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Abstract

In inductive inference, a machine is given words of a language (a recursively enu-
merable set in our setting) and the machine is said to identify the language if it
correctly names the language. In this paper we study identifiability of classes of
languages where the unions of up to a fixed number (n say) of languages from the
class are provided as input. We distinguish between two different scenarios: in one
scenario, the learner need only to name the language which results from the union;
in the other, the learner must individually name the languages which make up the
union (we say that the unioned language is discerningly identified). We define three
kinds of identification criteria based on this and by the use of some classes of dis-
joint languages, demonstrate that the inferring power of each of these identification
criterion decreases as we increase the number of languages allowed in the union,
thus resulting in an infinite hierarchy for each identification criterion. That is, we
show that for each n, there exists a class of disjoint languages where all unions
of up to n languages from this class can be discerningly identified, but there is no
learner which identifies every union of n+1 languages from this class. A comparison
between the different identification criteria also yielded similar hierarchies. We give
sufficient conditions for classes of languages where the unions can be discerningly
identified, and characterize such discerning learnability for the indexed families. We
then give naturally occurring classes of languages that witness some of the earlier
hierarchical results. Finally, we present language classes which are complete with
respect to weak reduction (in terms of intrinsic complexity) for our identification
criteria.
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1 Introduction

A model for learning of languages (recursively enumerable sets, in our con-
text) can be described thus. A learner is presented with all the elements, one
element at a time in any order, of a language L (such a presentation is called
a text for the language L). The learner, as it is receiving the data, outputs
a sequence of hypotheses (grammars in our context). The learner is said to
identify (learn, infer) L just in case the sequence of grammars converges to
a grammar for L. A class of languages is learnable if some machine learns
each language in the class. This is essentially the model of learning in the
limit (called TxtEx) introduced by Gold [Gol67]. Note that in this setting
the learner is not informed of the elements absent from the language to be
learned. The aim of using only such positive data was more to address the
point that children rarely, if ever, get negative data. One should also note
that many natural phenomenon can be coded as languages via some coding
of events into natural numbers.

In this paper, we continue a line of enquiry explored in [Wri89,SA00,GK99],
where the learner is required to learn unions of languages drawn from a class
of languages. What is different from previous studies is that we distinguish
between two different scenarios. In one scenario, the learner is only required
to name the language which results from the union (this is the case studied in
the earlier enquiries); in the other, we want the learner to individually name
the languages which make up the union — in a sense, the learner is discerning
between the languages in the union. Our approach to the problem is motivated
by the abundance of situations where learners are presented with information
that is some sort of mixture. For example, children in a multi-lingual envi-
ronment are frequently exposed to more than one (natural) languages at the
same time, but are nonetheless able to tell what are the languages they hear;
or, in a physical experiment, radiations collected by the same detector may
originate from many different source processes, for which scientists are often
put to the task of discerning. We hope that our study can be useful in devising
mechanisms which will allow us to distinguish between languages that has to
be presented as a mixture.

A technical question arises from this new approach to the problem. In the
course of identifying the languages which make up a union, what happens
when there are two (or more) possible sets of languages from the class which
unions to the same language? Should the learner be required to name both
possibilities, or should the learner be allowed to choose any one? Or perhaps
such a situation should be simply declared unlearnable? We formalize different
identification criteria based on these considerations.

Our results show that in general, the inferring power of learners lessens when
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more languages are allowed in the union, and moreover, a few of the hierarchies
are witnessed by classes of disjoint languages. More precisely, for each n, there
exists a class of disjoint languages where all the unions of up to n languages
from this class can be discerningly identified, but there is no learner that can
identify every union of n+1 languages from this class. We also noticed hierar-
chies between each of the different identification criteria, and made attempts
at the conditions under which disjointness is sufficient for learnability under
the new identification criteria.

In our attempt to characterize these identification criteria, we discovered two
sufficient conditions for classes of languages where the unions can be discern-
ingly identified. We demonstrate that one of these conditions is difficult to
be further relaxed, by showing how some weaker conditions are insufficient to
hold up the same results. We also characterize discerning identifiability for the
indexed families [Ang80].

We note that there are naturally occurring classes of languages which hold up
the hierarchies discussed. For example, a class formed using translations of a
‘unit’ simplex can be used to form a hierarchy (based on n) for the discerning
learnability of unions of up to n languages. A modification of this class is used
to form a hierarchy for the non-discerning case.

Finally, we give natural classes of languages which are complete with respect to
weak reduction in terms of intrinsic complexity [FKS95] for the identification
criteria we defined.

2 Notation and Preliminaries

Any unexplained recursion-theoretic notation is from [Rog67]. N denotes the
set of natural numbers. N+ denotes the set of positive integers. Let rat de-
note the set of non-negative rational numbers. ∅, ∈, ⊂, ⊆, ⊃, ⊇ respectively
denote empty set, element of, proper subset, subset, proper superset and su-
perset. max(.), min(.) respectively denote maximum and minimum of a set,
where by convention max(∅) = 0 and min(∅) = ∞. Cardinality of a set S is
denoted by card(S). We write card(S) <∞, or card(S) ≤ ∗, just in case S has
finite but unbounded cardinality. D0, D1, . . . stand for a computable sequence
of all finite sets [Rog67].

〈·, ·〉 stands for an arbitrary, computable bijective mapping from N ×N onto
N . For all x and y, π1(〈x, y〉) = x and π2(〈x, y〉) = y. We assume without loss
of generality that 〈·, ·〉 is monotonically increasing in both of its arguments.
〈·, ·〉 can be extended to n-tuples in a natural way (including n = 1, where 〈x〉
may be taken to be x). Projection functions πn1 , . . . , π

n
n corresponding to n-
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tuples can be defined similarly. Due to the above isomorphism between Nn and
N , we often identify the tuple (x1, . . . , xn) with 〈x1, . . . , xn〉. The quantifiers
∞

∀,
∞

∃ and ∃! denote, for all but finitely many, there exists infinitely many and
there exists a unique, respectively.

A computable numbering is a partial computable function from N × N to
N . The symbol ψ ranges over computable numberings. We denote by ψi, the
partial function, λx.ψ(i, x). Thus ψi denotes the partial function computed by
the program with index i in the numbering ψ. Ψ denotes an arbitrary Blum
[Blu67] complexity measure for ψ. W ψ

i denotes domain(ψi). W
ψ
i is, then, the

recursively enumerable (r.e.) set/language (⊆ N) accepted (or equivalently,
generated) by the ψ-program i. We also say that i is a ψ-grammar for W ψ

i .
Wψ

i,s denotes the set {x ≤ s | Ψi(x) ≤ s}. We say that numbering ψ is reducible
to numbering ψ′ (written ψ � ψ′) if and only if there exists a recursive func-
tion h such that (∀i)[ψ′

h(i) = ψi]. In this case we say that h witnesses that
ψ � ψ′. An acceptable numbering is a computable numbering to which every
computable numbering can be reduced. The symbol ϕ denotes a standard ac-
ceptable numbering [Rog67] and the symbol Φ denotes an arbitrary fixed Blum
complexity measure for the ϕ-system [Blu67]. In this paper we abbreviate W ϕ

i

to Wi, and Wϕ
i,s to Wi,s.

E denotes the class of all r.e. languages. R denotes the set of all recursive func-
tions, that is total computable functions. Symbol L, with or without decora-
tions, ranges over E . The symbol L, with or without decorations, ranges over
subsets of E . K denotes the diagonal halting problem set, that is, K = {x | x ∈
Wx}. (K is a recursively enumerable, non-recursive set.) FIN denotes the class
{D ⊂ N | D is finite}. INIT denotes the class {{x ∈ N | x ≤ n} | n ∈ N}.

A class L of r.e. languages is said to be recursively enumerable [Rog67] if
there is S ∈ E such that L = {Wi | i ∈ S}. For each non-empty, recursively
enumerable class of languages L, there exists a total recursive function f such
that L = {Wf(i) | i ∈ N}. L is said to be 1–1 recursively enumerable if
and only if (i) L is finite or (ii) there exists a recursive function f such that
L = {Wf(i) | i ∈ N} and Wf(i) 6= Wf(j), for i 6= j. In this latter case we say
that Wf(0),Wf(1), . . . is a 1–1 recursive enumeration of L.

We say that a family of recursive languages {L0, L1, . . .} is an indexed family
[Ang80] iff there exists a recursive function f such that f(i, x) = 1, if x ∈ Li;
f(i, x) = 0, if x 6∈ Li.

A partial function d from N to N is said to be partial limiting recursive, if
and only if there exists a recursive function F from N ×N to N such that for
all x, d(x) = limy→∞ F (x, y). Here if d(x) is not defined then limy→∞ F (x, y)
must also be undefined. A partial limiting recursive function d is called (to-
tal) limiting recursive, if d is total. ↓ denotes defined or converges. ↑ denotes
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undefined or diverges.

We now present concepts from language learning theory. The next definition
introduces the concept of a sequence of data.

Definition 1 [Gol67]

(a) A sequence σ is a mapping from an initial segment of N into (N ∪ {#}).
The empty sequence is denoted by λ.

(b) The content of a sequence σ, denoted content(σ), is the set of natural
numbers in the range of σ.

(c) The length of σ, denoted by |σ|, is the number of elements in σ. So, |λ| = 0.

(d) For n ≤ |σ|, the initial sequence of σ of length n is denoted by σ[n]. So,
σ[0] = λ.

(e) For any two sequences σ and τ , the result of concatenating τ to the end
of σ is written στ .

Intuitively, #’s represent pauses in the presentation of data. We let σ and τ ,
with or without decorations, range over finite sequences. SEQ denotes the set
of all finite sequences.

Definition 2 [Gol67]

(a) A text T for a language L is a mapping from N into (N ∪ {#}) such that
L is the set of natural numbers in the range of T .

(b) The content of a text T , denoted by content(T ), is the set of natural
numbers in the range of T ; that is, the language which T is a text for.

(c) T [n] denotes the finite initial sequence of T with length n.

We let T , with or without decorations, range over texts. We let T range over
sets of texts.

Definition 3 [Gol67] An inductive inference machine (IIM) is an algorithmic
device which computes a mapping from SEQ into N .

We let M , with or without decorations, range over the IIMs. M(T [n]) is
interpreted as the grammar (index for an accepting program) conjectured by
the machine M on the initial sequence T [n]. We say that M converges on T
to i (written M(T )↓ = i) iff for all but finitely many n, M(T [n]) = i.

Gold [Gol67] introduced the following language learning criterion known as
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TxtEx-identification.

Definition 4 [Gol67]

(a) M TxtEx-identifies a text T just in case there exists i ∈ N such that
Wi = content(T ), and M(T )↓ = i.

(b) M TxtEx-identifies an r.e. language L (written L ∈ TxtEx(M)) just in
case M TxtEx-identifies each text for L.

(c) M TxtEx-identifies a class L of r.e. languages (written L ⊆ TxtEx(M))
just in case M TxtEx-identifies each language from L.

(d) TxtEx = {L ⊆ E | (∃M)[L ⊆ TxtEx(M)]}.

Note that there exists a recursive sequence M0,M1, . . . of total IIMs such
that every class in TxtEx is TxtEx-identified by at least one of the machines
in the sequence [OSW86]. Similarly, one can further show that there exists a
recursive sequence M0,M1, . . . of total IIMs such that for any criteria J of
inference considered in this paper, every class in J is J -identified by at least
one of the machines in the sequence. We assume M0,M1, . . . to be one such
recursive sequence of total IIMs.

Definition 5 [BB75,Ful90] Let L ∈ E , IIM M and σ ∈ SEQ be given. σ is a
stabilizing sequence for M on L just in case:

(a) content(σ) ⊆ L;

(b) for all τ ∈ SEQ, if content(τ) ⊆ L, then M(στ) = M(σ).

It can be shown [BB75,Ful90] that for any language L, which is TxtEx-
identified by M , there exists a stabilizing sequence for M on L. Similar result
can be shown for learning of unions of languages considered below.

3 Identification of Unions of Languages

We first define the class formed by taking unions of languages.

Definition 6 [SA00] Let k ∈ N+ ∪ {∗} and L ⊆ E .

(a) The union language of L, denoted LL, is the set
⋃

L∈L L.

(b) The class of at most k unions of L, Lk = { LL′ | L′ ⊆ L ∧ card(L′) ≤ k}.
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We now define the identification criterion UkTxtEx which requires that not
only L but also Lk to be TxtEx learnable. The U in UkTxtEx stands for
Union.

Definition 7 Let k ∈ N+ ∪ {∗} and L ⊆ E .

(a) M U
k
TxtEx-identifies L just in case Lk ⊆ TxtEx(M).

(b) UkTxtEx = {L ⊆ E | (∃M)[M UkTxtEx-identifies L]}.

UkTxtEx coincides with the definition of “identification of unions of lan-
guages” in [Wri89,SA00].

We now define the identification criterion DUkTxtEx where the learner is
required to identify Lk by individually identifying the languages in any k′

(≤ k) languages L1, . . ., Lk′ ∈ L, when presented with a text for L1∪ . . .∪Lk′ .
The D in DUkTxtEx stands for Discernible.

Definition 8 Suppose L ⊆ E and card(L) <∞.

(a) We say that a set of indices {x1, x2, . . . , xcard(L)} ⊆ N is a representation
index set of L just in case {Wx1 ,Wx2 , ...,Wxcard(L)

} = L.

(b) Let IL = {I | I is a representation index set of L}.

(c) Let I = {I | (∃L ⊆ E , card(L) <∞)[I ∈ IL]}.

Any representation index set {x1, x2, . . . , xcard(L)} can be represented by a
natural number s where Ds = {x1, x2, . . . , xcard(L)}. This representation is
implicit whenever the context requires such an interpretation.

Definition 9 Let k ∈ N+ ∪ {∗} and L ⊆ E .

(a) M DU
k
TxtEx-identifies L just in case for each L′ ⊆ L, where card(L′) ≤

k, for every text T for LL′ , M(T )↓ and DM(T ) ∈ IL′ .

(b) DUkTxtEx = {L ⊆ E | (∃M)[M DUkTxtEx-identifies L]}.

For ease of notation, we sometimes let machines output finite sets directly
rather than the canonical index for it (i.e., M outputs S rather than i such
that Di = S).

Proposition 10 Suppose L ⊆ E . If there exist finite L′,L′′ ⊆ L, such
that L′ 6= L′′ but LL′ = LL′′ , then L 6∈ DU

k
TxtEx for k =

max(card(L′), card(L′′)).
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Proof. A text for LL′ is also a text for LL′′ . But IL′ ∩ IL′′ = ∅ and an IIM

cannot converge to indices for both an I ′ ∈ IL′ and an I ′′ ∈ IL′′ .

Definition 11 Let L ⊆ E and k ∈ N+ ∪ {∗}. The class of languages Lk is
said to be uniquely definable from L just in case for all L ∈ Lk, there exists a
unique L′ ⊆ L, where card(L′) ≤ k, such that LL′ = L.

We now introduce the identification criteria WDUkTxtEx where the com-
plications of Proposition 10 is avoided. The learner is considered correct by
simply naming any set of (up to) k languages in the class which make up the
language of the input text. The W in WDUTxtEx stands for Weakly.

Definition 12 Let k ∈ N+ ∪ {∗} and L ⊆ E .

(a) M WDU
k
TxtEx-identifies L just in case for each L ∈ Lk, for every text

T for L, M(T )↓, and there exists L′ ⊆ L, where card(L′) ≤ k and T is a text
for LL′ , such that DM(T ) ∈ IL′ .

(b) WDUkTxtEx = {L ⊆ E | (∃M)[M WDUkTxtEx-identifies L]}.

The following Proposition follows from definitions.

Proposition 13 Suppose n ∈ N+ ∪ {∗}.

(a) DU
n
TxtEx ⊆WDU

n
TxtEx ⊆ U

n
TxtEx.

(b) WDU
1
TxtEx ≡ DU

1
TxtEx ≡ U

1
TxtEx ≡ TxtEx.

(c) L ∈ U
n
TxtEx iff Ln ∈ TxtEx.

The following Proposition can be easily verified.

Proposition 14 For all indexed families L, for all n ∈ N+, L ∈
WDU

n
TxtEx ≡ L ∈ U

n
TxtEx.

We now state some known results from [Wri89] and [SA00].

Definition 15 [Wri89,MSW91]

(a) A class of languages L has infinite elasticity just in case there exists an infi-
nite sequence of pairwise distinct numbers, w0, w1, . . ., and an infinite sequence
of pairwise distinct languages in L, A0, A1, . . ., such that for each k ∈ N ,
{wi | i < k} ⊆ Ak, but wk 6∈ Ak.

(b) L is said to have finite elasticity just in case L does not have infinite
elasticity.
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Theorem 16 [Wri89] If an indexed family L has finite elasticity, then L ∈
U
n
TxtEx for all n ∈ N+.

Definition 17 (a) [Ang80] A class of languages L has finite thickness just in
case for each x ∈ N , {L ∈ L | x ∈ L} is finite.

(b) [Kru72,SA00] A class of languages L has no infinite anti-chain with respect
to set inclusion just in case there does not exist an infinite collection of distinct
languages {Ai ∈ L | i ∈ N}, such that for all i, j ∈ N , i 6= j, Ai 6⊆ Aj and
Aj 6⊆ Ai.

Theorem 18 [SA00] Let L be an indexed family with finite thickness. If L
has no infinite anti-chain with respect to set inclusion, then L ∈ U

∗
TxtEx.

The following generalizes Theorem 17 from [SA00] (with essentially the same
proof idea).

Theorem 19 An indexed family L is in U
∗
TxtEx if for each L ∈ L, there

exists xL ∈ L such that for each L′ ∈ L, xL ∈ L
′ ⇒ L ⊆ L′.

That Theorem 19 does not characterize U∗TxtEx identification for the in-
dexed families can be seen from the following DU∗TxtEx-identifiable indexed
family L. For i ∈ N , let Li = {〈i, j〉 | j ∈ N}, L′

i = {〈j, i〉 | j ∈ N}, and let
L = {Li | i ∈ N} ∪ {L

′
i | i ∈ N}. (This example was pointed out to us by an

anonymous referee).

Note that these earlier results apply specifically to the indexed families. In
this paper, when not stated, the results are with respect to the r. e. languages
in general. In doing so, we hope to better contrast the difficulties involved in
learning the unions of languages under different assumptions of hypotheses
space.

4 Hierarchy Results

We now establish hierarchy results for our criteria of learning unions of lan-
guages. For the following theorem, it is interesting to note that the class wit-
nessing the separation consists of disjoint languages. This is interesting as
non-algorithmically, the distinct languages can be determined from the input
text.

Theorem 20 (∀n ∈ N+)[DU
n
TxtEx−U

n+1
TxtEx 6= ∅].

Proof. Let n ∈ N+ be given. Unless stated otherwise, let e, i, j, k, with or
without decorations, range over N , and S, with or without decorations, ranges
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over finite sets. σ and τ , with or without decorations, range over SEQ. For
each e ∈ N , we will construct Se, L

0
e, L

1
e, . . . , L

n
e where

L0
e = {〈e, 0, 0〉} ∪ {〈e, i, j〉 | 1 ≤ i ≤ n, j ∈ Se}

and for 1 ≤ i ≤ n, Lie satisfies the following two properties:

(1) Lie = {〈e, i, j〉 | j ∈Wmin({π3
3(x)|x∈Li

e})
}.

(2) min({π3
3(x) | x ∈ L

i
e}) > max(Se).

Let L = {L0
e, L

1
e, ..., L

n
e | e ∈ N}. It is clear that for all L,L′ ∈ L, L ∩ L′ = ∅.

We shall first show that L ∈ DUnTxtEx (for any choice of Se, L
0
e, . . . , L

n
e

satisfying the above properties). We define an auxiliary recursive function
g : N 3 7→ N as follows. For each e and j,

Wg(e,0,j) = {〈e, 0, 0〉} ∪ {〈e, i, k〉 | 1 ≤ i ≤ n ∧ k ∈ Dj}

and for each i ≥ 1 and e, j,

Wg(e,i,j) = {〈e, i, k〉 | k ∈Wj}.

Now L ∈ DUnTxtEx is witnessed by following M . For each text T and each
m ∈ N ,

M(T [m]) :
S ← ∅.
A ← {e | (∃w ∈ content(T [m]))[π3

1(w) = e]}.
For each e ∈ A do

B ← content(T [m]).
If 〈e, 0, 0〉 ∈ content(T [m]) then

C ← {j | (∀i | 1 ≤ i ≤ n)[〈e, i, j〉 ∈ content(T [m])]}.
Let j be such that Dj = C.
S ← S ∪ {g(e, 0, j)}.
B ← B −Wg(e,0,j).

For i ← 1 to n do
If there exists j0 such that 〈e, i, j0〉 ∈ B, then

For minimum such j0, let S ← S ∪ {g(e, i, j0)}.
EndFor

EndFor
Output S.

End

It is easy to verify that M DUnTxtEx-identifies L. We now show that L 6∈
Un+1TxtEx, for some appropriate choice of Lie, for each e, i. For each e here
is the construction to show that Me does not Un+1TxtEx-identify L. By
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Kleene’s Recursion Theorem [Rog67] there exists an index e′ such that We′

may be defined in stages s = 0, 1, 2 . . . , as below. For each s, W s
e′ denotes the

finite portion of We′ enumerated just before stage s.

Stage 0: Let σ1 be such that content(σ1) = {〈e, 0, 0〉} ∪ {〈e, j, e′〉 | 1 ≤ j ≤
n}. Let W 1

e′ = {e′}. Go to stage 1.

Stage s: Search for τ ⊇ σs, such that content(τ) ⊆ content(σs) ∪ {〈e, i, j〉 |
1 ≤ i ≤ n ∧ j > max(W s

e′)}, and Me(σ
s) 6= Me(τ).

If and when such τ is found, enumerate {j | (∃i′, 1 ≤ i′ ≤
n)[〈e, i′, j〉 ∈ content(τ)]} into We′ .

Let σs+1 be an extension of τ such that content(σs+1) = {〈e, 0, 0〉}
∪ {〈e, i, j〉 | 1 ≤ i ≤ n ∧ j ∈We′ enumerated up to now}.

Go to stage s+ 1.

If the search for τ failed at any stage s, then let L0
e = content(σs) and let

e′′ > max(W s
e′) be such that min(We′′) = e′′ (by Kleene’s Recursion Theorem

[Rog67], such an e′′ exists). For each i ∈ N , 1 ≤ i ≤ n, let Lie = {〈e, i, j〉 | j ∈
We′′}. Since stage s does not succeed, Me does not TxtEx-identify at least
one of L0

e and (L0
e ∪

⋃n
i=1 L

i
e).

If the search is successful at all stages, then let L0
e = {〈e, 0, 0〉} and for each

i ∈ N , 1 ≤ i ≤ n, let Lie = {〈e, i, x〉 | x ∈ We′}. Now, Me fails to converge on
the input

⋃

s∈N+ σs, a text for L0
e ∪

⋃n
i=1 L

i
e.

Theorem follows from above analysis.

Corollary 21 For all n ∈ N+.

(a) U
n+1

TxtEx ⊂ U
n
TxtEx.

(b) DU
n+1

TxtEx ⊂ DU
n
TxtEx.

(c) WDU
n+1

TxtEx ⊂WDU
n
TxtEx.

The following Theorem gives a finer separation in the above hierarchy.

Theorem 22 For all n ∈ N+.

(a) (WDU
∗
TxtEx ∩DU

n
TxtEx)−DU

n+1
TxtEx 6= ∅.

(b) (U∗
TxtEx ∩WDU

n
TxtEx)−WDU

n+1
TxtEx 6= ∅.

11



Proof. (a) The case of n = 1 can be easily shown using the class FIN , which
is in DU1TxtEx but not in DU2TxtEx. Note that FIN also belongs to
WDU∗TxtEx, as FIN ∗ = FIN .

We now consider n > 1. For i < n, let Li = {2i, 2i+1}. Let Ln = {2i | i < n}.
Let L = {Li | i ≤ n}. It is easy to see that L ∈ WDU∗TxtEx. Since, for
i < n, 2i + 1 belongs only to language Li from L, and Ln is not contained
in any n − 1 languages from {L0, L1, . . . , Ln−1}, any collection of up to n
languages from L can be individually recognized from a text for their union.
Thus, L ∈ DUnTxtEx. However, L0∪ . . .∪Ln−1 = L0∪ . . .∪Ln−1∪Ln. Thus,
by Proposition 10, L is not in DUn+1TxtEx.

(b) We observe that while a UTxtEx learner, in learning a class of languages
L, is allowed to conjecture languages outside of L, a WDUTxtEx learner is
allowed to conjecture only languages in L. The following proof exploits this
weakness in WDUTxtEx identification.

For each e ∈ N , let Le = {〈e, 0〉, 〈e, 1〉, . . . , 〈e, n〉}, and let Te be a canonical
text for Le. Note that each Le contains n + 1 elements, and for any e and e′

where e 6= e′, Le ∩ Le′ = ∅. We now define a class L 6∈ DUnTxtEx. For each
e ∈ N , we let Le be in L if Me does not converge on Te to an index for Le,
otherwise we let the n+ 1 languages, {x} where x ∈ Le, be in L.

Since L contains only finite sets, it is in U∗TxtEx. To WDUnTxtEx-identify
L, it suffices that a learner, on an input sequence σ, find all the non-empty
sets Si = {x | x ∈ content(σ) ∧ π1(x) = i} where i ∈ N , and include Li in its
conjecture if card(Si) = n + 1, or otherwise include the sets {{x} | x ∈ S i}
to its conjecture. Since for all e ∈ N , Me fails to converge on the text Te to a
representation index set for up to n+ 1 languages from L, which union to Le,
we have that L 6∈WDUn+1TxtEx.

Corollary 23 (∀n ∈ N,n ≥ 2)[DU
n
TxtEx ⊂WDU

n
TxtEx ⊂U

n
TxtEx].

The following two results (Proposition 24 and Theorem 25) were pointed out
to us by an anonymous referee.

Proposition 24
⋂

n∈N+ U
n
TxtEx−U

∗
TxtEx 6= ∅.

Proof. Let L = {{0}, {1}, {2}, . . .}∪{N}. That for any n ∈ N+, L ∈ UnTxtEx

is witnessed by a learner which, on any sequence σ, conjectures representation
index for {{x} | x ∈ content(σ)} if card(content(σ)) ≤ n, and conjectures rep-
resentation index for {N} otherwise. However, the unbounded finite unions of
L is equivalent to the class FIN ∪ {N} which is not learnable [Gol67], and
hence L 6∈ U∗TxtEx.
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Theorem 25 Suppose L is a recursively enumerable class of disjoint lan-
guages. Then, for all n > 2, L ∈ U

2
TxtEx iff L ∈ DU

n
TxtEx.

Proof. Note that ∅ 6∈ L. If L is finite, then clearly the theorem holds. So
suppose L is infinite and f is a recursive function such that L = {Wf(i) | i ∈
N}.

Suppose M witnesses that L ∈ U2TxtEx. Let σ0, σ1, . . . denote a recursive
enumeration of all finite sequences. Let G be a recursive function such that, for
all finite setsD,WG(D) =

⋃

i∈DWf(i). (For ease of notation, for any set {. . .} we
writeG({. . .}) as simplyG(. . .).) Let P be a function such that P (σ, i, t) is true
iff content(σ) ⊆ Wi,t and for all τ such that content(τ) ⊆ Wi,t, |τ | ≤ t − |σ|,
M(σ) = M(στ). Here note that P (σ, i, t) can be effectively determined for
t ∈ N (for t = ∞, P (σ, i, t) cannot be effectively determined in general;
however if content(σ) is known to be subset of Wi, then whether P (σ, i,∞)
is false can be determined in r.e. sense, that is, if P (σ, i,∞) is false, then one
can find a witness to this effectively). We assume without loss of generality
that for all i,m, P (#m, f(i),∞) is false (note that ∅ 6∈ L).

We now define M ′ which DUnTxtEx-identifies L. M ′ defined may not be
total. However, for any text T for a language L ∈ Ln, it will be defined on all
initial segments of T . On input T [m], M ′ behaves as follows. It first finds a
finite set Xm of cardinality at most n, and an sm ≥ m such that

(a) content(T [m]) ⊆
⋃

i∈Xm
Wf(i),sm

but content(T [m]) 6⊆
⋃

i∈Xm−{j}Wf(i),sm

for all j ∈ Xm.

(b) For all i ≤ max(Xm), Wf(i),sm
∩Wf(j),sm

6= ∅, for at most one j ∈ Xm;

(c) For i ∈ Xm, let ri be least number such that P (σri, f(i), sm). Then,
P (σri, G(i, j),∞) is false, for all i, j ∈ Xm, i 6= j. (Note that M TxtEx-
identifies L2 and content(σri) ⊆ Wf(i) ⊆ WG(i,j), thus if P (σri , G(i, j),∞) is
false, then one can eventually detect this.)

Then, M ′ outputs k such that Dk = {M(σri) | i ∈ Xm}.

We now show that M ′ DUnTxtEx-identifies L. Fix D of cardinality at most
n. Let L =

⋃

i∈DWf(i), and T be a text for L. Here without loss of generality
assume that Wf(i) 6= Wf(j), for distinct i, j ∈ D.

We first claim that for all m, above process indeed finds some Xm satisfying
(a), (b) and (c). This is so, since one could take Xm = D, with ri to be such
that σri = #m+1.

For i ∈ D, let ri denote the minimal number such that σri is a stabilizing
sequence for M on Wf(i) (that is, P (σri , f(i),∞) is true, and P (σj, f(i),∞) is

13



false for all j < ri).

Now let t be a large enough number such that the following conditions hold:

(d) for all i ∈ D, [
⋃

j≤ri content(σj) ∩Wf(i)] ⊆Wf(i),t ∩ content(T [t]).

(e) for all i ∈ D, j < ri, P (σj, f(i), t) is false (thus, using (d), either
content(σj) 6⊆ Wf(i) or there exists a τ of length at most t − |σj | such that
content(τ) ⊆Wf(i),t and M(σj) 6= M(σjτ)).

Now for all m ≥ t, since every language in L is disjoint, by (d) above, for each
i ∈ D, Xm does contain an i′ such that Wf(i) = Wf(i′) (recall our assumption
that σri is not of empty content). Also, for all j ∈ Xm, there must be a j ′ ∈ D
such that Wf(j) = Wf(j′) (since otherwise one could drop such j from Xm, see
condition (a)). Furthermore, by (b) above, Xm does contain a unique i′ such
that Wf(i),t∩Wf(i′),sm

6= ∅. As content(T [m]) contains Wf(i),t, the i′ above also
satisfies Wf(i),t ⊆ Wf(i′),sm

. Thus, by (c) and (e) above, ri′ as found on input
T [m], must be same as ri.

Now suppose Xm also contains an i′′ such that i′ 6= i′′ and Wf(i′′) = Wf(i). But
then, P (σri′ , G(i′, i′′),∞) is true, and thus (c) would not hold.

It follows that {σri′ | i
′ ∈ Xm} = {σri | i ∈ D}, and thus, using TxtEx-

identification of L by M , we have that M ′ converges on T to a representation
index for {Wf(i) | i ∈ D}. Thus, M ′ DUnTxtEx-identifies L.

Theorem 25 shows that no recursively enumerable class of disjoint languages
is in UnTxtEx−Un+1TxtEx for any n ≥ 2. (Note that the class of disjoint
languages used in the proof of Theorem 20 is not recursively enumerable.) The
following example (suggested by Frank Stephan) shows that the same is not
true for the case of n = 1.

Example 26 Let

Lx,0 = {〈x, 0〉} ∪ {〈x, y〉 | (∀z ∈ N | z ≤ y)[ϕx(z)↓]}

Lx,y+1 =

{

{〈x, y + 1〉}, if 〈x, y + 1〉 6∈ Lx,0;
Lx,0, otherwise.

Let L = {Lx,i | x, i ∈ N}. Clearly, L ∈ TxtEx. Now suppose there exists
M such that L2 ∈ TxtEx(M), then (∃σ ∈ SEQ | content(σ) ⊆ Lx,0) [(∀τ ∈
SEQ | content(τ) ⊆ {〈x, i〉 | i ∈ N})[M(σ) = M(στ)]] ⇔ ϕx ∈ R. The condi-
tion on the left hand side is Σ2 to check. However, the set {x | ϕx is recursive}
is not Σ2 (see [Rog67]), a contradiction.

14



We note that the class of languages in Example 26 is not 1–1 recursively
enumerable. As will be shown by Corollary 28, for a 1–1 recursively enumerable
classes of languages, disjointness is a sufficient condition for the class to be in
DU∗TxtEx.

5 Sufficient Conditions For DUTxtEx Identification

In this section we consider some sufficient conditions for learning unions of
languages.

5.1 Functions That Enumerate Distinguishing Elements

Let recursively enumerable L ⊆ E be given. Suppose for all L ∈ L, there is an
effective procedure to enumerate an element which is uniquely in L, that is,
no other language in L contains this element. Can we then identify the union
of every finite collection of languages drawn from L? An answer is attempted
in the following Theorem.

Theorem 27 Let L be a 1–1 recursively enumerable class of languages as
witnessed by the computable numbering ψ. If there exists a limiting recursive
function d and total recursive F for which d(i) = limt→∞ F (i, t) such that

(a) for all i ∈ N , d(i) ∈W ψ
i ,

(b) for all i, j ∈ N , d(i) ∈W ψ
j ⇒ i = j, and

(c) for all j ∈ N , card(range(F ) ∩W ψ
j ) <∞.

Then L ∈ DU
∗
TxtEx.

Proof. Let L, ψ, F , d be as in Theorem. Let recursive function h witness that
ψ � ϕ. Unless stated otherwise, we let i, j, with or without decorations, range
over N . Define M as follows, such that for each text T and for each m ∈ N ,

M(T [m]) :
S ← ∅.
For i = 0 to m− 1 do

If [F (i,m) ∈ content(T [m]) ∩W ψ
i,m]

and ¬[(∃i′, j′)[i′ < m ∧ j ′ < m ∧ i′ 6= j′

∧ F (i,m) ∈ W ψ
i′,m ∩W

ψ
j′,m]]

Then let S ← S ∪ {h(i)}.
EndFor
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Output S.
End

We claim that M DU∗TxtEx-identifies L. Let L′ ⊆ L be a finite collection
of languages. Let D be such that {W ψ

i | i ∈ D} = L′. Let T be a text for L =
⋃

i∈DW
ψ
i , and let A = range(F )∩L. By clause (c) in the Theorem, card(A) <

∞. Intuitively, A contains all the potential “distinguishing element”s M will
encounter during the identification process. Since D and A are finite, there
exists n ∈ N so large that

(1) For all i ∈ D, (∀t ∈ N, t > n) [F (i, t) = d(i) ∧ d(i) ∈ content(T [t])∩W ψ
i,t].

(2) For all x ∈ A−{d(k) | k ∈ D}, (∀n′ ∈ N,n′ > n) [(∃j ∈ N −D)[x ∈W ψ
j,n′ ]

⇒ (∃i′, j′ < n) [i′ 6= j′ ∧ x ∈Wψ
i′,n′ ∩W

ψ
j′,n′ ]].

Clause (1) ensures that all i ∈ D will eventually be output by M . Clause (2)
ensures that all grammars j 6∈ D, which enumerate some element in A are
excluded from consideration (note that every element in A is enumerated by
some grammar in D).

Hence for all n′ ∈ N , where n′ > n, i ∈ D if and only if i ∈ S output by
M(T [n′]). It follows that M DU∗TxtEx-identifies L.

Corollary 28 Let L be a class of languages for which there exists a 1–1 num-
bering and that

(a) ∅ 6∈ L, and

(b) for all L,L′ ∈ L, L 6= L′ ⇒ L ∩ L′ = ∅.

Then L ∈ DU
∗
TxtEx.

Proof. Let L = {W ψ
i | i ∈ N}, where ψ is a 1–1 numbering for L. For i, t ∈ N ,

let F (i, t) = min(W ψ
i,t) and let d(i) = limt→∞ F (i, t). Clearly, (a) for all i ∈ N ,

d(i) ∈ W ψ
i , (b) for all i, j ∈ N , d(i) ∈ W ψ

j ⇒ i = j, and (c) for all j ∈ N ,

card(range(F ) ∩W ψ
j ) <∞. Thus d fulfills all the conditions for Theorem 27.

It follows that L ∈ DU∗TxtEx.

Corollary 29 Let L be an indexed family of recursive languages such that

(a) ∅ 6∈ L, and

(b) for all L,L′ ∈ L, L 6= L′ ⇒ L ∩ L′ = ∅.

Then L ∈ DU
∗
TxtEx.

16



In Theorem 27, some weaker conditions for (a) and (b) may not be sufficient,
even if we require d to be recursive. For instance, if we have only the following
conditions (where the requirement (b) is relaxed):

(a) for all i ∈ N , d(i) ∈W ψ
i , and

(b) for all i ∈ N , card({j ∈ N | d(i) ∈W ψ
j }) <∞,

(c) d is recursive.

Then identifiability for L2 cannot be guaranteed, as the following example
shows.

Example 30 For i ∈ N , let

L0 = {〈0, x〉 | x ∈ N} ∪ {〈1, x〉 | x ∈ K}

Li+1 =
{

{〈0, i+ 1〉} ∪ {〈1, i〉} ∪ {〈2, i〉}, if i ∈ K;
{〈0, i+ 1〉} ∪ {〈1, i〉}, otherwise.

Let L = {Li | i ∈ N} and define d such that for all x ∈ N , d(x) = 〈0, x〉. It is
easy to verify that (a) L is 1–1 recursively enumerable, (b) L ∈ TxtEx, (c)
L2 is uniquely definable from L, and (d) d satisfies all the conditions given
above for L. However, for all k ∈ N , the language {〈0, i〉 | i ∈ N} ∪ {〈1, x〉 |
x ∈ K ∪ {k}} is in L2, hence (using Proposition 4.7 in [JORS99]) L2 is not in
TxtEx.

A similar weakening of these conditions, where instead of a single unique
element d is required to name only a set of elements which is unique to each
language in the class, as in the following:

(a) for all i ∈ N , Dd(i) ⊆Wψ
i ,

(b) for all i, j ∈ N , Dd(i) ⊆Wψ
j ⇒ i = j.

(c) d is recursive.

then such a function will also fail to guarantee that L2 ∈ TxtEx, as demon-
strated by the following example.

Example 31 For i ∈ N , let

L0 = {〈0, 0〉} ∪ {〈1, x〉 | x ∈ N}
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L1 = {〈1, 1〉} ∪ {〈0, x〉 | x ∈ N} ∪ {〈2, x〉 | x ∈ K}

Li+2 =
{

{〈0, i+ 2〉} ∪ {〈1, x〉 | x ∈ N} ∪ {〈2, i〉} ∪ {〈3, i〉}, if i ∈ K;
{〈0, i+ 2〉} ∪ {〈1, x〉 | x ∈ N} ∪ {〈2, i〉}, otherwise.

Let L = {Li | i ∈ N} and define d such that for all x ∈ N , d(x) =
{〈0, x〉, 〈1, x〉}. It is easy to verify that L is a 1–1 recursively enumerable class
of languages in TxtEx where all the languages in L2 are uniquely definable
from L, and that d satisfies all the conditions above for L. However, for all
k ∈ N , the language {〈0, i〉, 〈1, i〉 | i ∈ N} ∪ {〈2, x〉 | x ∈ K ∪ {k}} is in L2,
thus (using Proposition 4.7 in [JORS99]) L2 is not in TxtEx.

In contrast to Theorem 27, the following characterizes DU∗TxtEx learning
for the indexed families.

Proposition 32 An indexed family L is in DU
∗
TxtEx iff for each language

L ∈ L, for every finite L′ ⊆ L, L ⊆ LL′ iff L ∈ L′.

Proof. (⇒) Suppose by way of contradiction that L ∈ L and L′ ⊆ L is finite
and L ⊆ LL′ but L 6∈ L′. Thus, {L} ∪ L′ 6= L′ but L{L}∪L′ = LL′ . By an
argument similar to that for Proposition 10, L 6∈ DU∗TxtEx.
(⇐) Let L0, L1, . . . be a 1–1 enumeration of L (there exists such enumeration
for all indexed families). Let D0, D1, . . . be a 1–1 enumeration of all the finite
subsets of N such that Di ⊆ Dj implies i ≤ j (the definition of D0, D1, . . .
in [Rog67] fulfills this requirement). Let Li = {Lj | j ∈ Di}. Note that by
hypothesis, LLi

6⊆ LLj
, for j < i. Let M be defined as follows: M(T [n]) = Di,

where i = min({j | content(T [n]) ⊆ LLj
}) (that is, the smallest j where LLj

is consistent with the input). To see that M DU∗TxtEx-learns L, suppose
T is a text for LLi

. For each j < i, let xij be an element in LLi
− LLj

(such
xij exists because of the conditions required of L and D0, D1, . . .). Let n be
such that {xij | j < i} ⊆ content(T [n]). It follows that M(T [m]) = Di, for
m ≥ n.

It is worth noting that the condition in Proposition 32 has similarities with
the notion of compactness with respect to containment discussed in [ASO94].

From Proposition 32, we see that if each language in a given indexed family
contains even just one unique word, then the class would be DU∗TxtEx-
learnable. Regrettably, none of the indexed families studied in [SA00] fulfill this
condition. In some sense, this suggests that the requirement of DU∗TxtEx

may be too restrictive for the learning of the pattern languages, especially
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when we put this in contrast to the learnability results for WDU∗TxtEx

(Theorem 18 and 19).

5.2 Restrictions On Structures Of Languages

Theorem 33 Given n ∈ N+. Let L be a class of languages such that

(a) every language in Ln is uniquely definable from L,

(b) for all L ∈ L, card({L′ ∈ L | L′ ∩ L 6= ∅}) <∞,

(c) there exists a computable numbering ψ for L such that:
(c.1) for all L ∈ L, card(L) =∞ ⇒ card({i | W ψ

i = L}) = 1;
(c.2) for all L ∈ L, card(L) <∞ ⇒ card({i | W ψ

i = L}) <∞.

Then L ∈ DU
n
TxtEx.

Proof. Let n ∈ N+ be given. Let L be as in Theorem. Unless stated otherwise,
we let i, j, k,m, n, with or without decorations, range over N . We let A and
B, with or without decorations, range over FIN . Let h witness that ψ � ϕ.
Define IIM M as follows such that for each text T ,

M(T [m]) :

Let Cm = {i | i ≤ m ∧ W ψ
i,m ∩ content(T [m]) 6= ∅}.

Let Candidatesm = {S ⊆ Cm | card(S) ≤ n}.

Let s0 = max({s ∈ N | (∃S ∈ Candidatesm)[
⋃

i∈SW
ψ
i,s ⊆ content(T [m])

∧
⋃

i∈SW
ψ
i,m ⊇ content(T [s])]}).

Output {h(i) | i ∈ Dk0}, where k0 = min({k | Dk ∈ Candidatesm

∧
⋃

i∈Dk
Wψ

i,s0
⊆ content(T [m])

∧
⋃

i∈Dk
Wψ

i,m ⊇ content(T [s0])}).
End

Intuitively, M outputs the seemingly best grammar set in Candidatesm which
describes the input text. We claim that M DUnTxtEx-identifies L. Let L′ ⊆
L, where card(L′) ≤ n. Let B be such that card(B) ≤ n, and {W ψ

i | i ∈
B} = L′. Let T be a text for L =

⋃

i∈BW
ψ
i . We divide B into two groups,

B1 = {i ∈ B | W ψ
i is finite} and B2 = {i ∈ B | W ψ

i is infinite}. By the
requirement of ψ, for each i ∈ B1, there exist only finitely many j such that
Wψ

i = Wψ
j , and for each i ∈ B2, for all j 6= i, W ψ

i 6= Wψ
j . Let A = {A |

⋃

i∈AW
ψ
i =

⋃

i∈B1
Wψ

i }. Since Ln is uniquely definable from L, the only sets
of languages which are capable of generating L are {B2 ∪ A | A ∈ A}. Let
CorrectInd = {B2 ∪ A | A ∈ A}.
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Let C ′ = {i | Wψ
i ∩ content(T ) 6= ∅}. Since each language in {W ψ

i | i ∈ B}
intersects with only finitely many other languages in L, C ′ is finite. It is easy
to verify that there exists n0 such that for all n′ ≥ n0, C

n′

= C ′.

Let Candidates ′ = Candidatesn0 . Clearly, for all n′ > n0, Candidatesn
′

=
Candidates ′.

Let n1 > n0 be so large that

(∀i ∈ C ′)[card(W ψ
i ) <∞⇒[W ψ

i = Wψ
i,n1
∧Wψ

i ∩content(T [n1]) = Wψ
i ∩content(T )]]

Let n2 > n1 be so large that

¬[(∃B′ ∈ Candidates ′−CorrectInd)[(
⋃

i∈B′

Wψ
i,n2
⊆ L) ∧ (

⋃

i∈B′

Wψ
i ⊇ content(T [n2]))]]

Let n3 > n2 be so large that

[
⋃

i∈B

Wψ
i,n2+1 ⊆ content(T [n3]) ∧

⋃

i∈B

Wψ
i,n3
⊇ content(T [n2 + 1])]

Clearly, for all n′ > n3, {D ∈ Candidates ′ |
⋃

i∈DW
ψ
i,n2+1 ⊆ content(T [n′])

∧
⋃

i∈DW
ψ
i,n′ ⊇ content(T [n2 + 1])} = CorrectInd . Hence for all n′ > n3, M

outputs {h(i) | i ∈ Dk0}, for k0 = min({k | Dk ∈ CorrectInd}). It follows that
M DUnTxtEx-identifies L.

Corollary 34 Fix n ∈ N+. Let L = {Li | i ∈ N} be a 1–1 recursively
enumerable class of languages where

(a) every language in Ln is uniquely definable from L.

(b) for all i ∈ N , card({j | Li ∩ Lj 6= ∅}) <∞.

Then L ∈ DU
n
TxtEx.

The conditions in Theorem 33 are not necessary — this can be shown using
TRANSIMn (see Section 6.1), which is 1–1 recursively enumerable but every
language in the class intersects with infinitely many other languages within
the class.

The following characterizes DUnTxtEx learning for the indexed families.

Proposition 35 For any n ∈ N , an indexed family L is in DU
n
TxtEx iff
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(a) every language in Ln is uniquely definable from L, and

(b) L ∈ U
n
TxtEx.

Proof. (⇒) follows from definition. We show (⇐). Let L0, L1, . . . be a 1–1 enu-
meration of L. Let X0, X1, . . . be a 1–1 enumeration of all the finite subsets
of N of size at most n, such that Xi ⊆ Xj implies i ≤ j (the definition of
D0, D1, . . . in [Rog67] can be easily adapted to fulfill this requirement). Let
Li = {Lj | j ∈ Xi}. Let L′

i = LLi
. Now, Ln = {L′

0, L
′
1, . . .} is an indexed

family in TxtEx (by hypothesis (b)). Thus, there is a learner which on a
text for any language L′

i, outputs in the limit index i (see the proof of learn-
ing the indexed families via the finite tell-tales in [Ang80]). From i we can
obtain the constituent languages in L′

i. By hypothesis (a), these languages
are the only possible sets of languages in L that unions to L′

i, and hence
L ∈ DUnTxtEx.

Here it is interesting to mention that Wright showed that classes of indexed
families which have finite elasticity (such as pattern languages, see [Wri89,MSW91]
for details), belong to UnTxtEx for all n.

6 Natural Class that Witnesses the Hierarchies of UTxtEx and

DUTxtEx

In this section we give two natural classes of languages which give rise to our
hierarchy results. We first describe an indexed family that give rise to the
DUTxtEx hierarchy.

6.1 The Class TRANSIMn

Let RAT n be the set of all the points in an (n−1)-dimensional space with only
rational valued coordinates. Let coderatn(·) be an effective bijective mapping
from RAT n to N . Fix n ∈ N+, n ≥ 2. Let v1, v2, . . . , vn−1 be unit vectors
along each axis of an (n− 1)-dimensional space. Let O denote the origin. Let
Γn = {

∑n−1
i=1 εivi | εi ∈ rat}.

For each simplex [Cox63] G, let V (G) denote the vertices of G, and P (G)
denote the set of points in the simplex G. For (n − 1)-dimensional simplex
G, points X in P (G) satisfy n linear equations

−→
νk · X ≤ bk, k = 1, 2, . . . , n

where for each k, the coefficient bk and the vector
−→
νk can be obtained by

solving n− 1 linear equations, each formed by substituting in the equation a
vertex ofG [Cox63]. Intuitively, the inequality for each k represents a bounding
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hyperplane for the polytope, where each vector
−→
νk is the outward normal for

the bounding hyperplane. For any vector Γ, we let G+ Γ, denote the simplex
formed by translating each point in G by Γ.

For a simplex G in (n− 1)-dimensional space, let Lang(G) = {coderatn(X) |
X ∈ P (G)∩RAT n}. For Λ a set of simplexes, let L(Λ) = {Lang(G) | G ∈ Λ}.

We fix a simplex GGn with n vertices in (n−1)-dimensional space, with vertices
at O, v1, v2, . . . , vn−1. (For n = 2, the vertices are at O and v1.) Let ΛΛ n =
{ GGn + Γ | Γ ∈ Γn}. Let TRANSIMn = L( ΛΛ n) = {Lang(G) | G ∈ ΛΛ n}.

We now give some properties of ΛΛ n (and hence TRANSIMn) which we shall
use to demonstrate our hierarchy results.

Lemma 36 Let Gi = GGn + εvi. Suppose ε < 1/n, and S is the simplex
with vertices at O and 1 + εvi, for 1 ≤ i ≤ n − 1. Then, P (S) = P ( GGn) ∪
⋃

1≤i≤n−1 P (Gi).

Proof. The points X = (x1, x2, . . . , xn−1) in P ( GGn) satisfy the equations:

(E1) xj ≥ 0, for 1 ≤ j ≤ n− 1, and

(E2)
∑n−1
j=1 xj ≤ 1.

The points X = (x1, x2, . . . , xn−1) in Gi satisfy the equations:

(E3.1.i) xj ≥ 0 (for 1 ≤ j ≤ n− 1, i 6= j),

(E3.2.i) xi ≥ ε, and

(E4)
∑n−1
j=1 xj ≤ 1 + ε.

The points X = (x1, x2, . . . , xn−1) in S satisfy the equations:

(E5) xj ≥ 0 (for 1 ≤ j ≤ n− 1), and

(E6)
∑n−1
j=1 xj ≤ 1 + ε.

Note that any point X satisfying (E1) and (E2) also satisfies (E5) and (E6).
Similarly, any point X satisfying (E3.1.i), (E3.2.i) and (E4) also satisfies (E5)
and (E6). Thus, P (S) ⊇ P ( GGn) ∪

⋃

1≤i≤n−1 P (Gi).

Now suppose X = (x1, . . . , xn−1) ∈ P (S). Thus X satisfies (E5) and (E6).
If X additionally satisfies (E2), then clearly, X ∈ P (G0). If not, then there
must exist an xi, such that xi ≥ 1/(n− 1) > 1/n. Thus, X satisfies, (E3.1.i),
(E3.2.i) and (E4), and thus X ∈ P (Gi).
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Lemma 37 Let n ≥ 2. There exist distinct simplexes G0, G1, . . . , Gn ∈ ΛΛ n,
and a constant ξ > 0, ξ ∈ rat such that: (∀δ ∈ rat | δ ≤ ξ)[P (G0 + δv1) ⊆
⋃n
j=1 P (Gj)].

Proof. Let G0 = GGn+( 1
n+2

)v1. For 1 ≤ i ≤ n−1, let Gi = GGn+( 1
n+1

)vi. Let

Gn = GGn. Let ξ = 1
n+1
− 1
n+2

. Now the Lemma follows by using Lemma 36.

Lemma 38 Let Λ,Λ′ ⊂ ΛΛ n where max({card(Λ), card(Λ′)}) ≤ n. Then

(a)
⋃

G∈Λ V (G) ⊆
⋃

G∈Λ′ P (G), and

(b)
⋃

G∈Λ′ V (G) ⊆
⋃

G∈Λ P (G)

if and only if Λ = Λ′.

Proof. We first show the following two claims.

Claim 39 Suppose G = GGn + Γ, where Γ =
∑n−1
i=1 aivi, and ai ≥ 0. The

vertices in V (G) are thus: A0 = (a1, a2, . . . , an−1) and, for 1 ≤ i ≤ n − 1,
Ai = (ri,1, ri,2, . . . , ri,n−1), where ri,i = ai + 1, and ri,j = aj, for i 6= j.

Then, for any Γ′ =
∑n−1
i=1 a

′
ivi, where a′i ≥ 0, (a) and (b) hold, where G′ =

GGn + Γ′:

(a) If A0 ∈ P (G′), then

(a.1) for 1 ≤ k ≤ n− 1, ak ≥ a′k, and

(a.2)
∑n−1
k=1 ak ≤ 1 +

∑n−1
k=1 a

′
k.

(b) For 1 ≤ i ≤ n− 1, if Ai ∈ P (G′), then

(b.1) ak ≥ a′k, for 1 ≤ k ≤ n− 1, k 6= i, and

(b.2) ai + 1 ≥ a′i, and

(b.3)
∑n−1
k=1 ak ≤

∑n−1
k=1 a

′
k.

Proof. Follows by noting that points X = (x1, . . . , xn−1) in P (G′) must satisfy
the equations:

xk ≥ a′k, for 1 ≤ k ≤ n− 1, and

∑n−1
k=1 xk ≤ 1 +

∑n−1
k=1 a

′
k. 2

Claim 40 Suppose G = GGn + Γ and G′ = GGn + Γ′, where Γ,Γ′ ∈ Γn. If
Γ 6= Γ′, then card(P (G′) ∩ V (G)) ≤ 1.
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Proof. Suppose Γ =
∑n−1
i=1 aivi, and Γ′ =

∑n−1
i=1 a

′
ivi. Thus vertices of G are:

A0 = (a1, a2, . . . , an−1) and, for 1 ≤ i ≤ n−1, Ai = (ri,1, ri,2, . . . , ri,n−1), where
ri,i = ai + 1, and ri,j = aj, for i 6= j.

Now if P (G′) contains A0 and Ai, for some i, 1 ≤ i ≤ n − 1, then by
Claim 39(a.1) and (b.3), we have that ak = a′k, for 1 ≤ k ≤ n − 1, and
thus Γ = Γ′.

If P (G′) contains Ai and Aj, for some distinct i, j, 1 ≤ i < j ≤ n− 1, then by
using Claim 39 (b.1) (with values i and j for i as in Claim 39(b)), as well as
using Claim 39(b.3), we get ak = a′k, for 1 ≤ k ≤ n− 1, and thus Γ = Γ′.

Claim follows. 2

We now prove Lemma 38. Suppose Λ,Λ′ ⊆ ΛΛ n such that
max(card(Λ), card(Λ′)) ≤ n. Suppose Λ 6= Λ′. Then there exists a G ∈ ΛΛ n

which belongs to (Λ − Λ′) ∪ (Λ′ − Λ). Without loss of generality suppose
G ∈ Λ − Λ′. Then, by Claim 40, each element of Λ′ can contain at most one
vertex of G. Thus, Λ′ must contain exactly n simplexes, each containing one
vertex of G.

Suppose Γ =
∑n−1
i=1 aivi is such that G = GGn + Γ. Thus vertices of G are:

A0 = (a1, a2, . . . , an−1) and, for 1 ≤ i ≤ n − 1, Ai = (ri,1, ri,2, . . . , ri,n−1),
where ri,i = ai + 1, and ri,j = aj, for i 6= j.

For 0 ≤ i ≤ n− 1, suppose Gi is the simplex in Λ′ which includes Ai. Suppose
Gi = GGn + Γi, where Γi =

∑n−1
k=1 b

i
kvk.

LetB0 = (b01, b
0
2, . . . , b

0
n−1). For 1 ≤ i ≤ n−1, defineBi = (wi,1, wi,2, . . . , wi,n−1),

where wi,j = bij, for i 6= j, and wi,i = bii + 1. Note that Bi is a vertex of Gi.

We claim that (C1) and (C2) below hold.

(C1) For 0 ≤ i ≤ n− 1, Bi 6∈ P (G).

(C2) For any G′ ∈ ΛΛ n, P (G′) contains at most one of Bi, 0 ≤ i ≤ n− 1.

To see (C1), note that if B0 ∈ P (G), then by using the assumption A0 ∈ P (G0)
and Claim 39 (a.1), we get ak ≤ b0k ≤ ak, for 1 ≤ k ≤ n − 1. Thus ak = b0k,
1 ≤ k ≤ n − 1, and G = G0. On the otherhand if for some i, 1 ≤ i ≤ n − 1,
Bi ∈ P (G), then by using the assumption Ai ∈ P (Gi) and Claim 39 (b.1)
and (b.3), we get (I) ak ≤ bik ≤ ak, for 1 ≤ k ≤ n − 1, k 6= i, and (II)
∑n−1
k=1 ak ≤

∑n−1
k=1 b

i
k ≤

∑n−1
k=1 ak. Thus ak = bik, and G = Gi. However, for

0 ≤ i ≤ n− 1, Gi 6= G. Thus we immediately get (C1).

For (C2) suppose by way of contradiction that G′ contains Bi and Bj, where
0 ≤ i < j ≤ n− 1. Let Γ′ =

∑n−1
k=1 a

′
kvk be such that G′ = GGn + Γ′.
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Case 1: i = 0.

In this case we have, a′k ≤ b0k ≤ ak, for 1 ≤ k ≤ n − 1, (as A0 ∈ P (G0), and
B0 ∈ P (G′), and using (a.1) of Claim 39). Furthermore,

∑n−1
k=1 ak ≤

∑n−1
k=1 b

j
k ≤

∑n−1
k=1 a

′
k (as Aj ∈ P (Gj), and Bj ∈ P (G′), and using (b.3) of Claim 39). It

follows that a′k = ak, for 1 ≤ k ≤ n− 1, and thus G′ = G. A contradiction to
(C1).

Case 2: i, j are not 0.

In this case we have, a′k ≤ bik ≤ ak, for 1 ≤ k ≤ n− 1, i 6= k; a′k ≤ bjk ≤ ak, for
1 ≤ k ≤ n − 1, j 6= k (as Ai ∈ P (Gi) and Bi ∈ P (G′), Aj ∈ P (Gj) and Bj ∈
P (G′), using (b.1) of Claim 39). Furthermore,

∑n−1
k=1 ak ≤

∑n−1
k=1 b

j
k ≤

∑n−1
k=1 a

′
k

(as Aj ∈ P (Gj), and Bj ∈ P (G′), and using (b.3) of Claim 39). It follows that
a′k = ak, for 1 ≤ k ≤ n− 1, and thus G′ = G. A contradiction to (C1).

It follows that (C2) holds. As Λ contains at most n simplexes, (C1) and (C2)
imply that

⋃

S∈Λ′ V (S) 6⊆
⋃

S∈Λ P (S), contradicting the hypothesis of Lemma.
Thus, we must have Λ = Λ′.

Proposition 41 For n ∈ N+, n ≥ 2, (a) TRANSIMn ∈ DU
n
TxtEx.

(b) TRANSIMn 6∈ DU
n+1

TxtEx.

Proof. (a) TRANSIMn ∈ DUnTxtEx is seen by M below, where for each
text T and each m ∈ N ,

M(T [m]):
Let Sm ← {A | coderatn(A) ∈ content(T [m])}.

(This step converts input into coordinates.)
If there exists a collection Λm ⊂ ΛΛ n of at most n simplexes such that

(A)
⋃

G∈Λm V (G) ⊆ Sm, and
(B) Sm ⊆

⋃

G∈Λm P (G).
(Note that since Sm is finite, this check is recursive.)

Then, pick (lexicographically least) such Λm and output a
(standard) representation index for
L(Λm) = {Lang(G) | G ∈ Λm}.

Otherwise, output 0.
End

To see that M DUnTxtEx-identifies TRANSIMn, let Λ′ ⊂ ΛΛ n be any
collection of at most n simplexes from ΛΛ n. Suppose T is a text for L(Λ′), and
consider the outputs of M on T [m]. By Lemma 38, it is easy to verify that
for any m such that all of

⋃

G∈Λ′ V (G) has appeared in Sm, the only set of (at
most n) simplexes (from ΛΛ n) that can fulfill conditions (A) and (B) in the
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definition of M is Λ′. Thus, for all but finitely many m, Λm = Λ′. Thus M ,
given a text for LL(Λ′), outputs a representation index for L(Λ′) in the limit.
Thus, TRANSIMn ∈ DUnTxtEx.

(b) By Lemma 37, there exist distinct G0, G1, . . . , Gn ∈ ΛΛ n such
that P (G0) ⊆

⋃

1≤i≤n P (Gi). Let Λ = {G1, G2, . . . , Gn} and Λ′ =
{G0, G1, G2, . . . , Gn}. Now L(Λ) 6= L(Λ′) but LL(Λ) = LL(Λ′). Hence by Propo-
sition 10, TRANSIMn 6∈ DUn+1TxtEx.

6.2 The Class ExtTRANSIMn

We now define the class ExtTRANSIMn based on TRANSIMn, which wit-
nesses that DUnTxtEx−Un+1TxtEx 6= ∅.

Let PRIMES be the set of all the prime numbers and p0, p1, . . . be an enu-
meration of PRIMES in ascending order. Let ψ be a computable numbering
for which (∀i ∈ N)[W ψ

pi
= Wi].

For a ∈ rat , let h(a) denote the denominator of a in reduced form. Clearly, h is
a recursive function. For G ∈ ΛΛ n, suppose Γ ∈ Γn is such that G = GGn + Γ.
Then, let X1(G) = Γ · v1, and LG = {〈0, x〉 | x ∈ Lang(G)} ∪ {〈1, y〉 |
y ∈Wψ

h(X1(G))}. Finally, ExtTRANSIMn = {LG | G ∈ ΛΛ n}.

Theorem 42 (∀n ∈ N+, n ≥ 2)[ExtTRANSIMn ∈ DU
n
TxtEx −

U
n+1

TxtEx].

Proof. To see that ExtTRANSIMn ∈ DUnTxtEx, consider each L ∈
ExtTRANSIMn

n as consisting of two parts, A = {x | 〈0, x〉 ∈ L} and B = {x |
〈1, x〉 ∈ L}. Now, L = L{LG|G∈Λ} iff A = L{Lang(G)|G∈Λ}. Furthermore, a gram-
mar for LG can be obtained effectively from a grammar for Lang(G). Thus,
using Proposition 41(a), it follows that ExtTRANSIMn ∈ DUnTxtEx.

We now show that ExtTRANSIMn 6∈ Un+1TxtEx. Let G0, G1, G2, . . . , Gn ∈
ΛΛ n, ξ ∈ rat , ξ > 0 be such that for all δ ∈ rat , δ ≤ ξ, P (G0 +
δv1) ⊆

⋃n
i=1 P (Gi). Such G0, G1, . . . , Gn, ξ exist by Lemma 37. Let Λ =

{G1, G2, . . . , Gn}. Without loss of generality, we assume that in the program-
ming system ψ, W ψ

h(X1(Gi))
= ∅, for 1 ≤ i ≤ n.

Let Λ′ = {G0 + αv1 | 0 ≤ α ≤ ξ ∧ α ∈ rat}. Let L′ = {LG′ ∪
⋃

G∈Λ LG | G
′ ∈

Λ′}.

Clearly, for all but finitely many primes p, (∃ l ∈ N | l is co-prime with
p)[X1(G0) <

l
p
< X1(G0) + ξ]. Thus, the set {W ψ

h(z) | z ∈ rat , X1(G0) < z <

X1(G0)+ξ} includes all the r.e. languages. Furthermore, for each z ∈ rat such
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that X1(G0) < z < X1(G0) + ξ, there exists a language in L′ which differs
from

⋃

G∈Λ LG by the set {〈1, y〉 | y ∈ W ψ
h(z)}. Thus if L′ is in TxtEx, then

E ∈ TxtEx. Since E 6∈ TxtEx [Gol67], it follows that L′ 6∈ TxtEx. Since
L′ ⊆ ExtTRANSIMn+1

n , ExtTRANSIMn 6∈ Un+1TxtEx.

Note that the diagonalization in the above Theorem holds even against non-
computable learners, as E 6∈ TxtEx even for non-computable learners [Gol67].

7 Intrinsic Complexity

The concept of intrinsic complexity [FKS95,JS96] is an attempt to describe
the relative hardness of identifying a class of languages under the requirement
given by an identification criterion. The idea is to reduce the task of identifying
a class of languages to the task of identifying another class. To be able to reduce
the identification of L to that of identifying L′, we should be able to transform
admissible texts T for languages in L to admissible texts T ′ for languages in
L′ and further transform sequences of conjectures witnessing identification of
T ′ into sequences of conjectures witnessing identification of T . We refer the
reader to [FKS95,JS96] for more discussion on intrinsic complexity.

A sequence i0i1 . . . is said to be TxtEx-admissible for a text T of language
L, iff for all but finitely many n, Win = L = content(T ). One can similarly
define admissible sequences for a text for unions of languages, as follows:

(a) A sequence i0i1 . . ., which converges to i, is said to be UnTxtEx-admissible
for a text T iff Wi = content(T ).

(b) A sequence i0i1 . . ., which converges to i, is said to be WDUnTxtEx-
admissible (with respect to a class L) for a text T iff

⋃

j∈Di
Wj = content(T ),

card(Di) ≤ n, and {Wj | j ∈ Di} ⊆ L.

For DUnTxtEx-admissible sequence, we additionally require that {Wj | j ∈
Di} be the unique subset of L which unions to content(T ).

An enumeration operator (or just operator), Θ, is an algorithmic mapping
from SEQ into SEQ such that for all σ, τ ∈ SEQ, if σ ⊆ τ , then Θ(σ) ⊆ Θ(τ).
We further assume that for all texts T , limn→∞ |Θ(T [n])| =∞. By extension,
we think of Θ as also defining a mapping from texts to texts such that Θ(T ) =
⋃

n∈N Θ(T [n]).

[JS96] distinguished between two kinds of reductions, called weak and strong
reductions. We consider only the former here. We extend the definition for weak
reduction as follows, so that instead of just reducing the task of identifying
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every language in a class, L1 say, to tasks of identifying languages in another
class L2, we want to reduce the task for identifying every language in Ln1 to
tasks of identifying languages in Lm2 , for some m,n ∈ N .

Definition 43 (Based on [FKS95,JS96]) Let L1,L2 ⊆ E be given. Let
K1,K2 ∈ {U,DU,WDU} and n,m ∈ N+ be given. Let T1 = {T | T is
a text for L ∈ Ln1}. Let T2 = {T | T is a text for L ∈ Lm2 }. We say that

L1 ≤
Kn1TxtEx,Km2 TxtEx
weak L2 just in case there exist operators Θ and Ω such

that for all T ∈ T1 and for all infinite sequences of conjectures G the following
hold:

(a) Θ(T ) ∈ T2, and

(b) if G is a Km2 TxtEx-admissible sequence for Θ(T ), then Ω(G) is a
Kn1TxtEx-admissible sequence for T .

We say that L1 ≤
KnTxtEx
weak

L2 if and only if L1 ≤
KnTxtEx,KnTxtEx
weak L2.

Definition 44 [JS96] Let J be an identification criterion. Let L ⊆ E be
given.

(a) If for all L′ ∈ J , L′ ≤J
weak
L, then L is ≤Jweak-hard.

(b) If L is ≤J
weak

-hard and L ∈ J , then L is ≤Jweak-complete.

Theorem 45 For all n ∈ N+,

(a) INIT is ≤U
n
TxtEx

weak -complete.

(b) INIT is ≤DU
n
TxtEx

weak -hard.

(c) INIT is ≤WDU
n
TxtEx

weak -complete.

Proof. Fix n ∈ N+. We first note that INIT n = INIT .

(a) Clearly, INIT ∈ UnTxtEx. Now suppose L ∈ UnTxtEx is given. Since

INIT is ≤TxtEx
weak

-complete [JS96], there exist Θ and Ω which observe that

Ln ≤TxtEx
weak

INIT . It follows that L ≤U
n
TxtEx

weak
INIT . Part (a) follows.

(b), (c) can be proved using essentially the same proof as used to show that

INIT is ≤TxtEx
weak

-complete in [JS96]. (The reduction of L to INIT in [JS96]
only used the final conjecture of the TxtEx-learner M on texts T for L ∈ L as
a numeric value. One can do the same for the final conjecture of DUnTxtEx-
learner for L). We omit the details. Note that INIT ∈WDUnTxtEx, but not
in DUnTxtEx. Thus, we only get the hardness result for DUnTxtEx.
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It is clear that for any n, TRANSIMn fulfills the condition for Proposition 35.
In fact, we shall next show that in some sense, TRANSIMn is the most
difficult class to learn in DUnTxtEx.

Let XL(n, ε) = Lang( GGn) ∪
⋃

1≤i≤n−1Lang( GGn + εvi). It is easy to verify
that for ε ∈ rat , XL(n, ε) ∈ TRANSIMn

n .

Lemma 46 There exists ω∗ ∈ rat, ω∗ > 0 such that for all ω, ω′ ∈ rat,
0 ≤ ω ≤ ω′ ≤ ω∗, XL(n, ω) ⊆ XL(n, ω′).

Proof. Let ω∗ = 1
n+1

. Lemma 46 now follows by using Lemma 36.

Theorem 47 For all n ∈ N , n ≥ 2, TRANSIMn is ≤DU
n
TxtEx

weak -complete.

Proof. Let n ∈ N , n ≥ 2. Let 〈., .〉p be a 1–1 pairing function with range in the
prime numbers. For any L ∈ DUnTxtEx, we construct Θ and Ω which witness
that L ≤DU

n
TxtEx

weak
TRANSIMn. Suppose M DUnTxtEx-identifies L. Let

L′ ⊆ L, card(L′) ≤ n and let T be a text for LL′ . Without loss of generality
assume that M(T [0]) 6= M(T [1]).

Let ω∗ be as in Lemma 46.

Define Θ as follows. For text T and s ∈ N ,

Θ(T [0]) :
Let ω0 = 0.
Return #.

End

Θ(T [s+ 1]) :
If M(T [s+ 1]) = M(T [s]) then let ωs+1 = ωs.
Else

Find least m ∈ N , and corresponding l ∈ N such that,
l is co-prime with 〈M(T [s+ 1]),m〉p
and ωs ≤ l

〈M(T [s+1]),m〉p
< ω∗.

Let ωs+1 = l
〈M(T [s+1]),m〉p

.

Let σ be an extension of Θ(T [s]) such that
content(σ) = {x | x ≤ s+ 1 ∧ x ∈ XL(n, ωs+1)}.

Return σ.
End

For any i, j ∈ N , i < j, clearly ωi ≤ ωj < ω∗. Thus, by Lemma 46,
XL(n, ωi) ⊆ XL(n, ωj). Hence at each stage s, content(Θ(T [s])) ⊆ XL(n, ωs).
If M DUnTxtEx-identifies LL′, then at some stage t, M stops changing it’s
mind (that is, M(T [t]) = M(T [t′]), for t′ ≥ t). Thus, Θ(T ) is a text for the
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language XL(n, ωt).

To obtain operator Ω transforming a sequence of conjectures forXL(n, ωt) into
a sequence of conjectures for LL′ , observe that it is possible to restore the value
M(T ) from a sequence of conjectures for XL(n, ωt). Let G = G(0)G(1)G(2) . . .
be an infinite sequence of conjectures, define Ω(G) = G ′ where for each s,
G ′(s) is defined as follows. Let zs = max({X1(decoderatn(w)) − 1 | w ∈
⋃

j∈DG(s)
Wj,s}) (the function X1(p) denotes the coordinate in x1 axis of the

point p). Intuitively, here zs attempts to restore the value ωt from G(s), a
conjecture for XL(n, ωt). Finally, let G ′(s) = π1(h(zs)), where h(a) is the
denominator of rational a in reduced form. It is easy to verify that if M
DUnTxtEx-identifies T , and G converges to a conjecture for content(Θ(T )),
then Ω(G) converges to M(T ).

Since TRANSIMn ∈ DUnTxtEx, Theorem follows.

Similarly, one can show

Theorem 48 For all n ∈ N , n ≥ 2,

(a) TRANSIMn is ≤U
n
TxtEx

weak -complete.

(b) TRANSIMn is ≤WDU
n
TxtEx

weak -complete.
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