cas99] John Case. The power of vacillation in language learning. SIAM Journal on Com-
puting, 28:1941–1969, 1999.

[CK10] John Case and Timo Kötzing. Strongly non-U-shaped learning results by general
techniques. Proceedings of the 23rd International Conference on Computational
Learning Theory, COLT 2010, Proceedings. Pages 181–193, Omnipress 2010.

[CL82] John Case and Chris Lynes. Machine inductive inference and language identifica-
tion. Proceedings of the 9th International Colloquium on Automata, Languages and
Programming, ICALP 1982. Springer LNCS 140:107–115, 1982.

[CM08b] John Case and Samuel E. Moelius. U-shaped, iterative, and iterative-with-counter
learning. Machine Learning, 72:63–88, 2008.

[Ful90] Mark Fulk. Prudence and other conditions on formal language learning. Information
and Computation, 85:1–11, 1990.

[GJS13] Ziyuan Gao, Sanjay Jain and Frank Stephan. On conservative learning of recur-
sively enumerable languages. Proceedings of the 9th Conference on Computability
in Europe: The Nature of Computation, Logic, Algorithms, Applications, CiE 2013.
Springer LNCS 7921:181–190, 2013.

[Gol67] E. Mark Gold. Language identification in the limit. Information and Control,
10:447–474, 1967.

[GL04] Gunter Grieser and Steffen Lange. Incremental learning of approximations from
positive data. Information Processing Letters, 89:37-42, 2004.

[Jan91] Klaus-Peter Jantke. Monotonic and non-monotonic inductive inference. New Gen-
eration Computing, 8:349–360, 1991.

[JKMS14] Sanjay Jain, Timo Kötzing, Junqi Ma and Frank Stephan. On the role of up-
date constraints and text-types in iterative learning. Proceedings of the 25th Inter-
national Conference on Algorithmic Learning Theory, ALT 2014. Springer LNAI
8776:55–69, 2014.

[JMZ13] Sanjay Jain, Samuel E. Moelius and Sandra Zilles. Learning without coding. The-
oretical Computer Science, 473:124–148, 2013.

[JORS99] Sanjay Jain, Daniel Osherson, James Royer and Arun Sharma. Systems that Learn:
An Introduction to Learning Theory. MIT Press, Cambridge, Massachusetts, second
edition, 1999.

26



[Köt09] Timo Kötzing. Abstraction and Complexity in Computational Learning in
the Limit. PhD thesis, University of Delaware, 2009. Available online at
http://pqdtopen.proquest.com/#viewpdf?dispub=3373055.

[Köt14] Timo Kötzing. A Solution to Wiehagen’s Thesis. Proceedings of the 31st Inter-
national Symposium on Theoretical Aspects of Computer Science, STACS 2014.
LIPIcs 25, pages 494–505, 2014.

[LG02] Steffen Lange and Gunter Grieser. On the power of incremental learning. Theoret-
ical Computer Science, 288:277–307, 2002.

[LG03] Steffen Lange and Gunter Grieser. Variants of iterative learning. Theoretical Com-
puter Science, 292:359–376, 2003.

[LZ93] Steffen Lange and Thomas Zeugmann. Monotonic versus non-monotonic language
learning. Proceedings of the 2nd International Workshop on Nonmonotonic and
Inductive Logic. Springer LNAI 659:254–269, 1993.

[LZ96] Steffen Lange and Thomas Zeugmann. Incremental learning from positive data.
Journal of Computer and System Sciences, 53:88–103, 1996.

[LZZ08] Steffen Lange, Thomas Zeugmann and Sandra Zilles. Learning indexed families of
recursive languages from positive data: a survey. Theoretical Computer Science,
397:194–232, 2008.

[Min76] E. Minicozzi, Some natural properties of strong identification in inductive inference,
Theoretical Computer Science, 2:345–360, 1976.

[OSW82] Daniel Osherson, Micheal Stob and Scott Weinstein. Learning strategies. Informa-
tion and Control, 53:32–51, 1982.

[OSW86] Daniel Osherson, Micheal Stob and Scott Weinstein. Systems that Learn: An In-
troduction to Learning Theory for Cognitive and Computer Scientists. MIT Press,
Cambridge, Mass., 1986.

[OW82] Daniel Osherson and Scott Weinstein. Criteria of language learning. Information
and Control, 52:123–138, 1982.

[RC94] James Royer and John Case. Subrecursive Programming Systems: Complexity and
Succinctness. Research monograph in Progress in Theoretical Computer Science.
Birkhäuser Boston, 1994.

[Rog67] Hartley Rogers. Theory of Recursive Functions and Effective Computability. Mc-
Graw Hill, New York, 1967. Reprinted by MIT Press, Cambridge, Massachusetts,
1987.

[Wie76] R. Wiehagen. Limes-Erkennung rekursiver Funktionen durch spezielle Strategien.
Journal of Information Processing and Cybernetics (EIK), 12(1–2):93–99, 1976.

[Wie90] Rolf Wiehagen. A thesis in inductive inference. Proceedings of the 1st Workshop
on Nonmonotonic and Inductive Logic. Springer LNCS 543:184–207, 1990.

27


