
Effectivity Questions
for Kleene’s Recursion Theorem

John Case1, Sanjay Jain?2 and Frank Stephan??3

1 Department of Computer and Information Sciences
University of Delaware, Newark, DE 19716-2586, USA

case@cis.udel.edu
2 Department of Computer Science

National University of Singapore, Singapore 117417
sanjay@comp.nus.edu.sg

3 Department of Mathematics and Department of Computer Science
National University of Singapore, Singapore 119076

fstephan@comp.nus.edu.sg

Abstract. The present paper explores the interaction between two re-
cursion-theoretic notions: program self-reference and learning partial re-
cursive functions in the limit. Kleene’s Recursion Theorem formalises the
notion of program self-reference: It says that given a partial-recursive
function ψp there is an index e such that the e-th function ψe is equal
to the e-th slice of ψp. The paper studies constructive forms of Kleene’s
recursion theorem which are inspired by learning criteria from inductive
inference and also relates these constructive forms to notions of learn-
ability. For example, it is shown that a numbering can fail to satisfy
Kleene’s Recursion Theorem, yet that numbering can still be used as
a hypothesis space when learning explanatorily an arbitrary learnable
class. The paper provides a detailed picture of numberings separating
various versions of Kleene’s Recursion Theorem and learnability.

Keywords: inductive inference, Kleene’s Recursion Theorem, Kolmogo-
rov complexity, optimal numberings.

1 Introduction

Program self-reference is the ability of a program to make use of its own source
code in its computations. This notion is formalized by Kleene’s Recursion The-
orem.4 Intuitively, this theorem asserts that, for each preassigned algorithmic

? Supported in part by NUS grant numbers R252-000-420-112 and C252-000-087-001.
?? Supported in part by NUS grant number R252-000-420-112.
4 Other “recursion theorems” do not so well capture the notion of program self-

reference. For example, consider the (quasi-fixed-point) recursion theorem as for-
malised by Rogers [Rog67, Theorem 11-I]. In contrast to Kleene’s Recursion Theo-
rem, Rogers’ recursion theorem is not strong enough to guarantee that a numbering
of partial-recursive functions satisfying it has a self-reproducing program which out-
puts its own index [CM09].

task, there exists a program e that computes exactly the e-th slice of this algo-
rithmic task. The theorem is stated below, following some necessary definitions.

Let N be the set of natural numbers, {0, 1, 2, . . .}. Let P be the collection of
all partial recursive functions from N to N. Let 〈·, ·〉 be Cantor’s pairing func-
tion [Rog67, page 64]: 〈x, y〉 = (x + y)(x + y + 1)/2 + y, which is a recursive,
order preserving bijection N × N → N [Rog67, page 64]; here order preserving
means that x ≤ x′ ∧ y ≤ y′ ⇒ 〈x, y〉 ≤ 〈x′, y′〉. For each ψ ∈ P and p ∈ N, let
ψp be shorthand for ψ(〈p, ·〉). An effective numbering of P is a ψ ∈ P such that

(∀α ∈ P)(∃p ∈ N)[ψp = α]. (1)

For this paper, we shall be concerned only with numberings that are effective,
and that number the elements of P. Hence, we shall generally omit the phrases
“effective” and “of P”.

The following is the formal statement of Kleene’s Recursion Theorem.

Definition 1 (Kleene [Kle38]). For each numbering ψ, Kleene’s Recursion
Theorem holds in ψ ⇔

(∀p ∈ N)(∃e ∈ N)[ψe = ψp(〈e, ·〉)]. (2)

Equation (2) can be interpreted as follows: Suppose the ψ-program p represents
an arbitrary, algorithmic task to perform; then the equation says that there is a
ψ-program e such that ψe is equal to the e-th slice of this algorithmic task. This
is often used in diagonalizations by defining ψe in a way implicitly employing
parameter e (in effect, a self-copy of e) in some algorithmic task ψp.

The following constructive form of Kleene’s Recursion Theorem has been
well-studied. For reasons that will become apparent shortly, we call this form of
the theorem FinKrt.

Definition 2 (Kleene, see [Ric80,Ric81,Roy87]). A numbering ψ is called
a FinKrt-numbering ⇔

(∃ recursive r : N→ N)(∀p)[ψr(p) = ψp(〈r(p), ·〉)]. (3)

In (3), ψ-program r(p) plays the role played by e in (2). In this sense, the func-
tion r finds a ψ-program r(p) such that ψr(p) is equal to the r(p)-th slice of ψp.

In this paper, additional constructive forms of the theorem are considered.
Each is inspired by a Gold-style criterion for learning partial recursive functions
in the limit. The Gold-style criteria differ in when a learning device is consid-
ered to have learned a target partial recursive function. However, the following
is common to all. The learning device is fed the elements of the graph of a par-
tial recursive function α.5 After being fed each such element, the device outputs
either ‘?’ or a hypothesis, i.e., a program, possibly corresponding to the partial

5 The device may also be fed one or more instances of the pause symbol ‘#’. This
allows that graph of the target partial recursive function to be empty, i.e., in such a
case, the device is fed nothing but #.

2

recursive function α. In the present paper, the device is expected to be algorith-
mic, that is, definable by a computer program.

For the finite (Fin) learning criterion, the device is considered to have learned
the target partial recursive function α iff the device outputs finitely many ‘?’ im-
mediately followed by a hypothesis corresponding to α. The constructive form of
Kleene’s Recursion Theorem, given in Definition 2, may be viewed in a similar
way. A device is fed a program p for a preassigned task. After finitely many steps,
that device outputs a program e that uses its own source code in the manner
prescribed by p.

A numbering ψ is said to be optimal for Fin-learning iff every Fin-learnable
class of partial recursive functions can be Fin-learned using ψ as the hypothesis
space. A numbering ψ is said to be effectively optimal for Fin-learning iff one
can effectively translate every Fin-learning device into a Fin-learning device that
uses ψ as its hypothesis space [JS10,Jai11].

Not every numbering is optimal for Fin-learning [JS10], let alone effectively
optimal. Similarly, not every numbering is a FinKrt-numbering [Ric80,Ric81].
Hence, one might ask: is every FinKrt-numbering optimal for Fin-learning? Con-
versely, if a numbering is optimal for Fin-learning, then is it necessarily a FinKrt
numbering?

Additional Gold-style learning criteria are introduced in Section 2 below and
will be familiar to most readers familiar with inductive inference. These crite-
ria, which are successively less stringent in when a learning device is considered
to have learned a target partial recursive function, are: single mind-change ex-
planatory (Ex1), explanatory (Ex), vacillatory (Vac) and behaviorally correct
(Bc). Section 2 also introduces additional constructive forms of Kleene’s Recur-
sion Theorem (ExKrt, VacKrt and BcKrt). Each is inspired by one of the just
mentioned learning criteria. Our results include the following.

– There is a numbering which does not satisfy Kleene’s Recursion Theorem,
but which is optimal for Fin-learning and effectively optimal for Ex, Vac and
Bc-learning (Theorem 7).

– There is a FinKrt-numbering which is not optimal for any of the learning
criteria Fin, Ex, Vac, Bc (Theorem 8).

– There is an ExKrt-numbering which is not a FinKrt-numbering and which
is effectively optimal for Ex-learning, but not optimal for Fin or Bc-learning
(Theorem 10).

– There is a VacKrt-numbering which is not an ExKrt-numbering and which
is effectively optimal for Vac-learning but not optimal for Fin, Ex or Bc-
learning (Theorem 11).

– There is a BcKrt-numbering which is not a VacKrt-numbering and which
is effectively optimal for Bc-learning, but not optimal for Fin, Ex or Vac-
learning (Theorem 13).

– There is a numbering satisfying Kleene’s Recursion Theorem which is not a
BcKrt-numbering and which is not optimal for any of the learning criteria
Fin, Ex, Vac, Bc (Theorem 15).

3

– There is a numbering satisfying Kleene’s Recursion Theorem which is not
a BcKrt-numbering, but which is effectively optimal for Ex, Vac and Bc-
learning (Theorem 16).

The remainder of this paper is organized as follows. Section 2 covers prelimi-
naries. Section 3 presents our results concerning numberings that do not satisfy
Kleene’s Recursion Theorem. Section 4 presents our results concerning num-
berings that satisfy Kleene’s Recursion Theorem in an effective way. Section 5
presents our results concerning numberings that satisfy Kleene’s Recursion The-
orem, but not in an effective way.

2 Preliminaries

Recursion-theoretic concepts not covered below are treated as by Rogers [Rog67].
Lowercase math-italic letters (e.g., a, b, c) range over elements of N, unless

stated otherwise. Uppercase math-italic italicized letters (e.g., A, B, C) range
over subsets of N, unless stated otherwise. Lowercase Greek letters (e.g., α, β,
γ) range over partial functions from N to N, unless stated otherwise.

For each non-empty X, minX denotes the minimum element of X. We let
min ∅ def= ∞. For each non-empty, finite X, maxX denotes the maximum ele-
ment of X. We let max ∅ def= −1. D0, D1, D2, . . . denotes a recursive canonical
enumeration of all finite subsets of N.

The pairing function 〈·, ·〉 was introduced in Section 1. Note that 〈0, 0〉 = 0
and, for each x and y, max{x, y} ≤ 〈x, y〉.

For each one-argument partial function α and x ∈ N, α(x)↓ denotes that α(x)
converges; α(x)↑ denotes that α(x) diverges. We use ↑ to denote the value of a
divergent computation. So, for example, λx ↑ denotes the everywhere divergent
partial function.

N#
def= N ∪ {#} and N?

def= N ∪ {?}. For each partial function f (of arbitrary
type), rng(f) denotes the range of f . A text is a total (not necessarily recursive)
function of type N → N#. For each text T and i ∈ N, T [i] denotes the initial
segment of T of length i. Init denotes the set of all finite initial segments of all
texts. For each text T and partial function α, T is a text for α iff rng(T)−{#}
is the graph of α as coded by 〈·, ·〉, i.e.,

rng(T)− {#} = {〈x, y〉 | α(x) = y ∧ x, y ∈ N}. (4)

For a total function f , we often identify f with its canonical text, that is, the
text T with T (i) = 〈i, f(i)〉. Thus, f [n] represents the initial segment of length
n of this canonical text.

A numbering ϕ is acceptable iff for each numbering ψ, there exists a recursive
function t : N→ N such that, for each p, ϕt(p) = ψp [Rog67,Ric80,Ric81,Roy87].
Let ϕ be any fixed acceptable numbering satisfying ϕ0 = λx ↑. For each p,
Wp

def= {x | ϕp(x)↓}. K denotes the diagonal halting problem with respect to
ϕ, i.e., {x | x ∈ Wx}. Let pad : N2 → N be a recursive function such that, for
each e and y, ϕpad(e,y) = ϕe and pad(e, y) < pad(e, y + 1), where we assume

4

pad(0, 0) = 0.
The following are the Gold-style learning criteria considered in this paper.

Definition 3. Let α be any partial recursive function. For each recursive func-
tion M : Init→ N? and each numbering ψ, (a)–(e) below.

(a) [Gol67] M Finψ-learns α iff for each text T for α, there exist i0 and e such
that

(∀i < i0)
[
M(T [i]) = ?

]
∧ (∀i ≥ i0)

[
M(T [i]) = e

]
∧ ψe = α. (5)

(b) [CS83] M Exψ,1-learns α iff for each text T for α, there exist i0, i1, e0 and
e1 such that

(∀i < i0)
[
M(T [i]) = ?

]
∧ (∀i ∈ {i0, . . . , i1 − 1})

[
M(T [i]) = e0

]
∧ (∀i ≥ i1)

[
M(T [i]) = e1

]
∧ ψe1 = α.

(6)

(c) [Gol67] M Exψ-learns α iff for each text T for α, there exist i0 and e such
that

(∀i ≥ i0)
[
M(T [i]) = e

]
∧ ψe = α. (7)

(d) [Cas99] M Vacψ-learns α iff for each text T for α, there exist i0 and a finite
set E such that

(∀i ≥ i0)
[
M(T [i]) ∈ E

]
∧ (∀e ∈ E)[ψe = α]. (8)

(e) [Bar74,OW82] M Bcψ-learns α iff for each text T for α, there exists an i0
such that

M(T [i0]) 6=? and (∀i ≥ i0)(∀e)
[
M(T [i]) = e ⇒ ψe = α

]
. (9)

Let I ∈ {Fin,Ex1,Ex,Vac,Bc} and let S be a class of partial recursive functions.
M Iψ-learns S iff M Iψ-learns each partial recursive function in S. We say that S
is Iψ-learnable if some M Iψ-learns S. In above definitions, we omit the subscript
ψ when ψ is the fixed acceptable numbering ϕ.

Definition 4 (Jain & Stephan [JS10]). Let ϕ be an acceptable numbering.
For each I ∈ {Fin,Ex1,Ex,Vac,Bc} and each numbering ψ, (a) and (b) below.

(a) ψ is optimal for I-learning iff each Iϕ-learnable class is Iψ-learnable.
(b) ψ is effectively optimal for I-learning iff there exists a recursive function

t : N→ N such that, for each p and each class of partial recursive functions
S, if ϕp Iϕ-learns S, then ϕt(p) Iψ-learns S.

Note that while for learning criteria and the below constructive versions of KRT,
the implications Fin→ Ex1 → Ex→ Vac→ Bc hold, the corresponding implica-
tions do not always hold with respect to numberings being optimal or effectively
optimal for I-learning. For example, there are numberings which are optimal for
Vac-learning but not optimal for Bc-learning [JS10]. However, if a numbering is
effectively optimal for Fin-learning, then it is effectively optimal for Ex, Vac and
Bc-learning. Furthermore, if a numbering is effectively optimal for Ex-learning
then it is effectively optimal for Vac-learning [JS10].

The following are the constructive forms of Kleene’s Recursion Theorem con-
sidered in this paper. The reader will note the similarity to Definition 3.

5

Definition 5. [Moe09] For each numbering ψ, (a)–(d) below.

(a) ψ is a FinKrt-numbering iff there exists a recursive function r : N→ N such
that, for each p,

ψr(p) = ψp
(
〈r(p), ·〉

)
. (10)

(b) ψ is an ExKrt-numbering iff there exists a recursive function f : N2 → N
such that, for each p, there exist i0 and e such that

(∀i ≥ i0)[f(p, i) = e] ∧ ψe = ψp(〈e, ·〉). (11)

(c) ψ is a VacKrt-numbering iff there exists a recursive function f : N2 → N
such that, for each p, there exist i0 and a finite set E such that

(∀i ≥ i0)[f(p, i) ∈ E] ∧ (∀e ∈ E)[ψe = ψp(〈e, ·〉)]. (12)

(d) ψ is a BcKrt-numbering iff there exists a recursive function f : N2 → N such
that, for each p, there exists an i0 such that

(∀i ≥ i0)(∀e)[f(p, i) = e ⇒ ψe = ψp(〈e, ·〉)]. (13)

Definition 6. For each numbering ψ, (a) and (b) below.

(a) ψ is Ex1-acceptable iff there exists a recursive function f : N2 → N such that,
for each p, there exist i0, e0 and e1 such that

(∀i < i0)[f(p, i) = e0] ∧ (∀i ≥ i0)[f(p, i) = e1] ∧ ψe1 = ϕp. (14)

(b) (Case, Jain and Suraj [CJS02]) ψ is Ex-acceptable iff there exists a re-
cursive function f : N2 → N such that, for each p, there exist i0 and e such
that

(∀i ≥ i0)[f(p, i) = e] ∧ ψe = ϕp. (15)

We use the convention that, for each y, log(y) def= min{x | 2x ≥ y}. So, for
example, log(0) = 0 and log(3) = 2. For each e, C(e) denotes the plain Kol-
mogorov complexity of e [LV08,Nie09]. Note that there exists an approximation
λs, e Cs(e) such that, for each e, C(e) = lims Cs(e). Further note that, for each
1–1 recursive sequence e0, e1, e2, . . ., there exists a constant c such that, for each
i, C(ei+1) < C(ei) + c.

3 When Kleene’s Recursion Theorem is Absent

This section presents our results concerning numberings that do not satisfy
Kleene’s Recursion Theorem. Note that every acceptable numbering is a FinKrt-
numbering [Kle38]. However, as the next result shows, this does not generalize
to other criteria of acceptability. In particular, there is an Ex1-acceptable num-
bering that does not satisfy Kleene’s Recursion Theorem.

Theorem 7. There exists a numbering ψ satisfying (a)–(d) below.

6

(a) ψ does not satisfy Kleene’s Recursion Theorem.
(b) ψ is an Ex1-acceptable numbering.
(c) ψ effectively optimal for Ex, Vac and Bc-learning.
(d) ψ is optimal for Fin-learning.

Proof. Let ψ be such that, for each e and x,

ψe(x) =

{
ϕe(x), if rng(ϕe) 6⊆ {e, e+ 1, e+ 2, . . .};
↑, if rng(ϕe) ⊆ {e, e+ 1, e+ 2, . . .}. (16)

The numbering ψ does not satisfy Kleene’s Recursion Theorem: There is no
e such that ψe = λx e; hence, there is no e such that ψe = α(〈e, ·〉) when
α = λ〈e, x〉 e.

To show that ψ is Ex1-acceptable, there exists a translator which behaves
as follows. On input e, the translator first conjectures 0 for ψ0 = ϕ0 = λx ↑.
Then, in the case that ϕe(x) = y, for some x and y, the translator outputs
pad(e, y). Note that y < pad(e, y). Hence, it follows from the definition of ψ that
ψpad(e,y) = ϕe.

To show that ψ is effectively optimal for Ex, Vac, and Bc-learning, given a
Bc-learner M , the new learner N first conjectures 0 for λx ↑. If, however, a
datum (x, y) is ever seen, then, from that point onward, N simulates M and
translates each conjecture e of M into pad(e, y).

To show that ψ is optimal for Fin-learning, suppose that M is a Fin-learner
for a class not containing λx ↑. Then, the new learner N waits for the first pair
(x, y); from that point onward, N simulates M and translates each conjecture
e of M into pad(e, y). On the other hand, suppose that M is a Fin-learner for
a class containing λx ↑. Then, this class contains no other partial functions.
Hence, N can just ignore all input and output 0 as ψ0 = λx ↑. Hence, ψ is
optimal for Fin-learning.6 � (Theorem 7)

4 When Kleene’s Recursion Theorem is Effective

This section presents our results concerning numberings that satisfy Kleene’s
Recursion Theorem in an effective way. These results include the following.
First, a numbering can be a FinKrt-numbering, yet not be optimal for learn-
ing (Theorem 8). Second, there exists an ExKrt-numbering that is not a FinKrt-
numbering (Theorem 10). Third, there exists a VacKrt-numbering that is not an
ExKrt-numbering (Theorem 11). Finally, there exists a BcKrt-numbering that is
not a VacKrt-numbering (Theorem 13).

Theorem 8. There exists a numbering ψ satisfying (a) and (b) below.

(a) ψ is a FinKrt-numbering.
(b) ψ is not optimal for any of the learning criteria Fin, Ex, Vac, Bc.

6 Note that, as ψ is not acceptable, ψ cannot be effectively optimal for Fin-
learning [JS10]. Hence, the non-uniform case distinction in this proof is unavoidable.

7

Proof. The construction of ψ is in two parts. First, we construct a numbering ϑ
such that the set {e : ϑe has finite domain} is dense simple relative to K, i.e.,
the function that maps n to the n-th index of a function with infinite domain
dominates every K-recursive function.7 From ϑ, we construct ψ.

For each e, s, let Fe,s(·) be a uniformly recursive sequence of recursive func-
tions such that, for Fe(x) = lims→∞ Fe,s(x),

(a) for all e, x, Fe,s(x) ≤ Fe,s+1(x);
(b) if ϕKe (x)↓, then Fe(x)↓ ≥ ϕKe (x).
(c) if ϕKe (x)↑, then Fe(x)↑.

Note that such Fe,s exist and are uniformly recursive from e, s. Furthermore,
each of F0, F1, F2, . . . is a partial K-recursive function. It should also be noted
that, for each e, ϕKe is majorized by Fe. Hence, the function n 7→ max{Fe(n) :
e ≤ n ∧ Fe(n)↓} dominates every K-recursive function.

Let ϑ be such that, for each n, m and x,

ϑ〈n,m〉(x) =

ϕn(x), if (∃s > x)

[
(∃e ≤ n)[Fe,s(n) = m]

∧ (∀d ≤ n)[Fd,s(n) ≤ m
∨ Fd,s(n) > Fd,x(n)]

]
;

↑, otherwise.

(17)

We show that, for each n and m, ϑ〈n,m〉 has infinite domain iff ϕn has infinite
domain and m = max{Fe(n) : e ≤ n ∧ Fe(n)↓}. To see this, let n and m be
given and consider the following four cases.

Case 1: ϕn has finite domain. Clearly, for each n and m, ϕn extends ϑ〈n,m〉.
Hence, if ϕn has finite domain, then so does ϑ〈n,m〉.

Case 2: {Fe(n) : e ≤ n ∧ Fe(n)↓} = ∅. Let w be so large that, for each e ≤ n,

Fe,w(n) > m. (18)

Then, for each x ≥ w, there is no s > x such that (∃e ≤ n)[Fe,s(n) = m]. Hence,
for almost all x, ϑ〈n,m〉(x)↑.

Case 3: {Fe(n) : e ≤ n ∧ Fe(n)↓} 6= ∅ and m 6= max{Fe(n) : e ≤
n ∧ Fe(n)↓} <∞. Let w be so large that, for each e ≤ n,

Fe(n)↓ > m ⇒ Fe,w(n) = Fe(n), (19)

and
Fe(n)↑ ⇒ Fe,w(n) > m. (20)

Then, for each x ≥ w, there is no s > x such that (∃e ≤ n)[Fe,s(n) = m] and
(∀d ≤ n)[Fd,s(n) ≤ m ∨ Fd,s(n) > Fd,x(n)]. Hence, for almost all x, ϑ〈n,m〉(x)↑.

Case 4: ϕn has infinite domain and m = max{Fe(n) : e ≤ n ∧ Fe(n)↓}.
Then, for each x, one can find an s > x such that (∃e ≤ n)[Fe,s(n) = m] and,
for each d ≤ n,

[Fd(n)↓ ⇒ Fd,s(n) = Fd(n)] ∧ [Fd(n)↑ ⇒ Fd,s(n) > Fd,x(n)]. (21)

7 The existence of such numberings is a well-known folklore result.

8

Hence, for each x, if ϕn(x)↓, then ϑ〈n,m〉(x)↓.
From Case 4 it also follows that, ϑ is a numbering for P. As the function

λn max{Fe(n) : e ≤ n ∧ Fe(n)↓} dominates every K-recursive function, the
set of all pairs 〈n,m〉 where ϑ〈n,m〉 has a finite domain is dense simple relative
to K.

Now, let ψ be such that, for each p, i and x,

ψ〈p,0〉(x) = ϑp(x); (22)

ψ〈p,i+1〉(x) = ψ〈p,i〉(〈〈p, i+ 1〉, x〉) (23)

Note that ψ is defined such that ψ〈p,i+1〉 coincides with the 〈p, i+ 1〉-th row of
ψ〈p,i〉. Hence, ψ is a FinKrt-numbering.

To show that ψ is not optimal for any of the criteria Fin, Ex, Vac, Bc, consider
the class S = {f0, f1, f2, . . .} where, for each n and x, fn(x) = n + x. S is Fin-
learnable and, hence, is also Ex, Vac and Bc-learnable.

Note that, if ψ〈p,i〉 = fn, then, by induction over j for all j > i, rng(ψp,i)−
rng(ψp,j) is infinite and hence ψp,j 6= fm for all m. Thus, the following claim
holds.

Claim 9. For each p, there exists at most one i such that ψ〈p,i〉 ∈ C.

We first show S is not Vacψ-learnable. Now a Vac-learner for C would, for any
n, output only finitely many indices while learning the function fn. Hence, there
exists an index e such that Fe is a K-recursive (i.e., total) function and, for each
n, Fe(n) is larger than all the indices output by the learner while learning fn. It
follows that Fe(n) is greater than at least one pair 〈p, i〉 such that ψ〈p,i〉 = fn.
Using Claim 9, it follows that ϑ has n+1 distinct indices of functions with infinite
domain below the value max{Fe(0), Fe(1), . . . , Fe(n)}. But this contradicts the
fact that ϑ is a numbering in which the set of indices of partial functions with
finite domain is dense simple relative to K. Hence, C is not Vacψ-learnable, and
thus neither Finψ nor Exψ-learnable.

Now, assume by way of contradiction that there exists a Bcψ-learner M for
C. By Claim 9, it follows that, for each p and n, M outputs only finitely many
different indices of the form 〈p, i〉 while learning fn. Furthermore, by an argument
similar to that of the previous paragraph, it can be shown that, for each n, the
set {p | (∃i ∈ N)[M outputs 〈p, i〉 while learning fn] } is finite. Hence, the overall
number of indices output by the learner while learning an fn is finite. It follows
that M is actually a Vacψ-learner for C. But such a learner does not exist as
shown in the previous paragraph. � (Theorem 8)

The next result shows, in part, that there exist ExKrt-numberings that are not
FinKrt-numberings.

Theorem 10. There exists a numbering ψ satisfying (a)–(e) below.

(a) ψ is an Ex-acceptable numbering.
(b) ψ is an ExKrt-numbering.

9

(c) ψ is not a FinKrt-numbering.
(d) ψ is effectively optimal for Ex-learning.
(e) ψ is neither optimal for Fin nor for Bc-learning.

Proof. Let ψ be such that, for each e and x,

ψe(x) =

{
ϕe(x), if (∃s > x)(∃n)[n2 ≤ Cs(e) ≤ n2 + n];
↑, otherwise.

(24)

First, we show that the set of indices of partial functions with infinite domain
is immune. Let E be any infinite r.e. set of indices and let e0, e1, e2, . . . be any
ascending recursive sequence of elements of E. Then, there exists a constant c
such that, for each i, C(ei+1) < C(ei) + c. Let n be so large that n > C(e0)
and n > c. As there are only finitely many indices with Kolmogorov complexity
below n2 + n, there exists a largest i such that C(ei) ≤ n2 + n. Note that

n2 + n < C(ei+1) < C(ei) + c < n2 + 2n < (n+ 1)2. (25)

It follows that ψei+1
has a finite domain. Hence, the set of indices of partial

functions with infinite domain is immune.
To show that ψ is Ex-acceptable, let e be given. It follows by an argument

similar to that of the previous paragraph that there exist n and y such that
n2 ≤ C(pad(e, y)) ≤ n2 + n. Furthermore, one can find from e the least such y
in the limit. One then has that ψpad(e,y) = ϕe.

To show that ψ is an ExKrt-numbering, let E0, E1, E2, . . . be a uniformly r.e.
family of infinite sets such that, for each p and each e ∈ Ep, ϕe = ψp(〈e, ·〉). One
can construct a machine M to witness that ψ is an ExKrt-numbering as follows.
Given p, M finds (in the limit) the least e ∈ Ep for which there exists an n such
that n2 ≤ C(e) ≤ n2 + n. (The existence of such an e follows by an argument
similar to that of the first paragraph.) Then, ψe = ϕe = ψp(〈e, ·〉).

To show that ψ is not a FinKrt-numbering, assume by way of contradiction
otherwise. Let e0 be such that ψe0 = λx x. Then, enumerate e1, e2, e3, . . . such
that, for each n, ψen+1

= ψen(〈en+1, ·〉). One can show by induction that, for
each n, rng(ψen+1

) is a proper subset of rng(ψen). Hence, {e0, e1, e2, . . .} is an
infinite r.e. set of ψ-indices of total functions. But this would contradict the fact
that the set of indices of partial functions with infinite domain is immune.

To show that ψ is optimal for Ex-learning, it was shown above that ψ is Ex-
acceptable. It is known that Ex-acceptable numberings are effectively optimal
for Ex-learning [JS10].

To show that ψ is not optimal for Fin-learning, consider the class of all
constant functions. This class of functions is Fin-learnable. However, if this class
could be Finψ-learned, then there would be an infinite r.e. set consisting only of
indices of total functions. Again, this would contradict the fact that the set of
indices of functions with infinite domain is immune.

In order to see that ψ is not optimal for Bc-learning, it can be shown that
every Bcψ-learner can be transformed into a Vacψ-learner. This proof follows
more or less the same argument as that in the proof of Theorem 14 below.

10

However, as there are Bc-learnable classes of partial functions which are not Vac-
learnable, the numbering ψ cannot be optimal for Bc-learning. � (Theorem 10)

Theorem 11. There exists a numbering ψ satisfying (a)–(d) below.

(a) ψ is a VacKrt-numbering.
(b) ψ is not an ExKrt-numbering.
(c) ψ is effectively optimal for Vac.
(d) ψ is not optimal for any of the learning criteria Fin, Ex, Bc.

Proof. For this proof, let (Cs)s∈N be a sequence of uniformly recursive approxi-
mations to CK , such that CK(d) = lim sups→∞ Cs(d). Here we assume that the
approximation is such that, for any s and any e, there are at most 2e many d
such that Cs(d) < e. Let, for all d, e,

ψ〈d,e〉(x) =

{
ϕe(〈〈d, e〉, x〉), if [log(d) ≤ e+ 1] and (∃s > x)[Cs(d) ≥ e];
↑, otherwise.

Let g, h be recursive functions such that, for all p, x, ϕg(e)(x) = ψe(x) and
ϕh(e)(〈p, x〉) = ϕe(x). Note that there exist such g, h.

Claim 12. (i) If CK(d) < e or log(d) > e+ 1, then ψ〈d,e〉 is a finite function.
(ii) For all e, for all d such that, log(d) ≤ e + 1 and CK(d) ≥ e, the following

holds: (∀x)[ψ〈d,e〉(x) = ϕe(〈〈d, e〉, x〉)].
Here, note that for all e, there exists a d such that log(d) ≤ e + 1 and
CK(d) ≥ e.

(iii) For all e, for all d such that, log(d) ≤ h(e) + 1 and CK(d) ≥ h(e), the
following holds: (∀x)[ψ〈d,h(e)〉(x) = ϕh(e)(〈〈d, h(e)〉, x〉) = ϕe(x)].

(iv) For all e, for all d such that log(d) ≤ g(e)+1 and CK(d) ≥ g(e), the following
holds: (∀x)[ψ〈d,g(e)〉(x) = ϕg(e)(〈〈d, g(e)〉, x〉) = ψe(〈〈d, g(e)〉, x〉)].

Parts (i) and (ii) follow immediately from the construction. Parts (iii) and (iv)
follow using part (ii) and the definitions of g and h.

By part (ii) of Claim 12 it follows that ψ is a numbering of all the partial
recursive functions. We now show the different parts of the theorem.

(a) Let f(e, s) = 〈d, g(e)〉 such that log(d) ≤ g(e) + 1 and Cs(d) ≥ g(e). By
part (iv) of Claim 12, we have that f witnesses that ψ satisfies VacKrt.

(b) Suppose 〈d0, e0〉 is such that, for all x, ψ〈d0,e0〉(x) = x. Suppose by way
of contradiction that H witness ExKrt for ψ, that is, for all i, x, ψH(i)(x) =
ψi(〈H(i), x)〉. Then for each n, let 〈dn+1, en+1〉 = H(〈dn, en〉). Thus,

(∀n, x) [ψ〈dn+1,en+1〉(x) = ψ〈dn,en〉(〈〈dn+1, en+1〉, x〉)]. (26)

Now, for all n, ψdn,en is total. Furthermore, range(ψdn+1,en+1
) ⊂ range(ψdn,en).

Thus, 〈dn, en〉 are pairwise different for different n. Thus, for each a ∈ N, one
can effectively find an na with dna

≥ a ∧ ena
≥ a. For sufficiently large a,

CK(dna
) ≤ 2 log(a) and ena

≥ a. But then, for sufficiently large a, by Claim 12,
ψ〈dna ,ena 〉, would be finite function. A contradiction.

11

(c) To see that the numbering is effectively optimal for vacillatory learning
note that, by Claim 12 and the definition of h, for all e, for all but finitely
many s, for the least d such that log(d) ≤ h(e) + 1 and Cs(d) ≥ h(e), we have
ψ〈d,h(e)〉(x) = ϕe(x). Thus, one can just convert a Vac-learner M using ϕ as the
hypothesis space to a Vac-learner M ′ using ψ as the hypothesis space by having
M ′(f [n]) = 〈d, h(M(f [n])〉, where d is least such that log(d) ≤ h(M(f [n]) + 1
and Cn(d) ≥ h(M(f [n]).

(d) Let S be a class of total functions which is Bc-learnable by some learner
M using ψ as the hypothesis space. For any total f , let Ef = {M(f [n]) : n ∈ N}.
We claim that Ef is finite for each f ∈ S. Suppose by way of contradiction that
for some f ∈ S, Ef is infinite. Note that Ef is an r.e. set. Let η(e) = de, for the
first pair 〈de, e〉 enumerated in Ef , if any. Now, η(e) is defined on infinitely many
e, and thus CK(de) ≤ 2 log(e) for infinitely many e in the domain of η. But then,
by Claim 12, ψ〈de,e〉 is a finite function for infinitely many e in the domain of
η, a contradiction to M Bc-learning f . Thus, M is also a Vac-learner for S. As
there are classes of total functions which are Bc-learnable but not Vac-learnable
[CS83], ψ is not optimal for Bc-learning.

Now, suppose by way of contradiction that M Ex-learns all constant functions
using the numbering ψ. Thus, for each a, there exists a constant c such that, for
some da, ea, for all but finitely many n, M(c∞[n]) = 〈da, ea〉, with min{da, ea} ≥
a. Note that one such pair of values da, ea can be computed using the oracle K.
Then, for almost all a, CK(da) ≤ 2 log(a) and ea ≥ a. Hence, by Claim 12, for
all but finitely many a, ψ〈da,ea〉 is a finite function. Thus, M does not Ex-learn
the class of all constant functions using the numbering ψ. It follows that ψ is
not optimal for Fin and Ex-learning. � (Theorem 12)

The final result of this section establishes, in part, that there exist BcKrt-
numberings that are not VacKrt-numberings.

Theorem 13. There exists a numbering ψ satisfying (a)–(d) below.

(a) ψ is a BcKrt-numbering.
(b) ψ is not a VacKrt-numbering.
(c) ψ is not optimal for any of the learning criteria Fin, Ex, Vac.
(d) ψ is effectively optimal for Bc-learning.

Proof. Let ψ be such that, for each e and x,

ψe(x) =

ϕe(x), if
[

ϕe,x(0)↑
∨ |rng(ϕe)| ≥ 2
∨ [ϕe(0)↓ ∧ C(ϕe(0)) < log(ϕe(0))]
∨ [ϕe(0)↓ ∧ |Wlog(ϕe(0)),x| < e]

∨ [ϕe(0)↓ ∧ |Wlog(ϕe(0))| > x]
]
;

↑, otherwise.

(27)

To show that ψ is a BcKrt-numbering, let E0, E1, E2, . . . be a uniformly r.e.
family of infinite sets such that, for each p and each e ∈ Ep, ϕe = ψp(〈e, ·〉). One
can construct a machine M to witness that ψ is a BcKrt-numbering as follows.

12

Suppose that M is given p. Then, at stage s, M outputs the first element e in
some canonical enumeration of Ep such that

ϕe,s(0)↑
∨ |rng(ϕe,s)| ≥ 2
∨ [ϕe,s(0)↓ ∧ Cs(ϕe,s(0)) < log(ϕe,s(0))]
∨ e > s.

(28)

Consider the following two cases.
Case 1: There exists an e ∈ Ep such that ϕe(0)↑, |rng(ϕe)| ≥ 2 or ϕe(0) = y

for some y with C(y) < log(y). Then, M converges to the first such e in the
canonical enumeration of Ep. Furthermore, for this e, it holds that ψe = ϕe =
ψp(〈e, ·〉).

Case 2: Not Case 1. Then, the set F = {ϕe(0) : M outputs e} has an empty
intersection with the simple set {d : C(d) < log(d)} and, hence, is finite. Let
c = max{|Wlog(d)| : d ∈ F ∧ |Wlog(d)| < ∞}. As F is finite, this maximum c
is taken over only finitely many numbers and, hence, c < ∞. Furthermore, as
Case 1 does not apply, M outputs each index in Ep only finitely often. Hence, M
outputs almost always some index e > c. If, for such an e, Wlog(ϕe(0)) is finite,
then, for each x, |Wlog(ϕe(0)),x| ≤ c < e. On the other hand, if Wlog(ϕe(0)) is
infinite, then, for each x, |Wlog(ϕe(0))| > x. Either way, M outputs almost always
an e such that ψe = ψp(〈e, ·〉).

It follows from the case distinction that M witnesses that ψ is a BcKrt-
numbering.

To show that ψ is not a VacKrt-numbering, assume by way of contradiction
otherwise, as witnessed by M . We show that, under this assumption, one can
decide membership in {x | Wx is finite} using an oracle for K (which is impos-
sible). It is known that, for almost all x, there exist distinct y and z such that
log(y) = log(z) = x, but C(y) ≥ x and C(z) ≥ x.8 Given x, one can find such
y and z using an oracle for K. One can then determine p such that, for each v
and w,

ϕp(〈v, w〉) =

{
y, if v is even;
z, if v is odd.

(29)

Note that |rng(ϕp)| = 2 and, hence, ψp = ϕp. One can then run M on input
p and, using the oracle for K, determine the largest e among the finitely many
indices output by M . Hence, for some v < e, ψv is either the constantly y
function, or the constantly z function. It follows that either |Wlog(ϕv(0))| < v or
|Wlog(ϕv(0))| is infinite. If the former, then

|Wx| = |Wlog(ϕv(0))| < v < e. (30)

8 Recall from Section 2 that, for each y, log(y) def= min{x | 2x ≥ y}. For each x ≥ 1,
there are 2x−1 many numbers y with log(y) = x and only 2x−1 + 1 many numbers y
with C(y) < x. Furthermore, for sufficiently large x, there will exist three or more
programs less than 2x−1 + 1 that either produce no output, or produce the same
output as programs less than themselves. Hence, for sufficiently large x, such y and
z exist.

13

If the latter, then
|Wx| = |Wlog(ϕv(0))| ≥ e. (31)

Hence, Wx is finite iff |Wx| < e. As |Wx| < e can be decided using an oracle for
K, this allows one to determine whether Wx is finite. Since this is impossible,
it follows that M does not witness that ψ is a VacKrt-numbering and, more
generally, that ψ is not a VacKrt-numbering.

To show that ψ is not optimal for any of the learning criteria Fin, Ex, Vac,
note that the class of constant functions is Fin-learnable. But it can be shown
that this class is neither Finψ, Exψ nor Vacψ-learnable using a proof-idea similar
to that of the previous paragraph. Assume by way of contradiction otherwise,
as witnessed by M . Then, given x, one can use an oracle for K to find a y such
that log(y) = x and C(y) ≥ x. Then, when M is fed a text for the constantly
y function, M outputs finitely many indices whose maximum is some e. Using
this e and the oracle for K, one can determine whether Wx is finite as in the
previous paragraph (a contradiction). Hence, ψ is not optimal for any of the
learning criteria Fin, Ex, Vac.

To show that ψ is effectively optimal for Bc-learning, suppose that M is a
Bc-learner that uses ϕ as its hypothesis space. Further suppose that M is fed a
text for a partial recursive function α and that e0, e1, e2, . . . is the sequence of
indices output by M on this text. Without loss of generality, suppose that this
sequence is monotonically increasing, e.g., due to padding. We show that, for
almost all i, ψei = ϕei . Consider the following three cases.

Case 1: α(0)↑. Then, for almost all i, ϕei(0)↑ and, hence, ψei = ϕei .
Case 2: α(0)↓ and |Wlog(α(0))| is infinite. Then, for almost all i, |Wlog(ϕei

(0))|
is infinite and, hence, ψei = ϕei .

Case 3: α(0)↓ and |Wlog(α(0))| is finite. Then, as e0, e1, e2, . . . is monotonically
increasing, for almost all i, |Wlog(ϕei

(0))| < ei. Hence, for almost all i, ψei = ϕei .
This case distinction shows that Bcϕ-learners that output successively larger

indices are also Bcψ-learners. Hence, the numbering ψ is effectively optimal for
Bc-learning. � (Theorem 13)

5 When Kleene’s Recursion Theorem is Ineffective

This section presents our results concerning numberings that satisfy Kleene’s
Recursion Theorem, but not in an effective way.

Moelius [Moe09, Theorem 4.1] showed that there exist numberings that are
not BcKrt-numberings, but in which Kleene’s Recursion Theorem holds. Hence,
in such numberings, Kleene’s Recursion Theorem is extremely ineffective. The-
orems 15 and 16 expand on Moelius’s result by showing that there exist such
numberings that are optimal for learning and such numberings that are not op-
timal for learning (respectively). Theorems 15 and 16 make use of Theorem 14
just below.

Theorem 14. Suppose that ψ is a BcKrt-numbering and that the set of in-
dices of partial functions with infinite domain is immune. Then, ψ is a VacKrt-
numbering.

14

Proof. Suppose that M witnesses that ψ is a BcKrt-numbering. From M , we
construct a machine N witnessing that ψ is a VacKrt-numbering. Suppose that
e0, e1, e2, . . . is the sequence of indices output by M on input p. Then, at stage
s, N outputs index ej for the least j such that

(∀x ≤ s)[ψej ,s(x) = ψp,s(〈ej , x〉)] ∨ j = s. (32)

First, consider the case that there exists a j such that ψej = ψp(〈ej , ·〉) and ψej
is a finite function. Let s be such that

(∀i < j)
[
ψei 6= ψp(〈ei, ·〉) ⇒ (∃x ≤ s)[ψei,s(x) 6= ψp,s(〈ei, x〉)]

]
∧ ψej ,s = ψej .

(33)

Note that, from stage s onward, N will only ever output indices from among
e0, e1, . . . , ej . Hence, N will vacillate among only finitely many indices, as re-
quired. Furthermore, each such index ei output byN will satisfy ψei = ψp(〈ei, ·〉).

Next, consider the case that, for each i, if ψei = ψp(〈ei, ·〉), then ψei has infi-
nite domain. Then, it follows from the immunity assumption that {e0, e1, e2, . . .}
is a finite set, i.e., there exists some j such that e0, e1, . . . , ej represents all of the
indices output by M on input p. Let s be as in the first conjunct of (33). Then,
from stage s onward, each index ei output by N will satisfy ψei = ψp(〈ei, ·〉).
Furthermore, N will again vacillate among only finitely many indices, as re-
quired.

It follows from the analysis of these two cases that N witnesses that ψ is a
VacKrt-numbering. � (Theorem 14)

Theorem 15. There exists a numbering ψ satisfying (a)–(c) below.

(a) ψ satisfies Kleene’s Recursion Theorem.
(b) ψ is not a BcKrt-numbering.
(c) ψ is not optimal for any of the learning criteria Fin, Ex, Vac, Bc.

Proof. Let ψ′ be the numbering called “ψ” in the proof of Theorem 10, and let
ψ′′ be the numbering called “ψ” in the proof of Theorem 13. Let ψ be such that,
for each e and x,

ψe(x) =

{
ϕe(x), if ψ′(x)↓ and ψ′′(x)↓;
↑, if ψ′(x)↑ or ψ′′(x)↑. (34)

To show that ψ satisfies Kleene’s Recursion Theorem, let α be a given partial
recursive function, and let E be an infinite r.e. set such that, for each e ∈ E,
ϕe = α(〈e, ·〉). Consider the following three cases.

Case 1: There exists a y such that, for infinitely many e ∈ E, ϕe(0) = y. Let

F =

{
{e ∈ E : ϕe(0) = y}, if |Wlog(y)| =∞;
{e ∈ E : ϕe(0) = y ∧ e > |Wlog(y)|}, if |Wlog(y)| <∞.

(35)

Note that, for each e ∈ F , ψ′′
e = ϕe. Further note that F is r.e. and infi-

nite. Hence, there exists an ascending recursive sequence, e0, e1, e2, . . . of el-
ements of F . It follows that there exists a constant c such that, for each i,

15

C(ei+1) < C(ei) + c. Let n be so large that n > e0 and n > c. Let i be largest
such that C(ei) < n2. Then, n2 ≤ C(ei+1) ≤ n2 + n and, hence, ψ′

ei+1
= ϕei+1 .

It follows that ψei+1
= ϕei+1

= α(〈ei+1, ·〉).
Case 2: The set {y | e ∈ E ∧ ϕe(0) = y} is infinite. Then, there are infinitely

many y in this set such that C(y) < log(y). Hence, there exists an ascending
recursive sequence e0, e1, e2, . . . of elements of E such that, for each i, ϕei(0)↓,
ϕei(0) < ϕei+1(0), and C(ϕei(0)) < log(ϕei(0)). Note that, for each i, ψ′′

ei = ϕei .
Let n be so large that C(e0) < n and, for each i, C(ei+1) < C(ei)+n. Then, there
exists a largest i such that C(ei) < n2. It follows that n2 ≤ C(ei+1) ≤ n2 + n
and ψ′

ei+1
= ϕei+1

. Hence, ψei+1
= ϕei+1

= α(〈ei+1, ·〉).
Case 3: Not Cases 1 and 2. Then, the set {e ∈ E | ϕe(0)↓} is finite. It follows

that F = {e ∈ E : ϕe(0)↑} is r.e. and infinite. Furthermore, for each e ∈ E,
ψ′′
e = ϕe. Now, one can show as in Case 1 that there exists an e′ ∈ F such that

ψ′
e′ = ϕe′ and, hence, ψe′ = α(〈e′, ·〉).

This completes the case distinction to show that ψ satisfies Kleene’s Recur-
sion Theorem.

To show that ψ is not a BcKrt-numbering, assume by way of contradiction
otherwise. Then, as the indices of partial functions with infinite domain form an
immune set in the numbering ψ′, they also form an immune set in the numbering
ψ. In particular, ψ is then also a VacKrt-numbering by Theorem 14. So, suppose
that M witnesses that ψ is a VacKrt-numbering. Then, one can a arrive at a
contradiction in much the same way as in the proof of Theorem 13 — the only
difference is that an additional side-condition on the choice of p is needed. In
particular, using an oracle for K, one finds a p as in (29), satisfying: there exists
an n such that n2 ≤ C(p) ≤ n2+n. This condition on p establishes that ψ′

p = ϕp,
and, hence, that ψp = ϕp. Then, as in the proof Theorem 13, one runs M on
this p. Finally, using the oracle for K, one determines, for the given x, whether
Wx is finite (a contradiction). It follows that M does not witness that ψ is a
VacKrt-numbering, and, more generally, that ψ is neither a VacKrt-numbering
nor a BcKrt-numbering.

To show that ψ is not optimal for any of the learning criteria Fin, Ex, Vac,
Bc, note that, for each p, if ψp is a constant function, then so is ψ′′

p . Hence, if
the class of constant functions were Finψ, Exψ, Vacψ-learnable, then it would
be Finψ′′ , Exψ′′ , or Vacψ′′ -learnable (respectively), as well. However, as shown
in the proof of Theorem 13, this class is not learnable in any of these senses.
Furthermore, as the set of indices of partial functions with infinite domain is
immune, every Bcψ-learnable class is also Vacψ-learnable. Hence, the class of
constant functions is also not Bcψ-learnable. This shows that ψ is not optimal
for any of the learning criteria Fin, Ex, Vac, Bc. � (Theorem 15)

Theorem 16. There exists a numbering ψ satisfying (a)–(c) below.

(a) ψ satisfies Kleene’s Recursion Theorem.

(b) ψ is not a BcKrt-numbering.

(c) ψ is effectively optimal for Ex, Vac and Bc-learning.

16

Proof. Let S be a set which is hypersimple relative to K.9 Let λt St be a recur-
sive approximation of S in that, for each n, n ∈ S ⇔ (∀∞t)[n ∈ St]. Let ψ be
such that, for each e and x,

ψe(x) =

ϕe(x), if
[

ϕe,x(0)↑
∨ ϕe(0)↓ < e
∨
[
ϕe(0)↓ ∧ (∃n)(∃t > x)[n /∈ St ∧

n2 ≤ Ct(ϕe(0)) ≤ n2 + n]
]]

;

↑, otherwise.

To show that ψ satisfies Kleene’s Recursion Theorem, let α be a given partial
recursive function, and let E be an infinite r.e. set such that, for each e ∈ E, ϕe =
α(〈e, ·〉). We show that at least one e ∈ E satisfies ψe = ϕe. If there exists an
e ∈ E such that ϕe(0)↑ or ϕe(0)↓ < e, then this is immediate. So, suppose that,
for each e ∈ E, ϕe(0)↓ ≥ e. Then, there exists an ascending recursive sequence
e0, e1, e2, . . . of elements of E such that, for each i, ϕei(0) < ϕei+1(0). It follows
that there exists a constant c such that, for each i, C(ϕei+1(0)) < C(ϕei(0)) + c.
Let n be so large that n > C(ϕe0(0)), n > c, and n 6∈ S. Let i be largest such
that C(ϕei(0)) ≤ n2. Then, n2 ≤ C(ϕei+1

(0)) ≤ n2 + n. Furthermore, as n /∈ S,
it follows that ψei+1

= ϕei+1
. This completes the proof that ψ satisfies Kleene’s

Recursion Theorem.
To show that ψ is not a BcKrt-numbering, assume by way of contradiction

otherwise, as witnessed by M . Let p0, p1, p2, . . . be such that, for each k, pk > k,
and, for each e and x, ϕpk(〈e, x〉) = e + k. Note that, for each k, ψpk = ϕpk ,
as ϕpk(0) = ϕpk(〈0, 0〉) = k < pk. Now, let k be fixed, and let e0, e1, e2, . . .
be the sequence of indices output by M on input pk. Then, for almost all i,
ψei = λx ei+k. Furthermore, it follows from the definition of ψ that, for almost
all i, there exists an ni /∈ S such that n2i ≤ C(ei + k) ≤ n2i + ni. Note that, as
S is simple relative to K, {e0, e1, e2, . . .} is a finite set, i.e., there exists some j
such that e0, e1, . . . , ej represents all of the indices output by M on input pk. Let
f : N→ N be such that, for each k, Df(k) is the collection of all ni corresponding
to e0, e1, . . . , ej , where ni and e0, e1, . . . , ej are as just described. Note that f
is K-recursive. Further note that, as only finitely many numbers have the same
Kolmogorov complexity, for each n, there exists some k such that each element
of Df(k) is at least n. Let g : N→ N be such that, for each i,

g(0) = f(0); (36)

g(i+ 1) = f(k), where k is least such that
Df(k) ∩ (Dg(0) ∪Dg(1) ∪ · · · ∪Dg(i)) = ∅.

(37)

Note that: g is K-recursive; for each i and j, Dg(i) and Dg(j) are disjoint; and, for
each i, Dg(i) is not a subset of S. This contradicts the fact that S is hypersimple

9 For example, one could take S to be {e : ϑe has finite domain} in the proof of
Theorem 8, as every set that is dense simple relative to K is also hypersimple relative
to K.

17

relative to K. Hence, M does not witness that ψ is BcKrt-numbering, and, more
generally, ψ is not a BcKrt-numbering.

To show that ψ is effectively optimal for Ex, Vac and Bc-learning, suppose
that M is such a learner, and suppose that α is some target partial recursive
function. Then, so long as α(0) has not yet been seen, the new learner N simu-
lates M , and outputs whatever M would output. If, however, α(0) is ever seen,
then, from that point onward, N simulates M and translates each conjecture e of
M into pad(e, α(0)). Note that, if ϕe = α and α(0)↑, then ψe = ϕe. On the other
hand, if ϕe = α and α(0)↓, then ψpad(e,α(0)) = ϕe, as α(0) < pad(e, α(0)). It is
easy to see that this translation preserves Ex, Vac and Bc-convergence. Hence,
ψ is effectively optimal for Ex, Vac and Bc-learning. � (Theorem 16)

Acknowledgment. The authors would like to thank Samuel E. Moelius III for
discussions and support in writing this paper.

References

[Bar74] Janis Bārzdiņš. Two theorems on the limiting synthesis of functions. Theory
of Algorithms and Programs, Volume 1, pages 82–88, LSU, Riga, Latvia, 1974.

[Cas99] John Case. The power of vacillation in language learning. SIAM Journal on
Computing, 28:1941–1969, 1999.

[CJS02] John Case, Sanjay Jain and Mandayam Suraj. Control structures in hypoth-
esis spaces: The influence on learning. Theoretical Computer Science, 270(1-
2):287–308, 2002.

[CM09] John Case and Samuel E. Moelius III. Program self-reference in constructive
Scott subdomains. In Proceedings of Computability in Europe 2009 (CiE’09),
volume 5635 of Lecture Notes in Computer Science, pages 89–98. Springer,
2009. To appear in Theory of Computing Systems.

[CS83] John Case and Carl H. Smith. Comparison of identification criteria for machine
inductive inferenc e. Theoretical Computer Science, 25:193–220, 1983.

[Gol67] E. Mark Gold. Language identification in the limit. Information and Control
10:447–474, 1967.

[Jai11] Sanjay Jain. Hypothesis spaces for learning. Information and Computation,
209(3):513–527, 2011.

[JS10] Sanjay Jain and Frank Stephan. Numberings optimal for learning. Journal of
Computer and System Sciences, 76(3-4):233–250, 2010.

[Kle38] Stephen C. Kleene. On notation for ordinal numbers. Journal of Symbolic
Logic, 3(4):150–155, 1938.

[LV08] Ming Li and Paul M. B. Vitányi. An Introduction to Kolmogorov Complexity
and Its Applications. Texts in Computer Science. Springer, third edition, 2008.

[Moe09] Samuel E. Moelius III. Program Self-Reference. PhD thesis, University of
Delaware, 2009.

[Nie09] André Nies. Computability and Randomness. Oxford Logic Guides. Oxford
University Press, 2009.

[OW82] Daniel N. Osherson and Scott Weinstein. Criteria of language learning. In-
formation and Control, 52:123–138, 1982.

[Ric80] Gregory A. Riccardi. The Independence of Control Structures in Abstract
Programming Systems. PhD thesis, SUNY Buffalo, 1980.

18

[Ric81] Gregory A. Riccardi. The independence of control structures in abstract pro-
gramming systems. Journal of Computer and System Sciences, 22(2):107–143,
1981.

[Rog67] Hartley Rogers, Jr. Theory of Recursive Functions and Effective Computabil-
ity. McGraw Hill, 1967. Reprinted, MIT Press, 1987.

[Roy87] James S. Royer. A Connotational Theory of Program Structure, volume 273
of Lecture Notes in Computer Science. Springer, 1987.

19

