Closed Left-R.E. Sets*

Sanjay Jain', Frank Stephan®'? and Jason Teutsch?

! Department of Computer Science, National University of Singapore,
Singapore 117543, Republic of Singapore.
sanjay@comp.nus.edu.sg
2 Department of Mathematics, National University of Singapore,
Singapore 119076, Republic of Singapore.
fstephan@comp.nus.edu.sg
3 Institut fiir Informatik, Universitat Heidelberg,

Im Neuenheimer Feld 294, 69120 Heidelberg, Germany.
teutsch@math.uni-heidelberg.de

Abstract. A set is called r-closed left-r.e. iff every set r-reducible to it
is also a left-r.e. set. It is shown that some but not all left-r.e. cohesive
sets are many-one closed left-r.e. sets. Ascending reductions are many-
one reductions via an ascending function; left-r.e. cohesive sets are also
ascening closed left-r.e. sets. Furthermore, it is shown that there is a
weakly 1-generic many-one closed left-r.e. set.

1 Introduction

When studying the limits of computation, one often looks at recursively enumer-
able (r.e.) and left-r.e. sets. Natural examples of the r.e. sets are Diophantine sets
and the word problem of a finitely generated group [8,11,13]. The best-known
left-r.e. set is Chaitin’s {2 [1, 14]. The present work focuses on a special subclass
of the left-r.e. sets, namely those which are closed downwards with respect to
the many-one or ascending reducibilities. While all r.e. sets exhibit closure un-
der various reducibilities — one-one, many-one, conjunctive, disjunctive, positive
truth-table and enumeration [8,11,13] — some left-r.e. sets, such as Chaitin’s
{2, fail to do so.

We show that the classes of many-one closed left-r.e. sets and r.e. sets do
not coincide: there exist both, cohesive and weakly 1-generic sets, which are
many-one closed left-r.e. but not recursively enumerable, see Theorems 4, 15
and Remark 16. We also show that there are cohesive left-r.e. sets which are not
many-one closed left-r.e., see Theorem 12.

We introduce the more restrictive notion of ascending reducibility. We show
that cohesive and even r-cohesive left-r.e. sets are already ascending closed left-
r.e. sets, see Theorem 17.
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Kolmogorov complexity measures the information content of strings; the ap-
plications of this notion range from quantifying the amount of algorithmic ran-
domness [2,7] to establishing lower bounds on the average running time of an
algorithm [5]. An important tool to measure the complexity of a set A is the
initial segment complexity which maps each n to the Kolmogorov complexity
of A(0)A(1)...A(n). We show that the initial segment complexity of ascending
closed left-r.e. sets has to be sublinear, see Proposition 13. We also show that the
initial segment complexity of an ascending closed left-r.e. sets can be 2(n/f(n))
for any unbounded increasing recursive function f, which is close to optimal, see
Theorem 14.

2 Many-One Closed Left-R.E. Sets

Post [9] introduced many-one reducibility by defining that a set B many-one
reduces to a set A, denoted A <, B, if there exists a recursive function f
such that x € A <= f(x) € B. Below, we formally define a left-r.e. set and
many-one closed left-r.e. set.

Definition 1. A set Ais left-r.e. iff there is a uniformly recursive approximation
Ag, A1, ... to A such that A; <jox Asy1 for all s. Here A <jox As41 means that
either A; = Azy1 or the least element = of the symmetric difference satisfies
x € Asy1. If every set many-one reducible to A is left-r.e. then we say that A is
a many-one closed left-r.e. set.

It is well-known that every set which is many-one reducible to an r.e. set is also
itself r.e. [11]; hence every r.e. set is a many-one closed left-r.e. set. Furthermore,
a set is recursive iff it is a bounded truth-table (btt) closed left-r.e. set because
the complement of any set btt-reduces to the set itself, see [8] for discussion of
btt-reductions.

Definition 2 (Friedberg [3], Lachlan [4], Myhill [6] and Robinson [10]).
An infinite set A is cohesive iff for every r.e. set B either B N A or B N A is
finite. An infinite set A is r-cohesive iff for every recursive set B either A N B
or AN B is finite.

Cohesive sets have been studied widely in recursion theory; they emerged as the
culmination of Post’s unsuccessful attempts to generate a Turing incomplete r.e.
set [13]. The next result gives a cohesive many-one closed left-r.e. set. We remark
that Soare [12] already discovered a cohesive left-r.e. set.

The following notational conventions will be useful. Let

() = we(x), 1if . halts on input y within s steps for all y < x;
Pe,s\T) = 1, otherwise.

Note that if ¢, is total, then J, pe s = . Otherwise, the domain of |J, ¢e,s
is some initial segment of N. Let ¢ '(z) = min{y : ¢.(y) = 2} and ¢_ !(x) =
min {y : e s(y) = z}.
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Lemma 3. Suppose @e,, Pey;---,Pe, are total. Furthermore, suppose that the
set S = range(pe,) N range(we,) N ... N range(ve,) is infinite. Then, for all
a,r, there exist ay,asg,...,a, € S such that a < a; < az < ... < a, and, for
n,m with 1 <n <r and 1 <m <k it holds that o (an) < oo (ant1).

Proof. Let a; be any member of S which is greater than a. For ¢ with 2 <14 <,
let a; € S be chosen such that a; > a;_1 and for m with 1 < m <k, S"e_,i (ai—1) <
¢ (a;). Note that there exist such a; € S, as S is infinite and only finitely many
elements 2 can have ¢, !(z) < o' (a;—1). O

Theorem 4. There is a cohesive many-one closed left-r.e. set A.

Proof. We will use moving markers, ag,a1,...; let a,, s denote the value of
marker a,, as at the beginning of stage s. Let lg = 0, lgv1 = 179 + 1, 1qg =
la+312 4+ 1. Welet Iys = {ams:la <m<ry}.
For all m, s, we will have the following property:

(R1): m,s < Gmt1,s-
Define the predicate P, s(d) as

P.s(d): Bams,ans € Ias) [am.s < ans and go;i(amys) > cp;;(an’s)].
For e < d, let

0, if Iy, & range(ge,s);
. if Iy, C range(pe,s) and P, (d);
2, if Iy s C range(pe,s) and not P, s(d).

For e < d, let Qc,s(d) = (i0,s(d),1,5(d), ..., i s(d)). Note that one can consider
Qe,s(d) as a number (base 3), with ig s(d) as being the most significant bit. So
one can talk about Qe s(d) > Qe s (d') etc.

We let @, = Umg oo s, Lo = limgoo Igs, te(d) = limg_oo e, s(d), and
Qe(d) = limy_ o0 Qe s(d) = (i0(d),i1(d), ... ,3c(d)) (we will show later that these
limits exist).

Intuitively, the aim of the construction of the moving markers a,, is to max-
imise the values of Q.(e) with higher priority given for lower values of e. The
required set A will be defined later by choosing one element from each I.. We
define a,, s via the staging construction below. Stage s defines a, s41.

—_

ie,s(d) =

Initially, let an, o = m.

Stage s: Check if, there exists e < s, such that, by using an, s+1 = am, s for
m < l¢, some values of an, s41 < s for o < m < 7, and any values for
Am,s+1 for m > r. such that (R1) is satisfied, we have Q. sy1(e) > Qe s(e).
If so, then update the values of a, st1 to the values witnessing above for
the least such e. If no such e exists, then ap, s+1 = am,s, for all m.

End Stage s

Claim 5. For all e,

(a) for allm with lo <m < re, lime_ o0 Qe s(€) and limg_.oo am,s converge.
(b) lims_,o0 I s converges.

(c) for alld > e, lims_, o te,s(d) converges.
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(a) Follows by induction on e and the fact that Q. s(e) is bounded. Now (b)
and (c) follow by definitions. We let a,,, I, i.(d), and Q.(d) respectively denote
Mmoo G s, Mg o Lo s, Mg o0 Ge s(d), and lim,_ o Qe s(d).

Claim 6. For all d and all e < d, Q.(d+ 1) < Q.(d).

To prove the claim, suppose by way of contradiction that some least d and a
corresponding least e < d does not satisfy the claim. Let s be large enough such
that for all d’ < d+1, s > s, Iy o = Ig s and Qd’,s/(d/) = Qd/7s(dl). Then, in
stage s, one could choose ay,s11,...,0r,s+1 t0o be @y, s ., ryq1,,,-1,, which
makes Q¢ s+1(d) > Qe s(d), and thus Qg s+1(d) > Qa,s(d), in contradiction to
the choice of s. It follows from Claim 6 that, for all e, for all but finitely many
d>e, Qc(d) = Qc(d+1). Thus we get the following:

Claim 7. For all e, for all but finitely many d > e, i.(d + 1) = i.(d). We let
je = limd_,oo ie(d).

Claim 8. For dll e, j. € {0,2}.

To prove the claim, suppose by way of contradiction that j. = 1, for some least
e. Choose d large enough such that, for all ¢/ < e, for all d’ > d, i (d') = jer.
Consider a large enough stage s such that, for all &’ < d, for all s’ > s, Iy o =
Iy s and Qu o (d') = Qar s(d’). Then we could make Q. s (d) > Q. s(d), for large
enough s’ > s by choosing a;, s, . .., ar, s (With a;, & > a;,) appropriately such
that for all ¢’ < e, if I; C range(p ), then w;l(am,sf) < Lp;l(an’sl) forly <m<
n < rq. (It is possible to choose such values as, for e’ < e, if I; C range(¢er),
then Iy C range(y.s) for all d’ > d, and then we can use Lemma 3.) But this
contradicts the choice of s.

Claim 9. For all e, for all but finitely many d > e, i.(d) = 0 implies, for all but
finitely many d, range(p.) N I = 0.

To prove the claim, suppose by way of contradiction that e is such that for all but
finitely many d > e, i.(d) = 0, but for infinitely many d, range(p.) N Ig # 0. Fix
least such e, and let d be such that (i) foralle’ < e, foralld’ > d, Q.(d") = Q.(d),
and (ii) for all ' < e, if i/ (d) = 0, then for all d’ > d, range(pe ) NIy = 0. Let s
be such that for all & < d, forall &' > s, Iy s = Iy s and Qu & (d') = Qu s(d').
Let E = {€¢' : ¢’ < e,i(d) = 2}U{e}. Then, clearly, ), . range(p.) is infinite,
and thus using Lemma 3, for large enough s’ > s, we can find, a;, ¢, ..., 0, s
such that i o (d) = 2 for €’ € E, which makes Qg s (d) > Qq,s(d), contradicting
the choice of s. The claim follows.

Note above that r. — e > Qe+1(e + 1) for all possible values of Qe41(e + 1),
and thus a,, g, (et1) € L. Let

A= {are_QCH(e_H) ee N}

Claim 10. A s cohesive.
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To prove the claim, consider any total .. If for all but finitely many d > e,
ie(d) = 0, then by Claim 9 range(p.) contains elements from only finitely many
I/, and thus only finitely many elements of A. On the other hand, if, for all but
finitely many d > e, i.(d) = 2, then range(y.) contains all but finitely many I,
and thus all but finitely many elements of A. The claim follows.

Claim 11. Suppose B <., A as witnessed by p.. Then, B is a left-r.e. set.

To prove the claim, first suppose that range(p.) N A is finite. In this case B =
{y : pe(y) € S} for some finite set S. Thus, B is recursive and a left-r.e. set.

Now suppose that range(¢.) N A is infinite. It follows that, for all but finitely
many d > e, i.(d) has value 2 (by Claims 8 and 9). Let d be large enough such
that Qe(d) = Q.(d'), for all d’ > d. Consider a stage sg such that for all d’ < d,
for all s > S0, Id’,s = Id/730 and Qd’,s(d/) = Qd/730(d/). Define Sk+1 > Sk such
that, for d < d' <d+k+1, Qe sy, (d) = (Jos j1s-- -5 Je). Let

a(m, k) = Arpy—Qum1,s), (Mm+1))

and define By, as the characteristic function of {y : pe(y) € As, MU, cqpp Lrsi b
where A, = {a(m, k) :m < d+k}.

The characteristic value of By as above converges to characteristic function
of B. To show that B is left-r.e., we need to show that By <jex Bjy1. For
this consider least d' such that for m < d', Ly 5., = Im.s, and Qp s, ., (Mm) =
Qm,sk (m)7 but

[Id’+1,5k+1 7é Id”rl,sk or Qd’+1,5k+1 (dl + 1) 7é Qd’+1,sk (d/ + 1) ord = d+k+ 1]

Note that d > d. If d > d + k, then clearly By <jex Bg+1. Otherwise, for
m < d', we have that a(m, k) = a(m,k + 1). Also, Qu41.s, < Qar+1,s,+1 and
a(d k +1) < a(d, k), which implies that ¢, !(a(d',k + 1)) < ¢ (a(d',k))
(as @2 ! is monotonic on Iy s, , due to Qe s, (d') = Qe,spiy () = (Jo, 15+ - -+ Je)s
where j. = 2). Thus, By <jex Bi+1. It follows that B is a left-r.e. set. O

Not every left-r.e. set is many-one closed left-r.e.: Besides §2, a quite easy example
can be found by taking an r.e. and nonrecursive set A and considering the set

B={2z:2€ A}U{2zx+1:2¢ A}.

Then the complement of A is many-one reducbible to B but not a left-r.e. set.
In contrast to Theorem 4, one can also find cohesive sets with this property.

Theorem 12. There is a left-r.e. cohesive set A which is not a many-one closed
left-r.e. set.

Proof. In the following let W, ; denote the set of elements of Wy below s which
are enumerated within s steps into Wy. Partition N into intervals I; of length 2°:
I; = {20 —1,20,2" +1,...,2"*1 — 2}, Furthermore, assign to every x the e-state
given as
e s(x) = Z 26714 Wy o ().
d<e
We say that
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Qe,s(I;) = c iff ¢ < 2° is the largest number satisfying g. s(z) > ¢ for at
least 2¢ — 2¢7¢71. (¢ + 1) elements of I;.

Here we let J, ; s be a witness for the above fact in the way such that J.; s C I,
|Jeis| =20 —207¢71 . (¢ + 1) and ge s(z) > ¢ for all x € J,; 5. Here we assume
that Je; s11 # Je,i,s implies that ge s+1(Li) > ge,s(L;). It is easy to verify that
limg_, o0 ge,s(I;) converges for each e, i and thus, lims_, o, Je ; s converges for each
e, i.

Define i s,%1,s, . . . such that the following properties are satisfied:
(a) for all €,8: ie,s < det1,s and e 541 > be,s > 2€ + 2;
(b) for all e, s,j with i, s < j < s it holds that ges(Ii. ) > ge,s(15)-
(c) for all s, for the least e (if any) such that i, s # ie o1 O Jey, . s #
Je,ie,s+17s+1: Qe,s+1(lie,s+1) > Qe,S(Iie,s)~

Note that such i, ; can be recursively defined. It is easy to verify by induction
that i, = lim,_. %c,s converges. Furthermore, note that o s(;, ) = 0 for all s
and Jo,, s = I;,, for all s. Hence, ig s = ig, for all s. Now we are ready to
define A.

0,s

Definition of Ag:
Let Heo = {2 € Jeji, st Ge,s(%) = qe,s(1;, )} for all e.
Let ¢ s be the (get1,s(Li,, ) + 1)-th element from above of H, , for all e.
Let AS = {'/EO,87$17S7 . }

End Definition of A,

Let A(z) = limy_.o As(x). One can verify that limg o de s, lims o0 e s(Zi. )
and lim, oo Je s, ,,s converge. Thus it is easy to verify that A is well defined. We
also let ic, Jei,, He, qe(2), qe(1;) denote the limiting values of ic s, Jei, .5y He,s,
Qe,s(), ge,s(I;), respetively.

Here, it should be noted that H, ; has at least 2te.s—¢~1 elements. To see this,
let ¢ = ge,s(I;, ,) and note that J;__, has at least 2° — 2°7¢~!. (¢ 4 1) elements
of which less than 2%.s — 2¢.s=¢~1. (¢4 2) many x satisfy g. s(x) > ¢ while all =
satisfy ges(x) > c. So at least 2te.s—¢~1 elements x of Jeyio s satisfy ges(z) = ¢
and these are in H, 5. As 4. s > 2e+ 2, it follows that |H, 4| > 2¢*1 and so there
is, for each possible value ¢’ of get1.s(let1.5) < 2°71, a (¢ +1)-th largest element
of H. ;. Thus every z. s as defined above really exists. For each e, the sequence
of the z. s converges to some value x..

To show that (Ag)sen forms a left r.e. approximation, we need to show that
As <jex Ast1. So consider the least e (if any) such that zsi1 # Tes. Note
that fe s41 =1es and Jei, 1 541 = Jeji. .5, a8 otherwise e > 0 and Te_1 541 =+
Te—1,s- Hence He 41 C H, s and, for s’ = s, s+1, x, o is the (get1,s (Iie+1,s/)+1)'
th element of H, o from above. As ig sy1 = iqs and Jai, ., ,s+1 = Jd iy s for all
d < €, it follows by rule (C) that qe+1,s+1([e—l-l,ig_*_lys_*_l,s-&-l) > QE+1,S(Ie+1,i€+1‘S,s)-
Hence z. 541 < Z¢,s and that implies that As11 >jeq As. So A is a left-r.e. set.

Now we show that A is cohesive. So consider any d, e,k such that d < e
and k£ > 0. Then, we claim that ¢g41(%e) > ¢qat1(Zetr). To see this, sup-
pose 2f¢ < qeyr(Li,,,) < 2Fc+ 2% — 1. Thus, at least 20 — 2—e=F=1. (2~ .
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¢+ 2F), many x in I;,,, have geqr(x) > 2%c. Thus, 20 — 27¢71(c 4+ 1) of
in I;_,, have g.(r) > c and thus gc(le4x) > c. Now, for zeyp € Heqp and
Te € He, qap1(err) = |Gern(Teqr) /28797 < (e 4 1)2F/2M ¢! and
thus gai1(Teyr) < ¢/2°7971 On the other hand, gai1(z.) = [ge(I.)/2¢797 1] >
le/2¢747 . Thus, qat1(Tetn) < gaa ().

Thus, as A = {zg,x1,. ..}, for all d, gg11(z.) is same for all but finitely many
e. For each d it follows that Wy(z.) is the same value for almost all e. Thus A
is cohesive.

Now consider B <,,, A via f where, for all ¢ and = € I;, f(z) = max([;) +
min(/;) — x. Note that f(z) = f~!(z). Thus, f also witnesses A <,, B. Let
(As)sen be the left-r.e. approximation of A as given above and (Bg)sen be a
left-r.e. approximation of B. Then, the following holds for all e, s:

(%) If the least e+1 elements xq 5, T1 s, - - - , Te,s Of Ay satisfy that f(zos),
f(w15),..., f(xe,s) are the unique elements of B, below max({/;,,})
then g = 205,71 = T1,5,. .+, Te = Te,s-

For a proof, assume that the above would be false for some e,s and let d be
the least index such that xq # x4 s; by the left-r.e.-ness of the approximation,
x4 < Zq,s. Furthermore, by (c), iq,s = i¢q as otherwise d > 0 and z4_1 # T4—1s.
So f(z4s) < f(xzq) and BN{0,1,...,max(l;,)} = {f(xo), f(z1),..., f(zq)}. But
{f(xO)v f(xl)v SRR f(xd)} <lex {f(‘ro,s)v f(xl,s)u teey f(xd,s)} and hence B <lew
Bs, a contradiction to (Bs)sen being a left-r.e. approximation of B. So (x) is
true. Now one can determine x. by searching for the first stage s where f(zgs),
f(x1s),..., f(xe,s) are the unique elements of B below max({/;, ,}) and then
one knows that . = x. . Thus, we get that A is recursive, in contradiction to
A being cohesive. O

3 Ascending Closed Left-R.E. Sets

An ascending reduction is a recursive function f which satisfies f(x) < f(z+1)
for all z; B <,s A iff there is an ascending reduction f with B(x) = A(f(x))
for all z. A is called ascending closed left-r.e. iff every B <,s. A is a left-r.e. set.

Let A[n] denote the string A(0)A(1) ... A(n). Let C(z) denote the plain Kol-
mogorov complexity for x. That is, C'(z) = min {log(y) : U(y) = «}, where U is
a fixed universal Turing machine. The function mapping n to C(A[n]) is called
the initial segment complexity of A and the next result shows that the initial
segment complexity of ascending closed left-r.e. sets is sublinear.

Proposition 13. If A is an ascending closed left-r.e. set then the initial segment
complezity n — C(A[n]) is a function of sublinear order.

Proof. Let ¢ be any constant, and let G,, denote the interval {z : < [n/c]}.
For d < ¢, define BY by B%(z) = A(cx + d). Thus B? <,. A. Let (B%)sen
be left-r.e. approximations of B¢. For each n, let d,, < ¢ be the index for which
(B;l" NG,)sen converges slowest. Then given d,, and B% NG, we can determine
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BN @G, for each d < ¢ and therefore A[n] as well. Hence, for some constant
b, and for all n, C(A[n]) < n/c+ b.. This shows that the complexity function
n +— C(A[n]) has sublinear order. [

Theorem 14. Let g be a recursive and unbounded non-decreasing function.
Then there is an ascending closed left-r.e. set A such that n — C(A[n]) has
at least the order n/g(n).

Proof. Without loss of generality assume 1 < g(i) < i. Partition N into intervals
I; of length 2¢: I; = {28 —1,2¢ 2t +1,...,2i%1 — 2}, For each I;, we will construct
a subset J; = lim,_.oo J; 5. Let J; 0 = I;. At stage s, if there is an e < log(g(i))
(which has not been handled earlier) and an z such that

0e(0) ] < pe(D) 1< pe(2) [ <. < elw)]  and  e(z) > max(l;).

Then, choose one such e and the corresponding z. Determine the two subsets
Jis{pe(y) 1y < z}and J; s—{pe(y) : y < x}, and let J; 11 be that one of these
two subsets which has the higher cardinality (in case of tie, choose arbitrarily).
Note that during the approximation process J; s gets halved at most log(g(7))
times and therefore the limit J; has at least 2¢/g(i) many elements.

Define A so that the characteristic function of A on the set J;, in ascending
order, is the binary representation of the least number a; with C'(a;) > 2¢/g(i)—2
(where as many leading zeros are added as needed to use up all bits of J;); A
has no elements outside the sets J;. Note that there is a recursive approximation
ai s to a; from below.

The set A is left-r.e. as we can have an approximation Ay which takes on
each J; ; the characteristic function of the binary representation of a; s (with
sufficiently many leading zeros added in); A, is 0 on I; — J; 5. If the interval J; s
shrinks to J; 541, then the bits of a; ; move to the left and some leading zeros
are skipped; if a; 541 > a; s then the bits are also ascending in lexicographic
manner. Hence the resulting approximation is a left-r.e. approximation which
runs independently on each interval I;.

Now suppose B <,sc A via a recursive non-decreasing function ¢.. If the
range of . is finite, then B is clearly recursive. Now suppose that range of . is
infinite. Let r be the greatest index satisfying g(r) < e.Let so =s1 =852 =... =
s be so large that A, (z) = A(x) for all x < max(I,.). For k > r, let sp41 > sg
be such that for all s > sy either Jyy1 s C range(pe) or Jyy1,sNrange(p.) = 0.
Note that siy1 can be computed effectively from k.

Define the approximation (Bj)ien of B as

_J As(pe()), i pe(r) < max(ly);
Bi(z) = {O, if pe () > max(I).

This approximation is a left-r.e. approximation to B as it starts to consider the
interval Iy, for k > r, only after stage sj such that for all s > sy, Jj, s C range(pe)
or Jyi s Nrange(p.) = (. In the first case all the bits of Ji,s,, are copied order-
preservingly into By and the left-r.e. approximation to A on [Ij is turned into a
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left-r.e. approximation to B on the preimage of I under ¢.; in the second case
all x with p.(x) € Ij satisfy @.(x) ¢ Ji s, and therefore Bs(z) = 0 for these x
and all stages s. So A is an ascending closed left-r.e. set.

Furthermore, C(a;) > 2¢/g(i) — 2. Also, we can compute a; from the number
i, the string A[max([l;)] and the number of stages s at which J; ;41 # J; 5. Hence,
for some b and almost all i we have

C(Almax(l;)]) > C(a;) —logi —logg(i) — b > —.
(Amax(1;)]) > C(a;) (i) 5900
Taking now n with min(Z;4;) < n < max(l;4+1) and using that g is non-
decreasing, we have that C(A[n]) > 55(ny for almost all n. This proves the
postulated bound. [J

Another important type of sets are the 1-generic and weakly 1-generic sets [8].
As one cannot have left-r.e. 1-generic sets, one might ask for which reducibilities
r there are r-closed left-r.e. weakly 1-generic sets. The next result shows that
one can make such sets for the notion of ascending closed left-r.e. sets.

Recall that a set is weakly 1-generic iff for every recursive function f from
numbers to strings there exist n and m with f(n) = A(n+1)A(n+2) ... A(n+m).
The difference between weakly 1-generic and 1-generic is that here one requires
the f to be total and independent of the values of A below n.

Theorem 15. There is an ascending closed left-r.e. weakly 1-generic set A.

Proof. We will be defining moving markers a., b. and c., where a, < b, < ¢,
ap = 0 and aey1 = c. + 1. Intuitively, we want to use the part A(be), A(be +
1),..., A(ce) to ensure weak 1-genericity (by making A(b.)A(be +1)... A(be +
[e(be)|—1) = @e(be), if we(be) is defined). The part A(a.),. .., A(be —1) is used
to ensure that A is ascending closed left-r.e.

At the beginning of stage s, the markers have values a. s, be s and ¢, s respec-
tively. We will have that a. = limg_o Ge, s, be = limy_ o0 be s, Ce = lims o0 Ce s

Let ap,s =0 for all s. Let acy1,s = ces + 1, for all e, s. Initially aco = beo =
Ceo = €, and Ay = 0°°. We will also use sets Jes s, for ¢/ < e. These sets are
useful for defining A in such a way that, if @, witnesses an ascending reduction
from B to A, then B is left-r.e. Initially, for all e, for ¢’ < e, Jer ¢ = (). Below,
for ease of presentation, we will only describe the changes from stage s to stage
s+ 1; all variables which are not explicitly updated will retain the corresponding
values from stage s.

Stage s:
1. If there exists an e < s such that either Cond e.1 or Cond e.2 hold, then
choose least such e and go to step 2. Otherwise go to stage s + 1.
— Cond e.1: There exists ¢’ < e such that, Je s = 0 and range(ge) N
{z : © > c. s} contains at least 2¢ + 2 elements as can be verified
within s steps.
— Cond e.2: ¢e s = be s and @e(be,s)] within s steps.
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2. Fix least e such that Cond e.1 or Cond e.2 holds. If Cond e.1 holds, then
go to step 3. Otherwise go to step 4.

3. Fix one €’ such that Cond e.1 holds for €’.
Let Jes e, s+1 be 2e + 2 elements from range(pe) N {z : & > ce s}
Update be s+1 = max(Jer e s+1) + 1, Ce 541 = be s41-
For m > e, let am s4+1 = bm s+1 = Cm,s41 = Cm—1,54+1 + 1.
For m > e, and m’ < m, let Jy m s11 = 0.
Let As+1 be obtained from A, by (i) deleting all elements > b, ,, and
by (ii) inserting, for each m < e such that J,, . s # (0, one new element
(which was not earlier in Ay) from Jp, ¢ s.
Go to stage s + 1.

4. Suppose @e(be,s) =Y.
Let ce 541 = be,s + |y| + 1.
For m > e, let am s+1 = bm s4+1 = Cm,s41 = Cm—1,s4+1 + 1.
For m > e, and m’ < m, let Jp m s+1 = 0.
Let As11 be obtained from A, by (i) deleting all elements > b, s+ |y|+1,
and by (ii) inserting, for each m < e such that J,, s # 0, one new
element (which was not earlier in A,) from J,, . s, and by setting (iii)
Ast1(bes) - Astr(bes + |y — 1) =,
Go to stage s + 1.

End stage s.

It can be shown by induction on e that lim,_,o e s, Mg o0 be s, limg o0 Ce s
indeed exist. For this, for ¢’ < e, after a.,b. and c. have reached their final
value, a. does not get modified any further (a. is set to c.—1 + 1, in the last
stage in which c._; gets modified). Furthermore, once a. reaches its final value,
be can change at most e times due to Cond e.1 holding for some ¢’ < e (and thus
execution of step 3). Once b, reaches its final value, ¢, gets modified at most once
due to success of Cond e.2 (and thus execution of step 4). The “2e + 2” in the
algorithm description suffices since each index e has e indices below it, and, after
all variables a., b, cor, with € < e have stabilised, we encounter Cond e.1 at
most once for each e’ < e, and correspondingly Cond e.2 once in the beginning,
and at most once after each modification of b, via Cond e.1. Also, note that, for
m<e, Jmes C{T:aes <x<bes}

Let A(z) = lims_,oo As(z). Now we show that A is weakly 1-generic. Sup-
pose Qer,ber, Cor, for € < e, reach their final values before stage s. If . (be)
is defined then Cond e.2 succeeds in some stage s’ > s, and step 4 defines
Agi1(be) ... Asry1(be + |yl — 1) = y, where @ (b.) = y. Furthermore, A never
gets modified on inputs < ¢, 41 = ¢ after stage s'.

Now suppose B <,sc A as witnessed by ¢,.. If range((,.) is finite, then clearly
B is recursive. So assume range(¢y;) is infinite. Thus, for each e > r, Cond e.l
will succeed (eventually) for ¢’ = r, after a. has achieved its final value.

Define sp such that a,, by, cm, (for m < r) as well as Ale,] have reached
their final values by stage so. Let sgq1 > sp such that J,., 1., # (0, for all
Jj<k+1 Let By ={z: ¢, (x) € As, and @, (z) < Crik.s, }-

Clearly B(z) = limy_,00 Br(x). Thus, to show that B is left-r.e. it suffices to
show that By <jex Br1. So consider the least x < ¢,y s, , if any, such that in
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some stage s', sp < 8’ < sg+1, Cond e.1 or Cond e.2 succeeds, and x > b, o (if
there is no such z, then we are done). Clearly, e > r by hypothesis on sg. Note
that for j <k, Jy,4js, # 0. Thus, J, ;4 # 0. Thus, in stage s’, Ag41(2') is
set to 1, for some ' € J, . such that A, (') = 0. Note that 2’ < ber s < .
Let ' be least such that ¢,.(y") = 2’. Thus,

By, <iex Asr1(9r(0)) Agr 11 (0 (1)) - .. AS’+1(SDT(?/I)) <iex Br+1
as desired. [

Remark 16. Note that one can adjust the proof to show that there is a many-
one closed left-r.e. and weakly 1-generic set. For this, main change in the con-
struction would be to change Cond e.1 above to:

Cond e.1: There exists €/ < e such that Je/ . s = 0, and for some z, z’, for all
z < z, g (x)] < 2’ within s steps, and {pe(z) 1z < 2z} N{x :cs < < 2}
contains at least 2e + 2 elements.

Then, setting Je/ ¢ 11 as in step 3, and making b, to be > 2/, would achieve
the goal, as any element in A which is larger than 2z’ would be able to influence
membership in B = {2’ : p(a’) € A}, only for > z. We omit the details.

The next result shows that every r-cohesive set is ascending closed left-r.e. set.
Thus, r-cohesive left-r.e. sets form a subclass of ascending closed left-r.e. sets.
Recall that every cohesive set is r-cohesive.

Theorem 17. FEvery left-r.e. r-cohesive set is an ascending closed left-r.e. set.

Proof. Suppose A is a left-r.e. r-cohesive set. Suppose B <,sc A. Let (As)sen
be the left-r.e. approximation of A and f be a non-decreasing recursive function
which witnesses that B <,s. A. If range(f) N A is finite, then clearly B is recur-
sive. So assume range(f) N A is infinite. But then, for some z and for all y > z,
y € A implies y € range(f). Fix this z.

Let sg be such that for all s > sq, for all y < z, As(y) = A(y); let sp41 > sn
be such that the least n + 1 members of A, — {y :y < x} exist and are in
range(f); note that one can effectively find such s, from s,. Let

Af(y), if fly) <

Bo(y) = 1, if f(y) is among the least n members
n\Y) = of A, which are greater than z;
0, otherwise.

It is easy to verify that B,, is an approximation of B. To see that (B, )nen form a
left-r.e. approximation, we need to show that B,, <jex Bp+1 for all n. So consider
any n. If B, € Bp4+1, then there exists least y such that y € B,, — By+1. Then
f(y) is among the first n members of A, which are greater than « and not among
the first n+ 1 members of A, ., which are greater than x. As (Ay)sen is left-r.e.
approximation, we have that A, must contain a f(y'), < f(y') < f(y), such
that f(y') € As, . But, then y" € B, 1 — By, for some y” < y'. Thus, (By)nen
is a left-r.e. approximation of B. [
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