
Deterministic Frequency Pushdown Automata

Cristian S. Calude

(Department of Computer Science, The University of Auckland

Auckland, New Zealand

cristian@cs.auckland.ac.nz)
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Abstract: A set L is (m,n)-computable iff there is a mechanism which on input of
n different words produces n conjectures whether these words are in L, respectively,
such that at least m of these conjectures are right. Prior studies dealt with (m,n)-
computable sets in the contexts of recursion theory, complexity theory and the theory
of finite automata. The present work aims to do this with respect to computations by
deterministic pushdown automata (using one common stack while processing all input
words in parallel).

We prove the existence of a deterministic context-free language L which is thus recog-
nised by a (1, 1)-DPDA but fails to be recognised by (m,n)-DPDA where n ≥ 2 and
m ≥ n/2 + 1. This answers a question posed by Eli Shamir at LATA 2013. Further-
more, it is shown that there is a language L such that, for all m,n with m ≤ n/2, L
can be recognised by an (m,n)-DPDA but, for all m,n with 1 ≤ m ≤ n, L cannot be
recognised by (m,n)-DFA.
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1 Introduction

During a discussion of the paper [Freivalds et al. 2013] at the conference LATA

2013 in Bilbao, Spain, Eli Shamir asked whether the results on frequency Turing

machines and frequency finite automata hold for pushdown automata as well.



The difficulty of the question is in the fact that an (n, n)-Turing machine or

an (n, n)-finite automaton can be presented as a Cartesian product of n sepa-

rate Turing machines or finite automata but this construction does not seem to

increase the power of the machine. However, an arbitrary Turing machine can

be simulated by an automaton with 3 pushdown tapes (and allowing some re-

arrangement, even with 2 pushdown tapes [Bārzdiņš 1962]). Hence the possible

definition of a frequency pushdown automaton should avoid the use of several

pushdown stores in a single automaton.

2 Frequency computation

The notion of frequency computation was introduced in [Rose 1960] as an at-

tempt to have a deterministic notion of computation with properties similar to

probabilistic algorithms. Let N = {0, 1, 2, . . .} denote the set of all natural num-

bers, N+ = N\{0}. Fix m,n ∈ N, 1 ≤ m ≤ n. The ith component of the m-tuple

(x1, . . . , xm) is denoted by (x1, . . . , xm)i.

A function f : N→ N is (m,n)-computable if there exists a computable func-

tion R : Nn → Nn such that for all n-tuples (x1, . . . , xn) ∈ Nn of mutually

distinct natural numbers we have:

card{i | 1 ≤ i ≤ n, (R(x1, . . . , xn))i = f(xi)} ≥ m.

Answering a problem by Myhill (see McNaughton [McNaughton 1961]), Trakht-

enbrot proved in [Trakhtenbrot 1964] that: (1) if 2m > n then every (m,n)-

computable function is computable, (2) if 2m = n, then f can be not computable.

Kinber in [Kinber 1972, Kinber 1976] extended these results by considering fre-

quency enumeration of sets and proved that the class of (m,n)-computable sets

equals the class of computable sets if and only if 2m > n.

The notion of frequency computation has been extended to other models

of computation. Frequency computation in polynomial time was discussed in

detail in [Hinrichs and Wechsung 1997]. For resource bounded computations, the

behaviour of frequency computability is completely different. For example, under

any reasonable resource bound, whenever n′−m′ > n−m, there exist sets which

are (m′, n′)-computable, but not (m,n)-computable. However, scaling down to

finite automata, the analogue of Trakhtenbrot’s result holds again: the class of

languages (m,n)-recognisable by deterministic frequency automata equals the

class of regular languages if and only if 2m > n; for 2m ≤ n, the class of languages

(m,n)-recognisable by deterministic frequency automata is uncountable for a

two-letter alphabet (cf. [Austinat et al. 2005]). When restricted to a one-letter

alphabet, every (m,n)-recognisable language is regular, see [Kinber 1972] and

[Austinat et al. 2005].

Frequency computations became increasingly popular when relations

between frequency computation and computation with a small number of



queries have been discovered [Ablaev and Freivalds 1986, Austinat et al. 2005,

Balodis et al. 2012, Beigel et al. 1996, Case et al. 1997, Dëgtev 1981,

Freivalds 1991, Harizanov et al. 1992, Kinber et al. 1995, Kummer 1992,

Kummer and Stephan 1995].

3 Frequency pushdown automata

Let Σ be any finite alphabet, and let Σ∗ be the free monoid generated by Σ.

The binary alphabet {0, 1} is denoted by B; B∞ is the set of binary ω-words,

i.e. infinite sequences of bits. Every subset L ⊆ Σ∗ is said to be a language. The

elements of Σ∗ are called strings; |x| denotes the length of a string x ∈ Σ∗. By

χL : Σ∗ → {0, 1} we denote the characteristic function of L.

A deterministic pushdown automaton (DPDA) is a 7-tuple M =

(Q,Σ, Γ, δ, q0, Z, F ), where Q is a finite set of states, Σ is a finite set called

the input alphabet, Γ is a finite set called the stack alphabet, q0 ∈ Q is the

start state, Z ∈ Γ is the initial stack symbol and F ⊆ Q is the set of accepting

states. Furthermore, δ ⊆ Q× (Σ ∪ {ε})× Γ ×Q× Γ ∗, where (for determinism)

it is required that for all q ∈ Q, a ∈ Σ ∪ {ε} and A ∈ Γ , there is at most one

element in δ of the form (q, a,A, ·, ·). Furthermore, if (q, ε, A, ·, ·) ∈ δ, then for

all a ∈ Σ, (q, a, A, ·, ·) 6∈ δ. An element (p, a,A, q, α) ∈ δ is a transition of M .

Its meaning is that M , in state p ∈ Q, with a ∈ Σ ∪ {ε} on the input and with

A ∈ Γ as topmost stack symbol, may read a, change the state to q, pop A, and

replace it by pushing α onto the stack (by convention, the last symbol of α is

pushed first onto the stack); here a = ε means that no input symbol is con-

sumed. Note that we can also consider δ as a function, from Q× (Σ ∪ {ε})×Γ ∗
to Q × Γ ∗, where (q, a, A, p, β) ∈ δ means δ(q, a,Aα) = (p, βα), for all α ∈ Γ ∗.
Here, Aα represents the content of the stack (topmost symbol first), before the

transition and βα represents the content of the stack after the transition. Then,

δ∗(q, w, α) = (p, β), where one repeatedly applies δ, on initial symbol (or ε) of

remaining part of w until the string w is consumed and no further moves are

possible. If w is never consumed by the DPDA, or it keeps on making ε moves

after consuming w, then δ∗(q, w, α) is undefined. More formally, one can define

δ∗ as follows.

Base Case: Suppose A ∈ Γ , α ∈ Γ ∗, w ∈ Σ∗. If δ(q, ε, A) is not defined,

then δ∗(q, ε, Aα) = (q,Aα). For a ∈ Σ, if δ(q, ε, A) and δ(q, a,A) are not defined,

then δ∗(q, aw,A) is not defined. Furthermore, δ∗(q, w, ε) is not defined for any

non-empty string w.

Inductive step: Suppose A ∈ Γ , α ∈ Γ ∗, w ∈ Σ∗, and a ∈ Σ ∪ {ε}. If

δ(q, a,A) = (p, β), then δ∗(q, aw,Aα) = δ∗(p, w, βα).

Note that it is possible that inductive step never ends for some strings (due

to repeated application of ε moves which never empties the stack). In this



case also we say that δ∗(q, w, α) is undefined. The DPDA accepts a string w

if δ∗(q0, w, Z0) = (qf , α), for some qf ∈ F .

For n-frequency pushdown automata we modify the above definition allowing

n input strings. However, we need to be aware that for the general case input

strings can be of distinct lengths. Our definition closely models the definition of

n-frequency finite automata (see, e.g. [Freivalds et al. 2013]).

A deterministic (m,n)-frequency automaton ((m,n)-DFA) is a 7-tuple A =

(Q,Σ,#, δ, q0, τ, n), where n ∈ N, n ≥ 1, Q is a finite set of states, q0 is the

initial state, Σ is a finite alphabet and # is a symbol not in Σ. The mapping

δ : Q×(Σ∪{#})n → Q is the transition function; the function τ : Q→ Bn is the

type of state used for outputs. The type is interpreted as an n-tuple of answers

αi: its i-th component records whether the i-th input string read from the i-th

input up to the current position belongs to the language. We use the notation

τ(q0, (x1#`1 , . . . , xn#`n)) to denote the type after reading as input the strings

(x1#`1 , . . . , xn#`n).

Next we formally describe the behaviour of an (m,n)-DFA A. For n ∈ N+ let

x = (x1, . . . , xn) ∈ (Σ∗)n be an input vector. We define |x| = max{|xi| | 1 ≤ i ≤
n}, and q ◦ x = δ∗(q, (x1#`1 , . . . , xn#`n)), where δ∗ : Q × ((Σ ∪ {#})n)∗ is the

usual extension of δ on n-tuples of strings, and `i = |x| − |xi|, for all 1 ≤ i ≤ n.

The output of A is defined to be of the type τ(q0 ◦ x).

A language L ⊆ Σ∗ is said to be (m,n)-recognised by an (m,n)-DFA A if for

each n-tuple (x1, . . . , xn) ∈ (Σ∗)n of pairwise distinct strings the tuples τ(q0 ◦x)

and (χL(x1), . . . , χL(xn)) coincide on at leastm components. A language L ⊆ Σ∗
is called (m,n)-recognisable if there is an (m,n)-DFA A that (m,n)-recognises L.

To define deterministic (m,n)-frequency pushdown automata (with only one

pushdown store) the transition function δ can be extended to n-tuples. A de-

terministic (m,n)-frequency pushdown automaton ((m,n)-DPDA) is a 9-tuple

A = (Q,Σ,#, Γ, δ, q0, τ, Z, F ), where # 6∈ Σ and (Q, (Σ∪{#})n, Γ, δ, q0, τ, Z, F )

is a DPDA.

For n ∈ N+ let x = (x1, . . . , xn) ∈ (Σ∗)n be an n-tuple of strings. We define

|x| = max{|xi| | 1 ≤ i ≤ n}, and q ◦ x = δ∗(q, (x1#`1 , . . . , xn#`n), Z), where

`i = |x| − |xi| for all 1 ≤ i ≤ n. Then the output of A is defined to be the

type τ(q), where q0 ◦ x = (q, β), for some β. We emphasise that the (m,n)-

DPDA contains only one pushdown stack which is used to process all n inputs

in parallel.

A language L ⊆ Σ∗ is said to recognised by an (m,n)-DPDA A if for each

n-tuple (x1, . . . , xn) ∈ (Σ∗)n of pairwise distinct strings the tuples τ(q0 ◦x) and

(χL(x1), . . . , χL(xn)) coincide on at least m components.



4 Basic Facts about the Inclusion Structure

We start with the following obvious facts. Kinber [Kinber 1976] observed the

basic properties for frequency computation with finite automata.

Proposition 1. If L is recognised by an (m,n)-DPDA then L is also recognised

by an (m,n+1)-DPDA and, in the case that m,n > 1, also by an (m−1, n−1)-

DPDA.

Austinat, Diekert, Hertrampf and Petersen [Austinat et al. 2005] as well as Kin-

ber [Kinber 1976] showed that there is a continuum of sets which is recognisable

by a (1, 2)-DFA. Such a (1, 2)-DFA is of course also a (1, 2)-DPDA. Thus one

gets the following proposition.

Proposition 2. There exists a continuum of languages that are recognisable by

an (1, 2)-DPDAs.

Kinber [Kinber 1975, Kinber 1976] and in particular Dëgtev [Dëgtev 1981] gave

criteria for proving non-inclusions and one important notion is that of an (m,n)-

admissible set [Dëgtev 1981].

Definition 3. A set V ⊆ {0, 1}k of vectors is called (m,n)-admissible iff k ≥ n

and for every projection of V onto n coordinates there is a vector (b1, . . . , bn)

which coincides with every member of the projection in at least m coordinates.

An example is the set {000, 111, 100, 010, 001} which is (1, 3)-admissible and not

(1, 2)-admissible; furthermore, {00000, 11111, 00001, 00010, 00100, 01000, 10000}
is (2, 5)-admissible and (1, 3)-admissible but not (2, 4)-admissible and not (1, 2)-

admissible. Note that one can always assume, without loss of generality, that

one vector in V consists only of zeroes; the reason is that a set V ⊆ {0, 1}k is

(m,n)-admissible iff W = {(b1⊕ c1, . . . , bk ⊕ ck) : (b1, . . . , bk) ∈ V } is (m,n)-ad-

missible, where (c1, . . . , ck) is a fixed vector in {0, 1}k and ⊕ is the exclusive or;

if (c1, . . . , ck) ∈ V then (0, . . . , 0) ∈W .

The following proposition is the counterpart of a construction used for

relating the verboseness notions of finite automata and recursion theory

[Tantau 2002, Theorems 10-12].

Proposition 4. Ifm ≤ n/2 and there is a set V ⊆ {0, 1}k which is (m−t, n−2t)-

admissible for all t with t < m and n − 2t ≤ k, but not (h, k)-admissible, then

there is a language L which is recognised by an (m,n)-DFA and not recognised

by any (h, k)-DPDA.

Proof. Assume that m,n, h, k, V are given as stated in the proposition. Without

loss of generality the vector 0k is in V .



One defines Σ = {1, 2, . . . , |V | + k} and let v1, . . . , v|V | be the vectors in

V . Furthermore, one defines inductively an ω-word a0a1 . . . ∈ {1, . . . , |V |}ω as

follows: For each `, one considers the `’s (h, k)-DPDA and its output (b1, . . . , bk)

on the k-tuple (w1, . . . , wk) with wj = a0a1 . . . a`−1 · (|V | + j). By assumption

there is one vector va ∈ V such that (b1, . . . , bk) differs from va in at least

k − h + 1 coordinates. Now one chooses a` = a for the least such a and defines

that χL(a0a1 . . . a`−1(|V |+ j)) = va(j) for j = 1, . . . , k.

This is done for ` = 0, 1, . . . giving an ω-word a0a1 . . . ∈ {1, . . . , |V |}ω and

defines L on all words from the sets a0a1 . . . a`−1 · {|V | + 1, . . . , |V | + k} with

` ∈ ω. Furthermore, L does not contain any other words from Σ∗. It follows

immediately from the construction that no (h, k)-DPDA recognises L.

Now one constructs a (m,n)-DFA which recognises L. The (m,n)-DFA reads

in parallel words w1, . . . , wn. Whenever the (m,n)-DFA detects that there is a

pair (i, j) of coordinates such that it has not yet assigned answers to wi, wj and

either wi /∈ {1, . . . , |V |}∗ · {|V | + 1, . . . , |V | + k} or the first digit where wi, wj

differ is from {1, . . . , |V |} for both inputs then the (m,n)-DFA assigns the value

0 to both coordinates and at least one is right, as it cannot be that both vectors

are of the form a0a1 . . . a`−1 · {|V |+ 1, . . . , |V |+ k} for some ` ∈ ω.

Whenever the (m,n)-DFA detects that there is a pair (i, j) such that the

(m,n)-DFA has not yet assigned answers for wi, wj and the first digit where

wi, wj differ is for wi a value |V | + b and for wj a value a ∈ {1, . . . , |V |} and

b is also the last digit of wi then the (m,n)-DFA assigns to wi the value va(b)

and to wj the value 0. In the case that the 0 for wj is incorrect, wj is a member

of L and wi is of the form a0 . . . a`−1(|V | + b) for some ` and a` = a and thus

χL(wi) = va`
(b). Again at least one of the two guesses is correct.

Let t be the number of pairs which will be processed and for whose mem-

bers will be assigned answers as above until all inputs are read completely. The

remaining n− 2t inputs are then all of the from the set ã0ã1 . . . ã`−1 · {|V |+ 1,

. . . , |V |+ k} for some ` ∈ ω and ã0ã1 . . . ã`−1 ∈ {1, . . . , |V |}∗. Note that by this

form there are at most k of these inputs. If t ≥ m then the (m,n)-DFA assigns

just 0 for these remaining inputs, as there are already t correct answers. If t < m

then the projection of V onto the corresponding coordinates is (m − t, n − 2t)-

admissible and one can find values for the remaining coordinates which coincide

with the projections on m− t coordinates; furthermore, m− t of the coordinates

must be 0, as 0m is among the projected vectors. In the case that there is `′ < `

where ã`′ 6= a`′ then the m−t zeroes are correct and so the (m,n)-DFA provides

in total at least m correct answers. In the case that there is no such `′ then the

projections of va`
onto the corresponding coordinates coincide with χL on these

coordinates and thus, by the (m− t, n−2t)-admissibility of V , out of the chosen

answers, at least m− t are correct so that the overall correct answers are at least

m again. Thus the (m,n)-DFA described above recognises L. ut



Note that the above construction can also be carried out for finite automata

versus Turing machines, thus the separation obtained is quite general. The given

admissibility criterion is, however, not of the form “if and only if”, as the next

result shows.

The set {0000, 1111, 0001, 0010, 0100, 1000} witnesses that there is a language

L which is recognised by a (1, 3)-DFA and a (2, 5)-DFA but not by a (2, 4)-DPDA.

This can be generalised to show that for every even k there is a language not

recognised by any (h, 2h)-DPDA with 2h ≤ k but recognised by an (m, 2m+ 1)-

DFA for every m, the corresponding V ⊆ {0, 1}k consists of all vectors which

have no 1, exactly one 1 or no 0, respectively.

Corollary 5. For each n, there is a language recognised by a (m, 2m+ 1)-DFA

for every m which is not recognised by an (n, 2n)-DPDA.

Assume that m = k and n = 2k and V = {0, 1}k. Then one can modify the

(m,n)-DFA from Proposition 4 such that on input (w1, . . . , wn) as follows.

For each pair (i, j) of coordinates it marks in its memory a pair (0, 0) when-

ever wi /∈ {1, . . . , |V |}∗ · {|V | + 1, . . . , |V | + k} or wj /∈ {1, . . . , |V |}∗ · {|V | +
1, . . . , |V |+ k} or the first digit where wi, wj differ is from {1, . . . , |V |} for both

inputs wi, wj . One of these two zeroes must be correct as it cannot be that both

vectors are of the form a0a1 . . . a`−1 · {|V |+ 1, . . . , |V |+ k} for some ` ∈ ω.

For each pair (i, j), if the first digit where wi, wj differ is for wi a value |V |+b
and for wj a value a ∈ {1, . . . , |V |} and b is also the last digit of wi then the

(m,n)-DFA marks in the memory a pair (va(b), 0) for (i, j). In the case that the

0 for wj is incorrect, wj is a member of L and wi is of the form a0 . . . a`−1(|V |+b)
for some ` and a` = a and thus χL(wi) = va`

(b). Again at least one of the two

entries for the marked pair is correct.

Furthermore, if one marks for (wi, wj) a pair (a, b) then one marks for (wj , wi)

the pair (b, a).

Once the whole input is processed, for each set of m + 1 inputs there is a

pair (i, j) such that wi, wj are in this set of inputs and some pair is marked for

(i, j). Furthermore, if for inputs (wi, wj) and (wj , wh) no pairs are marked, so is

for (wi, wh). Thus it follows that one can split the n input words into m pairs

of words such that for each pair of words a pair of bits is marked out of which

one answer is correct. This permits to assign a vector of n answers to the input

words out of which at least m are correct. Thus one has the following corollary.

Corollary 6. For every k there is a language L such that L is not recognised by

a (1, k)-DPDA but is recognised by a (m,n)-DFA for all (m,n) with n−m ≥ k
and m ≤ n/2.



5 Shamir’s Question

Shamir asked at LATA 2013 whether there is a deterministic context-free non-

regular language L such that, for all m > 1, L is not recognised by a (m,m)-

DPDA. The next result shows that this is the case. Indeed, it shows that there

is a deterministic context-free language L which is thus recognised by a (1, 1)-

DPDA but fails to do so for many (m,n)-DPDA where n ≥ 2 and m is “near

to” n.

Note that the following implication is known for frequency computation

[Dëgtev 1981] and also true for DFAs as stated now: If n ≤ k and every (m,n)-

admissible subset V ⊆ {0, 1}k is (h, k)-admissible then every set recognised by

an (m,n)-DFA is also recognised by a (h, k)-DFA. The corresponding state-

ment is disproven for DPDAs by the next result, as every (1, 1)-admissible set

V ⊆ {0, 1}2 consists only of one vector and is therefore (2, 2)-admissible. Recall

that a set is recognised by a (1, 1)-DPDA iff it is deterministic context-free.

Theorem 7. The deterministic context-free language L = {0i1j2k : i + k = j}
is not recognisable by any (m,n)-DPDA for any m,n with n

2 + 1 ≤ m ≤ n.

Proof. It is easy to verify that L can be recognised by a DPDA. Intuitively, the

DPDA can first push the 0’s. When 1’s are read, it can pull out the corresponding

number of 0’s. Then the remaining 1’s can again by pushed onto the stack, and

on reading 2’s they can be pulled out. Formally, the following DPDA recognises

L.

Q = {q0, q1, q2, q3, q4, q5, q6}
Σ = {0, 1, 2}
Γ = {0, 1, Z0}
F = {q0, q3, q6}.

The transition function δ is defined as follows:

δ(q0, 0, Z0) = (q1, 0Z0)

δ(q0, 1, Z0) = (q4, 1Z0)

δ(q1, 0, 0) = (q1, 00)

δ(q1, 1, 0) = (q2, ε)

δ(q2, 1, 0) = (q2, ε)

δ(q2, ε, Z0) = (q3, Z0)

δ(q3, 1, Z0) = (q4, 1Z0)

δ(q4, 1, 1) = (q4, 11)

δ(q4, 2, 1) = (q5, ε)

δ(q5, 2, 1) = (q5, ε)

δ(q5, ε, Z0) = (q6, ε).



Assume by way of contradiction that there are m,n and a (m,n)-DPDA M

recognising L with n
2 + 1 ≤ m ≤ n. The languages

Lb1,...,bn = {(u1, . . . , un) : M(u1, . . . , un) = (b1, . . . , bn)}

are all context-free languages of convoluted tuples. Furthermore, there is a con-

stant c which is a common pumping constant for all these languages.

Next consider the working of M on inputs (u1, . . . , un) with

uh = 02ch14cn24cn−2ch;

all uh are in L and have the same length 8cn. Due to the pumping lemma, each

uh can be split into words vh, wh, xh, yh, zh such that all vh have the same length,

all wh have the same length, all xh have the same length, all yh have the same

length, all zh have the same length, and

|whxhyh| ≤ c, |whyh| > 0,

and the tuple (ũ1, . . . , ũn) of all ũh = vhwhwhxhyhyhzh is in Lb1,...,bn for the

output (b1, . . . , bn) of M on (u1, . . . , un), that is,

M(u1, . . . , un) = M(ũ1, . . . , ũn).

Note that the border from the 0 part to the 1 part as well as the border from the

1 part to the 2 part in uh and uh+1 differ by 2c, which is more than the pumping

constant c. So, if the length of the vh is below 2cn, then, for all h except at

most one, either whxhyh ∈ 0+ or whxhyh ∈ 1+. Similarly, if the length of vh is

at least 2cn then for all h except at most one of them, either whxhyh ∈ 1+ or

whxhyh ∈ 2+.

It follows that for all h except at most one, the number of digits of one type

in ũh differs from that in uh while the number of digits of the other two types

are the same, thus the constraint that there are as many 1 as 0 and 2 combined

gets destroyed. So uh /∈ L for all but at most one h.

By the assumption that M is a (m,n)-DPDA recognising L, at least n
2 + 1

of the bits b1, . . . , bn are 1 due to M(u1, . . . , un) = (b1, . . . , bn) and at lesat
n
2 of those bits are 0 due to M(ũ1, . . . , ũn) = (b1, . . . , bn). These requirements

contradict each other, thus there cannot be an (m,n)-DPDA recognising L when

m ≥ n
2 + 1. ut

6 Relating DPDAs and DFAs

One could ask whether, in general, there is a closer relation between regularity

and recognisability by an (m,n)-DPDA. If 2m < n then there are uncountably

many sets which are recognisable by a (m,n)-DFA [Austinat et al. 2005]. So the



question would be more precisely phrased as follows: does there exist a pair

(m,n) with 1 < m ≤ n such that there exist sets which are recognisable by an

(m,n)-DPDA but not recognisable by a (m,n)-DFA? The answer is affirmative,

as the next theorem shows.

Theorem 8. There exists a language L recognisable by an (m, 2m)-DPDA for

each m > 0, but not recognisable by any (1,m)-DFA for every m > 0.

Proof. Let Σ = {0, 1, 2}. Let M j
i denote the i-th DFA using j + 1 inputs. For

any n, let sn =
∑
〈i′,j′〉<n(j′ + 1).

A sequence of words w0, w1, . . . in {0, 1}∗ will be defined below. Let vk =

w02w12 . . . wk2. The following properties will be satisfied:

– L ⊆ {vk : k ∈ N};
– For any n = 〈i, j〉, M j

i fails to (1, j + 1)-recognise the set L on input

(vsn , vsn+1, . . . , vsn+j);

– For k ∈ N, vk ∈ L iff wk has equal number of 0’s and 1’s.

For n = 〈i, j〉, suppose we have defined w0, w1, . . . , wsn−1. Then, define

wsn , wsn+1, . . . , wsn+j as follows. Suppose the pumping constant for M j
i is h > 2.

Then, initially select wr, r ∈ {sn, sn+1, . . . , sn + j}, as wr = 0h!+h1h. Suppose

that

M j
i (vsn , vsn+1, . . . , vsn+j) = (bsn , . . . , bsn+j).

If br is 1, then we leave wr unchanged. Otherwise, we change wr to wr1h! by

pumping in the last part 1h of wr; this pumping does not change the behaviour

of M j
i on the input words. Thus all answers of M j

i are made false.

Next we consider recognition of L by an (m, 2m)-DPDA. Suppose the 2m

input strings are (x1, x2, . . . , x2m). The algorithm is as follows: The DPDA dis-

tinguishes inputs for which it has settled to an answer and those which are not

yet settled. All the not yet settled ones will agree on the input read so far and

can therefore be treated by using the same stack. The stack is used to count

whether the most recent run of {0, 1}∗ (after the last 2 or the start of the input)

has the same number of 0 and 1. Furthermore, whenever the DPDA settles a

pair of inputs by assigning answers, one of them has to be correct. The settling

(after reading each new input bit of each word) is done as follows:

– If there are xi, xj which are not yet settled and are discovered to differ on a

bit, then both will get the answer 0 assigned.

At least one of the answers is correct as at least one of xi, xj differs from all

members of L (which are prefixes of each other);

– If there are xi, xj which are not yet settled such that xi turns out to be a

proper prefix of xj , then the DPDA checks using its memory/stack whether



xi ∈ {0, 1, 2}∗ · {2w2} for a word w ∈ {0, 1}∗ having as many 0 as 1; if so it

settles with 1 for xi and 0 for xj else it settles with 0 for both xi and xj .

If xj ∈ L, then xi is a prefix of xj and xi ∈ L iff xi ∈ {0, 1, 2}∗ · {2w2} for

a word w ∈ {0, 1}∗ having as many 0 as 1. Hence, if the answer for xj is

incorrect, then the answer for xi is correct. It follows that at least one of the

answers is correct.

Note that settling as above is done for as many pairs as possible after reading a

new input symbol for each word.

As all inputs are distinct, for each input xi there is an xj such that the pair

xi, xj gets eventually settled. Furthermore, at any time, all the not yet settled

inputs have not shown any disagreement and therefore the DPDA can use its

stack in order to check whether the current run of 0 and 1 has both digits in the

same quantity; thus whenever an input string ends which has not been settled

previously, then the information about whether it ends with 2w2 such that w

has as many 0 as 1 is available. ut

Corollary 9. For all m,n such that 0 < m ≤ n/2, there exists a language L

recognisable by an (m,n)-DPDA but not be a (m,n)-DFA.
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