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Abstract

U-shaped learning is a learning behaviour in which the learner first learns a given
target behaviour, then unlearns it and finally relearns it. Such a behaviour, observed
by psychologists, for example, in the learning of past-tenses of English verbs, has
been widely discussed among psychologists and cognitive scientists as a fundamental
example of the non-monotonicity of learning. Previous theory literature has studied
whether or not U-shaped learning, in the context of Gold’s formal model of learning
languages from positive data, is necessary for learning some tasks.

It is clear that human learning involves memory limitations. In the present paper
we consider, then, the question of the necessity of U-shaped learning for some learn-
ing models featuring memory limitations. Our results show that the question of the
necessity of U-shaped learning in this memory-limited setting depends on delicate
tradeoffs between the learner’s ability to remember its own previous conjecture, to
store some values in its long-term memory, to make queries about whether or not
items occur in previously seen data and on the learner’s choice of hypotheses space.
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1 Introduction and Motivation

In Section 1.1 we explain U-shaped learning and in Section 1.2 memory-limited
learning. In Section 1.3 we summarize our main results of the present paper
with pointers to later sections where they are treated in more detail.

1.1 U-Shaped Learning

U-shaped learning occurs when the learner first learns a correct behaviour,
then abandons that correct behaviour and finally returns to it once again. This
pattern of learning has been observed by cognitive and developmental psychol-
ogists in a variety of child development phenomena, such as language learning
[6,26,34], understanding of temperature [34,35], understanding of weight con-
servation [5,34], object permanence [5,34] and face recognition [7]. The case
of language acquisition is paradigmatic. In the case of the past tense of En-
glish verbs, it has been observed that children learn correct syntactic forms
(call/called, go/went), then undergo a period of overregularization in which
they attach regular verb endings such as ‘ed’ to the present tense forms even in
the case of irregular verbs (break/breaked, speak/speaked) and finally reach
a final phase in which they correctly handle both regular and irregular verbs.
This example of U-shaped learning behaviour has figured so prominently in
the so-called “Past Tense Debate” in cognitive science that competing models
of human learning are often judged on their capacity for modeling the U-
shaped learning phenomenon [26,31,36]. Recent interest in U-shaped learning
is also witnessed by the fact that the Journal of Cognition and Development
dedicated its first issue in the year 2004 to this phenomenon.

While the prior cognitive science literature on U-shaped learning was typically
concerned with modeling how humans achieve U-shaped behaviour, [2,8,9] are
motivated by the question of why humans exhibit this seemingly inefficient
behaviour. Is it a mere harmless evolutionary inefficiency or is it necessary for
full human learning power? A technically answerable version of this question is:
are there some formal learning tasks for which U-shaped behaviour is logically
necessary? The answer to this latter question requires that we first describe
some formal criteria of successful learning.
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A learning machine M reads an infinite sequence consisting of the elements
of any language L in arbitrary order with possibly some pause symbols # in
between elements. During this process the machine outputs a corresponding
sequence eg e; ... of hypotheses (grammars) which may generate the language
L to be learned. Sometimes, especially when numerically coded, we also call
these hypotheses indices. A fundamental criterion of successful learning of
a language is called explanatory learning (Ex-learning) and was introduced
by Gold [17]. Explanatory learning requires that the learner’s output conjec-
tures stabilize in the limit to a single conjecture (grammar/program, descrip-
tion/explanation) that generates the input language. Behaviourally correct
learning [12,29] requires, for successful learning, only convergence in the limit
to possibly infinitely many syntactically distinct but correct conjectures. An-
other interesting class of criteria features wacillatory learning [10,18]. This
paradigm involves learning criteria which allow the learner to vacillate in the
limit between at most finitely many syntactically distinct but correct conjec-
tures. For each criterion that we consider above (and below), a non U-shaped
learner is naturally modeled as a learner that never semantically returns to a
previously abandoned correct conjecture on languages it learns according to
that criterion.

Baliga and his co-workers [2] showed that every Ex-learnable class of languages
is Ex-learnable by a non U-shaped learner, that is, for Ex-learnability, U-
shaped learning is not necessary. Furthermore, based on a proof of Fulk, Jain
and Osherson [16], Baliga, Case, Merkle, Stephan and Wiehagen [2] noted
that, by contrast, for behaviourally correct learning [12,29], U-shaped learning
is necessary for full learning power. In [8] it is shown that, for non-trivial
vacillatory learning, U-shaped learning is again necessary (for full learning
power).

1.2 Memory-Limited Learning

It is clear that human learning involves memory limitations. In the present
paper we consider the necessity of U-shaped learning in formal memory-limited
versions of language learning. In the prior literature at least the following three
types of memory-limited learning have been studied.

A most basic concept of memory-limited learning is iterative learning
[24,37,38], according to which the learner reacts to its current data item, can
remember its own last conjecture but cannot store any of the strictly previ-
ously seen data items. Iterative learning admits of learning non-trivial classes.
For example, the class of finite sets is iteratively learnable as is a class of
self-describing sets, for example, the class of languages with the least element
coding a grammar for the language. Furthermore, for each m > 1, the class



of unions of m of Angluin’s [1] pattern languages is iteratively learnable [11].
The notion of n-feedback learning denotes iterative learning where, in addi-
tion, the learner can make n simultaneous queries asking whether some datum
has been seen in the past [11,24]. Finally, a learner is called an n-bounded ex-
ample memory learner [11,16,24,30] if, besides reacting to its currently seen
data item and remembering its own last conjecture, it is allowed to store in
“long term memory” at most n strictly previously seen data items.

For the present paper, our first intention was to study the impact of forbid-
ding U-shaped learning in each of the above three models of memory-limited
learning. So far we have had success for these problems only for some more
restricted variants of the three models. Hence, we now describe these variants.

Our variants of iterative learning are motivated by two aspects of Gold’s
model. The first aspect is the absolute freedom allowed regarding the se-
mantic relations between successive conjectures, and between the conjectures
and the input. Many forms of semantic constraints on the learner’s sequence
of hypotheses have been studied in the previous literature (for example, con-
servativity [1], consistency [1,3], monotonicity [20,39]) and it is reasonable to
explore their interplay with U-shaped learning in the memory-bounded setting
of iterative learning. Secondly, it is well-known that the choice of the hypothe-
ses space from which the learner can pick its conjectures has an impact on the
learning power [23,24]. We accordingly also consider herein U-shaped iterative
learning with restrictions on the hypotheses space.

For the case of feedback learning, we introduce and consider a model called
n-memoryless feedback learning which restricts n-feedback learning so that the
learner does not remember its last conjecture. These criteria form a hierarchy
of more and more powerful learning criteria increasing in n and, for n >
0, are incomparable to iterative learning, see Theorem 32 and Remark 25
each in Section 6. The criterion of 0-memoryless feedback learning is properly
contained in the criterion of iterative learning, see Remark 38 in Section 7
below.

Finally, in Section 7, we introduce a more limited variant of bounded example
memory, c-bounded memory states learning for which the learner does not
remember its previous conjecture but can store any one out of ¢ different values
in its long term memory [14,15,22]. For example, when ¢ = 2%, the memory is
equivalent to k bits of memory. By Theorem 37, these criteria form a hierarchy
of more and more powerful learning criteria increasing in c¢. Furthermore, the
comparisons between bounded memory states learning, iterative learning and
memoryless feedback learning are presented in Remark 38.

Our results herein on memory-limited models are presented for Ex-learning.
This is, in part, justified by the following considerations. In Section 3, Propo-



sitions 7 and 8 essentially imply that, for iterative learning, the Ex case is the
only interesting case. In Section 7, Theorem 34 implies that c-bounded mem-
ory states behaviourally correct learning can be replaced by (¢ + 1)!-bounded
memory states Ex-learning.

1.3 Brief Summary of Main Results

In Section 3 we formally define iterative learning and prove some background
facts about it. Furthermore, we state the basic connections between itera-
tive non U-shaped learning and iterative U-shaped learning in the context of
behaviourally correct, vacillatory and explanatory learning.

In Section 4 we study the interplay of hypotheses spaces and non U-shaped
learning. An indexed family of recursive languages L is a class of recursive
languages Lg, L1, Lo, . .. such that the predicate = € L; is uniformly recursive
in both 2 and z. In this context, 7 is called an index of L;; this ¢ codes how
to algorithmically decide L;. Angluin [1] noticed the importance of indexed
families for learning theory, gave a characterization when such a class is learn-
able from positive data and stated that many classes considered in learning
theory are indeed indexed families. Class-preserving language learning by a
learner M [23] of an indexed family £ is Ex-learning, where, instead of us-
ing an acceptable programming system for making its conjectures, the learner
uses some recursive indexing of £. In particular, the main result of Section 4,
Theorem 12, shows that U-shaped learning is necessary for the full learning
power of class-preserving iterative learning [24].

In Section 5 we study, in the context of iterative learning, the relation of the
non U-shapedness constraint to other well studied constraints on the semantic
behaviour of the learner’s conjectures. We consider class-consistent learning
[1,3], according to which the learner’s conjectures, on the languages it learns,
must generate all the data on which they are based. Monotonic learning by
a machine M [39] requires that, on any input language L that M Ex-learns,
a new hypothesis cannot reject an element x € L that a previous hypothesis
already included. Theorem 19 shows that class-consistent iterative learners
can be turned into iterative non U-shaped and monotonic learners.

In Section 6, we formally define n-memoryless feedback learning (discussed
near the end of Section 1.2 above) and consider the impact of forbidding U-
shaped learning in this setting. The main result of Section 6, Theorem 30,
shows that U-shaped learning is necessary for the full learning power of n-
memoryless feedback learners.

In Section 7 we formally introduce c-bounded memory states learning (also
discussed near the end of Section 1.2 above). The main result of this section,



Theorem 35, shows that U-shaped behaviour does not enhance the learning
power of 2-bounded memory states learners. Here the memory in the ¢ = 2
case is 1 bit of memory; it is open as to how Theorem 35 goes for c-bounded
memory states learners, where ¢ > 2.

In Section 8 we summarize and briefly discuss our main results, and collect
open problems.

2 Notation and Preliminaries
2.1 Recursion Theory Background

Any unexplained recursion theoretic notation is from [32]. For general back-
ground on Recursion Theory we refer the reader to the standard text books
[27,28,32,33]. The symbol N denotes the set of natural numbers, {0, 1,2,3,...}.
The symbols (), C, C, O and D denote empty set, subset, proper subset, su-
perset and proper superset, respectively. Cardinality of a set S is denoted by
card(S). card(S) < # denotes that S is finite. The maximum and minimum
of a set are denoted by max(-), min(-), respectively, where max()) = 0 and
min()) = oo.

We let (-, -) stand for Cantor’s computable, bijective mapping (z,y) = 3(z+y)
(x4+y+1)+x from NxN onto N [32]. Note that (-, -) is monotonically increasing
in both of its arguments. We define m ((x,y)) = = and m((z,y)) = y.

By ¢ we denote a fixed acceptable numbering (programming system) [32] for
the partial-recursive functions mapping N to N. By ¢; we denote the partial-
recursive function computed by the program with number 7 in the ¢-system.
By ® we denote an arbitrary fixed Blum complexity measure [4] for the ¢-
system. A partial recursive function ®(-,-) is said to be a Blum complexity
measure for ¢, iff the following two conditions are satisfied:

e forall i and x, ®(i,z) ] iff p;(x)].
e the predicate P(i,z,t) = ®(i,z) < t is decidable.

By convention we use ®; to denote the partial recursive function z — ®(i, ).
Intuitively, ®;(x) may be thought of as the number of steps it takes to compute

wi(z).

By W; we denote the domain of ¢;. That is, W; is the recursively enumerable
(r.e.) subset of N accepted by the ¢-program i. Note that all acceptable num-
berings are recursively isomorphic and thus one could also define W; to be
the set generated by the i-th grammar. The symbol L ranges over the class of



r.e. sets. By L, we denote the complement of L, that is N — L. The symbol £
ranges over classes containing some, but not necessarily all, r.e. sets. By W ,
we denote the set {x < s: ®;(x) < s}. Similarly, y; s(z) denotes ¢;(z) if z < s
and ®;(x) < s; otherwise ¢; s(z) is undefined.

2.2 Ezplanatory and Non-U-Shaped Learning

We now present concepts from language learning theory [17,18]. The next
definition introduces the concept of a sequence of data.

Definition 1 (a) A sequence o is a mapping from an initial segment of N into
(NU {#}). The empty sequence is denoted by .

(b) The content of a sequence o, denoted content(c), is the set of natural
numbers in the range of o.

(c) The length of o, denoted by |o|, is the number of elements in o. So, |A| = 0.

(d) For n < |o], the initial segment of o of length n is denoted by o[n]. So,
a[0] is A.

(e) We use 0 C 7 to denote that o is an initial segment of 7.
(f) Seg denotes the set of all finite sequences (initial segments).

Intuitively, the pause-symbol # represents a pause in the presentation of data.
We let o, 7 and v range over finite sequences. We denote the sequence formed
by the concatenation of 7 at the end of o by o7. Sometimes we abuse the no-
tation and use ox to denote the concatenation of sequence o and the sequence
of length 1 which contains the element x.

We often use a recursive padding function pad(e, X') with Whad(e,x) = We,
where — according to the context — X might be a number, a finite set or a
finite sequence. In particular, pad is chosen such that e, X can be computed
from pad(e, X) by a recursive function. Such padding functions can easily be
constructed [32].

Definition 2 [17] (a) A text T for a language L is a mapping from N into
(NU {#}) such that L is the set of natural numbers in the range of T T'(7)
represents the (i + 1)-th element in the text.

(b) The content of a text T, denoted by content(T), is the set of natural
numbers in the range of T'; that is, the language which 7" is a text for.

(¢) T'[n] denotes the finite initial segment of 7" with length n.



We now define the basic paradigm of learning in the limit, explanatory learn-
ing.

Definition 3 [17] A learner M : Seg — (N U {?}) is a (possibly partial)
recursive function which assigns hypotheses to initial segments. A learner M
converges on text T to e, iff M is defined on all initial segments of T" and, for
all but finitely many n, M(T[n]) = e.

M Ex-learns L iff, for every text T for L, M is defined on all initial segments
of T, and there is an index n such that M(T'[n]) # 7, Wamrp) = L and
M(T[m]) € {M(T'[n]),?} for all m > n. M Ex-learns a class £ (equivalently
M is an Ex-learner for £) iff M Ex-learns each L € L. Ex denotes the
collection of all classes of languages that can be Ex-learned.

Intuitively, one can consider the learner M as receiving the text T, and out-
putting conjectures M(T'[0]), M(T[1]), M(T'[2]), ... while it is receiving the
text. The learner Ex-learns a language if, for any text for the language, the
sequence of conjectures as above converges to a grammar for the language.
We say that a learner M has made a mind change at input T[n + 1], if
M(T'[n +1]) # M(T'[n]).

For Ex-learnability one may assume, without loss of generality, that the
learner is total. However, for some of the criteria below, such as class consis-
tency and iterative learning, this cannot be assumed without loss of generality.
The requirement for M to be defined on each initial segment of each text for
a language in £ is also assumed for learners with other criteria considered
below.

Now we define non U-shaped learning. A non U-shaped learner never makes
the sequence of correct—incorrect—correct conjectures while learning a language
that it actually learns. Thus, since such a learner has eventually to output a
correct conjecture, one can make the definition a bit simpler than the idea
behind the notion suggests.

Definition 4 [2]

(a) We say that M is non U-shaped on text T, iff, for all n and m > n, if
WM(T[”]) = Content(T), then (M(T[m]) ="7or WM(T[m]) = Content(T)).

(b) We say that M is non U-shaped on L iff M is non U-shaped on each text
for L.

(c) We say that M is non U-shaped on £ iff M is non U-shaped on each L € L.

Definition 5 Let 1 be a learning criterion. Then NUShI denotes the collec-
tion of all classes L such that there exists a machine M that learns L according



to I and is non U-shaped on L.

3 Iterative Learning

The Ex-model makes the assumption that the learner has access to the full
history of previous data. On the other hand it is reasonable to think that
humans have more or less severe memory limitations. This observation mo-
tivates, among other criteria discussed in the present paper, the concept of
iterative learning. An iterative learner features a severe memory limitation: it
can remember its own previous conjecture but not its past data items. More-
over, each conjecture of an iterative learner is determined as an algorithmic
function of the previous conjecture and of the current input data item.

The formal definition of an iterative learner is the following.

Definition 6 [37,38] An iterative learner is a (possibly partial) function M :
(NU{?}) x (NU{#}) — (NU{?}) together with an initial hypothesis ¢, €
N U {?}. M It-learns a class L iff, for every L € L and every text T for L,
the sequence eg,eq, ... defined inductively by the rule e,.; = Mf(e,, T(n))
satisfies: there exists an m such that e, is an index for L and for all n > m,
en € {em,?}. It denotes the collection of all iteratively learnable classes.

For iterative learners M and for o = (z¢,x1,...,%,), we sometimes use the
notation M(o) or M(xg,x1,...,2,) to denote the output of M when fed
Zo,x1,...,T, one after another in that sequence. Thus, one can view itera-
tive learners as Ex-learners with some constraints on the way hypothesis is
computed.

For iterative learners (without other constraints), one may assume without
loss of generality that they never output ?.

It is well-known that It C Ex [38]. For behaviourally correct learning [12,29],
where one requires that all but finitely many of learner’s conjectures are cor-
rect (though they may not be syntactically same), iterative learning is not
a restriction. This can be easily shown using padding, that is, a one-to-one
recursive function pad with Wyaqes) = We for all initial segments o. Given
any behaviourally correct learner M for a class £, one can define a new learner
N on input ¢ implicitly as pad(M(c), o). This new learner can explicitly be
defined as an iterative learner by starting with pad(M(A), A) and updating
via
N(pad(e,0),z) = pad(M(ox), oz),

where it has the full access to the previous data since it codes this information
into the output index. Thus it can reconstruct the hypothesis M(ox) from the



old hypothesis pad(e, o) and the new datum x. This simple argument proves
the following Proposition.

Proposition 7 Every behaviourally correct learnable class has an iterative
behaviourally correct learner.

By Proposition 7 it does not make sense to consider behaviourally correct
iterative learning. So one might look at restrictions of behaviourally correct
learning like the notion of vacillatory learning [10]. In vacillatory learning,
the learner instead of converging to a single grammar for the input language,
eventually vacillates between finitely many distinct grammars for the language.

The next result shows that relaxing the convergence requirement of iterative
learning to vacillatory convergence does not increase learnability at all.

Proposition 8 If some iterative learner M eventually vacillates, on every

text of every language in L, between finitely many correct hypotheses, then
Lelt.

Proof. Without loss of generality assume that M does not output 7. Given
M as above, one defines N as follows. N will output grammars of the form:
pad(p, S), where S is a finite set (not containing p), and pad(p, S) is a padding
function such that pad(p, S) is a grammar for I, and p, S can be extracted
from pad(p, S). Let the initial hypothesis of N be pad(M(\), @) and the update
rule be

[ pad(p,9), if M(p,z) € SU{p};
N(pad(p, 5), x) = {gad(lli/[(p, x),SU{p}), other\f/ise. g

We claim that N is an iterative learner for L.

In the following, by “last brand new hypothesis output by M on ¢”, we
mean, M(7), where 7 is the longest initial segment of o such that M(7) ¢

{M(y): v C 7}

For any sequence o, we will define a derived sequence 7, below satisfying the
following three conditions.

(I) content(7,) = content(c), |7,| > |o|.
(IT) If 0 C o', then 7, C 7.
(IIT) If the last output of N after seeing o is pad(p, S), then
(a) the last brand new hypothesis output by M on 7, is p,
(b) the set of programs output by M on initial segments of 7, is S U {p}
and
(c) the last output of M after seeing 7, is p.

The above properties will be inductively seen to be true, based on length of
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.
Base Case: 7\ = \. Clearly, properties (I)~—(III) hold for the base case.

Inductive case: Suppose we have defined 7,. Define 7,, as follows. Suppose N
after seeing o outputs pad(p,.S). Thus, M on initial segments of 7,, would
have output programs from S U {p}, with the output after seeing 7, being p
(by induction).

If M(p, x) is a program not in SU{p}, then let 7,, = 7,x. Else, let v be initial
segment of 7, such that M, after seeing +y, had output M(p, x). Let o' be such
that 7, = 4. Then, 7,, = 1,27 It is easy to verify that properties (I)—(III)
hold in both cases.

Let T be a text for L € L. Let 70 = U,en Trpn)- It is easy to verify using prop-
erty (I) that content(rr) = content(7"). Also, since M eventually vacillates
between finitely many correct hypotheses on 77, by property (III), N(7") con-
verges to pad(p, S), where p is the last brand new hypothesis output by M on
7r, and S is the set of hypotheses output by M on 77, except for the grammar
p. Furthermore, by property (III) (c), either M outputs finitely many hypoth-
esis on 77 and p is the last hypothesis output by M on 71 or p is output by
M on 77 infinitely often. It follows that N learns L from T |

Thanks to Propositions 7 and 8 we will, from now on, consider explanatory
iterative learners only. All our notions regarding iterative learning will be
modifications of the basic Ex-learning paradigm. An important question in
this context was whether iterative explanatory learning needs U-shapedness
for full learning power. Quite recently, [13] solved this important open problem
by showing that iterative learning coincides with its non U-shaped variant.

Theorem 9 [13] Every iteratively Ex-learnable class has a non U-shaped it-
erative Ex-learner.

Together with Proposition 8, one has the following corollary.

Corollary 10 If some iterative learner M eventually vacillates on every text
of every language in L between finitely many correct hypotheses, then L has a
non U-shaped iterative and explanatory learner.

Our goal is to look at the corresponding question for several related notions,
but before doing this, we want to conclude this section by briefly recalling
some basic relations of iterative learning with two criteria of learning that
feature, like non U-shaped learning, a semantic constraint on the learner’s
sequence of hypotheses.

The first such notion is set-driven learning [37], where the hypotheses of a

11



learner on inputs o, 7 are the same whenever content(o) = content(7). We
denote by SD the collection of all classes learnable by a set-driven learner.
It is shown in [22, Theorem 7.7] that It C SD. The inclusion is proper since
the class of all finite supersets of {0} plus the set {1,2,3,...} has a set-driven
learner, but no iterative learner.

A criterion that implies non U-shapedness is conservative learning [1]. A
learner is conservative iff for all o C 7, M(0) # M(7), implies content(7) <
Wn(s). Thus, a conservative learner changes its conjecture only if it has al-
ready seen some datum x not belonging to its conjecture. Consv denotes the
collection of all classes having a conservative learner.

It is shown in [22] that SD C Consv, thus, It C Consv. By definition,
every hypothesis abandoned by a conservative learner is incorrect and thus
Consv C NUShEx follows. It is well known that the latter inclusion is
proper. The easiest way to establish it is to use Angluin’s proper inclusion

Consv C Ex [1] and the equality from Ex = NUShEx [2].

4 TIterative Learning and Hypothesis Spaces

Normally, in Gold-style language learning, a learner outputs as hypotheses
just indices from a fixed acceptable enumeration of all r.e. languages, since all
types of output (programs, grammars and so on) can be translated into these
indices. There have also been investigations [1,23,24] where the hypotheses
space is fixed in the sense that the learner has to choose its hypotheses either
from this fixed space (exact learning) or from a space containing exactly the
same languages (class-preserving learning).

Such a restriction can be severe. For example, the class of all finite sets is
iteratively learnable and so is the class £ of all finite sets of even cardinality.
But if one requires the hypotheses to be from some one-one enumeration of
L, then one forces the learner to output indices which do not uniquely encode
information about which data have been seen so far. This imposes some for-
getting which can be used to show that the class £ is not exactly iteratively
learnable when the underlying hypotheses space is one-one.

In this section we investigate ways in which the hypotheses space interferes
with non U-shaped iterative learnability.

To explain our first result we need to recall some notions of computations
relative to oracles [32]. Let A be a set. A partial function f is called computable
(recursive) relative to A iff there is an algorithm for f that is allowed to use
answers to questions of the form ‘x € A?’. A is then called an oracle. A total
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function which is computable relative to A is also referred to as an A-recursive
function; a set B is called A-recursive iff the characteristic function of B is
A-recursive. We say that B is Turing reducible to A, written B < A, in this
case.

There exists an acceptable enumeration of all partial functions computable
relative to A. Let 3!, 07, ... be such an enumeration. W denotes the domain
of pt. ®4(-,-) denotes a Blum complexity measure [4] relative to A, see [25].
The predicate ®4(i,7) < t will be no longer recursive, but recursive in A
instead. We use ®#(z) to denote ®4(i,x). Let K be the diagonal halting
problem {x € N: z € W, }. Recall that K is an r.e. set which is not recursive.
Given a set A, one can consider the diagonal halting problem for the partial
functions that are computable with oracle A. Then A’ denotes this diagonal
halting problem relativized to A, that is, the set {x € N : 2 € WA}, A" is
called the jump of A. Note that A <7 A’ for all sets A. The jump operation
can be iterated and so K" denotes the double jump of the halting problem K.

Instead of considering computable learners, one can consider learners that
are computable relative to some oracle. Our learning models so far feature
a symmetry between the complexity of the learner and of the hypotheses
space: the learner is a partial computable function and the hypotheses are
indices for partial computable functions. However, when considering learning
relative to oracles, one may consider allowing learner access to an oracle A, but
require that the hypotheses be from an enumeration of the partial computable
functions. Relative to the complexity of the learner, the latter requirement can
be seen as a limitation on the hypotheses space.

Our first result is a bit atypical, but fits the just described scenario. We con-
sider a learner that is computable relative to an oracle for K’, but is asked
to use as hypotheses space an acceptable enumeration of programs not using
any oracle. Theorem 11 below shows that the equivalence Ex = NUShEx
from [2] does not relativize to learners that are computable in K’ but out-
put grammars for recursively enumerable languages; one can also strengthen
the separation to iterative learning. In the following result It[A] (respectively,
NUShEx[A]) denotes the collection of all classes of r.e. languages that are
iteratively (respectively, non U-shapedly explanatory) learnable by some ma-
chine M that has access to the oracle A. Such a machine (as in the definition
of Ex and It) outputs indices of recursively enumerable languages, and not of
languages computed (enumerated) relative to A.

Theorem 11 It[K'] ¢ NUShEx[K'].

Proof. For every e, let L, = {{e,z) : # € N} and H; = {{e,2) : © < ®X'(¢e)}.
Note that ®X'(e) is finite iff e € K”. Now let

L={L.:eeN}U{H.:e€ K"}.
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We first show that the class £ is It[K']-learnable. For the following, let e be
such that the first data seen by the learner is (e, y) for some y (if there is no
such first data, then e is not defined, and we will only be using the first case
below). The learner outputs a hypothesis for the set given at the first case
which applies.

(), if only #s have been seen in the input so far;

Le, if 2 < ®X'(e) for all data of the form (e, z) seen so far;

H,, if + < ®X'(e) for all data of the form (e, z) seen so far and z = ®X'(e)
for some datum (e, ) seen so far;

Le, if > ®X'(e) for some datum of the form (e, z) seen so far.

During the process the learner can keep track of the finitely many cases and
update its hypothesis accordingly; within this process it uses two different
indices for L, in order to memorize whether a datum (e, ) with z > ®X'(e)
has been seen so far or not. It can now easily be verified that the learner
Ex-learns L.

Now, suppose by way of contradiction that M witnesses L €
NUShEx|K']. For every e, one can compute a number f(e) such that
M((e,0)(e,1)... (e, f(e))) outputs an index for L.; this f(e) must exist
since M learns £ and the number f(e) can be found using the oracle K.
Since, M is not U-shaped, it implies that, for any segment o extending
(e,0)(e,1)...{e, f(e)), such that content(c) C L., M outputs a grammar
for L. Thus f(e) > ®X'(e), whenever e € K" (otherwise, M does not identify
H.). Thus, K" = {e: ®'(e) < f(e)}, in contradiction to the fact that K" is
not K’-recursive. |

In the following, the above example is modified in order to carry over the sep-
aration to class-preserving learning (informally defined in Section 1.3). Lange
and Zeugmann [23] introduced class-preserving learning and studied the de-
pendency of learnability on the hypotheses space. We will introduce a bit of
terminology (from [1]) to explain the notion. An infinite sequence L, L1, Lo, . . .
of recursive languages is called uniformly recursive if the set {(i,z) : x € L;}
is recursive. A class £ of recursive languages is said to be an indezed family of
recursive languages iff £ = {L; : i € N} for some uniformly recursive sequence
Lo, L1, Lo, .. .; the latter is called a recursive indexing of L.

Let £ be an indexed family of recursive sets and let Hy, Hy, Hs,... be a hy-
potheses space, where one can recursively decide (in x and i) whether = € H;.
We say that a machine M explanatorily identifies £ with respect to the hypothe-
ses space Hy, Hy, H,, ... iff for every L € L, on every text for L, M converges
to some j such that L = H;. A machine M class-preserving explanatorily
identifies £, if in the above situation {H; : i € N} = L. In what follows, for
a learning criterion I, I’ stands for class-preserving I-learning, the collec-
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tion of all classes of languages that can be I-learned by some class-preserving
machine.

The following theorem also holds, if, instead of using class preserving indexed
family as hypotheses space, one uses a recursively enumerable class of lan-
guages as hypotheses space, where each hypothesis is a member of the class

being learned (that is, for some recursive ¢, one uses the hypotheses space
Wq(o), Wq(l), ..., and {Wq(i) 1€ N} = ﬁ)

Theorem 12 There exists an indexed family in It® — NUShEx.

Proof. Fix an algorithmic enumeration Mg, M;y,... of learners [18].
Let L. = {{e,z):2e€ N} and let L! = {{e,z):2 <2nor xis odd}.
Let T, denote a recursive text such that T.(z) = (e,z). Let S, =

{(n,t) : (3 > n)[M(Te[n]) is defined within ¢ steps and (e, 2z) € W, (7. 120)).) }-
Now consider the class

L={L.:e e N}U{L!:S.#0A(n,t) = min(S,)}.
The proof is now completed by showing the following two claims.
Claim 13 £ ¢ NUShEx.

For proving Claim 13, suppose M, witnesses £ € NUShEx®. Then, as M,
learns L., Se is not empty. Let (n, t) be the least element of S.. Now Wy (r, 2n))
must be a grammar for L. (as no other language in £ contains an element of
form (e, 2z) for x > n). Let T be a text for L extending T.[2n]. Now, since
M, is non U-shaped on £, M., on T, does not abandon the hypothesis L.
since it is consistent with all upcoming data and is a language in £. Thus M,
does not output any grammar for L beyond T,[2n]. Thus, M, does not learn
L? although L} € L. This completes the proof of Claim 13.

Claim 14 £ < It".

For proving Claim 14, let p be a 1-1 recursive function such that p(e,0) and
p(e, 1) are decision procedures for L., and p(e,2) is a decision procedure for
L7 if S, is not empty and min(S,) = (n, t) for some ¢. (Note that one can eas-
ily make an appropriate class preserving hypotheses space using the decision
procedures, for each e, p(e,0),p(e, 1) and, if S, is not empty, p(e, 2). For ease
of notation, we continue to use p(-,-)).

Now let M be an iterative learner which has the initial hypothesis ?,
which keeps every hypothesis, including ?, on the datum # and which
follows the following update procedure on a datum (e,z) where a €

{7,p(e,0),p(e, 1), p(e,2) }.
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p(e,0), ifa=7ora=pe0)and
Se does not intersect with {0,1,... z};
M(a, (e, z)) =< p(e,2), if a =p(e,0) and S, intersects {0,1,...,x};
p(e,2), if a=p(e,2), min(S,) = (n,t) and (e, x) € L;
p(e, 1), otherwise.

It is easy to verify that if S, is empty, then M on any text for L. outputs only
p(e,0) as its conjecture (besides initial 7). If S, is non-empty and min(.S,) =
(n,t), then, for any text for L. or L”, M initially outputs 7, then outputs
p(e, 0), and eventually outputs p(e,2) (after seeing an input (e, x) such that
x > (n,t)). Beyond the first time p(e,2) is output, M changes its mind to
p(e, 1) iff it sees an input not contained in L?. It follows that M learns L.
This completes the proof of Claim 14 and Theorem 12. |

5 Consistent and Monotonic Iterative Learning

Forbidding U-shapes is a semantic constraint on a learner’s sequence of conjec-
tures. In this section we study the interplay of this constraint with consistent
and monotonic learning, in a memory-limited setting of iterative learning.

We now describe and then formally define the relevant variants of semantic
constraints on the sequence of conjectures. Barzdins [3] introduced consistent
learning (in the context of function learning) where it is essentially required
that the learner’s conjectures do not contradict known data. Jantke [20] in-
troduced strongly monotonic learning which requires that every set generated
by any new conjecture is a superset of the set generated by the previous one.
Wiehagen [39] introduced the less-restrictive requirement of monotonic learn-
ing where, for each language L the learner actually learns, the intersection of
L with the language generated by a learner’s conjecture is a superset of the
intersection of L with the language generated by any of the learner’s previous
conjectures.

Definition 15 [3,20,39] A learner M is consistent on a class L iff for all
L € L and all o with content(c) C L, M(o) is defined and content(c) C
Wn(o). Cons denotes the collection of all classes which have an Ex-learner
which 1s consistent on the class of all sets. ClassCons denotes the collection
of all classes L which have an Ex-learner which is consistent on L.

A learner M is strongly monotonic iff for all o C 7, Wam(e) € W) SMon
denotes the collection of all classes having a strongly monotonic Ex-learner.

A learner M for L is monotonic iff for all L € L, for all texts T for L, for
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all m < n, LN Wnrm) €© LN Warp)). Mon denotes the collection of all
classes having a monotonic Ex-learner.

Note that there are classes £ € ClassCons such that only partial learners
witness this fact [21,40,41]. Criteria can be combined. For example, ItCons
is the criterion consisting of all classes which have an iterative and consistent
learner.

It follows from definition of strong monotonicity that any strongly monotonic
learner is non U-shaped. Thus, any class in ItSMon has a strongly monotonic,
non U-shaped iterative learner. It is open at present whether we can obtain a
similar result for monotonic learning. Below we show that similar results can
be obtained for consistent learning too.

Theorem 16 ItCons = ItConsSMon.

Proof. It suffices to show that ItCons C ItConsSMon. Given an iterative
consistent learner M for £, let — as in the case of normal learners — M(o)
denote the hypothesis which M makes after having seen the sequence o. Now
define a recursive, one-one, function f such that, for every index e, Wy =
Usefor:M(o7)=e} cOntent(o). Since M is consistent, content(o) € Wag(o) for all o;
thus Wy) € W,. The new learner N is the modification of M which outputs
f(e) instead of e; N is consistent, since whenever N outputs f(e) on o, M
outputs e on ¢ and thus content(c) C Wy(. Since f is one-one, N is also
iterative and follows the update rule N(f(e),z) = f(M(e, x)).

It is easy to see that N is strongly monotonic: Assume that M(e,y) = ¢’ and x
is any element of Wy(). Then there is a o with M(c) = e and = € content(o).
It follows that M(oy) = €/, x € content(oy) and x € W(r). So, W) € Wie)
and the transitiveness of the inclusion gives the strong monotonicity of IN.

It remains to show that N learns L. Let L € £ and T be a text for L and e
be the index to which M converges on T'. The learner N converges on 7' to
f(e). Since W, = L it holds that Wy, C L. Furthermore, for every n, there
exists an m > n with M(T[m]) = e, thus T'(n) € Wy and L € Wyey. |

Corollary 17 If L € ItCons, then L has a strongly monotonic, consistent,
and non U-shaped iterative learner.

It can also be shown that ConsSMon = ItConsSMon. Thus, a class learn-
able by a consistent and strongly monotonic learner can be learned by a consis-
tent, strongly monotonic and and non U-shaped iterative learner. Note that
access to oracle for halting problem allows one to easily check consistency.
Thus, any class learnable by a strongly monotonic learner can also be learnt
by a consistent, strongly monotonic and non U-shaped iterative learner, when
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provided with an oracle for the halting problem.

Note that the proof of Theorem 16 needs that the learner is an ItCons-learner
and not just an ItClassCons-learner. In the latter case, the inference process
cannot be enforced to be strongly monotonic as the following example shows.

Example 18 Let £ = {0,2,4,...}. Let L, = {0,2,...,2n} U {2n + 1}. Let
L ={E}U{L; : i € N}. Then, L is in ItClassCons — SMon. Thus,
ItClassCons ¢ ItCons.

Proof. On one hand, the learner which conjectures F until an element of the
form 2n + 1 is seen, and then changes its hypothesis to L,, is easily seen to be
class-consistent and iterative. So £ € ItClassCons.

On the other hand, a given learner for £ has eventually to conjecture an index
for E after having seen enough even numbers. Let n be larger than any number
seen by the learner before the conjecture is made as above. Then, the input
text might actually be for the language L,,: in which case the learner would be
forced to change its mind non-strong monotonically. Hence, £ ¢ SMon. 1

So, class-consistent iterative learners cannot be simulated by strongly mono-
tonic learners. However, the next result shows that they can still be simulated
by monotonic, and, simultaneously, non U-shaped learners.

Theorem 19 If L € ItClassCons, then L has a monotonic, class consistent,
and non U-shaped iterative learner.

Proof. Suppose M ItClassCons-identifies £. We write M(xy, 2o, ..., z,) for
the hypothesis obtained by feeding 1, x», ..., z, one after the other into the

learner; this notion has the initial hypothesis for r = 0. We say (21, x9, . .., 2,)
(here r may be 0) is valid if for all ¢ < r (including ¢ = 0), M(xy,...,2;) |
# M(xq,..., 2, xi1) | . By s-m-n theorem [32], there exists a recursive, 1-1
function F' such that, for valid (z1,xs,...,z,) and k <,

Wetkhawozy) = 12 0 1 < i < k}U{z : (3s < k)[M(zq,...,25,2) | =

The next two claims follow immediately from the definition of F'.

Claim 20 Suppose (x1,...,%,41) is valid and k < r. Then, Wek o, w9, 00) 2
WF(k,ml,azg,...,a:r,xr+1)-

Claim 21 Suppose (z1,...,x,) is valid and k < k' < r. Then, Wrgz, .0, C

W 21, e0)-

Claim 22 Suppose (x1,...,%.41) is valid and k < r. Further suppose
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{z1,..., 2,01} C L and L € L. Then,

(a) WF(k,xl,...,a:T) g WM(xl,...,xr);'
(b> WF(k,xl,...,a:T) NL g WM(xl,...,xr,xH.l);
(C) WF(k,xl,...,xr) NL g WF(k,xl,...,mr,mr+1)-

Statement (a) follows from definition of F' and consistency of M on L. For
(b), note that for any v € We@e,,..o,) N L, either (i) x € {z1,29,..., 23} C
Wh(ar,...zr00p1) (Dy consistency of M on L) or (i) for some s < k,
M(zy,...,x5,2) | = M(x1,...,2,) | (by definition of Wr@ 4, . 4)), and thus
M(z1, .. s, Ty Tty Tpg1) L= M(21, .o g, Ty, - oo, Tpy1) |, as M s it-
erative; it follows that @ € Wi, 2,.2,4,) (by consistency of M on L). (c)
follows from (b) and the definition of F'.

Claim 23 Suppose (x1,...,2xy) isvalid and k <K', k <r, k' <r" andr <r'.
Further suppose {x1,...,xv} C L and L € L. Then, Wep,, .2 N L C
WF(k’,xl,...,xT/)-

To see this, note that Wpre .oy N L S Wrga,..z.), follows from
Claim 22 (c) and Wrgg,,..) © Wr a1,....2,,), follows from Claim 21. Thus
the Claim follows.

Now we continue with the proof of the theorem and define N as follows. Note
that M is defined on all input segments for L € £. Suppose, on the input text
seen so far, M has made mind changes at the points when it gets x1,...,z,,
and k is the smallest number such that, for all = seen in the input so far, there
exists an s < k, such that x = x5 or M(z1,...,25) = M(zy,..., 25 2) (note
that, by induction, such a k can be iteratively found and will be < r; also note
that M(zq,...,25)| and M(zy,..., 2z x) |, for inputs from L € £ and thus
such minimal £ can be found algorithmically for inputs for L € £). Then, N
outputs F'(k,x1,...,x,).

Claim 23 implies N is monotonic for the class L.

Now consider any text T' for L € L£. N converges on T as M converges on
T. Suppose N on T converges to F(k,x1,...,x,.). Then, by Claim 22(a) and
L € Ex(M), we immediately have that W4 4,,..2,) € L. Furthermore, as M
is iterative and consistent on L, and for every = € content(T"), there exists
an s < k such that z = x5 or M(x,...,25,2) | = M(z1,...,2) |, we have
L € Wrga,..2), by definition of F'. Thus, N Ex-learns L in the limit.

To see that N is consistent on L € L, consider any text T for L, and suppose
N(T'[m]) outputs F(k, z1, xa, ..., z,). Consider any x € content(7'[m]). By def-
inition of N, there exists an s < k such that either z = z; or M(z1, ..., x5, 2) |
= M(xy,...,z,) ] . Thus, by iterativeness and consistency of M on L we have
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that, © € Wa,,....z,), for s <t < r. It follows that * € Wrg 2, 0o, 20)-

To see that N is non U-shaped, consider any L € L and a text T for L.
Suppose, N(T'[n]) = F(k,z1,...,2,) and Wgpge, . o) = L. This implies,
by the definition of F', that, for all x € L, either x equals zq,...,x; or
there exists an s < k such that M(zy,...,2s) = M(zq,..., 25 x). It fol-
lows by definition of N that, for m > n, N(T'[m]) only outputs grammars of
form F(k,zq,...,%,...,2). But then Claim 20 and Claim 22(c) imply that
F(k,zq,...,2.,...,2,) is also a grammar for L. |

6 Memoryless Feedback Learning

An iterative learner has a severe memory limitation: it can store no previ-
ously seen data. On the other hand, crucially, an iterative learner remembers
its previous conjecture. In this section we introduce a model of learning in
which the learner does not remember its last conjecture and can store no pre-
vious input data. The learner is instead allowed to make, at each stage of its
learning process, n feedback queries asking whether some n data items have
been previously seen. We call such learners n-memoryless feedback learners,
and the main result of the present section, Theorem 30, shows that U-shaped
behaviour is necessary for the full learning power of n-memoryless feedback
learning. At the end of the present section, in Theorem 32 we prove that, as
might be expected, being able to do n+ 1 feedback queries gives more learning
power than being able to do only n.

We now proceed with the formal definition of n-memoryless feedback learning.

Definition 24 Suppose n > 0. An n-memoryless feedback learner M has as
iput one datum from a text. It can then make n-queries which are calculated
from its input datum. These queries are as to whether these n data items
were already seen previously in the text. From its input and the answers to
these queries, it either outputs a hypothesis or the ? symbol. That s, given
a language L and a text T for L, M determines its hypothesis ey on input
T(k) as follows: First, n-values q;(T'(k)),i = 1,...,n, are computed. Second,
n bits b;,1 = 1,...,n are determined and passed on to M, where b; is 1 if
¢:(T(k)) € content(T[k]) and O otherwise. Third, a hypothesis ey, is computed
from T'(k) and the b;’s. M MLF,,-learns L iff, for all texts T for L, for ey
defined as above, there is a k such that W, = L and e,, € {7, ex} for all
m > k. M MLF,-learns L iff it MLF, -learns each L € L. MLF,, denotes
the collection of all classes learnable by an n-memoryless feedback learner.

In what follows D; is the finite set with canonical index ¢ [32]: ¢ algorithmically
codes both the cardinality of D; and how to decide membership in D;.
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Remark 25 One can generalize MLF,, to MLF,. Fach MLF,-learner em-
ploys a recursive function F' mapping N to finite subsets of N such that, for
every x, the learner asks whether any of the y € Dp(,) have been seen before.
Depending on the answers, the learner outputs a hypothesis or 7. Clearly, by
Theorem 32, MILF, is a proper superset of MLF,,.

On one hand, It € MLF, since the class of all sets {0,z} and {1,z} with
x € {2,3,4,...} is not learnable by an MLF, learner. For y = 0 or 1, if the
learner makes a conjecture on input y, where all the questions are answered
‘no’, then it is wrong on input xy> for some x &€ Dp(,). On the other hand,
if the learner does not make a conjecture on both the inputs 0 and 1 where all
questions are answered ‘no’, then it clearly does not identify one of the sets
{0,2} or {1,2} for some x ¢ Dpy U Dp).

On the other hand, let E = {2z:2 €N}, A, = EU{p':ie N} and
B, = EU{p':i €N} — {2p}. Then, L = {E} U{A, : p is an odd prime} U
{B, : p is an odd prime} is not iteratively learnable. But one can verify that
it is in MILFy: Let x be the input; if v € E and 1 has not been seen so far (as
verified by a query), then the learner conjectures E; if x = p, for some odd
prime p and i € N, and 2p has been seen so far, then the learner conjectures
Ay if @ = p', for some odd prime p and i € N, and 2p has not been seen
so far, then the learner conjectures By,; in all other cases the learner abstains
from a new conjecture.

The next result shows that non U-shaped 1-memoryless feedback learners are
strictly less powerful than unrestricted 1-memoryless feedback learners: There
exists a class of languages that can be learned by a 1-memoryless feedback
learner only if the learner is allowed to make some U-shapes on some text
for some language in the class. The basic idea for the proof is to include in
the class two types of sets that start differing after a non-computable point.
After this proof we indicate how to adapt it to show that U-shaped learning
is necessary at each level of the MLF,,-hierarchy (see Theorem 30 below).

Theorem 26 NUShMLF; C MLF;.

Proof. The idea is to use, for every e, two sets L., H. such that the learner
can easily figure out that it has to learn one of these sets, but is nevertheless
forced to oscillate between these two hypotheses and is therefore U-shaped.
These two sets are equal up to some value F'(e), where

F(e) = max({1+ ¢;(e) : i < e and p;(e) ] } U{0}).

Note that F' grows faster than any partial or total recursive function. Based
on this function F' one now defines the family £ = {Lg, L1, Lo,...} U
{H(), Hl, HQ, .. } where

21



L.={(e,x) :x < F(e) or z is even};
H.={(e,z) : x < F(e) or z is odd}.

We first show that £ € MLF;. Note that the learning algorithm cannot store
the last guess due to its memory limitation, but might output a ‘?” in order
to repeat that hypothesis. The parameter e is visible from each current input
except ‘#’. The algorithm is the following.

If the new input is # or if the input is (e,z) and the Feedback says that
(e,z + 1) has already appeared in the input earlier, then output ?. Otherwise,
if input is (e,z) and (e, x 4+ 1) has not yet appeared in input, then output a
canonical grammar for L. (H.) if z is even (odd).

Consider any text T for L.. Let m be such that content(7[n]) O L. N
{{e,z) : < F(e) 4+ 1}. Then, it is easy to verify that, the learner will either
output ? or a conjecture for L, beyond T[n]. On the other hand, for any even
x > F(e), if T(m) = (e, x), then the learner outputs a conjecture for L. after
having seen T'[m+ 1] (this happens infinitely often, by definition of L.). Thus,
the learner MLF'-identifies L.. Similar argument applies for H..

We now show that £ ¢ NUShMLF;. So suppose by way of contradiction that
the learner M NUShMULF;-identifies £. We now do the following analysis.

We assume, without loss of generality, that M’s query on input (e, x) is of
the form (e, z’) for some x’. If M({e, x)) makes the query (e, z’), then we let

Q{e,)) = o,

Claim 27 (a) There do not exist infinitely many e such that, for some x,
M({e, x)) outputs a hypothesis on ‘yes’ answer to feedback query.

(b) There do not ezist infinitely many e such that, for some z, M({e,x)) does
not pose a query, but outputs a hypothesis.

Of this claim, we show part (a). Part (b) can be shown similarly. Suppose
by way of contradiction otherwise. Define partial function 7 to be n(e) =
max({z., Q({(e,x.))}), where x. is the first number found, if any, such that
M({e, z.)) on answer ‘yes’ to query, outputs a hypothesis. Now F(e) > n(e)
(if n(e) is defined), for all but finitely many e. Thus, we have that, for infinitely
many e, x. < F(e),Q({e,x)) < F(e), and on answer ‘yes’, M((e, z.)) outputs a
hypothesis. Pick any such e. Without loss of generality assume that M({e, z.))
is not a grammar for L. (case of H, is similar). Consider the text T" for L,
which starts with (e, Q({e,z.))) and has (e, z.) in every alternate position of
the input. Now M on T infinitely often outputs a hypothesis which is not for
L. (whenever it sees (e, z.) in the input), and thus M does not Ex-identify
L. This completes the proof of the claim.
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Now we continue with the proof of the theorem. As finitely many L./H, can
easily be learned, for the following analysis, we may assume without loss of
generality that, for any input, M outputs a hypothesis only when making a
query and getting a ‘no’ answer. We further assume, without loss of generality,
that, if M does not output a hypothesis on a ‘no’-answer, then it does not
make the query at all (since the query in this case is not used). Thus, all and
only the ‘no’-answer queries lead to hypothesis output by M.

Claim 28 For any e, if {{e,z),{e,2')} C L., and M({e,z)) on a ‘no’ answer
to query, outputs a grammar for L., and M({e, ")) on a ‘no’ answer to query,
outputs a grammar which is not for L., then Q({e,z')) = x. Similar result
holds when L. above s replaced by H..

For a proof of this claim, assume that it does not hold for some e, x, 2’, and
consider a text T for L. starting with (e, x)(e,2’). Then, M is non U-shaped
onT.

Claim 29 (a) There exist only finitely many e such  that
card({Q({e,x)) : x € N}) > 3.

(b) There exist only finitely many e such that card({Q({e,z)) : x € N}) = 1.
(c) There exist only finitely many e such that card({Q({e,x)) : x € N}) = 2.

The main result is now obtained by proving this claim.

(a) Suppose by way of contradiction otherwise. Let n be a partial function
such that, n(e) = max({z{, x5, x5}), where x{, 2§, 2§ are the first three numbers
found, in some standard search, such that Q({e, x7)), Q({e, z5)) and Q((e, z5)),
are all different (if there are no such zf, z§, x5, then n(e) is undefined). Now
by definition of F', for all but finitely many e, F'(e) > n(e), if it is defined. Pick
any e in domain of 7 such that F'(e) > n(e). Note that (e, z$), (e, z5), (e, z§) are
in both L, and H,. Let x5, x5 be such that (e,x5) € L. and (e, x5,) € H, and
M((e, 2% )) outputs a grammar for L, on answer ‘no’ to query and M((e, %))
outputs a grammar for H, on answer ‘no’ to query (note that there exist such
x%, x4, since otherwise M does not Ex-identify L., H.). Let x5, j € {1,2,3}
be such that Q({e,z%)) & {z%, x5} Without loss of generality, suppose that
M((e, x$)) is not a grammar for L. (case of H, is similar). Then, on any text
T for L. starting with (e, x7)(e, z%), M is U-shaped.

(b) Suppose by way of contradiction otherwise. Let 1 be a partial function
such that n(e) = Q({e,z)), for the first = found such that M({e, x)) asks
a query (and outputs a hypothesis on ‘no’-answer). Pick an e such that
card({Q({e,x)) : x € N}) =1 and n(e) | < F(e) (all but finitely many e such
that card({Q({e,x)) : € N}) = 1, satisfy this condition). Let g, be the only
member of {Q(({e,x)) : x € N}. Note that g, belongs to both L. and H.. But
then, for any text for L. or H., which starts with g., M does not make any
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further hypothesis beyond T'[1]. Thus, M cannot Ex-identify both L. and H..

(c) Similar to part (b), by using 1 to bound the two potential queries, and
starting the text with both these queries. This completes the proof of the
claim.

Now, parts (a)—(c) of Claim 29 immediately lead to a contradiction. |

It is not difficult to see that the proof of Theorem 26 can be adapted to
show there is a class in MLF,, that is not MLF,-learnable without U-shapes.
This can be achieved by adding all possible subsets of n — 1 special elements,
S1,89,---,8n_1, to the languages used in Theorem 26. Then, the machine from
the proof of the positive part of Theorem 26 can be modified as follows. If
it sees these special elements, the learner outputs 7. If the learner sees any
other element x, then the learner queries whether s, ...,s,_1 are in the input
besides the main query and outputs conjectures as before, with the special
elements answered ‘yes’ being added to the conjecture. The negative direction
of the proof can proceed essentially as before, as the last conjectures of the
learner needs to correctly determine whether the special elements are in the
input or not. We omit the details. This gives us the following Theorem showing
that U-shaped learning ¢s necessary for full learning power of n-memoryless
feedback learners, for all n > 0. For n = 0, NUShMLF, = MLF,, see
Remark 38 in Section 7 below.

Theorem 30 For all n >0, NUShMLF, ¢ MLF,,.

It is reasonable to ask, as we do in the Conclusion (Section 8), whether the need
for U-shaped learning in Theorem 26 can be removed by allowing more queries.
That is, can we show that there are MLF;-learnable classes that, for all n > 1,
are not MLF,-learnable without U-shapes. The class from Theorem 26 is
perhaps such an example, although it is NUShMLF ,-learnable.

Finally, an iterative total learner that can store one selected previous datum
is called a Bem;-learner (1-bounded example memory learner) in [11,30]. One
can also consider a “memoryless” version of this concept, where a learner does
not memorize its previous hypothesis, but, instead, memorizes one selected
previous datum. Under both these criteria, the class {{0,z},{1,2} : = > 1}
from Remark 25 is non U-shapedly learnable with the corresponding memory
bound; indeed it would even be finitely learnable if one allows memorization
of data, without outputting a hypothesis. But this class is not in MLF, as
mentioned above. So we have the following proposition.

Proposition 31 NUShBem; ¢ MLF,.
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To conclude this section we show that the m-memoryless feedback criteria
form a hierarchy of more and more powerful learning criteria increasing in the
number n of feedback queries allowed.

Theorem 32 For alln >0, NUShMLF, ; € MLF,,.

Proof. Fix an algorithmic enumeration My, My, ... of learners [18]. We diago-
nalize against this enumeration. Let L; = {(0,z) : < n}U{(i + 1,z) : x € N}.
Let LY = SU{(i + 1,2z) : x € N}. £ will contain L;, and maybe L}, for some
1, where S; is defined just below.

S; is defined as follows (using some standard search): search for y € L; —
{(0,z) : € N} such that M;(y) queries ¢i,...,q, and outputs a grammar
which contains at least n + 2 elements outside {(i + 1,2z) : € N}, where
the answers given to qq, ..., q, are ‘yes’ if and only if they belong to L;. Then,
Si =A{y,q1,---,qn} N L;, where S; is defined based on the first success found
in the above search in some standard method of searching.

Claim: £ is not in MLF,,. Suppose by way of contradiction that some learner
MLF, -learns L. Take ¢ so large that M, is equivalent to the given learner and
L; is not among the sets conjectured by the learner on any o with content (o) C
{(0,z2) :x <n}and |o| <n+ 1.

Now, if the search for S; does not succeed, then M; does not MLF,-identify
L;. Otherwise, M; does not MLF,-identify LZS

Claim: £ is in NUShMLF,, ;. On inputs of form (i + 1,2z) query elements
(0, z) such that x < n. If all are present, then conjecture L;. Otherwise search
for S; as above for x steps. If found, then conjecture, Lf ‘. Otherwise conjecture
?. It is easy to verify the claim. |

7 Bounded Memory States Learning

Memoryless feedback learners store no information about the past. Bounded
memory states learners, introduced in this section, have no memory of previous
conjectures but can store a bounded number of values in their long term
memory. This model allows one to separate the issue of a learner’s ability to
remember its previous conjecture from the issue of a learner’s ability to store
information about the previously seen input. Similar models of machines with
bounded long term memory are studied in [22]. We now proceed with the
formal definition.

Definition 33 [22] For ¢ > 0, a c-bounded memory states learner is a (pos-
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sibly partial) function
M:{0,1,....,c =1} x (NU{#}) = (NU{?}) x{0,1,...,c—1}

which maps the old long term memory content plus a datum to the current
hypothesis plus the new long term memory content. The long term memory
has the initial value 0. There is no nitial hypothesis.

M learns a class L iff, for every L € L and every text T for L, there is a
sequence ag, aq, ... of long term memory contents and eg, e1, ... of hypotheses
and a number n such that, for all m, ag = 0, W,, = L, M(a,,,T(m)) =
(€ms Amy1) and m > n = e, € {7, e,}. We denote by BMS, the collection of
classes learnable by a c-bounded memory states learner.

The next result shows that, for bounded memory states learning, the concepts
of explanatory and behaviourally correct learning essentially coincide. Below
n! denotes 1% 2% ...% (n— 1) *n.

Theorem 34 If M has a constant bound ¢ > 0 on its long term memory and
identifies a class L in behaviourally correct way, then there is a further learner
with memory bound (¢ + 1)! which identifies L with at most 2¢ mind changes.

Proof. The proof follows ideas outlined in [22]. The idea is to build a new
learner N which simulates M on a modified input text, with certain old data-
items (virtually) inserted in the text, in order to undo certain changes of state
or hypotheses. The learner N cannot remember these data-items explicitly,
but can determine, whether it should copy a hypothesis of M or replace it by
the symbol 7, and whether it should go into a new state or not. In order to do
this, the long term memory of N stores the following pieces of information:

e A sequence q1,qs, ..., q, of long term memory contents visited so far by M
on the modified text (with the virtual insertions). These memory contents
are stored in the order of the first time M has such memory contents, when
it gets as input the modified input text;

e The index n of the last memory value ¢,;

e The largest index m such that, N had output some hypothesis on a datum,
when it had memory content (g1, o, - . ., ¢y) as in the first item above (here
memory content may or may not have changed to (g1, 42, - - -, Gm, Gm+1) after
the output); m = 0 if N has not output any hypothesis.

We will have the invariant that, at any stage of the above simulation, the
last conjecture output by N on the text seen so far would be the same as
the last conjecture output by M on the modified text seen so far (the actual
text seen so far plus the virtual insertions made on this portion). Thus, (i)
for k < m, there exists a portion of this modified text which takes M from
memory content g to ¢,, with the last conjecture of M on this segment being
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the same as the current last conjecture of N, and (ii) for m < k < n, there
exists a portion of this modified text which takes M from memory content g
to ¢,, without making any conjecture (i.e., by only outputting 7).

Note that n can take values from 1 to ¢, m can take values from 0 to ¢ and
that the sequence q1, qo, - . ., g, is the initial part of some permutation of the ¢
elements in the set {0, 1,...,c—1}. So one can extend this to a full permutation
by assigning arbitrary values to the remaining elements. Furthermore, ¢; = 0
and g, > 0 for k& > 1, thus there are (¢ — 1)! many possible values for the
sequence qi,qs, - - ., q,. In addition one has ¢ many possible values for n and
¢+ 1 many possible values for m, giving in total (¢ + 1)! possible values for
the long term memory.

Now the new learner N starts with the long term memory content such that
n=1,¢, = 0,m = 0. The update rule is the following for a data-item x, where
e € N (that is, e # ?) in the case distinction:

(1) if M(qyn,x) = (7,r) for some r € {qi,...,qn}, then N does not change
its long term memory and conjectures 7;

(2) if M(gp,x) = (?,r) for some r ¢ {q1,...,q,}, then N defines ¢, =
r, updates n = n + 1 and conjectures 7;

(3) if M(gn,x) = (e, qx) for some k € {1,...,m}, then N does not change
its long term memory and conjectures ?;

(4) if M(gn,z) = (e, qx) for some k € {m + 1,...,n}, then N updates
m = n and conjectures e;

(5) if M(gn,x) = (e,r) for some r ¢ {qi,...,¢,}, then N defines ¢,1 =
r, updates m = n, updates n = n + 1 and conjectures e.

For the verification, let a language L € £ and a text T for L be given. The
underlying idea is the following: in Cases (1), (3) and (4), the learner N
“virtually inserts” data in the text so that the simulated machine M has,
after seeing the real datum x and the virtual data, the long term memory
¢n; N0 virtual insertions takes place in Cases (2) and (5). Moreover, the last
conjecture output by N on the text seen so far is the same as the last conjecture
output by M on the modified text seen so far. This allows N to continue the
simulation of M. In Case (1), the virtual data inserted after x consists of the
text segment which took M from memory r to ¢,, such that only 7 are output
by M on this virtual data, or the last hypothesis ¢’ of N shows up as the last
hypothesis generated by M on this sequence. In Case (3), the virtual data
inserted after x consists of the text segment which took M from memory ¢ to
memory ¢,, where the last conjecture of M on this segment is the same as the
current last conjecture of N. Thus, again this virtual data insertion allows N
to continue with the simulation as in Case (3). In Case (4), the virtual data
inserted is the text segment which takes M from memory content ¢ to ¢,. N
copies the hypothesis e as it would overwrite the last hypothesis ¢’ of N. For
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Cases (2) and (5), no virtual data needs to be inserted. The remaining part of
the verification is that the ideas of virtually inserting data would transform a
given text T to a text T” such that, either M does not make a hypothesis on
T" at all (i.e., only outputs no-conjecture-symbols), or that M outputs finitely
many hypotheses with the last one being the same as the last hypothesis of N
or that M outputs infinitely many hypotheses with the last one of N occurring
infinitely often in the sequence. Since M has also to learn L from 7", one can
conclude that N outputs some hypotheses and that its last hypothesis e is
correct since it is either also the last hypothesis of M on 7" or M outputs e
infinitely often on 7",

To see the mind change bound, one has only to look at how many hypotheses
are output while n has a fixed value k. These are at most two hypotheses, at
the first, m is updated from some value below k to k, at the second, a new
element is added to the list and n is updated from k to k + 1. This completes
the proof. |

We now state and prove the main result of the present section, showing that

every 2-bounded memory states learner can be simulated by a non U-shaped
one. Note that NUShBMS,; = BMS; by Remark 38 below in this section.

Theorem 35 BMS, = NUShBMS:;.

Proof. It suffices to show that BMS, C NUShBMS;. Let £ be given and
assume that M witnesses £ € BMS,. We assume, without loss of generality,
that M does not change its memory on input #, as otherwise we could easily

modify M to work without any memory. We will construct a learner N below
which NUShBMS,-identifies L.

Intuitive idea of the proof is as follows. To maintain non U-shapedness, the
learner N will not change its memory from 1 to 0. Furthermore, before having
memory 1, if ever, N would output a modification P(e) of the conjecture of
M; after achieving memory 1, N will just output as M does. Note that if no
element of the input language L causes M to change its memory from 0 to
1, or if there is a member of L which causes M to change its memory from
1 to 0, then one can assume that M outputs only one grammar on the input
text (otherwise, it is easy to construct a text on which M does not converge
to a single grammar). Thus, in this case we just need to ensure that P(e)
enumerates the same language as e does. (The above is handled as Case 1
and Case 2 in the proof below). Otherwise, we have that M never changes its
memory back from 1 to 0. Furthermore, all the grammars output by M, after
it has achieved memory 1, must be correct grammars. We then consider cases,
based on whether (i) there exists an x € L such that = causes memory of M to
change from 0 to 1, and if x is received as input when M has memory 1, then
M outputs a conjecture or (ii) there does not exist a x € L which causes M to
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change its memory from 0 to 1 without outputting a conjecture. If (i) above
holds, then we make sure that P(e) does not enumerate the input language L,
and at the point when z is received as input, N outputs the conjecture which
M outputs when it receives  and had memory 1 (this conjecture must be
correct). This is handled as Case 3 below. If (i) does not hold, but (ii) holds,
then we again make sure that P(e) does not enumerate the input language,
and N follows M from the point of conversion of memory from 0 to 1 (and
thus would identify the input language, as M does; it does not make any U-
shapes as, beyond the memory change from 0 to 1, all conjectures are correct).
This is handled as Case 4 below. If neither of (i) or (ii) holds, then we do a
slightly intricate analysis based on whether there are finitely or infinitely many
elements which cause M to output a conjecture when it has memory 1. This
is handled as Case 5. The definition of P(e) is to ensure that, based on above
cases, P(e) either follows e or becomes a finite subset of it. In the definition
of P(e) below, S(e) just tries to find the time steps upto which it is safe to
simulate W,.. We now proceed formally.

Wy ”

In the following, “x” stands for the case that the value does not matter and
in all (legal) cases the same is done.

Define a function P such that P(?) =7 and, for e € N, P(e) is an index of the
set Wp(e) = Uses(e) We,s where S(e) is the set of all s satisfying either (a) or
((b) and (c) and (d)) below:

(a) There exists an @ € W, 5, M(1,x)

(b) For all x € W, 5, [M(0,z) = (%,1)

(c) There exists an z € W, 5, M(0, x)
(x,0);

(d) For all x € W s U{#}, [M(0,2) = (j,%) = Wes CW; AN W, CW,|.

(x, 0);
M(1,z) = (7, 1)];
(?,1) or for all x € W, 5, M(0,z) =

[

Now we define for all m € {0,1}, j € NU{?} and x € NU {#},

(P(j),0), if m =0 and M(0,2) = (j,0);

(7,1), if m =0 and M(0,z) = (*,1) and M(1,z) = (7, *)
N(m,z) = and j #£7;

(7,1), if m =0 and M(0,z) = (5,1) and M(1,z) = (7, %);

(j,1), if m=1and M(1,2) = (j, %).

Now fix an L € £ and a text T for L. Note that M identifies L. We show
below that N will also identify L from text T

Case (1): For all z € L, M(0,z) = (,0).

Then N behaves exactly like M with the only difference that every hypothesis
e is translated to P(e). As M converges syntactically to a hypothesis e, N
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converges syntactically to the hypothesis P(e). One can now verify that every
s goes into S(e) by satisfying the conditions (b), (c¢) and (d) and thus Wp) =
We: (b) and (c) are clearly satisfied; for condition (d) note that all hypotheses
output by M are e since otherwise M would diverge on fat texts for L, that
is, on texts where every datum of L U {#} appears infinitely often.

Case (2): Not Case (1) and there exists an x € L, M(1,x) = (*,0).

First we show that the learner N outputs at least one conjecture on T'. Assume
by way of contradiction that N on text T' does not output any hypothesis.
We then show that there is a text 7" for L on which M does not output any
hypothesis. Let m be the first number such that after seeing T'[m], M has
memory 1. Then N and M both do not output any hypothesis on this initial
portion T'[m|. T' will be a modification of T" by inserting appropriate elements
in order to force M back to memory 1 without outputting a hypothesis. Let
T' be the limit of o, defined as follows. One starts with oo = T'|m| and now
defines 0,1 inductively from o,: if M after 0,7(m + n) has the memory
1, then we set 0,41 = 0,7 (m + n); else we set 0,41 = 0,T(m + n)T[m] in
order to transfer M back into memory 1 without outputting a conjecture. Now
T" = Upen 0n and M does not output any hypothesis on 7. However, 7" is
just T with T'[m] inserted at some places, and therefore 7" is a text for L.
Hence M does not identify L, a contradiction. So N does output a conjecture
onT.

Similarly, we can show that M outputs only one hypothesis e on data coming
from L. Otherwise one could create a text 7" on which M outputs infinitely
often two different hypotheses as follows. Let o be an initial segment of a text
T for L such that M outputs two distinct hypothesis on initial segments of o.
Let z be an element of the input language on which M changes its memory
from 1 to 0. Let T" be defined by inserting o or yo after every T'(n), based
on whether M has memory value 0 or 1 after receiving T'(n). Then, it is easy
to verify that 7" is a text for L, and M infinitely often outputs two different
hypothesis on 7".

So N makes at most one mind change, potentially from P(e) to e, and thus
N is non U-shaped. For correctness, note that Wp() = W, since (a) holds.

Case (3): Not Cases (1), (2) and there exists an x € L such that M(0,z) =
(%,1) and M(1,2) # (7,1).

In this case, all conjectures of N before getting memory 1 are wrong. This is
because, for any e, Wp) either contains an x such that M(1,z) = (x,0) (due
to condition (a)), or it does not contain any x such that M(0,z) = (x,1) and
M(1,z) # (?,1) (due to condition (b)). Also, once N has memory content 1,
it will only output correct grammars, since M outputs only correct grammars
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after having memory 1 — otherwise M would output infinitely often wrong
grammars on a fat text for L. The output during transition from memory 0 to
1 thus does not effect U-shapedness. N does Ex-identify L, as it will output
a correct grammar for L once it sees the input x.

Furthermore, N  converges on T since M  converges on
TO)T(0)T(1)T(1)T(2)T(2) ... which is obviously also a text for L.

Case (4): Not Cases (1), (2), (3) and for all x € L, M(0,z) # (7,1).

In this case, N does change memory, outputs a grammar at the point of
changing memory and then follows M. Thus it Ex-identifies L. We now claim
that every grammar output by N before it changes memory to 1 is incorrect.
Suppose by way of contradiction that P(e) output by IN before it changes
memory to 1 is a grammar for L. By hypothesis of current case, there is an
x € L such that M(0, z) = (%, 1). Fix one such z. Now, for all s with W, ; C L,
if x € W, s, the conditions (a) and (c¢) do not hold and s ¢ S(e). Thus, either
Whp(e) is not a subset of L or Wp(.) does not contain x, a contradiction. Hence
N is non U-shaped.

Case (5): Not Cases (1), (2), (3), (4). That is, the following three conditions
hold:

o forallz € L, M(1,x) = (%,1);
o forall z € L, if M(0,z) = (x,1), then M(1,z) = (?,1);
e there exists an x € L such that M(0,z) = (?7,1).

Note that M necessarily outputs correct hypotheses after it achieves memory
1 (since otherwise M would output infinitely often wrong grammars on a fat
text for L).

Subcase (5-1): L contains only finitely many elements x such that M(1,z) =
(J,1), 5 #7.

We first claim that for all j #7, such that M(0,z) = (j,*), W; = L. Sup-
pose otherwise. Let y be such that M(0,y) outputs a wrong hypothesis. Let
X={xeL:M(1,z) = (j,1),j #7}. Note that, for all x € X, we must have
M(0,z) = (4,0) for some j € NU {7}, by the hypothesis of the current case.
Let z € L be such that M(0, z) = (7,1) (there exists such a z by the hypoth-
esis of current case). Let o be such that content(c) = X. Let 7" be a text
for L — X. Now consider the text 77 = oyT" if M(0,y) = (x,1); T" = oyzT"
otherwise. Then, M on T” never outputs a conjecture beyond oy, and thus it
converges on 1" to a wrong hypothesis for L, a contradiction. It follows that
M always outputs a correct hypothesis (or ?) on input from L U {#} (for
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any memory value). Thus, all hypothesis output by N are also correct (since
conditions (b), (c), (d) hold for large enough s, in the definition of S(e), for
any e such that W, = L). Hence, N NUShEx-identifies L.

Subcase (5-1I): L contains infinitely many elements x such that M(1,z) =

(J:1), 5 #7.

In this case N clearly outputs a conjecture after achieving memory 1 and thus
N converges on T to the same hypothesis as M on T. So N Ex-identifies L
from T.

Now, if for all z € LU {#}, M(x,z) outputs a correct hypothesis, if any,
then Wp() = W, = L for all hypothesis e output by M on input z (for any
memory value), since conditions (b), (¢) and (d) hold for large enough s in
the definition of S(e). Thus, N only outputs correct hypotheses and N is non
U-shaped.

On the other hand, if there exists an x € L U {#} such that M(0, z) outputs
a wrong hypothesis, then all grammars output by IN before changing memory
to 1 are not for L. This holds as for any e: if W, # L, then Wp is either
finite or equal to W,, and hence not equal to L; on the other hand if W, = L,
then in the computation of Wp(y, (a) does not hold, and (d) can hold only for
finitely many s, and hence Wp(.y # L. Hence N is non U-shaped on L. |}

In the just previous proof, the modification of W, to Wp(. is essential. If this
were not be permitted and we considered class-preserving learners only, the
result changes, as the following remark shows.

Remark 36 The proof of Theorem 12 above provides a class L € (It —
NUShEX®), where the superscript cp stands for class-preserving learning.

This same L is also in BMSS as the learner M from the proof of Claim 1/
can be modified to obtain the machine M’ witnessing this fact. Recall that

L={L.:eeN}yU{L!: Sc #0 A (n,t) = min(S,)},

where S, was a certain set defined in dependence of the e-th learner from an
enumeration of all learners. Furthermore, recall that p(e,0) generates L. and
p(e,2) generates L?, where p is from the proof of Claim 14. M’ starts with
long term memory 0 and works on input (e, x) as follows:

(p(e,0),0), ifa=0 and S, does not contain any (n,ty < x;
(p(e,2),1), ifa=0 and S, contains an element (n,t) < x;
M/ (a, (e, z)) =< (p(e,0),1), ifa=1 and min(S,) = (n,t) <z,

and (e, z) ¢ Ly ;
(7,1), otherwise.
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It is easy to verify that M' Ex-identifies the class L — employing long term
memory {0,1}.

To conclude the present section we state the following Theorem that the c-
bounded memory state criteria form a hierarchy of more and more powerful
learning criteria increasing in the number ¢ of states allowed. Note that 1-
bounded memory state learners can identify singleton classes consisting of
one set. The class

L.=1{{0,1,2},{0,1,2,3},{0,1,2,3,4},...,{0,1,2,...,2¢c}}

from [22, discussion after Theorem 7.6] witnesses the properness of the follow-
ing inclusion. The discussion there can be easily extended to show L. is not
in BMS,_ ;. We give the proof for completeness.

Theorem 37 For allc > 1, BMS,._; C BMS..
Proof. Consider the class
L.=1{{0,1,2},{0,1,2,3},{0,1,2,3,4},...,{0,1,2,...,2c}}

as in [22, Discussion after Theorem 7.6]. In [22] it is shown that this class is
learnable with ¢ long term memory states but not learnable with less than
2c¢—2 mind changes. Suppose by way of contradiction that M BMS,._;-learns
L.. Define o;, for i < 2¢ — 2, such that content(o;) = {z: 2 <i+ 2}, and
M(o;) is a grammar for {z :x <i+ 2}, and 0,1 C o; (where o_; is taken
to be A). Let the states of M after receiving o; be a;,. We claim that ay;,
7 < c—1, must all be pairwise distinct, and hence M uses at least ¢ memory
values. If not, then suppose ay; = as(j4r), where j +1 < j+k < ¢ — 1. Let
7 be such that o9;7 = 03(j4x). Note that 7 is non-empty, and M makes at
least 2 distinct conjectures between oy (exclusive) and oa(j4x) (inclusive) (at
02j+1 and oyj42). Thus, M on 09,;7° makes infinitely many mind changes,
even though content(o;7) € L.. Theorem follows. |

Remark 38 One can generalize BMS,. to ClassBMS and BMS. The
learners for these criteria use natural numbers as long term memory. For
ClassBMS we have the additional constraint that, for every text of a lan-
guage inside the learnt class, there is a constant c, depending on the text, such
that the value of the long term memory is never a number larger than c. For
BMS the corresponding constraint applies to all texts for all sets, even those
outside the class.

One can extend methods used above for BMS,. and results from [22] to prove
that ClassBMS = It. Furthermore, a class is in BMS iff it has a confident
iterative learner, that is, an iterative learner which converges on every text,
whether this text is for a language in the class to be learned or not.
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It is easy to see that J.ey BMS, C BMS C ClassBMS. Furthermore, one
has by Remark 25 that there is a class in MLF; — ClassBMS. The bottom
levels of the hierarchies coincide: BMS,; = MLF. These levels are nontrivial
as they already contain every uniformly recursive class of disjoint non-empty
languages; the disjointness is important, since, for a # b, an MLF(-learner
cannot learn the class of languages {{a},{b},{a,b}}. It is easy to argue that
MLF, = NUShMLF,.

Furthermore, there is a class in BMSy — MLF,. To see this let L, =
{(i+1,2) :2 €N} and L;, = L; U{(0,(i,z))}. Then, the class {L; : i €
N}U{L;, : i,z € N} is in BMS,; — MLF,.

8 Conclusions and Open Problems

Numerous results related to non U-shaped learning for machines with severe
memory limitations were obtained. In particular, it was shown that

e there are class-preservingly iteratively learnable classes that cannot be
learned without U-shapes by any iterative class-preserving learner (The-
orem 12),

e consistent iterative learners for a class can be turned into consistent, iter-
ative, non U-shaped and strongly monotonic learners for that class (Corol-
lary 17),

e class-consistent iterative learners for a class can be turned into iterative non
U-shaped and monotonic learners for that class (Theorem 19),

e for all n > 0, there are n-memoryless feedback learnable classes that cannot
be learned without U-shapes by any n-memoryless feedback learner (Theo-
rem 30) and, by contrast,

e every class learnable by a 2-bounded memory states learner can be learned
by a 2-bounded memory states learner without U-shapes (Theorem 35).

The above results are, in our opinion, interesting in that they show how the
impact of forbidding U-shaped learning in the context of severely memory-
limited models of learning is far from trivial. In particular, the tradeoffs that
our results reveal between remembering one’s previous conjecture, having a
long-term memory, and being able to make feedback queries are delicate and
perhaps surprising. Many fascinating problems remain open.

From Theorem 30, we know that, for m > 0, NUShMLF,, ¢ MLF,,. It
would be interesting to know whether,

Problem 39 For m > 0, is MLF,, C NUShMLF,,, for somen > m?
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Finally, for state bounded memory learning, it is open whether our Theorem 35
generalizes to the case of learners that are allowed to store one among ¢ values
for ¢ > 2.

Problem 40 Is BMS, C NUShBMS,, forc¢ > 2?¢

Also, the question of the necessity of U-shaped behaviour with respect to the
stronger memory-limited variants of Ex-learning (bounded example memory
and feedback learning) from the previous literature [24,11] remains wide open.
Humans can remember much more than one bit and likely retain something
of their prior hypotheses; furthermore, they have some access to knowledge
of whether they’ve seen something before. Hence, the open problems of this
section may prove interesting for cognitive science.
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