
Kolmogorov Numberings and Minimal Identification

Rusins Freivalds
Institute of Mathematics and Computer Science

University of Latvia
Raiņa bulvāris 29, LV-1459, Riga, Latvia

Email: rusins@mii.lu.lv

Sanjay Jain
Department of Information Systems and Computer Science

National University of Singapore
Lower Kent Ridge Rd

Singapore 119260
Republic of Singapore

Email: sanjay@iscs.nus.sg

Abstract

Identification of programs for computable functions from their graphs by algo-
rithmic devices is a well studied problem in learning theory. Freivalds and Chen
consider identification of ‘minimal’ and ‘nearly minimal’ programs for functions
from their graphs. To address certain problems in minimal identification for Gödel
numberings, Freivalds later considered minimal identification in Kolmogorov Num-
berings. Kolmogorov numberings are in some sense optimal numberings and have
some nice properties. We prove certain separation results for minimal identification
in every Kolmogorov numbering. In addition we also compare minimal identifica-
tion in Gödel numberings versus minimal identification in Kolmogorov numberings.

1 Introduction

Suppose f is a total recursive function. For any natural number n, we let f [n] denote
{(x, f(x)) | x < n}, the finite initial segment of f consisting of the first n data points
in the graph of f . Criteria of inference informally described below are formally defined
in Section 3. In this paper we are only concerned about learnability of total recursive
functions.

A function learning machine M is an algorithmic device which, on any input segment
f [n], returns either ? or a program. The output of M on f [n] is denoted by M(f [n]). If

1

M(f [n]) is a program, we think of that program as M’s conjecture, based on the data
f [n], about how to compute all of f ; M(f [n]) =? then represents the situation where M
does not conjecture a program based on the data f [n].

As is by now well known, there are various senses in which M can be thought of
as successfully learning or inferring a program for f . Let pn = M(f [n]). The criterion
of success known as Ex-identification [Gol67, BB75, CS83] requires that the sequence
p0, p1, p2, . . . contains a program p, which computes f , such that, for all but finitely many
i, pi = p. In this case one speaks of p as being the final program output by M on f .

Based on the principle of Occam’s Razor, Freivalds [Fre75] and Chen [Che81, Che82]
studied the effect of requiring that the final hypothesis held by the learner in the above
model be of (nearly) minimal size. Suppose ψ is a numbering (programming system). In
MinψEx-identification criterion one requires, in addition to Ex-identification of function
(in the programming system ψ), that the final program be of minimal size (see formal
definitions in Section 3). Minimal identification of classes of functions depends on the
acceptable programming system (acceptable numbering) chosen to interpret programs
output by learning machines. We direct the reader to [Fre75, Che81, Che82] for results
dealing with minimal identification and its relationship with Ex-identification.

Freivalds [Fre75] showed that there are Gödel numberings in which no function class
of infinite cardinality can be learned by minimal programs. This led Freivalds to con-
sider minimal identification in Kolmogorov numberings. Kolmogorov numberings are
numberings to which every other numbering is reducible by a linearly bounded function.
Freivalds showed that for every Kolmogorov numbering ψ, there exists an infinite class of
functions in MinψEx. In this paper we consider the relationship between identification
criteria such as MinψEx, MinψFIN and MinψCoLearn in Kolmogorov numberings ψ
(see formal definitions in Section 3). We show that these criteria are separated in every
Kolmogorov numbering. We also show the existence of classes of functions which can be
minimally identified in some Gödel numbering but cannot be minimally identified in any
Kolmogorov numbering.

We now proceed formally.

2 Notation

Recursion-theoretic concepts not explained below are treated in [Rog67]. N denotes the
set of natural numbers, {0, 1, 2, . . .}. The symbols c, e, i, j, k, l, m, n, p, r, s, t, u, v,
x, y and z, with or without decorations (decorations are subscripts, superscripts and the
like), range over natural numbers unless otherwise specified. ⊆,⊂,⊇,⊃,∈, denote subset,
proper subset, superset, proper superset and membership relationship respectively. ∅
denotes the empty set. A, C, L, S, with or without decorations, range over subsets of
N . L denotes the complement of L, i.e. L = N − L. We denote the cardinality of a set
S by card(S). max(),min() denote the maximum and minimum of a set, respectively.

By convention max(∅) = 0 and min(∅) = ∞. The quantifiers ‘
∞

∀’ and ‘
∞

∃’ mean ‘for all
but finitely many’ and ‘there exist infinitely many,’ respectively.

2

R denotes the set of all total recursive functions. h, f, g, q, with or without decora-
tions, range over R. C and S, with or without decorations, range over subsets of R. ↓
denotes defined. ↑ denotes undefined. ξ, with or without decorations, ranges over partial
recursive functions.

A programming system (or computable numbering) is a (partial) computable function
of two variables. We let ψ, β, η range over computable numberings (programming sys-
tems). Suppose ψ(·, ·) is a computable numbering. We often refer to the (partial) function
λx.ψ(i, x) as ψi. ψi thus denotes the (partial) function computed by the i-th program in
the numbering ψ. Note that, in general, a computable numbering may not contain all
the partial recursive functions. We often drop the word ‘computable’ from ‘computable
numbering’ in this paper, since we will be dealing with computable numberings only.

An acceptable numbering is a computable numbering to which every other com-
putable numbering is reducible via a recursive function. Thus if ψ is an acceptable num-
bering, then for all computable numberings η, there exists a recursive function h such
that (∀i)[ηi = ψh(i)]. Acceptable numberings are also referred to as Gödel numberings.
Kolmogorov numbering is an acceptable numbering to which every other computable
numbering can be reduced via a linearly bounded function. Thus if ψ is a Kolmogorov
numbering, then for all computable numberings η, there exists a recursive function h and
a constant c such that (∀i)[ηi = ψh(i) ∧ h(i) ≤ max({c ∗ i, c})].

For a function f , MinProgψ(f) denotes the minimal program for f , if any, in the ψ
programming system, i.e., MinProgψ(f) = min({i | ψi = f}). Let ZEROSTAR = {f |
(
∞

∀ x)[f(x) = 0]}.
We let ϕ denote an arbitrary fixed acceptable programming system. ϕi thus denotes

the partial recursive function computed by the ith program in the ϕ acceptable program-
ming system ϕ. We often refer to the ith program as program i. Φ denotes an arbitrary
fixed Blum complexity measure [Blu67, HU79] for the ϕ-system.

λi, j.〈i, j〉 stands for an arbitrary computable one to one encoding of all pairs of
natural numbers onto N [Rog67]. We assume that the pairing function is such that
〈i, j〉 ≥ max({i, j}).

3 Learning Paradigms

For any partial function ξ and any natural number n such that, for each x < n, ξ(x)↓,
we let ξ[n] denote the finite initial segment {(x, ξ(x)) | x < n}. Let INIT = {f [n] | f ∈
R ∧ n ∈ N}. We let σ, τ and γ, with or without decorations, range over INIT. We let
Λ denote the empty sequence. |σ| denotes the length of σ. Thus for example |f [n]| = n.

Suppose ξ is a partial function. Then zeroext(ξ) denotes a function such that

(zeroext(ξ))(x) =
{

ξ(x), if ξ(x)↓;
0, otherwise.

Definition 1 [Gol67] A learning machine is an algorithmic device which computes a
mapping from INIT into N ∪ {?} such that, if M(f [n]) 6=?, then M(f [n+ 1]) 6=?.

3

In Definition 1 above, ‘?’ denotes the situation when M outputs “no conjecture” on some
σ ∈ INIT. The restriction that M must continue to conjecture programs once it has done
so is essentially without loss of generality since a machine which hasn’t had enough time
to think of a new conjecture can be thought of re-outputting its previous conjecture.

We let M, with or without superscripts, range over learning machines. (We reserve M
with subscripts for special type of enumeration of learning machines. See Proposition 7
below.)

Definition 2 Suppose M is a learning machine and f is a computable function. M(f)↓
(read: M(f) converges) just in case (∃i)(∞∀ n) [M(f [n]) = i]. If M(f)↓, then M(f)

is defined as the unique i such that (
∞

∀ n)[M(f [n]) = i], otherwise we say that M(f)
diverges (written: M(f)↑).

We now formally define the criteria of inference considered in this paper.

3.1 Explanatory Function Identification

Definition 3 [Gol67, CS83] (a) A learning machine M is said to Ex-identify f (written:
f ∈ Ex(M)) just in case (∃i | ϕi = f)[M(f)↓ ∧ M(f) = i].

(b) Ex = {C | (∃M)[C ⊆ Ex(M)]}.

3.2 Finite Function Inference

Definition 4 [Gol67] (a) A learning machine M is said to FIN-identify f (written: f ∈
FIN(M)) just in case (∃n, p | ϕp = f)[(∀m < n)[M(f [m]) =?] ∧ (∀m ≥ n)[M(f [m]) =
p]].

(b) FIN = {C | (∃M)[C ⊆ FIN(M)]}.

3.3 Colearnability

We say that M(f) co-converges to p, iff [N −{M(f [m]) | m ∈ N} = {p}]. If there exists
a p such that M(f) co-converges to p, then we say that M co-converges on f (to p).
Otherwise we say that M co-diverges on f .

Definition 5 [FKS94] (a) A learning machine M is said to CoLearn f (written: f ∈
CoLearn(M)) just in case (∃p | ϕp = f)[M co-converges on f to p].

(b) CoLearn = {C | (∃M)[C ⊆ CoLearn(M)]}.

For the study of colearnability it is useful to define the following notation. Suppose
σ, τ ∈ INIT. Then we define

PM(σ, τ) = {M(γ) | M(γ) 6=? ∧ σ ⊆ γ ⊆ τ}

4

Intuitively PM(σ, τ) denotes the set of programs output by M on initial segments in
{γ | σ ⊆ γ ⊆ τ}.

Similarly, we define

PM(f [n], f) = {M(f [n′]) | M(f [n′]) 6=? ∧ n ≤ n′}

3.4 Minimal Identification

We next consider identification by minimal programs. Minimal identification usually
depends on the numbering system chosen. Note that Ex, CoLearn and FIN are in-
dependent of acceptable programming system used. Thus without loss of generality,
we have used the ϕ acceptable programming system in the above definitions. However,
minimal identification is acceptable programming system dependent, and thus we need
to indicate the programming system in the definitions. For simplicity of presenting the
proofs, we need to consider identification in non-acceptable programming systems also.
Thus we consider a general definition of minimal identification, where the programming
system used need not be acceptable.

Definition 6 [Fre75] Suppose ψ is a numbering.
(a) M is said to MinψEx-identify f (written f ∈ MinψEx(M)) iff M(f)↓ ∧ M(f) =

MinProgψ(f).
(b) MinψEx = {C | (∃M)[C ⊆ MinψEx(M)]}.
(c) M is said to MinψFIN-identify f (written f ∈ MinψFIN(M)) iff (∃n)[(∀m <

n)[M(f [n]) =?] ∧ (∀m ≥ n)[M(f [n]) = MinProgψ(f)]].
(d) MinψFIN = {C | (∃M)[C ⊆ MinψFIN(M)]}.
(e) M is said to MinψCoLearn f (written f ∈ MinψCoLearn(M)) iff M(f) co-

converges to MinProgψ(f).
(f) MinψCoLearn = {C | (∃M)[C ⊆ MinψCoLearn(M)]}.

The following proposition facilitates the proof of some of our results.

Proposition 7 There exists a recursively enumerable sequence M0,M1, . . . of learning
machines such that, for all machines M and computable numberings ψ, there exists an i
such that, for I ∈ {Ex, FIN, CoLearn, MinψEx, MinψFIN, MinψCoLearn}

I(M) ⊆ I(Mi)

For a proof of the above proposition see for example [OSW86]. We let M0, M1, . . .
be one such enumeration.

FINITE denotes the collection of all finite classes of total recursive functions, i.e.
FINITE = {C | C ⊆ R ∧ card(C) <∞}.

5

4 Results

4.1 Relationship Between Minimal Inference Classes in Differ-

ent Kolmogorov Numberings

It is easy to see that for all acceptable numberings ψ, FINITE ⊆ MinψFIN ⊆ MinψCoLearn ⊆
MinψEx. In this section we show that FINITE, MinψFIN, MinψCoLearn, MinψEx
differ for each Kolmogorov numbering ψ. Note that this is not the case for Gödel num-
berings since there exists a Gödel numbering η, such that no infinite class of functions is
in MinηEx.

Theorem 8 shows that MinψFIN and FINITE differ for all Kolmogorov numberings;
Theorem 11 shows that MinψCoLearn and MinψFIN differ for all Kolmogorov num-
berings; Theorem 14 shows that MinψEx and MinψCoLearn differ for all Kolmogorov
numberings.

Theorem 8 (∀ Kolmogorov Numbering ψ)[MinψFIN − FINITE 6= ∅].

Proof. This is essentially the proof used by Freivalds [Fre91] to show that for every
Kolmogorov numbering ψ, there exists an infinite class of functions in MinψEx. We give
the proof for completeness. Suppose a Kolmogorov numbering ψ is given. For i > 0, let
hi be defined as follows.

hi(x) =
{

i, if x = 0;
0, otherwise.

Let c be such that,

(∀j > 0)(∃k ≤ c ∗ j)[ψk = hj]

Since ψ is Kolmogorov numbering there exists such a c.
Let

S = {hj | j > 0 ∧ card({i | i ≤ c ∗ j ∧ ψi(0) = j}) ≤ 2c}
It is easy to verify that S is infinite.

Let Cj = {k | k ≤ c ∗ j ∧ ψk(0) = j}. Let plj denote l-th element enumerated in
some standard, 1–1, effective in j, enumeration of Cj.

Now for 1 ≤ i ≤ 2c, define Mi as follows. Mi on hj behaves as follows: If pij is
defined, then Mi on hj outputs pij as its only program; otherwise, Mi does not output
any program on hj. Note that such Mi can easily be constructed.

Now it is easy to verify that,

(∀f ∈ S)(∃l | 1 ≤ l ≤ 2c)[f ∈ MinψFIN(Mi)]

Since S is infinite the theorem follows by Pigeon hole principle.

Definition 9 Suppose C ⊆ R and f ∈ C. Then f is said to be an accumulation point
for C iff (∀n)(∃g ∈ C)[f 6= g ∧ (∀x < n)[f(x) = g(x)]].

6

The following Lemma is used in the proof of Theorem 11.

Lemma 10 Suppose C ⊆ R, and f is an accumulation point for C. Then C 6∈ FIN.

Proof. Let C and f be given as in the hypothesis. Suppose by way of contradiction
that M FIN-identifies C. Then there exists an n ∈ N such that M(f [n]) 6=?. Let g be
such that g 6= f and (∀x ≤ n)[f(x) = g(x)]. Then M fails to FIN-identify at least one
of g and f . A contradiction. Thus no such M can exist.

Theorem 11 (∀ Kolmogorov Numbering ψ)[MinψCoLearn− FIN 6= ∅].

Proof. Suppose a Kolmogorov numbering ψ is given. Let h0 be everywhere 0 function.
For i > 0, define hi as follows.

hi(x) =
{

1, if x = i;
0, otherwise.

We will construct a class of functions C ∈ MinψCoLearn, such that h0 ∈ C and for
infinitely many k, hk ∈ C. Note that h0 would thus be an accumulation point for C. This,
using Lemma 10, would imply the Theorem.

Let z = MinProgψ(h0).
Let c be such that (∀k > 0)[MinProgψ(hk) ≤ c∗k] (note that since ψ is a Kolmogorov

numbering, there exists such a c). For k > 0, let Ck = {j | j ≤ c ∗ k ∧ hk[k + 1] ⊆ ψj}.
Let plk denote the l-th program enumerated, if any, in some standard, 1–1, effective in k,
enumeration of Ck.

Let c′ be a constant > 2. For l ∈ N+, consider machine Ml, such that the following
two properties are satisfied.

(1) PMl(Λ, h0[y]) = {i | i ≤ y/c′} − {z}.
(Note that this implies that h0 ∈ MinψCoLearn(Ml).)

(2)

PMl(hk[k + 1], hk) =

{

N − {plk}, if l ≤ card(Ck);
{z}, if l > card(Ck).

Note that one can easily construct such Ml.
Let

S = {k | k > 0 ∧ card(Ck) ≤ 2c} − {k | k > 0 ∧ MinProgψ(hk) ≤ k/c′}

It is easy to verify that S is of infinite cardinality (since c′ > 2). Furthermore,
(∀k ∈ S)(∃l | 1 ≤ l ≤ 2c)[hk ∈ MinψCoLearn(Ml)]. It follows, using Pigeon hole
principle, that there exists an l, 1 ≤ l ≤ 2c, such that MinψCoLearn(Ml) contains an
infinite subset of {hk | k > 0}. Since h0 ∈ MinψCoLearn(Ml), it follows that there
exists a C ∈ MinψCoLearn, such that h0 ∈ C, and for infinitely many k, hk ∈ C, as
claimed.

7

Note that FIN − MinψCoLearn 6= ∅, for all acceptable numbering ψ. (C = {f |
(∀x > 0)[f(x) = 0]}, witnesses the separation.)

As corollaries we have

Corollary 12 (∀ Kolmogorov Numbering ψ)(∃C)[C ∈ MinψCoLearn ∧ (∀ Gödel
Numbering η)[C 6∈ MinηFIN]].

Corollary 13 (∀ Kolmogorov Numbering ψ)[MinψCoLearn − MinψFIN 6= ∅].

Theorem 14 (∀ Kolmogorov Numbering ψ)(∃C)[C ∈ MinψEx ∧ (∀ Kolmogorov
Numbering ψ′)[C 6∈ Minψ′CoLearn]].

Proof. Let βn denote the n-th Kolmogorov numbering (in some ordering of Kolmogorov
numberings; note that we do not need the ordering to be effective — in fact any such
ordering will not be effective).

We first define a computable numbering η (an appropriate subset of functions com-
puted by the programs in the numbering η will serve as our diagonalizing class).

Intuitively, we consider the programs of η to be divided in different groups Gj
i = {p |

lji ≤ p ≤ uji}, where j ≤ i, and lji , u
j
i are defined below. For each i, for some si ≤ i,

Gsi

i will provide us with a (large) set of functions Si, such that, for each k, n ∈ N , for
large enough i, at most one of the functions in Si belongs to MinβnCoLearn(Mk). This
will allow us construct our diagonalizing class C using techniques similar to that used in
earlier theorems of this paper. We now proceed formally.

Let l00 = 0, u0
0 = 0.

For i > 0,

let l0i = ui−1
i−1 + 1;

for 1 ≤ j ≤ i, let lji = uj−1
i + 1.

For i > 0, j ≤ i, let uji = (lji + i2) ∗ 2.
For l0i ≤ r ≤ uii, we define ηr according to the following staging construction (note that
for each i, a different such staging construction, effective in i, is executed).

Let σ0
i = {(0, i)}. Go to stage 0.

Stage s

For lsi ≤ r ≤ usi , let

ηr(x) =











σsi (x), if x < |σsi |;
r, if x = |σsi |;
0, otherwise.

Search for a r, n such that

lsi ≤ r ≤ usi ,
n > |σsi |, and
card({k | k < i ∧ card({x | x ≤ i ∗ uii} − PMk

(Λ, ηr[n])) ≤ 1}) ≥ s+ 1.

8

(Note that the success of above search means that at least s + 1 of the machines in
M0,M1, . . . ,Mi−1, output all but possibly one of the programs ≤ i ∗ uii on initial
segments of ηr[n].)

If and when such r, n are found, let σs+1
i = ηr[n], and go to stage s+ 1.

End Stage s

Note that for any i, the last stage executed is ≤ i (since, card({k | k < i ∧ card({x |
x ≤ i ∗ uii} − PMk

(Λ, ηr[n])) ≤ 1}) is bounded by i).
For i ∈ N , let si denote the last stage executed in the above construction correspond-

ing to i.

Claim 15 (a) Suppose i ∈ N , j ≤ si, and lji ≤ r ≤ uji . Then ηr ∈ ZEROSTAR and
ηr(max({x | ηr(x) 6= 0})) = r.

(b) Suppose i ∈ N , si < j ≤ i, and lji ≤ r ≤ uji . Then ηr is everywhere undefined.
(c) If r 6= r′, then ηr = ηr′ implies ηr is everywhere undefined.

Proof. Parts (a) and (b) follow from definition of ηr and si. Part (c) follows from parts
(a) and (b). 2

Let Si = {ηr | lsi

i ≤ r ≤ usi

i }.
Let cn be such that (∀r > 0)[MinProgβn(ηr) ≤ cn ∗ r] (such cn exist since βn is a

Kolmogorov numbering).
Let Ei

k,n = {f | f ∈ Si ∧ cn ≤ i ∧ f ∈ MinβnCoLearn(Mk)}.

Claim 16 Let k, n ∈ N . MinβnCoLearn(Mk) contains at most finitely many functions
in [

⋃

i Si] − [
⋃

{i,k,n|k,n<i}E
i
k,n].

Proof. Follows from the definition of Ei
k,n. 2

Claim 17 Suppose k, n < i. Then card(E i
k,n) ≤ 1.

Proof. Suppose k, n < i, and cn ≤ i. Now for all f ∈ Si, MinProgβn(f) ≤ i ∗ uii (since
MinProgη(f) ≤ uii). Also for all f ∈ Si, σsi

i ⊆ f .
Let X = {k′ | k′ < i ∧ card({x | x ≤ i ∗ uii} − PMk′

(Λ, σsi

i)) ≤ 1}.
Now we consider two cases:

Case 1: k 6∈ X.

Note that in this case, we have that Mk(f) co-diverges on all f ∈ Si (otherwise
the search in stage si of the construction above would have succeeded). Thus
card(Ei

k,n) = 0.

Case 2: k ∈ X.

In this case since,

card({x | x ≤ i ∗ uii} − PMk
(Λ, σsi

i)) ≤ 1

we have that Mk can MinβnCoLearn at most one f ∈ Si. Thus card(Ei
k,n) ≤

1. 2

9

Now suppose ψ is a Kolmogorov numbering. Let c be such that (∀l > 0)[MinProgψ(ηl) ≤
c ∗ l]. We will show that some machine MinψEx-identifies an infinite subset of [

⋃

i Si] −
[
⋃

{i,k,n|k,n<i}E
i
k,n]. This would prove the theorem (using Claim 16).

Let S = [
⋃

i Si] − [[
⋃

{i,k,n|k,n<i}E
i
k,n] ∪ {ηr | (∃i)[lsi

i ≤ r ≤ usi

i] ∧ card({p | p ≤
c ∗ r ∧ ηr[|σsi

i | + 1] ⊆ ψp}) > 3c}]. It is easy to verify that S is infinite (for uii > c, at
least 2usi

i /3 − lsi

i − i2 of the functions in Si belong to S).
For lsi

i ≤ r ≤ usi

i , let Cr = {r′ | r′ ≤ c∗r ∧ ηr[|σsi

i |+1] ⊆ ψr′}. Let plr denote the l-th
program, if any, enumerated in some standard, 1–1, effective in r, enumeration of Cr.

For 1 ≤ l ≤ 3c, let Ml be such that,

(∀i)(∀r | lsi

i ≤ r ≤ usi

i)[Ml(ηr) = plr]

Note that such Ml can easily be constructed. It is easy to verify that, for each ηr ∈ S,
there exists an l, 1 ≤ l ≤ 3c such that ηr ∈ MinψEx(Ml). Thus, by pigeon hole principle,
there exists an infinite subset of S in MinψEx. Since S ⊆ [

⋃

i Si] − [
⋃

{i,k,n|k,n<i}E
i
k,n],

we have that, an infinite subset of [
⋃

i Si] − [
⋃

{i,k,n|k,n<i}E
i
k,n] belongs to MinψEx. The

theorem follows using Claim 16.

A modification of the above proof can be used to show that

Theorem 18 (∀ Kolmogorov Numbering ψ)(∃C)[C ∈ MinψEx ∧ (∀ Gödel Numbering
ψ′)[C 6∈ Minψ′CoLearn]].

We omit the details. As a corollary to Theorem 14 we have,

Corollary 19 (∀ Kolmogorov Numbering ψ)[MinψEx − MinψCoLearn 6= ∅].

As a Corollary Theorem 8 and Corollaries 13 and 19 we have

Corollary 20 (∀ Kolmogorov Numbering ψ)[FINITE ⊂ MinψFIN ⊂ MinψCoLearn ⊂
MinψEx].

4.2 Recursively Enumerable Classes and Minimal Identification

in Kolmogorov/Gödel Numberings

The next three theorems consider the question about whether recursively enumerable
classes can be minimally identified in Gödel or Kolmogorov numberings.

Theorem 21 (∃ infinite r.e. C)(∃ Kolmogorov Numbering ψ)[C ∈ MinψEx].

Proof. It was shown in [Fre91] that there exists a Kolmogorov numbering ψ such that
{f | (∀x)[f(x) = f(0)]} ∈ MinψEx. In fact it can be shown that for all C ∈ FIN, there
exists a Kolmogorov numbering ψ, such that C ∈ MinψEx.

10

Theorem 22 (∀ infinite r.e. C)(∀ Gödel Numbering ψ)[C 6∈ MinψCoLearn].

Proof. Suppose by way of contradiction that M, an r.e. infinite class C, and a Gödel
Numbering ψ, are such that C ⊆ MinψCoLearn(M).

It follows that, for all c, there exists an f ∈ C such that PM(Λ, f) ⊇ {x | x ≤ c}.
Note that, since C is r.e., one can search, effectively in c, for such a function f .

Thus, by implicit use of Kleene’s recursion theorem [Rog67], there exists an e, such
that ψe ∈ C, and PM(Λ, ψe) ⊇ {x | x ≤ e}. But then ψe 6∈ MinψCoLearn(M). A
contradiction. Thus (∀ infinite r.e. C)(∀ Gödel Numbering ψ)[C 6∈ MinψCoLearn].

Theorem 23 (∃ Kolmogorov Numbering ψ)(∃ infinite co-r.e. L)[{ψi | i ∈ L} ∈
MinψFIN].

Proof. Let fk be defined as follows.

fk(x) =
{

k, if x = 0;
0, otherwise.

Without loss of generality suppose that ϕ is a Kolmogorov numbering.
Let ψ be defined as follows.

ψj =
{

ϕi, if j = 3i;
fj, if j is not divisible by 3.

Let

L = {3i | i ∈ N} ∪ {j | j is not divisible by 3 ∧ (∃i < j/3)[ϕi(0) = j]}

Note that L is r.e. and coinfinite. Consider M, which on fk, outputs k as its only
program. It is easy to verify that C = {ψj | j ∈ L} ⊆ MinψFIN(M).

4.3 Minimal Identification in Gödel Numberings vs. Kolmogorov
Numberings

In this section we compare the effects of considering Gödel numberings versus Kolmogorov
numbering on minimal identification. Specifically, we show that, for each of the three
identification types, FIN,CoLearn,Ex, discussed in this paper, there exists a class of
functions, C, which can be identified using minimal programs in some Gödel numbering
but cannot be identified using minimal programs in any Kolmogorov numbering.

Theorem 24 (∃ Gödel Numbering ψ)(∃C)[C ∈ MinψFIN ∧ (∀ Kolmogorov Numbering
ψ′)[C 6∈ Minψ′CoLearn]].

11

Proof. Let hi be a function defined as follows.

hi(x) =
{

i, if x = 0;
0, otherwise.

Let ψi be defined as follows:

ψi =
{

ϕl, if i = l4;
hi, if for all l, i 6= l4.

Clearly, ψ is a Gödel numbering. Consider M′, which on hi, outputs i as its only
program. Let C = {hi | MinProgψ(hi) = i}. Clearly, C ⊆ MinψFIN(M′).

Claim 25 At most r + 1 of the functions in {hi | r4 < i < (r + 1)4} are not in C.

Proof. Note that card({i | i < (r + 1)4 ∧ ψi 6= hi}) ≤ r + 1. Thus since hi’s are
distinct, card({i | r4 < i < (r + 1)4 ∧ MinProgψ(hi) 6= i}) ≤ r + 1. Claim follows. 2

Suppose M and a Kolmogorov numbering ψ′ is given. We will show that C 6⊆
Minψ′CoLearn(M). To show this we, construct a recursive function q (using opera-
tor recursion theorem [Cas74]) such that, for some i, ϕq(i) has a small enough program
in ψ′, but M on ϕq(i) does not co-converge to a small enough program.

By Operator recursion theorem [Cas74], there exists a recursive function q, such that
(partial) functions ϕq(·) may be defined as follows.

Let l0 = 0. ls is used to denote the least l such that ϕq(l) has not been defined on any
input before stage s. Go to stage 0.

Begin stage s

1. Search for an r > ls, S ⊆ {x | r4 < x < (r+ 1)4}, such that card(S) = r+ 2 and, for
all i ∈ S, {x | x ≤ (ls + r + 2)2} ⊆ PM(Λ, hi).

2. Let S be as found in step 1. Let ϕq(ls+x), x ≤ r + 1, be the r + 2 functions in
{hi | i ∈ S}.

3. Let ls+1 = ls + r + 2.

End stage s

Now we consider the following cases.
Case 1: Stage s starts but does not halt.

Non success of the search at step 1, implies that, for any r > ls, M can co-
learn (in numbering ψ) at most (ls + r+ 2)2 + r+ 1 ≤ (2r+ 2)2 + r+ 1 of the
functions in {hi | r4 < i < (r + 1)4}. Now, for each r, by Claim 25, at least
(r+1)4 − r4 − 1− (r+1) of the functions in {hi | r4 < i < (r+1)4}, are in C.

Thus, since (r+1)4 − r4 − 1− (r+1) > (2r+2)2 + r+1, for large enough
r, non-success of step 1 in stage s implies C 6⊆ Minψ′CoLearn(M).

Case 2: All stages halt.

12

In this case note that, by Claim 25, for each stage, at least one of the r + 2

functions found in step 1 is in C. It follows that (
∞

∃ i)[ϕq(i) ∈ C ∧ M on ϕq(i)
does not co-converge to a program ≤ i2]. But since, for some constant c, for
all i, MinProgψ′(ϕq(i)) ≤ c ∗ i, we have

(
∞

∃ i)[ϕq(i) ∈ (C − Minψ′CoLearn(M))]

.
Thus C 6⊆ Minψ′CoLearn(M).

As corollaries we have,

Corollary 26 (∃C)(∃ Gödel Numbering ψ)[C ∈ MinψFIN ∧ (∀ Kolmogorov Number-
ing η)[C 6∈ MinηFIN]].

Corollary 27 (∃C)(∃ Gödel Numbering ψ)[C ∈ MinψCoLearn ∧ (∀ Kolmogorov
Numbering η)[C 6∈ MinηCoLearn]].

Note that we cannot strengthen the above theorem to show, (∃ Gödel Numbering
ψ)(∃C)[C ∈ MinψFIN ∧ (∀ Kolmogorov Numbering ψ′)[C 6∈ Minψ′Ex]]. This is so
because, (∀C ∈ FIN)[(∃ Kolmogorov Numbering ψ′)[C ∈ Minψ′Ex]]. We do not know at
this point whether, (∃C)(∃ Gödel Numbering ψ)[C ∈ MinψCoLearn ∧ (∀ Kolmogorov
Numbering η)[C 6∈ MinηEx]]. However,

Theorem 28 (∃C)(∃ Gödel Numbering ψ)[C ∈ MinψEx ∧ (∀ Kolmogorov Numbering
η)[C 6∈ MinηEx]].

Proof. Let F be a partial recursive function, such that F (k, i, x), denotes the output of
the i-th program in the k-th numbering on input x. Note that F (k, ·, ·) is a numbering,
and F (k, i, ·) denotes the function computed by the i-th program in this numbering.

We will construct a recursive function g(k, i, j) using parameterized recursion theorem.
We will have that, for all k, i, j, zeroext(ϕg(k,i,j)) ∈ ZEROSTAR.

Intuitively our plan is as follows:
(A) We try to make zeroext(ϕg(k,i,j)) 6∈ MinF (k,·,·)Ex(Mi). For this we use a tech-

nique used by Chen [Che82] to show that ZEROSTAR 6∈ MEx (we refer the reader
to Chen [Che82] for definition of MEx-identification). However, since we do not know
the reduction from ϕg(k,i,·) to the Kolmogorov numbering F(k, ·, ·), we may not always be
successful. We will however be successful for large enough j (where large enough depends
only on i and k).

(B) Using g, we will construct a class C (which contains, for each i, k, infinitely many
of zeroext(ϕg(k,i,·))) and a Gödel numbering ψ such that C ∈ MinψEx. For this purpose
we need to code 〈k, i, j〉 in ϕg(k,i,j).

This would prove the theorem. We now proceed formally.
By parameterized s-m-n theorem [Rog67] there exists a recursive 1-1 function g such

that ϕg(k,i,j), may be defined as follows.

13

Begin definition of ϕg(k,i,j)

Let Cancel = ∅.
Let ϕg(k,i,j)(0) = 〈k, i, j〉.
Let xs denote the least x such that ϕg(k,i,j)(x) has not been defined before stage s.

Go to stage 0.

Begin stage s

0. Dovetail steps 1 and 2, until one of them succeeds. If step 1 succeeds (before
step 2, if ever) then go to step 3. If step 2 succeeds (before step 1, if ever)
then go to step 4.

1. Search for an l < j2, such that l 6∈ Cancel and F (k, l, xs)↓.
2. Suppose f = zeroext(ϕg(k,i,j)[xs]). Search for m > xs, such that Mi(f [m]) ≥ j2.
3. Let l be as found in step 1. Let ϕg(k,i,j)(xs) = F (k, l, xs) + 1.

Let Cancel = Cancel ∪ {l}.
Go to stage s+ 1.

4. Let m be as found in step 2. For xs ≤ x ≤ m, let ϕg(k,i,j)(x) = 0.
Go to stage s+ 1.

End stage s

End definition of ϕg(k,i,j)

Claim 29 Suppose F (k, ·, ·) is a Kolmogorov numbering. Then for all i, for all but
finitely many j, zeroext(ϕg(k,i,j)) 6∈ MinF (k,·,·)Ex(Mi).

Proof. Fix Mi. Suppose F (k, ·, ·) is a Kolmogorov numbering. Then for all but finitely
many j, MinProgF (k,·,·)(ϕg(k,i,j)) < j2.

Suppose j is such that MinProgF (k,·,·)(ϕg(k,i,j)) < j2. Let f = zeroext(ϕg(k,i,j)). We
will show that f 6∈ MinF (k,·,·)Ex(Mi). Consider the following two cases.

Case 1: (
∞

∃ n)[Mi(f [n]) ≥ j2].

In this case, due to the success of step 2 in the construction of ϕg(k,i,j) infinitely
often, we have, f = ϕg(k,i,j) 6∈ MinF (k,·,·)Ex(Mi).

Case 2: (
∞

∀ n)[Mi(f [n]) < j2].

By the construction of ϕg(k,i,j), it follows that (∀l < j2)[l ∈ Cancel ∨
F (k, l, ·) is not total]. Therefore, (∀l < j2)[F (k, l, ·) 6= f]. Thus f 6∈
MinF (k,·,·)Ex(Mi). 2

Define C〈k,i,j〉 as follows.

C〈k,i,j〉 = {zeroext(ϕg(k,i,j)[x]) | x = 1 ∨ ϕg(k,i,j)(x− 1)↓ 6= 0}

14

Note that zeroext(ϕg(k,i,j)) ∈ C〈k,i,j〉, and card(C〈k,i,j〉) ≤ j2 + 1 (since step 1 can succeed
only j2 many times). Moreover the functions in C〈k,i,j〉 are 1–1 enumerable effectively in
〈k, i, j〉.

Let
S = {〈k, i, j〉 | (∀p ≤

√

j)[ϕp(0) 6= 〈k, i, j〉]}
Let

C =
⋃

〈k,i,j〉∈S

C〈k,i,j〉

Note that for each k, i, there exist infinitely many j, such that C〈k,i,j〉 ⊆ C. Thus,
for all i, k, there exists infinitely many j such that zeroext(ϕg(k,i,j)) ∈ C. It follows from
Claim 29 that, (∀ Kolmogorov Numbering ψ′)[C 6∈ Minψ′Ex].

We now construct a Gödel numbering ψ, such that C ∈ MinψEx. Let gap(l) = l4 +2.
Let h(0) = 0; for l ∈ N , let h(l + 1) = 1 + h(l) + gap(l).

Let ψh(l+1) = ϕl. Note that this makes ψ a Gödel numbering.
For h(l) < x < h(l+1), ψx is defined as follows. If ϕl(0)↓ = 〈k, i, j〉 and card(C〈k,i,j〉) ≥

x− h(l), then let ψx = (x− h(l))-th function in C〈k,i,j〉 (in some standard, 1–1, effective
in k, i, j, enumeration of C〈k,i,j〉). Otherwise let ψx be the everywhere undefined function.

Claim 30 C ∈ MinψEx.

Proof. Suppose, 〈k, i, j〉 ∈ S. Suppose l is such that ϕl(0) = 〈k, i, j〉. Then we have
l >

√
j. Thus, j2 + 1 ≤ l4 + 1. Hence, C〈k,i,j〉 ⊆ {ψr | h(l) < r < h(l + 1)}.

Thus for all f ∈ C, we have:

h(l) < MinProgψ(f) < h(l + 1)

where l = min({r | ϕr(0) = f(0)}).
Thus, in particular, (A) for all f ∈ C, MinProgψ(f) is not of the form h(l), for any l.

Moreover the construction of ψ gives us the following: (B) if h(l) < x < h(l + 1), then
either ψx is total or ψx is everywhere undefined.

Using properties (A) and (B) of ψ, it is easy to show that C ∈ MinψEx.

Recall that in every Kolmogorov numbering ψ, MinψFIN, MinψCoLearn, MinψEx
are separated. However, as the following theorem shows, in Gödel numbering this may
not be the case.

Theorem 31 For all α1, α2, α3 ∈ {=,⊂}, it is possible to construct a Gödel Numbering
η such that FINITE α1 MinηFIN α2 MinηCoLearn α3 MinηEx.

Proof. The idea is essentially to interleave the diagonalizations for the relevant proper
subset construction with the Gödel numbering in which no infinite set of functions is
MinEx-identifiable.

Lemmas 34, 35 and 38 below give us (non-universal) computable numberings ψ1, ψ2, ψ3,
and monotone increasing recursive functions g1, g2, g3 such that properties (A) to (G) be-
low are satisfied.

15

Below let C1 = {ψ1
j | ψ1

j ∈ R}, C2 = {ψ2
j | ψ2

j ∈ R}, and C3 = {ψ3
j | ψ3

j ∈ R}.
(A) C1, C2, C3 are infinite and pairwise disjoint.

(B) C1 ∈ Minψ1FIN.

(C) C2 ∈ Minψ2CoLearn.

(D) C3 ∈ Minψ3Ex.

(E) No infinite subset of C2 belongs to Minψ2FIN.

(F) No infinite subset of C3 belongs to Minψ3CoLearn.

(G) For each i ∈ {1, 2, 3}, there exist infinitely many j ∈ N such that, card({ψir | r ≤
gi(j) ∧ ψir ∈ Ci}) > 2j.

Using the above numberings, we construct a Gödel numbering η satisfying the theorem.
Suppose β is the Gödel numbering in which no infinite class of functions can be

MinβEx-identified. Intuitively we would like to interleave the numberings β, ψ1, ψ2, ψ3,
so that, for i ∈ {1, 2, 3}, gi(j)-th program in ψi appears before j-th program in β in the
interleaving.

For this purpose let H be a 1–1 function from {(x, y) | 1 ≤ x ≤ 4 ∧ y ∈ N} to N ,
such that the following two properties are satisfied.

(1) For i ∈ {1, 2, 3}, H(i, gi(j)) < H(4, j).
(2) For each i ∈ {1, 2, 3, 4}, H(i, j) is a monotone increasing function of j.

Note that such a function H can be easily constructed. For i ∈ {1, 2, 3, 4} and k ∈ N ,
let ηH(i,k) be defined as follows.

ηH(i,k)(x) =











βk(x), if i = 4;
ψik(x), if i ∈ {1, 2, 3} and αi is ⊂;
↑, if i ∈ {1, 2, 3} and αi is =.

Claim 32 (a) If C ⊆ MinηFIN(M), then for all but finitely many f ∈ C, M(f) ∈
{H(i, k) | k ∈ N ∧ i = 1}.

(b) If C ⊆ MinηCoLearn(M), then for all but finitely many f ∈ C, M(f) co-
converges to a member of {H(i, k) | k ∈ N ∧ i ∈ {1, 2}}.

(c) If C ⊆ MinηEx(M), then for all but finitely many f ∈ C, M(f) ∈ {H(i, k) | k ∈
N ∧ i ∈ {1, 2, 3}}.

Proof. Note that if, H(i, k) = MinProgη(f), then k = MinProgψi(f), where we let
ψ4 = β. Thus, the claim follows from the construction of η and the facts that

(i) no infinite subset of R belongs to MinβEx,
(ii) no infinite subset of C3 belongs to Minψ3CoLearn, and
(iii) no infinite subset of C2 belongs to Minψ2FIN. 2

16

Claim 33 The following hold.
(a) Suppose α1 is ⊂. Then {ψ1

i | ψ1
i ∈ R ∧ MinProgη(ψ

1
i) = H(1, i)} ∈ MinηFIN.

Moreover, {ψ1
i | ψ1

i ∈ R ∧ MinProgη(ψ
1
i) = H(1, i)} is infinite.

(b) Suppose α2 is ⊂. Then {ψ2
i | ψ2

i ∈ R ∧ MinProgη(ψ
2
i) = H(2, i)} ∈ MinηCoLearn.

Moreover, {ψ2
i | ψ2

i ∈ R ∧ MinProgη(ψ
2
i) = H(2, i)} is infinite.

(c) Suppose α3 is ⊂. Then {ψ3
i | ψ3

i ∈ R ∧ MinProgη(ψ
3
i) = H(3, i)} ∈ MinηEx.

Moreover, {ψ3
i | ψ3

i ∈ R ∧ MinProgη(ψ
3
i) = H(3, i)} is infinite.

Proof. We show part (a). Proof of other parts are similar. Suppose α1 is ⊂. Suppose M
is such that C1 ⊆ Minψ1FIN(M). Let M′ be defined as follows. M′(σ) = H(1,M(σ)).
Clearly, {ψ1

i | ψ1
i ∈ R ∧ MinProgη(ψ

1
i) = H(1, i)} ∈ Minψ1FIN(M′).

Now, since C1, C2, C3 are pairwise disjoint, we have, for infinitely many j, card({i |
i ≤ g1(j) ∧ ψ1

i ∈ C1 ∧ H(1, i) = MinProgη(ψ
1
i)}) ≥ 2j + 1 − j.

It follows that {ψ1
i | ψ1

i ∈ R ∧ MinProgη(ψ
1
i) = H(1, i)} is infinite. 2

Theorem follows from the above two claims.

Lemma 34 There exists (non-universal) computable numbering ψ1 and monotone in-
creasing recursive function g1, which satisfy properties (A) to (C) below.

Below let C1 = {ψ1
j | ψ1

j ∈ R}.
(A) For all f ∈ C1, f(0) = 1.

(B) C1 ∈ Minψ1FIN.

(C) There exists infinitely many j ∈ N such that, card({ψ1
r | r ≤ g1(j) ∧ ψ1

r ∈ C1}) >
2j.

Proof. Let

ψ1
k(x) =

{

1, if x = 0;
k, otherwise.

Let gi(j) = 2j+2. It is easy to verify that the properties (A) to (C) are satisfied.

Lemma 35 There exists (non-universal) computable numbering ψ2 and monotone in-
creasing recursive function g2, which satisfy properties (A) to (D) below.

Below let C2 = {ψ2
j | ψ2

j ∈ R}.
(A) For all f ∈ C2, f(0) = 2.

(B) C2 ∈ Minψ2CoLearn.

(C) No infinite subset of C2 belongs to Minψ2FIN.

(D) There exists infinitely many j ∈ N such that, card({ψ2
r | r ≤ g2(j) ∧ ψ2

r ∈ C2}) >
2j.

17

Proof. Let σ0, σ1, . . . be an 1-1 enumeration of all elements of INIT. We assume without
loss of generality that |σi| ≤ i. Let X be a recursive function from N 2 to N such that
the following properties are satisfied (note that such an X can easily be constructed).

(1) (∀j)[σX(j,0) = {(0, 2), (1, j)}].
(2) (∀j, l)[σX(j,l) ⊆ σX(j,l+1)].
(3) (∀j)[liml→∞X(j, l)↓].
(4) (∀j, l)[X(j, l) 6= X(j, l + 1) ⇒ |σX(j,l+1)| < l].
(5) For any given j, suppose τj = σliml→∞X(j,l). Then (∀k < j)[(∃τ ′ ⊇ τj)[Mk(τ

′) 6=
?] ⇒ [Mk(τj) 6=?]].

Intuitively, τj above denotes a sequence such that all Mk, k < j, which output
program on some extension of τj, output a program on τj. Conditions, (1) – (4) above
just impose some restrictions on the search of such τj, which is used for implementing
the diagonalization.

For j ∈ N , let lj be the least value of l such that (∀l′ > l)[X(j, l) = X(j, l′)] (note
that since limt→∞X(j, t)↓, lj is well defined). Intuitively, lj is just the convergence point
for X(j, ·).

Define h as follows:
h(0) = 0. h(k + 1) = h(k) + 3k + 2.
For r ∈ N , r < 3 ∗ 〈j, l〉 + 2, let

fh(〈j,l〉)+r(x) =











σX(j,l)(x), if x < |σX(j,l)|;
h(〈j, l〉) + r + 1, if x = |σX(j,l)|;
0, otherwise.

Now, for r < 3∗ 〈j, l〉+2, let ψ2
h(〈j,l〉)+r be defined so that the following two properties

are satisfied:
(a) ψ2

h(〈j,l〉)+r ⊆ fh(〈j,l〉)+r.

(b) ψ2
h(〈j,l〉)+r = fh(〈j,l〉)+r iff [l = lj ∧ (∀m < j)[Mm on fh(〈j,l〉)+r does not finitely

converge to h(〈j, l〉) + r]].
Intuitively, aim of part (b) is to make ψ2

h(〈j,l〉)+r total iff the convergence point of
X(j, ·) is l, and no machine Mm,m < j, finitely converges on fh(〈j,l〉)+r to h(〈j, l〉) + r.

Let g2(k) = h(k + 1). We now show that ψ2 and g2 satisfy the conditions for the
lemma.

Claim 36 No machine Minψ2FIN-identifies an infinite subset of C2 = {ψ2
i | ψ2

i ∈ R}.

Proof. Clearly, by definition of ψ2
h(〈j,l〉)+r, where r < 3 ∗ 〈j, l〉 + 2, we have

(1) ψ2
h(〈j,l〉)+r ∈ R ⇒ l = lj .

(2) For all j, for all m < j, Mm does not Minψ2Fin-identify any function in
{ψ2

h(〈j,l〉)+r | r < 3 ∗ 〈j, l〉 + 2 ∧ ψ2
h(〈j,l〉)+r ∈ R}.

The claim follows from above. 2

Claim 37 Let C2 = {ψ2
i | ψ2

i ∈ R}. Then, for infinitely many k ∈ N , card({ψ2
r | r ≤

g2(k) ∧ ψ2
r ∈ C2}) > 2k. Moreover, C2 ∈ Minψ2CoLearn.

18

Proof. For all j, for r < 3 ∗ 〈j, lj〉 + 2, σX(j,lj) ⊆ fh(〈j,lj〉)+r. Moreover, by property
(5) of X, for all m < j, if Mm outputs a program on fh(〈j,l〉)+r, then Mm outputs a
program on σX(j,lj). It thus follows from the construction of ψ2 that, there exist at least
3∗〈j, lj〉+2−j distinct values for r < 3∗〈j, lj〉+2, such that ψ2

h(〈j,lj〉)+r
= fh(〈j,lj〉)+r ∈ R.

Now, since fi’s are distinct, it follows that, for all j,

card({ψ2
r | r ≤ g2(〈j, lj〉) ∧ ψ2

r ∈ C2}) ≥ 3 ∗ 〈j, lj〉 + 2 − j > 2 ∗ 〈j, lj〉

(recall that according to the assumption on our pairing function, 〈i, j〉 ≥ max({i, j})).
We now give a machine M such that C2 ⊆ Minψ2CoLearn(M). For this it is sufficient

to construct a machine M such that M on fk co-converges to k.
First note that l > |σX(j,l)| − 3 (we need −3 just to address the case of l = 0). This

implies (from the definition of fh(〈j,l〉)+r) that, for all j, for all r < 3 ∗ 〈j, l〉 + 2,

h(〈j, l〉) + r ≥ 〈j, l〉 ≥ l ≥ |σX(j,l)| − 3 ≥ max({x | fh(〈j,l〉)+r(x) 6= 0}) − 4

Also note that, for all k, fk(max({x | fk(x) 6= 0})) = k + 1. Let M be such that:

M(σ) =
{

?, if |σ| ≤ 5;
min(N − {σ(max({x | σ(x) 6= 0})) − 1}), otherwise.

From the discussion above, it is easy to see that M on fk co-converges to k. Thus
C2 ⊆ Minψ2CoLearn(M). 2

Lemma follows from the above two claims.

Lemma 38 There exists (non-universal) computable numbering ψ3 and monotone in-
creasing recursive function g3, which satisfy properties (A) to (D) below.

Below let C3 = {ψ3
j | ψ3

j ∈ R}.
(A) For all f ∈ C3, f(0) = 3.

(B) C3 ∈ Minψ3Ex.

(C) No infinite subset of C3 belongs to Minψ3CoLearn.

(D) There exists infinitely many j ∈ N such that, card({ψ3
r | r ≤ g3(j) ∧ ψ3

r ∈ C3}) >
2j.

Proof. Let

fi(x) =







3, if x = 0;
i, if x = 1;
0, otherwise.

Let h(0) = 0; h(i+ 1) = h(i) + i+ 1.
For h(i) ≤ j < h(i + 1), let ψ3

j be defined in such a way that the following two
properties are satisfied.

(a) ψ3
j ⊆ fi.

(b) ψ3
j is total iff (∀m < i)[FMm

(Λ, fi)∩{y | y < h(i+1)} 6= {y | y < h(i+1) ∧ y 6= j}].

19

Note that one can easily construct such ψ3. Let g3(k) = h(2k + 1).
From the properties of ψ3 discussed above, it is easy to verify that, for all i, there

exists a j, h(i) ≤ j < h(i + 1), such that ψ3
j = fi. Moreover, for all m < i, fi 6∈

Minψ3CoLearn(Mm). Thus properties (A), (C) and (D) of lemma are satisfied.
Note that in the limit it is easy to verify, if (∀m < i)[FMm

(Λ, fi)∩{y | y < h(i+1)} 6=
{y | y < h(i+ 1) ∧ y 6= j}]. Thus in the limit, for each fi, one can find the minimum j,
such that h(i) ≤ j < h(i + 1), and (∀m < i)[FMm

(Λ, f 3
i) ∩ {y | y < h(i + 1)} 6= {y | y <

h(i+ 1) ∧ y 6= j}]. It follows that C3 ∈ MinψEx.

5 Conclusions

In this paper we studied identification by minimal grammars for FIN, CoLearn, and
Ex-identification criteria in Kolmogorov and Gödel numberings. We showed that for
every Kolmogorov Numbering, ψ, FINITE, MinψFIN, MinψCoLearn, and MinψEx
are distinct. We also showed that every possible relationship consistent with FINITE
⊆ MinψFIN ⊆ MinψCoLearn ⊆ MinψEx can be realized for some Gödel numbering
ψ. In addition we compared minimal identification in Kolmogorov numberings vis-a-vis
Gödel numberings.

6 Acknowledgements

First Author was supported in part by Latvian Council of Science Grant 93.599 and NSF
Grant 9119540. This work was done in part while the first author was visiting the Insti-
tute of Systems Science, at the National University of Singapore. A preliminary version
of this paper appeared in Computational Learning Theory, Second European Conference,
EuroColt’ 95 [FJ95].

References

[BB75] L. Blum and M. Blum. Toward a mathematical theory of inductive inference. Infor-

mation and Control, 28:125–155, 1975.

[Blu67] M. Blum. A machine independent theory of the complexity of recursive functions.
Journal of the ACM, 14:322–336, 1967.

[Cas74] J. Case. Periodicity in generations of automata. Mathematical Systems Theory,
8:15–32, 1974.

[Che81] K. Chen. Tradeoffs in Machine Inductive Inference. PhD thesis, SUNY at Buffalo,
1981.

[Che82] K. Chen. Tradeoffs in inductive inference of nearly minimal sized programs. Infor-

mation and Control, 52:68–86, 1982.

20

[CS83] J. Case and C. Smith. Comparison of identification criteria for machine inductive
inference. Theoretical Computer Science, 25:193–220, 1983.

[FJ95] R. Freivalds and S. Jain. Kolmogorov numberings and minimal identification. In Paul
Vitanyi, editor, Computational Learning Theory, Second European Conference, Eu-

roCOLT’95, Barcelona, Spain, pages 182–195. Springer-Verlag, March 1995. Lecture
Notes in Artificial Intelligence 904.

[FKS94] R. Freivalds, M. Karpinski, and C. H. Smith. Co-learning of total recursive functions.
In Proceedings of the Seventh Annual Conference on Computational Learning Theory,

New Brunswick, New Jersey, pages 190–197. ACM Press, July 1994.

[Fre75] R. Freivalds. Minimal Gödel numbers and their identification in the limit. In Pro-

ceedings of the International Conference on Mathematical Foundations of Computer

Science, Marianske Lazne, pages 219–225. Springer-Verlag, 1975. Lecture Notes in
Computer Science 32.

[Fre91] R. Freivalds. Inductive inference of recursive functions: Qualitative theory. In
J. Barzdins and D. Bjorner, editors, Baltic Computer Science. Lecture Notes in Com-

puter Science 502, pages 77–110. Springer-Verlag, 1991.

[Gol67] E. M. Gold. Language identification in the limit. Information and Control, 10:447–
474, 1967.

[HU79] J. Hopcroft and J. Ullman. Introduction to Automata Theory, Languages, and Com-

putation. Addison-Wesley Publishing Company, 1979.

[OSW86] D. Osherson, M. Stob, and S. Weinstein. Systems that Learn, An Introduction to

Learning Theory for Cognitive and Computer Scientists. MIT Press, Cambridge,
Mass., 1986.

[Rog67] H. Rogers. Theory of Recursive Functions and Effective Computability. McGraw-Hill,
New York, 1967. Reprinted by MIT Press, Cambridge, Massachusetts in 1987.

21

