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ABSTRACT

Identification of programs for computable functions from their graphs by algo-

rithmic devices is a well studied problem in learning theory. Freivalds and Chen

consider identification of ‘minimal’ and ‘nearly minimal’ programs for functions

from their graphs. Freivalds showed that there exists a Gödel numbering in which

only finite classes of functions can be identified using minimal programs. To address

such problems, Freivalds later considered minimal identification in Kolmogorov

Numberings. Kolmogorov numberings are in some sense optimal numberings and

have some nice properties. Freivalds, showed that for every Kolmogorov numbering

there exists an infinite class of functions which can be identified using minimal pro-

grams. Note that these infinite classes of functions may depend on the Kolmogorov

numbering. It was left open whether there exists an infinite class of functions, C,

such that C can be identified using minimal programs in every Kolmogorov num-

bering. We show the existence of such a class.

Keywords: Inductive Inference; Minimal Identification; Kolmogorov Numbering.

1 Introduction

Let N = {0, 1, 2, . . .}, the set of natural numbers. Let f be a function : N → N . For any

n ∈ N , we let f [n] denote {(x, f(x)) | x < n}, the finite initial segment of f consisting

of the first n data points in the graph of f . The quantifier ‘
∞

∀’ means ‘for all but finitely
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many natural numbers’. Criteria of inference informally described below are formally

defined in Section 3.

A function learning machine M is an algorithmic device which, on any input segment

f [n], returns either ? or a program, where, if it returns a program on a segment, it returns

a program on all extensions of that segment. The output of M on f [n] is denoted by

M(f [n]). If M(f [n]) is a program, we think of that program as M’s conjecture, based on

the data f [n], about how to compute all of f ; M(f [n]) =? then represents the situation

where M does not conjecture a program based on the data f [n]. The restriction that M

must continue to conjecture programs once it has done so is essentially without loss of

generality since a machine which hasn’t had enough time to think of a new conjecture

can be thought of re-outputting its previous conjecture.

As is by now well known, there are various senses in which M can be thought of

as successfully learning or inferring a program for f . For n ∈ N , let pn = M(f [n]).

The criterion of success known as Ex-identification [10, 1, 3] requires that the sequence

p0, p1, p2, . . . contains a program p, which computes f , such that (
∞

∀ i)[pi = p]. In this

case one speaks of p as being the final program output by M on f .

Freivalds [6] and Chen [4, 5] studied the effect of requiring that the final hypothesis

held by the learner in the above model be of (nearly) minimal size. Minimal identifica-

tion of classes of functions depends on the acceptable programming system (acceptable

numbering) chosen to interpret programs output by learning machines. Suppose ψ is a

computable numbering (programming system). In MinψEx-identification criterion one

requires, in addition to Ex-identification of function (in the programming system ψ), that

the final programs be of minimal size (see formal definitions in Section 3). We direct the

reader to [6, 4, 5] for results dealing with minimal identification and its relationship with

Ex-identification.

Freivalds [6] showed that there exists a Gödel numbering ψ such that MinψEx con-

tains only finite classes of functions. This led Freivalds to consider minimal identifica-

tion in Kolmogorov numberings. Kolmogorov numberings are computable numberings to

which every computable numbering is reducible by a linearly bounded function. Freivalds

[7, 8] showed that for every Kolmogorov numbering ψ, there exists an infinite class of func-

tions in MinψEx. However he left open the question whether this result can be achieved

using the same class for every Kolmogorov numbering. In other words, Freivalds left open

the question whether there exists an infinite class, C, of functions, such that for every
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Kolmogorov numbering ψ, C ∈ MinψEx? We show this to be true. In fact we prove a

stronger result that there exists an infinite class C of functions such that C ∈ MinψFIN

for every Kolmogorov numbering ψ (for definition of FIN-identification see section 3).

We now proceed formally.

2 Notation

Recursion-theoretic concepts not explained below are treated in [12]. N denotes the set of

natural numbers, {0, 1, 2, . . .}. The symbols c, d, i, j, k, m, n, p and x, with or without

decorations (decorations are subscripts, superscripts and the like), range over natural

numbers unless otherwise specified. ⊆,⊂,⊇,⊃,∈, denote subset, proper subset, superset,

proper superset and element of relationship respectively. ∅ denotes the empty set. C, S,

with or without decorations, range over subsets of N . We denote the cardinality of a set

S by card(S). max( ),min( ) denote the maximum and minimum of a set, respectively.

By convention max(∅) = 0 and min(∅) = ∞.

R denotes the set of all total recursive functions. h, f, g, with or without decorations,

range over R. C, H and S, with or without decorations, range over subsets of R. ↓

denotes defined. ↑ denotes undefined.

A programming system (or computable numbering) is a (partial) computable function

of two variables. We often drop the word ‘computable’ from ‘computable numbering’ in

this paper, since we will be dealing with computable numberings only. We let ψ, β, η range

over computable numberings (programming systems). Suppose ψ(·, ·) is a computable

numbering. We often refer to the (partial) function λx.ψ(i, x) as ψi. ψi thus denotes the

(partial) function computed by the i-th program in the numbering ψ.

An acceptable numbering is a computable numbering to which every other com-

putable numbering is reducible via a recursive function. Thus if ψ is an acceptable num-

bering, then for all computable numberings η, there exists a recursive function h, such

that (∀i)[ηi = ψh(i)]. Acceptable numberings are also referred to as Gödel numberings.

Kolmogorov numbering is an acceptable numbering to which every other computable

numbering can be reduced via a linearly bounded function. Thus if ψ is a Kolmogorov

numbering, then for all computable numberings η, there exists a recursive function h and

a constant c, such that (∀i)[ηi = ψh(i) ∧ h(i) ≤ max({c ∗ i, c})].

For a function f , MinProgψ(f) denotes the minimal program for f , if any, in the ψ
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programming system, i.e., MinProgψ(f) = min({i | ψi = f}).

We let ϕ denote a standard acceptable programming system. ϕi thus denotes the

partial recursive function computed by the ith program in the standard acceptable pro-

gramming system ϕ. We often refer to the ith program as program i. Φ denotes an

arbitrary fixed Blum complexity measure [2, 11] for the ϕ-system.

The quantifier ‘
∞

∃’ means ‘there exist infinitely many’.

3 Learning Paradigms

For any partial function η and any natural number n such that, for each x < n, η(x)↓,

we let η[n] denote the finite initial segment {(x, η(x)) | x < n}. Let INIT = {f [n] | f ∈

R ∧ n ∈ N}. We let σ and τ , with or without decorations, range over INIT. |σ| denotes

the length of σ. Thus for example |f [n]| = n.

Definition 1 [10] A learning machine is an algorithmic device which computes a map-

ping from INIT into N ∪ {?} such that, if M(f [n]) 6=?, then M(f [n+ 1]) 6=?.

We let M, with or without decorations, range over learning machines. In Definition 1

above, ‘?’ denotes the situation when M outputs “no conjecture” on some σ ∈ INIT.

In Definition 2 below we spell out what it means for a learning machine to converge

in the limit.

Definition 2 Suppose M is a learning machine and f is a computable function. M(f)↓

(read: M(f) converges) just in case (∃i)(
∞

∀ n) [M(f [n]) = i]. If M(f)↓, then M(f)

is defined = the unique i such that (
∞

∀ n)[M(f [n]) = i], otherwise we say that M(f)

diverges (written: M(f)↑).

3.1 Explanatory Function Identification

We now formally define the criteria of inference considered in this paper.

Definition 3 [10, 3]

(a) A learning machine M is said to Ex-identify f (written: f ∈ Ex(M)) just in case

(∃i | ϕi = f)(
∞

∀ n)[M(f [n]) = i].

(b) Ex = {C | (∃M)[C ⊆ Ex(M)]}.
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3.2 Finite Function Identification

Definition 4

(a) A learning machine M is said to FIN-identify f (written: f ∈ FIN(M)) just in

case (∃n, p | ϕp = f)[(∀m < n)[M(f [m]) =?] ∧ (∀m ≥ n)[M(f [m]) = p]].

(b) FIN = {C | (∃M)[C ⊆ FIN(M)]}.

3.3 Minimal Function Identification

We next consider identification by minimal programs. Minimal identification usually

depends on the numbering system chosen.

Definition 5 [6] Suppose ψ is a numbering.

(a) M MinψEx-identifies f (written f ∈ MinψEx(M)) iff M(f)↓ = MinProgψ(f).

(b) MinψEx = {C | (∃M)[C ⊆ MinψEx(M)]}.

(c) M MinψFIN-identifies f (written f ∈ MinψFIN(M)) iff (∃n)[(∀m < n)[M(f [n]) =

?] ∧ (∀m ≥ n)[M(f [n]) = MinProgψ(f)]].

(d) MinψFIN = {C | (∃M)[C ⊆ MinψFIN(M)]}.

4 Result

In this section we prove that there exists an infinite class of functions which can be iden-

tified using minimal programs in every Kolmogorov numbering. The theorem is proved

using three lemmas. Let β0, β1, . . . denote a (non-effective) listing of all Kolmogorov num-

berings (note that we only need the listing for ease of reference to all the Kolmogorov

numberings; thus non-effectiveness of the listing does not effect our result).

Intuitively Corollary 8 to Lemma 7 gives us a starting infinite class of functions with

some nice properties. Lemma 6 allows us to generate a sequence of infinite classes,

C0 ⊇ C1 ⊇ C2 ⊇ · · ·, such that Ci+1 ∈ MinβiFIN. Lemma 9 then allows us to construct

the required class C.

But first, we define a class H of functions and a useful predicate Good.
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For all j > 0, let hj be defined as follows.

hj(x) =

{

j, if x = 0;

0, otherwise.

Let H = {hj | j > 0}.

Good(ψ, i, c, d) ⇔ [[(∃k ≤ c ∗ i)[ψk = hi]] ∧ [card({k | k ≤ c ∗ i ∧ ψk(0) = i}) ≤ d]]

Suppose S ⊆ H. Overloading the predicate Good, we say that

Good(ψ,S) ⇔ (∃c, d)(∀j | hj ∈ S)[Good(ψ, j, c, d)]

Intuitively, for an infinite S, Good(ψ,S), means that ψ satisfies some nice properties

which allows one to finitely infer an infinite subset of S using minimal programs in the

numbering ψ. This is the content of the following lemma.

Lemma 6 (∀ψ)(∀S ⊆ H | card(S) = ∞ ∧ Good(ψ,S))(∃S ′ ⊆ S)[card(S ′) = ∞ ∧ S ′ ∈

MinψFIN].

Proof. Let ψ, S be as in the hypothesis of the lemma. Let c, d, be such that (∀j |

hj ∈ S)[Good(ψ, j, c, d)]. Let Sj = {k | k ≤ c ∗ j ∧ ψk(0) = j}. For 1 ≤ i ≤ d, let

Mi be defined as follows. The only program, if any, output by Mi on hj, is the i-th

program, if any, in a standard recursive enumeration of Sj. For all hj ∈ S, at least one

of M1, . . . ,Md, MinψFIN-identifies hj (since Good(ψ, hj , c, d)). Thus at least one of

M1, . . . ,Md, MinψFIN-identifies an infinite subset of S.

Lemma 7 (∀ Kolmogorov Numbering ψ)(∀ε > 0)(∃c, d)(∀j > 0)[card({k | 1 ≤ k ≤

j ∧ ¬Good(ψ, k, c, d)}) < ε ∗ j].

Proof. Suppose ψ, a Kolmogorov Numbering and ε > 0 are given. Since h1, h2, . . . , is

recursively enumerable, there exists a c > 1, such that (∀j > 0)(∃k ≤ c∗ j)[ψk = hj]. Let

d = d2 ∗ c/εe. Now the number of programs ≤ c ∗ j, is c ∗ j + 1 ≤ 2 ∗ c ∗ j (for j ≥ 1).

Thus, it follows that card({i | i ≤ j ∧ card({k | k ≤ c ∗ j ∧ ψk(0) = i}) > d}) < ε ∗ j.

Thus card({i | i ≤ j ∧ card({k | k ≤ c ∗ i ∧ ψk(0) = i}) > d}) < ε ∗ j.

As a corollary we have
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Corollary 8 There exists an infinite S ⊆ H such that (∀ Kolmogorov Numbering

ψ)[Good(ψ,S)].

Proof. Let εi = 2−i−3. For i ∈ N , let ci, di, be c, d respectively as given by Lemma 7

for ψ = βi and ε = εi. Let Si = {hj | Good(βi, j, ci, di)}. Let S =
⋂

i Si. Note

that by Lemma 7, (∀i, j)[card({k | k ≤ j ∧ hk 6∈ Si}) ≤ j ∗ 2−i−3]. It follows that

(∀j)[card({k | k ≤ j ∧ hk 6∈ S}) ≤ j ∗ 2−2]. Thus S is infinite.

Lemma 9 Suppose C0, C1, . . . are given so that (1) Ci ⊇ Ci+1 and (2) each Ci is infinite.

Then there exists an infinite C ⊆ C0, such that (∀i)[card(C − Ci) <∞]

Proof. Let Si be a subset of Ci with cardinality i. Let C =
⋃

i Si. Clearly, C is infinite

(since for each i, it contains a subset of size i of Ci). Also, for each i ∈ N , since

[
⋃

j≥i Sj] ⊆ Ci, and card(
⋃

j<i Sj) < ∞, we have that card(C − Ci) < ∞. Thus C satisfies

the required properties.

Theorem 10 There exists an infinite class of functions C, such that (∀ Kolmogorov

Numbering ψ)[C ∈ MinψFIN].

Proof. Let C0 = S as given by Corollary 8. For i ∈ N , let Ci+1 = S ′ as given by

Lemma 6 by taking ψ = βi and S = Ci. It thus follows that

(a) C0 ⊇ C1 ⊇ C2, . . .,

(b) each Ci is infinite and

(c) Ci+1 ∈ MinβiFIN.

For these Ci’s let C be as given by Lemma 9. Now, for all i, since Ci+1 ∈ MinβiFIN,

C−Ci+1 is finite and (∀f, g ∈ C)[f 6= g ⇒ f(0) 6= g(0)], it follows that C ∈ MinβiFIN.
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