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Abstract. A set is called r-closed left-r.e. iff every set r-reducible to it
is also a left-r.e. set. It is shown that some but not all left-r.e. cohesive
sets are many-one closed left-r.e. sets. Ascending reductions are many-
one reductions via an ascending function; left-r.e. cohesive sets are also
ascening closed left-r.e. sets. Furthermore, it is shown that there is a
weakly 1-generic many-one closed left-r.e. set.

1 Introduction

When studying the limits of computation, one often looks at recursively enumer-
able (r.e.) and left-r.e. sets. Natural examples of the r.e. sets are Diophantine sets
and the word problem of a finitely generated group [8, 11, 13]. The best-known
left-r.e. set is Chaitin’s Ω [1, 14]. The present work focuses on a special subclass
of the left-r.e. sets, namely those which are closed downwards with respect to
the many-one or ascending reducibilities. While all r.e. sets exhibit closure un-
der various reducibilities — one-one, many-one, conjunctive, disjunctive, positive
truth-table and enumeration [8, 11, 13] — some left-r.e. sets, such as Chaitin’s
Ω, fail to do so.

We show that the classes of many-one closed left-r.e. sets and r.e. sets do
not coincide: there exist both, cohesive and weakly 1-generic sets, which are
many-one closed left-r.e. but not recursively enumerable, see Theorems 4, 15
and Remark 16. We also show that there are cohesive left-r.e. sets which are not
many-one closed left-r.e., see Theorem 12.

We introduce the more restrictive notion of ascending reducibility. We show
that cohesive and even r-cohesive left-r.e. sets are already ascending closed left-
r.e. sets, see Theorem 17.
? S. Jain has been supported in part by NUS grants C252-000-087-001 and R252-000-

420-112; F. Stephan has been supported in part by NUS grant R252-000-420-112;
J. Teutsch has been supported by the Deutsche Forschungsgemeinschaft grant ME
1806/3-1.



2 S. Jain, F. Stephan and J. Teutsch

Kolmogorov complexity measures the information content of strings; the ap-
plications of this notion range from quantifying the amount of algorithmic ran-
domness [2, 7] to establishing lower bounds on the average running time of an
algorithm [5]. An important tool to measure the complexity of a set A is the
initial segment complexity which maps each n to the Kolmogorov complexity
of A(0)A(1) . . . A(n). We show that the initial segment complexity of ascending
closed left-r.e. sets has to be sublinear, see Proposition 13. We also show that the
initial segment complexity of an ascending closed left-r.e. sets can be Ω(n/f(n))
for any unbounded increasing recursive function f , which is close to optimal, see
Theorem 14.

2 Many-One Closed Left-R.E. Sets

Post [9] introduced many-one reducibility by defining that a set B many-one
reduces to a set A, denoted A ≤m B, if there exists a recursive function f
such that x ∈ A ⇐⇒ f(x) ∈ B. Below, we formally define a left-r.e. set and
many-one closed left-r.e. set.

Definition 1. A set A is left-r.e. iff there is a uniformly recursive approximation
A0, A1, . . . to A such that As ≤lex As+1 for all s. Here As ≤lex As+1 means that
either As = As+1 or the least element x of the symmetric difference satisfies
x ∈ As+1. If every set many-one reducible to A is left-r.e. then we say that A is
a many-one closed left-r.e. set.

It is well-known that every set which is many-one reducible to an r.e. set is also
itself r.e. [11]; hence every r.e. set is a many-one closed left-r.e. set. Furthermore,
a set is recursive iff it is a bounded truth-table (btt) closed left-r.e. set because
the complement of any set btt-reduces to the set itself, see [8] for discussion of
btt-reductions.

Definition 2 (Friedberg [3], Lachlan [4], Myhill [6] and Robinson [10]).
An infinite set A is cohesive iff for every r.e. set B either B ∩ A or B ∩ A is
finite. An infinite set A is r-cohesive iff for every recursive set B either A ∩ B
or A ∩ B is finite.

Cohesive sets have been studied widely in recursion theory; they emerged as the
culmination of Post’s unsuccessful attempts to generate a Turing incomplete r.e.
set [13]. The next result gives a cohesive many-one closed left-r.e. set. We remark
that Soare [12] already discovered a cohesive left-r.e. set.

The following notational conventions will be useful. Let

ϕe,s(x) =
{

ϕe(x), if ϕe halts on input y within s steps for all y ≤ x;
↑, otherwise.

Note that if ϕe is total, then
⋃

s ϕe,s = ϕe. Otherwise, the domain of
⋃

s ϕe,s

is some initial segment of N. Let ϕ−1
e (x) = min {y : ϕe(y) = x} and ϕ−1

e,s(x) =
min {y : ϕe,s(y) = x}.
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Lemma 3. Suppose ϕe1 , ϕe2 , . . . , ϕek
are total. Furthermore, suppose that the

set S = range(ϕe1) ∩ range(ϕe2) ∩ . . . ∩ range(ϕek
) is infinite. Then, for all

a, r, there exist a1, a2, . . . , ar ∈ S such that a < a1 < a2 < . . . < ar and, for
n, m with 1 ≤ n < r and 1 ≤ m ≤ k it holds that ϕ−1

em
(an) < ϕ−1

em
(an+1).

Proof. Let a1 be any member of S which is greater than a. For i with 2 ≤ i ≤ r,
let ai ∈ S be chosen such that ai > ai−1 and for m with 1 ≤ m ≤ k, ϕ−1

em
(ai−1) <

ϕ−1
em

(ai). Note that there exist such ai ∈ S, as S is infinite and only finitely many
elements x can have ϕ−1

em
(x) ≤ ϕ−1

em
(ai−1). �

Theorem 4. There is a cohesive many-one closed left-r.e. set A.

Proof. We will use moving markers, a0, a1, . . .; let am,s denote the value of
marker am as at the beginning of stage s. Let l0 = 0, ld+1 = rd + 1, rd =
ld + 3d+2 + 1. We let Id,s = {am,s : ld ≤ m ≤ rd}.
For all m, s, we will have the following property:

(R1): am,s < am+1,s.

Define the predicate Pe,s(d) as

Pe,s(d) : (∃am,s, an,s ∈ Id,s) [am,s < an,s and ϕ−1
e,s(am,s) > ϕ−1

e,s(an,s)].

For e ≤ d, let

ie,s(d) =


0, if Id,s 6⊆ range(ϕe,s);
1, if Id,s ⊆ range(ϕe,s) and Pe,s(d);
2, if Id,s ⊆ range(ϕe,s) and not Pe,s(d).

For e ≤ d, let Qe,s(d) = (i0,s(d), i1,s(d), . . . , ie,s(d)). Note that one can consider
Qe,s(d) as a number (base 3), with i0,s(d) as being the most significant bit. So
one can talk about Qe,s(d) > Qe′,s′(d′) etc.

We let am = lims→∞ am,s, Id = lims→∞ Id,s, ie(d) = lims→∞ ie,s(d), and
Qe(d) = lims→∞Qe,s(d) = (i0(d), i1(d), . . . , ie(d)) (we will show later that these
limits exist).

Intuitively, the aim of the construction of the moving markers am is to max-
imise the values of Qe(e) with higher priority given for lower values of e. The
required set A will be defined later by choosing one element from each Ie. We
define am,s via the staging construction below. Stage s defines am,s+1.

Initially, let am,0 = m.
Stage s: Check if, there exists e ≤ s, such that, by using am,s+1 = am,s for

m < le, some values of am,s+1 ≤ s for le ≤ m ≤ re, and any values for
am,s+1 for m > re such that (R1) is satisfied, we have Qe,s+1(e) > Qe,s(e).
If so, then update the values of am,s+1 to the values witnessing above for
the least such e. If no such e exists, then am,s+1 = am,s, for all m.

End Stage s

Claim 5. For all e,
(a) for all m with le ≤ m ≤ re, lime→∞Qe,s(e) and lims→∞ am,s converge.
(b) lims→∞ Ie,s converges.
(c) for all d ≥ e, lims→∞ ie,s(d) converges.
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(a) Follows by induction on e and the fact that Qe,s(e) is bounded. Now (b)
and (c) follow by definitions. We let am, Ie, ie(d), and Qe(d) respectively denote
lims→∞ am,s, lims→∞ Ie,s, lims→∞ ie,s(d), and lims→∞Qe,s(d).

Claim 6. For all d and all e ≤ d, Qe(d + 1) ≤ Qe(d).

To prove the claim, suppose by way of contradiction that some least d and a
corresponding least e ≤ d does not satisfy the claim. Let s be large enough such
that for all d′ ≤ d + 1, s′ > s, Id′,s′ = Id′,s and Qd′,s′(d′) = Qd′,s(d′). Then, in
stage s, one could choose ald,s+1, . . . , ard,s+1 to be ald+1 , . . . , ard+ld+1−ld , which
makes Qe,s+1(d) > Qe,s(d), and thus Qd,s+1(d) > Qd,s(d), in contradiction to
the choice of s. It follows from Claim 6 that, for all e, for all but finitely many
d ≥ e, Qe(d) = Qe(d + 1). Thus we get the following:

Claim 7. For all e, for all but finitely many d > e, ie(d + 1) = ie(d). We let
je = limd→∞ ie(d).

Claim 8. For all e, je ∈ {0, 2}.

To prove the claim, suppose by way of contradiction that je = 1, for some least
e. Choose d large enough such that, for all e′ ≤ e, for all d′ ≥ d, ie′(d′) = je′ .
Consider a large enough stage s such that, for all d′ ≤ d, for all s′ ≥ s, Id′,s′ =
Id′,s and Qd′,s′(d′) = Qd′,s(d′). Then we could make Qe,s′(d) > Qe,s(d), for large
enough s′ > s by choosing ald,s′ , . . . , ard,s′ (with ald,s′ > ald) appropriately such
that for all e′ ≤ e, if Id ⊆ range(ϕe′), then ϕ−1

e′ (am,s′) < ϕ−1
e′ (an,s′) for ld ≤ m <

n ≤ rd. (It is possible to choose such values as, for e′ ≤ e, if Id ⊆ range(ϕe′),
then Id′ ⊆ range(ϕe′) for all d′ > d, and then we can use Lemma 3.) But this
contradicts the choice of s.

Claim 9. For all e, for all but finitely many d ≥ e, ie(d) = 0 implies, for all but
finitely many d, range(ϕe) ∩ Id = ∅.

To prove the claim, suppose by way of contradiction that e is such that for all but
finitely many d ≥ e, ie(d) = 0, but for infinitely many d, range(ϕe)∩ Id 6= ∅. Fix
least such e, and let d be such that (i) for all e′ ≤ e, for all d′ ≥ d, Qe(d′) = Qe(d),
and (ii) for all e′ < e, if ie′(d) = 0, then for all d′ ≥ d, range(ϕe′)∩ Id′ = ∅. Let s
be such that for all d′ ≤ d, for all s′ ≥ s, Id′,s′ = Id′,s and Qd′,s′(d′) = Qd′,s(d′).
Let E = {e′ : e′ < e, ie′(d) = 2}∪{e}. Then, clearly,

⋂
e′∈E range(ϕe′) is infinite,

and thus using Lemma 3, for large enough s′ > s, we can find, ald,s′ , . . . , ard,s′

such that ie′,s′(d) = 2 for e′ ∈ E, which makes Qd,s′(d) > Qd,s(d), contradicting
the choice of s. The claim follows.

Note above that re − le ≥ Qe+1(e + 1) for all possible values of Qe+1(e + 1),
and thus are−Qe+1(e+1) ∈ Ie. Let

A = {are−Qe+1(e+1) : e ∈ N}.

Claim 10. A is cohesive.
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To prove the claim, consider any total ϕe. If for all but finitely many d > e,
ie(d) = 0, then by Claim 9 range(ϕe) contains elements from only finitely many
Ie′ , and thus only finitely many elements of A. On the other hand, if, for all but
finitely many d > e, ie(d) = 2, then range(ϕe) contains all but finitely many Ie′ ,
and thus all but finitely many elements of A. The claim follows.

Claim 11. Suppose B ≤m A as witnessed by ϕe. Then, B is a left-r.e. set.

To prove the claim, first suppose that range(ϕe) ∩ A is finite. In this case B =
{y : ϕe(y) ∈ S} for some finite set S. Thus, B is recursive and a left-r.e. set.

Now suppose that range(ϕe)∩A is infinite. It follows that, for all but finitely
many d > e, ie(d) has value 2 (by Claims 8 and 9). Let d be large enough such
that Qe(d) = Qe(d′), for all d′ ≥ d. Consider a stage s0 such that for all d′ ≤ d,
for all s ≥ s0, Id′,s = Id′,s0 and Qd′,s(d′) = Qd′,s0(d

′). Define sk+1 > sk such
that, for d ≤ d′ ≤ d + k + 1, Qe,sk+1(d

′) = (j0, j1, . . . , je). Let

α(m, k) = arm−Qm+1,sk
(m+1),

and define Bk as the characteristic function of {y : ϕe(y) ∈ Ask
∩

⋃
r<d+k Ir,sk

}
where Ask

= {α(m, k) : m < d + k}.
The characteristic value of Bk as above converges to characteristic function

of B. To show that B is left-r.e., we need to show that Bk ≤lex Bk+1. For
this consider least d′ such that for m ≤ d′, Im,sk+1 = Im,sk

and Qm,sk+1(m) =
Qm,sk

(m), but

[Id′+1,sk+1 6= Id′+1,sk
or Qd′+1,sk+1(d

′ + 1) 6= Qd′+1,sk
(d′ + 1) or d′ = d + k + 1].

Note that d′ ≥ d. If d′ ≥ d + k, then clearly Bk ≤lex Bk+1. Otherwise, for
m < d′, we have that α(m, k) = α(m, k + 1). Also, Qd′+1,sk

< Qd′+1,sk+1 and
α(d′, k + 1) < α(d′, k), which implies that ϕ−1

e (α(d′, k + 1)) < ϕ−1
e (α(d′, k))

(as ϕ−1
e is monotonic on Id′,sk

, due to Qe,sk
(d′) = Qe,sk+1(d

′) = (j0, j1, . . . , je),
where je = 2). Thus, Bk ≤lex Bk+1. It follows that B is a left-r.e. set. �

Not every left-r.e. set is many-one closed left-r.e.: Besides Ω, a quite easy example
can be found by taking an r.e. and nonrecursive set A and considering the set

B = {2x : x ∈ A} ∪ {2x + 1 : x /∈ A}.

Then the complement of A is many-one reducbible to B but not a left-r.e. set.
In contrast to Theorem 4, one can also find cohesive sets with this property.

Theorem 12. There is a left-r.e. cohesive set A which is not a many-one closed
left-r.e. set.

Proof. In the following let Wd,s denote the set of elements of Wd below s which
are enumerated within s steps into Wd. Partition N into intervals Ii of length 2i:
Ii = {2i − 1, 2i, 2i + 1, . . . , 2i+1 − 2}. Furthermore, assign to every x the e-state
given as

qe,s(x) =
∑
d<e

2e−1−d ∗Wd,s(x).

We say that
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qe,s(Ii) = c iff c < 2e is the largest number satisfying qe,s(x) ≥ c for at
least 2i − 2i−e−1 · (c + 1) elements of Ii.

Here we let Je,i,s be a witness for the above fact in the way such that Je,i,s ⊆ Ii,
|Je,i,s| = 2i − 2i−e−1 · (c + 1) and qe,s(x) ≥ c for all x ∈ Je,i,s. Here we assume
that Je,i,s+1 6= Je,i,s implies that qe,s+1(Ii) > qe,s(Ii). It is easy to verify that
lims→∞ qe,s(Ii) converges for each e, i and thus, lims→∞ Je,i,s converges for each
e, i.

Define i0,s, i1,s, . . . such that the following properties are satisfied:
(a) for all e, s: ie,s < ie+1,s and ie,s+1 ≥ ie,s > 2e + 2;
(b) for all e, s, j with ie,s ≤ j ≤ s it holds that qe,s(Iie,s) ≥ qe,s(Ij).
(c) for all s, for the least e (if any) such that ie,s 6= ie,s+1 or Je,ie,s,s 6=

Je,ie,s+1,s+1: qe,s+1(Iie,s+1) > qe,s(Iie,s).

Note that such ij,s can be recursively defined. It is easy to verify by induction
that ie = lims→∞ ie,s converges. Furthermore, note that q0,s(Ii0,s) = 0 for all s
and J0,i0,s,s = Ii0,s for all s. Hence, i0,s = i0,0 for all s. Now we are ready to
define A.

Definition of As:
Let He,s = {x ∈ Je,ie,s,s : qe,s(x) = qe,s(Iie,s)} for all e.
Let xe,s be the (qe+1,s(Iie+1,s) + 1)-th element from above of He,s for all e.
Let As = {x0,s, x1,s, . . .}.

End Definition of As

Let A(x) = lims→∞As(x). One can verify that lims→∞ ie,s, lims→∞ qe,s(Iie,s
)

and lims→∞ Je,ie,s,s converge. Thus it is easy to verify that A is well defined. We
also let ie, Je,ie ,He, qe(x), qe(Ij) denote the limiting values of ie,s, Je,ie,s,s, He,s,
qe,s(x), qe,s(Ij), respetively.

Here, it should be noted that He,s has at least 2ie,s−e−1 elements. To see this,
let c = qe,s(Iie,s

) and note that Jie,s,s has at least 2i − 2i−e−1 · (c + 1) elements
of which less than 2ie,s − 2ie,s−e−1 · (c + 2) many x satisfy qe,s(x) > c while all x
satisfy qe,s(x) ≥ c. So at least 2ie,s−e−1 elements x of Je,ie,s,s satisfy qe,s(x) = c
and these are in He,s. As ie,s ≥ 2e+2, it follows that |He,s| ≥ 2e+1 and so there
is, for each possible value c′ of qe+1,s(Ie+1,s) < 2e+1, a (c′+1)-th largest element
of He,s. Thus every xe,s as defined above really exists. For each e, the sequence
of the xe,s converges to some value xe.

To show that (As)s∈N forms a left r.e. approximation, we need to show that
As ≤lex As+1. So consider the least e (if any) such that xe,s+1 6= xe,s. Note
that ie,s+1 = ie,s and Je,ie,s+1,s+1 = Je,ie,s,s, as otherwise e > 0 and xe−1,s+1 6=
xe−1,s. Hence He,s+1 ⊆ He,s and, for s′ = s, s+1, xe,s′ is the (qe+1,s′(Iie+1,s′ )+1)-
th element of He,s′ from above. As id,s+1 = id,s and Jd,id,s+1,s+1 = Jd,id,s,s for all
d ≤ e, it follows by rule (c) that qe+1,s+1(Ie+1,ie+1,s+1,s+1) ≥ qe+1,s(Ie+1,ie+1,s,s).
Hence xe,s+1 < xe,s and that implies that As+1 >lex As. So A is a left-r.e. set.

Now we show that A is cohesive. So consider any d, e, k such that d < e
and k ≥ 0. Then, we claim that qd+1(xe) ≥ qd+1(xe+k). To see this, sup-
pose 2kc ≤ qe+k(Iie+k

) ≤ 2kc + 2k − 1. Thus, at least 2i − 2i−e−k−1 · (2k ·
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c + 2k), many x in Iie+k
have qe+k(x) ≥ 2kc. Thus, 2i − 2i−e−1(c + 1) of x

in Iie+k
have qe(x) ≥ c and thus qe(Ie+k) ≥ c. Now, for xe+k ∈ He+k and

xe ∈ He, qd+1(xe+k) = bqe+k(Ie+k)/2k+e−d−1c < (c + 1)2k/2k+e−d−1, and
thus qd+1(xe+k) ≤ c/2e−d−1. On the other hand, qd+1(xe) = bqe(Ie)/2e−d−1c ≥
bc/2e−d−1c. Thus, qd+1(xe+k) ≤ qd+1(xe).

Thus, as A = {x0, x1, . . .}, for all d, qd+1(xe) is same for all but finitely many
e. For each d it follows that Wd(xe) is the same value for almost all e. Thus A
is cohesive.

Now consider B ≤m A via f where, for all i and x ∈ Ii, f(x) = max(Ii) +
min(Ii) − x. Note that f(x) = f−1(x). Thus, f also witnesses A ≤m B. Let
(As)s∈N be the left-r.e. approximation of A as given above and (Bs)s∈N be a
left-r.e. approximation of B. Then, the following holds for all e, s:

(∗) If the least e+1 elements x0,s, x1,s, . . . , xe,s of As satisfy that f(x0,s),
f(x1,s), . . . , f(xe,s) are the unique elements of Bs below max({Iie,s})
then x0 = x0,s, x1 = x1,s, . . . , xe = xe,s.

For a proof, assume that the above would be false for some e, s and let d be
the least index such that xd 6= xd,s; by the left-r.e.-ness of the approximation,
xd < xd,s. Furthermore, by (c), id,s = id as otherwise d > 0 and xd−1 6= xd−1,s.
So f(xd,s) < f(xd) and B∩{0, 1, . . . ,max(Iid

)} = {f(x0), f(x1), . . . , f(xd)}. But
{f(x0), f(x1), . . . , f(xd)} <lex {f(x0,s), f(x1,s), . . . , f(xd,s)} and hence B <lex

Bs, a contradiction to (Bs)s∈N being a left-r.e. approximation of B. So (∗) is
true. Now one can determine xe by searching for the first stage s where f(x0,s),
f(x1,s), . . . , f(xe,s) are the unique elements of B below max({Iie,s}) and then
one knows that xe = xe,s. Thus, we get that A is recursive, in contradiction to
A being cohesive. �

3 Ascending Closed Left-R.E. Sets

An ascending reduction is a recursive function f which satisfies f(x) ≤ f(x + 1)
for all x; B ≤asc A iff there is an ascending reduction f with B(x) = A(f(x))
for all x. A is called ascending closed left-r.e. iff every B ≤asc A is a left-r.e. set.

Let A[n] denote the string A(0)A(1) . . . A(n). Let C(x) denote the plain Kol-
mogorov complexity for x. That is, C(x) = min {log(y) : U(y) = x}, where U is
a fixed universal Turing machine. The function mapping n to C(A[n]) is called
the initial segment complexity of A and the next result shows that the initial
segment complexity of ascending closed left-r.e. sets is sublinear.

Proposition 13. If A is an ascending closed left-r.e. set then the initial segment
complexity n 7→ C(A[n]) is a function of sublinear order.

Proof. Let c be any constant, and let Gn denote the interval {x : x ≤ dn/ce}.
For d < c, define Bd by Bd(x) = A(cx + d). Thus Bd ≤asc A. Let (Bd

s )s∈N
be left-r.e. approximations of Bd. For each n, let dn < c be the index for which
(Bdn

s ∩Gn)s∈N converges slowest. Then given dn and Bdn∩Gn, we can determine
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Bd ∩ Gn for each d < c and therefore A[n] as well. Hence, for some constant
bc and for all n, C(A[n]) ≤ n/c + bc. This shows that the complexity function
n 7→ C(A[n]) has sublinear order. �

Theorem 14. Let g be a recursive and unbounded non-decreasing function.
Then there is an ascending closed left-r.e. set A such that n 7→ C(A[n]) has
at least the order n/g(n).

Proof. Without loss of generality assume 1 ≤ g(i) ≤ i. Partition N into intervals
Ii of length 2i: Ii = {2i−1, 2i, 2i +1, . . . , 2i+1−2}. For each Ii, we will construct
a subset Ji = lims→∞ Ji,s. Let Ji,0 = Ii. At stage s, if there is an e < log(g(i))
(which has not been handled earlier) and an x such that

ϕe(0)↓≤ ϕe(1)↓≤ ϕe(2)↓≤ . . . ≤ ϕe(x)↓ and ϕe(x) > max(Ii).

Then, choose one such e and the corresponding x. Determine the two subsets
Ji,s∩{ϕe(y) : y ≤ x} and Ji,s−{ϕe(y) : y ≤ x}, and let Ji,s+1 be that one of these
two subsets which has the higher cardinality (in case of tie, choose arbitrarily).
Note that during the approximation process Ji,s gets halved at most log(g(i))
times and therefore the limit Ji has at least 2i/g(i) many elements.

Define A so that the characteristic function of A on the set Ji, in ascending
order, is the binary representation of the least number ai with C(ai) ≥ 2i/g(i)−2
(where as many leading zeros are added as needed to use up all bits of Ji); A
has no elements outside the sets Ji. Note that there is a recursive approximation
ai,s to ai from below.

The set A is left-r.e. as we can have an approximation As which takes on
each Ji,s the characteristic function of the binary representation of ai,s (with
sufficiently many leading zeros added in); As is 0 on Ii − Ji,s. If the interval Ji,s

shrinks to Ji,s+1, then the bits of ai,s move to the left and some leading zeros
are skipped; if ai,s+1 > ai,s then the bits are also ascending in lexicographic
manner. Hence the resulting approximation is a left-r.e. approximation which
runs independently on each interval Ii.

Now suppose B ≤asc A via a recursive non-decreasing function ϕe. If the
range of ϕe is finite, then B is clearly recursive. Now suppose that range of ϕe is
infinite. Let r be the greatest index satisfying g(r) ≤ e. Let s0 = s1 = s2 = . . . =
sr be so large that As0(x) = A(x) for all x ≤ max(Ir). For k ≥ r, let sk+1 > sk

be such that for all s ≥ sk+1 either Jk+1,s ⊆ range(ϕe) or Jk+1,s∩range(ϕe) = ∅.
Note that sk+1 can be computed effectively from k.

Define the approximation (Bk)k∈N of B as

Bk(x) =
{

Ask
(ϕe(x)), if ϕe(x) ≤ max(Ik);

0, if ϕe(x) > max(Ik).

This approximation is a left-r.e. approximation to B as it starts to consider the
interval Ik, for k > r, only after stage sk such that for all s ≥ sk, Jk,s ⊆ range(ϕe)
or Jk,s ∩ range(ϕe) = ∅. In the first case all the bits of Jk,sk

are copied order-
preservingly into Bk and the left-r.e. approximation to A on Ik is turned into a
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left-r.e. approximation to B on the preimage of Ik under ϕe; in the second case
all x with ϕe(x) ∈ Ik satisfy ϕe(x) /∈ Jk,sk

and therefore Bs(x) = 0 for these x
and all stages s. So A is an ascending closed left-r.e. set.

Furthermore, C(ai) ≥ 2i/g(i)− 2. Also, we can compute ai from the number
i, the string A[max(Ii)] and the number of stages s at which Ji,s+1 6= Ji,s. Hence,
for some b and almost all i we have

C(A[max(Ii)]) ≥ C(ai)− log i− log g(i)− b ≥ 2i

2g(i)
.

Taking now n with min(Ii+1) ≤ n ≤ max(Ii+1) and using that g is non-
decreasing, we have that C(A[n]) ≥ n

8g(n) for almost all n. This proves the
postulated bound. �

Another important type of sets are the 1-generic and weakly 1-generic sets [8].
As one cannot have left-r.e. 1-generic sets, one might ask for which reducibilities
r there are r-closed left-r.e. weakly 1-generic sets. The next result shows that
one can make such sets for the notion of ascending closed left-r.e. sets.

Recall that a set is weakly 1-generic iff for every recursive function f from
numbers to strings there exist n and m with f(n) = A(n+1)A(n+2) . . . A(n+m).
The difference between weakly 1-generic and 1-generic is that here one requires
the f to be total and independent of the values of A below n.

Theorem 15. There is an ascending closed left-r.e. weakly 1-generic set A.

Proof. We will be defining moving markers ae, be and ce, where ae ≤ be ≤ ce,
a0 = 0 and ae+1 = ce + 1. Intuitively, we want to use the part A(be), A(be +
1), . . . , A(ce) to ensure weak 1-genericity (by making A(be)A(be + 1) . . . A(be +
|ϕe(be)|−1) = ϕe(be), if ϕe(be) is defined). The part A(ae), . . . , A(be−1) is used
to ensure that A is ascending closed left-r.e.

At the beginning of stage s, the markers have values ae,s, be,s and ce,s respec-
tively. We will have that ae = lims→∞ ae,s, be = lims→∞ be,s, ce = lims→∞ ce,s.

Let a0,s = 0 for all s. Let ae+1,s = ce,s + 1, for all e, s. Initially ae,0 = be,0 =
ce,0 = e, and A0 = 0∞. We will also use sets Je′,e,s, for e′ < e. These sets are
useful for defining A in such a way that, if ϕe′ witnesses an ascending reduction
from B to A, then B is left-r.e. Initially, for all e, for e′ < e, Je′,e,0 = ∅. Below,
for ease of presentation, we will only describe the changes from stage s to stage
s+1; all variables which are not explicitly updated will retain the corresponding
values from stage s.

Stage s:
1. If there exists an e ≤ s such that either Cond e.1 or Cond e.2 hold, then

choose least such e and go to step 2. Otherwise go to stage s + 1.
– Cond e.1: There exists e′ < e such that, Je′,e,s = ∅ and range(ϕe′)∩
{x : x > ce,s} contains at least 2e + 2 elements as can be verified
within s steps.

– Cond e.2: ce,s = be,s and ϕe(be,s)↓ within s steps.
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2. Fix least e such that Cond e.1 or Cond e.2 holds. If Cond e.1 holds, then
go to step 3. Otherwise go to step 4.

3. Fix one e′ such that Cond e.1 holds for e′.
Let Je′,e,s+1 be 2e + 2 elements from range(ϕe′) ∩ {x : x > ce,s}.
Update be,s+1 = max(Je′,e,s+1) + 1, ce,s+1 = be,s+1.
For m > e, let am,s+1 = bm,s+1 = cm,s+1 = cm−1,s+1 + 1.
For m > e, and m′ < m, let Jm′,m,s+1 = ∅.
Let As+1 be obtained from As by (i) deleting all elements ≥ be,s, and
by (ii) inserting, for each m < e such that Jm,e,s 6= ∅, one new element
(which was not earlier in As) from Jm,e,s.
Go to stage s + 1.

4. Suppose ϕe(be,s) = y.
Let ce,s+1 = be,s + |y|+ 1.
For m > e, let am,s+1 = bm,s+1 = cm,s+1 = cm−1,s+1 + 1.
For m > e, and m′ < m, let Jm′,m,s+1 = ∅.
Let As+1 be obtained from As by (i) deleting all elements ≥ be,s + |y|+1,
and by (ii) inserting, for each m < e such that Jm,e,s 6= ∅, one new
element (which was not earlier in As) from Jm,e,s, and by setting (iii)
As+1(be,s) . . . As+1(be,s + |y| − 1) = y,
Go to stage s + 1.

End stage s.

It can be shown by induction on e that lims→∞ ae,s, lims→∞ be,s, lims→∞ ce,s

indeed exist. For this, for e′ < e, after ae′ , be′ and ce′ have reached their final
value, ae does not get modified any further (ae is set to ce−1 + 1, in the last
stage in which ce−1 gets modified). Furthermore, once ae reaches its final value,
be can change at most e times due to Cond e.1 holding for some e′ < e (and thus
execution of step 3). Once be reaches its final value, ce gets modified at most once
due to success of Cond e.2 (and thus execution of step 4). The “2e + 2” in the
algorithm description suffices since each index e has e indices below it, and, after
all variables ae′ , be′ , ce′ , with e′ < e have stabilised, we encounter Cond e.1 at
most once for each e′ < e, and correspondingly Cond e.2 once in the beginning,
and at most once after each modification of be via Cond e.1. Also, note that, for
m < e, Jm,e,s ⊆ {x : ae,s ≤ x < be,s}.

Let A(x) = lims→∞As(x). Now we show that A is weakly 1-generic. Sup-
pose ae′ , be′ , ce′ , for e′ ≤ e, reach their final values before stage s. If ϕe(be)
is defined then Cond e.2 succeeds in some stage s′ ≥ s, and step 4 defines
As′+1(be) . . . As′+1(be + |y| − 1) = y, where ϕe(be) = y. Furthermore, A never
gets modified on inputs ≤ ce,s′+1 = ce after stage s′.

Now suppose B ≤asc A as witnessed by ϕr. If range(ϕr) is finite, then clearly
B is recursive. So assume range(ϕr) is infinite. Thus, for each e > r, Cond e.1
will succeed (eventually) for e′ = r, after ae has achieved its final value.

Define s0 such that am, bm, cm, (for m ≤ r) as well as A[cr] have reached
their final values by stage s0. Let sk+1 > sk such that Jr,r+j,sk+1 6= ∅, for all
j ≤ k + 1. Let Bk = {x : ϕr(x) ∈ Ask

and ϕr(x) ≤ cr+k,sk
}.

Clearly B(x) = limk→∞Bk(x). Thus, to show that B is left-r.e. it suffices to
show that Bk ≤lex Bk+1. So consider the least x ≤ cr+k,sk

, if any, such that in
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some stage s′, sk ≤ s′ < sk+1, Cond e.1 or Cond e.2 succeeds, and x ≥ be,s′ (if
there is no such x, then we are done). Clearly, e ≥ r by hypothesis on s0. Note
that for j ≤ k, Jr,r+j,sk

6= ∅. Thus, Jr,r+j,s′ 6= ∅. Thus, in stage s′, As′+1(x′) is
set to 1, for some x′ ∈ Jr,e,s′ such that Ask

(x′) = 0. Note that x′ < be′,s ≤ x.
Let y′ be least such that ϕr(y′) = x′. Thus,

Bk ≤lex As′+1(ϕr(0))As′+1(ϕr(1)) . . . As′+1(ϕr(y′)) ≤lex Bk+1

as desired. �

Remark 16. Note that one can adjust the proof to show that there is a many-
one closed left-r.e. and weakly 1-generic set. For this, main change in the con-
struction would be to change Cond e.1 above to:

Cond e.1: There exists e′ < e such that Je′,e,s = ∅, and for some z, z′, for all
x ≤ z, ϕe′(x)↓ ≤ z′ within s steps, and {ϕe′(x) : x ≤ z} ∩ {x : ce,s < x ≤ z′}
contains at least 2e + 2 elements.

Then, setting Je′,e,s+1 as in step 3, and making be to be > z′, would achieve
the goal, as any element in A which is larger than z′ would be able to influence
membership in B = {x′ : ϕ(x′) ∈ A}, only for x > z. We omit the details.

The next result shows that every r-cohesive set is ascending closed left-r.e. set.
Thus, r-cohesive left-r.e. sets form a subclass of ascending closed left-r.e. sets.
Recall that every cohesive set is r-cohesive.

Theorem 17. Every left-r.e. r-cohesive set is an ascending closed left-r.e. set.

Proof. Suppose A is a left-r.e. r-cohesive set. Suppose B ≤asc A. Let (As)s∈N
be the left-r.e. approximation of A and f be a non-decreasing recursive function
which witnesses that B ≤asc A. If range(f)∩A is finite, then clearly B is recur-
sive. So assume range(f) ∩ A is infinite. But then, for some x and for all y ≥ x,
y ∈ A implies y ∈ range(f). Fix this x.

Let s0 be such that for all s ≥ s0, for all y ≤ x, As(y) = A(y); let sn+1 > sn

be such that the least n + 1 members of Asn+1 − {y : y ≤ x} exist and are in
range(f); note that one can effectively find such sn+1 from sn. Let

Bn(y) =


A(f(y)), if f(y) ≤ x;
1, if f(y) is among the least n members

of Asn which are greater than x;
0, otherwise.

It is easy to verify that Bn is an approximation of B. To see that (Bn)n∈N form a
left-r.e. approximation, we need to show that Bn ≤lex Bn+1 for all n. So consider
any n. If Bn 6⊆ Bn+1, then there exists least y such that y ∈ Bn − Bn+1. Then
f(y) is among the first n members of Asn which are greater than x and not among
the first n+1 members of Asn+1 which are greater than x. As (As)s∈N is left-r.e.
approximation, we have that Asn+1 must contain a f(y′), x < f(y′) < f(y), such
that f(y′) 6∈ Asn . But, then y′′ ∈ Bn+1 − Bn, for some y′′ ≤ y′. Thus, (Bn)n∈N
is a left-r.e. approximation of B. �
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