Closed Left-R.E. Sets*

Sanjay Jain¹, Frank Stephan^{1,2} and Jason Teutsch³

 ¹ Department of Computer Science, National University of Singapore, Singapore 117543, Republic of Singapore. sanjay@comp.nus.edu.sg
² Department of Mathematics, National University of Singapore, Singapore 119076, Republic of Singapore. fstephan@comp.nus.edu.sg
³ Institut für Informatik, Universität Heidelberg, Im Neuenheimer Feld 294, 69120 Heidelberg, Germany. teutsch@math.uni-heidelberg.de

Abstract. A set is called r-closed left-r.e. iff every set r-reducible to it is also a left-r.e. set. It is shown that some but not all left-r.e. cohesive sets are many-one closed left-r.e. sets. Ascending reductions are many-one reductions via an ascending function; left-r.e. cohesive sets are also ascening closed left-r.e. sets. Furthermore, it is shown that there is a weakly 1-generic many-one closed left-r.e. set.

1 Introduction

When studying the limits of computation, one often looks at recursively enumerable (r.e.) and left-r.e. sets. Natural examples of the r.e. sets are Diophantine sets and the word problem of a finitely generated group [8, 11, 13]. The best-known left-r.e. set is Chaitin's Ω [1, 14]. The present work focuses on a special subclass of the left-r.e. sets, namely those which are closed downwards with respect to the many-one or ascending reducibilities. While all r.e. sets exhibit closure under various reducibilities — one-one, many-one, conjunctive, disjunctive, positive truth-table and enumeration [8, 11, 13] — some left-r.e. sets, such as Chaitin's Ω , fail to do so.

We show that the classes of many-one closed left-r.e. sets and r.e. sets do not coincide: there exist both, cohesive and weakly 1-generic sets, which are many-one closed left-r.e. but not recursively enumerable, see Theorems 4, 15 and Remark 16. We also show that there are cohesive left-r.e. sets which are not many-one closed left-r.e., see Theorem 12.

We introduce the more restrictive notion of ascending reducibility. We show that cohesive and even r-cohesive left-r.e. sets are already ascending closed leftr.e. sets, see Theorem 17.

^{*} S. Jain has been supported in part by NUS grants C252-000-087-001 and R252-000-420-112; F. Stephan has been supported in part by NUS grant R252-000-420-112; J. Teutsch has been supported by the Deutsche Forschungsgemeinschaft grant ME 1806/3-1.

Kolmogorov complexity measures the information content of strings; the applications of this notion range from quantifying the amount of algorithmic randomness [2, 7] to establishing lower bounds on the average running time of an algorithm [5]. An important tool to measure the complexity of a set A is the initial segment complexity which maps each n to the Kolmogorov complexity of $A(0)A(1) \dots A(n)$. We show that the initial segment complexity of ascending closed left-r.e. sets has to be sublinear, see Proposition 13. We also show that the initial segment complexity of an ascending closed left-r.e. sets can be $\Omega(n/f(n))$ for any unbounded increasing recursive function f, which is close to optimal, see Theorem 14.

2 Many-One Closed Left-R.E. Sets

Post [9] introduced many-one reducibility by defining that a set B many-one reduces to a set A, denoted $A \leq_{\mathrm{m}} B$, if there exists a recursive function f such that $x \in A \iff f(x) \in B$. Below, we formally define a left-r.e. set and many-one closed left-r.e. set.

Definition 1. A set A is *left-r.e.* iff there is a uniformly recursive approximation A_0, A_1, \ldots to A such that $A_s \leq_{\text{lex}} A_{s+1}$ for all s. Here $A_s \leq_{\text{lex}} A_{s+1}$ means that either $A_s = A_{s+1}$ or the least element x of the symmetric difference satisfies $x \in A_{s+1}$. If every set many-one reducible to A is left-r.e. then we say that A is a many-one closed left-r.e. set.

It is well-known that every set which is many-one reducible to an r.e. set is also itself r.e. [11]; hence every r.e. set is a many-one closed left-r.e. set. Furthermore, a set is recursive iff it is a bounded truth-table (btt) closed left-r.e. set because the complement of any set btt-reduces to the set itself, see [8] for discussion of btt-reductions.

Definition 2 (Friedberg [3], Lachlan [4], Myhill [6] and Robinson [10]). An infinite set A is *cohesive* iff for every r.e. set B either $B \cap A$ or $\overline{B} \cap A$ is finite. An infinite set A is *r-cohesive* iff for every recursive set B either $A \cap B$ or $A \cap \overline{B}$ is finite.

Cohesive sets have been studied widely in recursion theory; they emerged as the culmination of Post's unsuccessful attempts to generate a Turing incomplete r.e. set [13]. The next result gives a cohesive many-one closed left-r.e. set. We remark that Soare [12] already discovered a cohesive left-r.e. set.

The following notational conventions will be useful. Let

$$\varphi_{e,s}(x) = \begin{cases} \varphi_e(x), & \text{if } \varphi_e \text{ halts on input } y \text{ within } s \text{ steps for all } y \leq x; \\ \uparrow, & \text{otherwise.} \end{cases}$$

Note that if φ_e is total, then $\bigcup_s \varphi_{e,s} = \varphi_e$. Otherwise, the domain of $\bigcup_s \varphi_{e,s}$ is some initial segment of \mathbb{N} . Let $\varphi_e^{-1}(x) = \min\{y : \varphi_e(y) = x\}$ and $\varphi_{e,s}^{-1}(x) = \min\{y : \varphi_{e,s}(y) = x\}$.

Lemma 3. Suppose $\varphi_{e_1}, \varphi_{e_2}, \ldots, \varphi_{e_k}$ are total. Furthermore, suppose that the set $S = \operatorname{range}(\varphi_{e_1}) \cap \operatorname{range}(\varphi_{e_2}) \cap \ldots \cap \operatorname{range}(\varphi_{e_k})$ is infinite. Then, for all a, r, there exist $a_1, a_2, \ldots, a_r \in S$ such that $a < a_1 < a_2 < \ldots < a_r$ and, for n, m with $1 \leq n < r$ and $1 \leq m \leq k$ it holds that $\varphi_{e_m}^{-1}(a_n) < \varphi_{e_m}^{-1}(a_{n+1})$.

Proof. Let a_1 be any member of S which is greater than a. For i with $2 \le i \le r$, let $a_i \in S$ be chosen such that $a_i > a_{i-1}$ and for m with $1 \le m \le k$, $\varphi_{e_m}^{-1}(a_{i-1}) < \varphi_{e_m}^{-1}(a_i)$. Note that there exist such $a_i \in S$, as S is infinite and only finitely many elements x can have $\varphi_{e_m}^{-1}(x) \le \varphi_{e_m}^{-1}(a_{i-1})$. \Box

Theorem 4. There is a cohesive many-one closed left-r.e. set A.

Proof. We will use moving markers, a_0, a_1, \ldots ; let $a_{m,s}$ denote the value of marker a_m as at the beginning of stage s. Let $l_0 = 0$, $l_{d+1} = r_d + 1$, $r_d = l_d + 3^{d+2} + 1$. We let $I_{d,s} = \{a_{m,s} : l_d \leq m \leq r_d\}$. For all m, s, we will have the following property:

of all m, s, we will have the following prop

(R1): $a_{m,s} < a_{m+1,s}$.

Define the predicate $P_{e,s}(d)$ as

 $P_{e,s}(d)$: $(\exists a_{m,s}, a_{n,s} \in I_{d,s}) [a_{m,s} < a_{n,s} \text{ and } \varphi_{e,s}^{-1}(a_{m,s}) > \varphi_{e,s}^{-1}(a_{n,s})].$ For e < d, let

$$i_{e,s}(d) = \begin{cases} 0, & \text{if } I_{d,s} \not\subseteq \operatorname{range}(\varphi_{e,s}); \\ 1, & \text{if } I_{d,s} \subseteq \operatorname{range}(\varphi_{e,s}) \text{ and } P_{e,s}(d); \\ 2, & \text{if } I_{d,s} \subseteq \operatorname{range}(\varphi_{e,s}) \text{ and not } P_{e,s}(d). \end{cases}$$

For $e \leq d$, let $Q_{e,s}(d) = (i_{0,s}(d), i_{1,s}(d), \dots, i_{e,s}(d))$. Note that one can consider $Q_{e,s}(d)$ as a number (base 3), with $i_{0,s}(d)$ as being the most significant bit. So one can talk about $Q_{e,s}(d) > Q_{e',s'}(d')$ etc.

We let $a_m = \lim_{s \to \infty} a_{m,s}$, $I_d = \lim_{s \to \infty} I_{d,s}$, $i_e(d) = \lim_{s \to \infty} i_{e,s}(d)$, and $Q_e(d) = \lim_{s \to \infty} Q_{e,s}(d) = (i_0(d), i_1(d), \dots, i_e(d))$ (we will show later that these limits exist).

Intuitively, the aim of the construction of the moving markers a_m is to maximise the values of $Q_e(e)$ with higher priority given for lower values of e. The required set A will be defined later by choosing one element from each I_e . We define $a_{m,s}$ via the staging construction below. Stage s defines $a_{m,s+1}$.

Initially, let $a_{m,0} = m$.

Stage s: Check if, there exists $e \leq s$, such that, by using $a_{m,s+1} = a_{m,s}$ for $m < l_e$, some values of $a_{m,s+1} \leq s$ for $l_e \leq m \leq r_e$, and any values for $a_{m,s+1}$ for $m > r_e$ such that (R1) is satisfied, we have $Q_{e,s+1}(e) > Q_{e,s}(e)$. If so, then update the values of $a_{m,s+1}$ to the values witnessing above for

the least such e. If no such e exists, then $a_{m,s+1} = a_{m,s}$, for all m. End Stage s

Claim 5. For all e,

(a) for all m with $l_e \leq m \leq r_e$, $\lim_{e\to\infty} Q_{e,s}(e)$ and $\lim_{s\to\infty} a_{m,s}$ converge.

(b) $\lim_{s\to\infty} I_{e,s}$ converges.

(c) for all $d \ge e$, $\lim_{s \to \infty} i_{e,s}(d)$ converges.

(a) Follows by induction on e and the fact that $Q_{e,s}(e)$ is bounded. Now (b) and (c) follow by definitions. We let a_m , I_e , $i_e(d)$, and $Q_e(d)$ respectively denote $\lim_{s\to\infty} a_{m,s}$, $\lim_{s\to\infty} I_{e,s}$, $\lim_{s\to\infty} i_{e,s}(d)$, and $\lim_{s\to\infty} Q_{e,s}(d)$.

Claim 6. For all d and all $e \leq d$, $Q_e(d+1) \leq Q_e(d)$.

To prove the claim, suppose by way of contradiction that some least d and a corresponding least $e \leq d$ does not satisfy the claim. Let s be large enough such that for all $d' \leq d+1$, s' > s, $I_{d',s'} = I_{d',s}$ and $Q_{d',s'}(d') = Q_{d',s}(d')$. Then, in stage s, one could choose $a_{l_d,s+1}, \ldots, a_{r_d,s+1}$ to be $a_{l_{d+1}}, \ldots, a_{r_d+l_{d+1}-l_d}$, which makes $Q_{e,s+1}(d) > Q_{e,s}(d)$, and thus $Q_{d,s+1}(d) > Q_{d,s}(d)$, in contradiction to the choice of s. It follows from Claim 6 that, for all e, for all but finitely many $d \geq e$, $Q_e(d) = Q_e(d+1)$. Thus we get the following:

Claim 7. For all e, for all but finitely many d > e, $i_e(d+1) = i_e(d)$. We let $j_e = \lim_{d \to \infty} i_e(d)$.

Claim 8. For all $e, j_e \in \{0, 2\}$.

To prove the claim, suppose by way of contradiction that $j_e = 1$, for some least e. Choose d large enough such that, for all $e' \leq e$, for all $d' \geq d$, $i_{e'}(d') = j_{e'}$. Consider a large enough stage s such that, for all $d' \leq d$, for all $s' \geq s$, $I_{d',s'} = I_{d',s}$ and $Q_{d',s'}(d') = Q_{d',s}(d')$. Then we could make $Q_{e,s'}(d) > Q_{e,s}(d)$, for large enough s' > s by choosing $a_{l_d,s'}, \ldots, a_{r_d,s'}$ (with $a_{l_d,s'} > a_{l_d}$) appropriately such that for all $e' \leq e$, if $I_d \subseteq \operatorname{range}(\varphi_{e'})$, then $\varphi_{e'}^{-1}(a_{m,s'}) < \varphi_{e'}^{-1}(a_{n,s'})$ for $l_d \leq m < n \leq r_d$. (It is possible to choose such values as, for $e' \leq e$, if $I_d \subseteq \operatorname{range}(\varphi_{e'})$, then $I_{d'} \subseteq \operatorname{range}(\varphi_{e'})$ for all d' > d, and then we can use Lemma 3.) But this contradicts the choice of s.

Claim 9. For all e, for all but finitely many $d \ge e$, $i_e(d) = 0$ implies, for all but finitely many d, range $(\varphi_e) \cap I_d = \emptyset$.

To prove the claim, suppose by way of contradiction that e is such that for all but finitely many $d \ge e$, $i_e(d) = 0$, but for infinitely many d, range $(\varphi_e) \cap I_d \ne \emptyset$. Fix least such e, and let d be such that (i) for all $e' \le e$, for all $d' \ge d$, $Q_e(d') = Q_e(d)$, and (ii) for all e' < e, if $i_{e'}(d) = 0$, then for all $d' \ge d$, range $(\varphi_{e'}) \cap I_{d'} = \emptyset$. Let sbe such that for all $d' \le d$, for all $s' \ge s$, $I_{d',s'} = I_{d',s}$ and $Q_{d',s'}(d') = Q_{d',s}(d')$. Let $E = \{e' : e' < e, i_{e'}(d) = 2\} \cup \{e\}$. Then, clearly, $\bigcap_{e' \in E} \operatorname{range}(\varphi_{e'})$ is infinite, and thus using Lemma 3, for large enough s' > s, we can find, $a_{l_d,s'}, \ldots, a_{r_d,s'}$ such that $i_{e',s'}(d) = 2$ for $e' \in E$, which makes $Q_{d,s'}(d) > Q_{d,s}(d)$, contradicting the choice of s. The claim follows.

Note above that $r_e - l_e \ge Q_{e+1}(e+1)$ for all possible values of $Q_{e+1}(e+1)$, and thus $a_{r_e-Q_{e+1}(e+1)} \in I_e$. Let

$$A = \{a_{r_e - Q_{e+1}(e+1)} : e \in \mathbb{N}\}.$$

Claim 10. A is cohesive.

To prove the claim, consider any total φ_e . If for all but finitely many d > e, $i_e(d) = 0$, then by Claim 9 range(φ_e) contains elements from only finitely many $I_{e'}$, and thus only finitely many elements of A. On the other hand, if, for all but finitely many d > e, $i_e(d) = 2$, then range(φ_e) contains all but finitely many $I_{e'}$, and thus all but finitely many elements of A. The claim follows.

Claim 11. Suppose $B \leq_{m} A$ as witnessed by φ_{e} . Then, B is a left-r.e. set.

To prove the claim, first suppose that range(φ_e) $\cap A$ is finite. In this case $B = \{y : \varphi_e(y) \in S\}$ for some finite set S. Thus, B is recursive and a left-r.e. set.

Now suppose that range(φ_e) $\cap A$ is infinite. It follows that, for all but finitely many d > e, $i_e(d)$ has value 2 (by Claims 8 and 9). Let d be large enough such that $Q_e(d) = Q_e(d')$, for all $d' \ge d$. Consider a stage s_0 such that for all $d' \le d$, for all $s \ge s_0$, $I_{d',s} = I_{d',s_0}$ and $Q_{d',s}(d') = Q_{d',s_0}(d')$. Define $s_{k+1} > s_k$ such that, for $d \le d' \le d + k + 1$, $Q_{e,s_{k+1}}(d') = (j_0, j_1, \ldots, j_e)$. Let

$$\alpha(m,k) = a_{r_m - Q_{m+1,s_k}(m+1)},$$

and define B_k as the characteristic function of $\{y : \varphi_e(y) \in A_{s_k} \cap \bigcup_{r < d+k} I_{r,s_k}\}$ where $A_{s_k} = \{\alpha(m,k) : m < d+k\}.$

The characteristic value of B_k as above converges to characteristic function of B. To show that B is left-r.e., we need to show that $B_k \leq_{\text{lex}} B_{k+1}$. For this consider least d' such that for $m \leq d'$, $I_{m,s_{k+1}} = I_{m,s_k}$ and $Q_{m,s_{k+1}}(m) = Q_{m,s_k}(m)$, but

$$[I_{d'+1,s_{k+1}} \neq I_{d'+1,s_k} \text{ or } Q_{d'+1,s_{k+1}}(d'+1) \neq Q_{d'+1,s_k}(d'+1) \text{ or } d' = d+k+1].$$

Note that $d' \geq d$. If $d' \geq d + k$, then clearly $B_k \leq_{\text{lex}} B_{k+1}$. Otherwise, for m < d', we have that $\alpha(m, k) = \alpha(m, k+1)$. Also, $Q_{d'+1,s_k} < Q_{d'+1,s_{k+1}}$ and $\alpha(d', k+1) < \alpha(d', k)$, which implies that $\varphi_e^{-1}(\alpha(d', k+1)) < \varphi_e^{-1}(\alpha(d', k))$ (as φ_e^{-1} is monotonic on I_{d',s_k} , due to $Q_{e,s_k}(d') = Q_{e,s_{k+1}}(d') = (j_0, j_1, \dots, j_e)$, where $j_e = 2$). Thus, $B_k \leq_{\text{lex}} B_{k+1}$. It follows that B is a left-r.e. set. \Box

Not every left-r.e. set is many-one closed left-r.e.: Besides Ω , a quite easy example can be found by taking an r.e. and nonrecursive set A and considering the set

$$B = \{2x : x \in A\} \cup \{2x + 1 : x \notin A\}.$$

Then the complement of A is many-one reducible to B but not a left-r.e. set. In contrast to Theorem 4, one can also find cohesive sets with this property.

Theorem 12. There is a left-r.e. cohesive set A which is not a many-one closed left-r.e. set.

Proof. In the following let $W_{d,s}$ denote the set of elements of W_d below s which are enumerated within s steps into W_d . Partition \mathbb{N} into intervals I_i of length 2^i : $I_i = \{2^i - 1, 2^i, 2^i + 1, \ldots, 2^{i+1} - 2\}$. Furthermore, assign to every x the e-state given as

$$q_{e,s}(x) = \sum_{d < e} 2^{e-1-d} * W_{d,s}(x).$$

We say that

 $q_{e,s}(I_i) = c$ iff $c < 2^e$ is the largest number satisfying $q_{e,s}(x) \ge c$ for at least $2^i - 2^{i-e-1} \cdot (c+1)$ elements of I_i .

Here we let $J_{e,i,s}$ be a witness for the above fact in the way such that $J_{e,i,s} \subseteq I_i$, $|J_{e,i,s}| = 2^i - 2^{i-e-1} \cdot (c+1)$ and $q_{e,s}(x) \ge c$ for all $x \in J_{e,i,s}$. Here we assume that $J_{e,i,s+1} \ne J_{e,i,s}$ implies that $q_{e,s+1}(I_i) > q_{e,s}(I_i)$. It is easy to verify that $\lim_{s\to\infty} q_{e,s}(I_i)$ converges for each e, i and thus, $\lim_{s\to\infty} J_{e,i,s}$ converges for each e, i.

Define $i_{0,s}, i_{1,s}, \ldots$ such that the following properties are satisfied:

- (a) for all $e, s: i_{e,s} < i_{e+1,s}$ and $i_{e,s+1} \ge i_{e,s} > 2e+2$;
- (b) for all e, s, j with $i_{e,s} \leq j \leq s$ it holds that $q_{e,s}(I_{i_{e,s}}) \geq q_{e,s}(I_j)$.
- (c) for all s, for the least e (if any) such that $i_{e,s} \neq i_{e,s+1}$ or $J_{e,i_{e,s},s} \neq J_{e,i_{e,s+1},s+1}$: $q_{e,s+1}(I_{i_{e,s+1}}) > q_{e,s}(I_{i_{e,s}})$.

Note that such $i_{j,s}$ can be recursively defined. It is easy to verify by induction that $i_e = \lim_{s \to \infty} i_{e,s}$ converges. Furthermore, note that $q_{0,s}(I_{i_{0,s}}) = 0$ for all s and $J_{0,i_{0,s},s} = I_{i_{0,s}}$ for all s. Hence, $i_{0,s} = i_{0,0}$ for all s. Now we are ready to define A.

Definition of A_s :

6

Let $H_{e,s} = \{x \in J_{e,i_{e,s},s} : q_{e,s}(x) = q_{e,s}(I_{i_{e,s}})\}$ for all e.

Let $x_{e,s}$ be the $(q_{e+1,s}(I_{i_{e+1,s}})+1)$ -th element from above of $H_{e,s}$ for all e. Let $A_s = \{x_{0,s}, x_{1,s}, \ldots\}$.

End Definition of A_s

Let $A(x) = \lim_{s\to\infty} A_s(x)$. One can verify that $\lim_{s\to\infty} i_{e,s}$, $\lim_{s\to\infty} q_{e,s}(I_{i_{e,s}})$ and $\lim_{s\to\infty} J_{e,i_{e,s},s}$ converge. Thus it is easy to verify that A is well defined. We also let $i_e, J_{e,i_e}, H_e, q_e(x), q_e(I_j)$ denote the limiting values of $i_{e,s}, J_{e,i_{e,s},s}, H_{e,s}, q_{e,s}(x), q_{e,s}(I_j)$, respectively.

Here, it should be noted that $H_{e,s}$ has at least $2^{i_{e,s}-e-1}$ elements. To see this, let $c = q_{e,s}(I_{i_{e,s}})$ and note that $J_{i_{e,s},s}$ has at least $2^i - 2^{i-e-1} \cdot (c+1)$ elements of which less than $2^{i_{e,s}} - 2^{i_{e,s}-e-1} \cdot (c+2)$ many x satisfy $q_{e,s}(x) > c$ while all xsatisfy $q_{e,s}(x) \ge c$. So at least $2^{i_{e,s}-e-1}$ elements x of $J_{e,i_{e,s},s}$ satisfy $q_{e,s}(x) = c$ and these are in $H_{e,s}$. As $i_{e,s} \ge 2e+2$, it follows that $|H_{e,s}| \ge 2^{e+1}$ and so there is, for each possible value c' of $q_{e+1,s}(I_{e+1,s}) < 2^{e+1}$, a (c'+1)-th largest element of $H_{e,s}$. Thus every $x_{e,s}$ as defined above really exists. For each e, the sequence of the $x_{e,s}$ converges to some value x_e .

To show that $(A_s)_{s\in\mathbb{N}}$ forms a left r.e. approximation, we need to show that $A_s \leq_{\text{lex}} A_{s+1}$. So consider the least e (if any) such that $x_{e,s+1} \neq x_{e,s}$. Note that $i_{e,s+1} = i_{e,s}$ and $J_{e,i_{e,s+1},s+1} = J_{e,i_{e,s},s}$, as otherwise e > 0 and $x_{e-1,s+1} \neq x_{e-1,s}$. Hence $H_{e,s+1} \subseteq H_{e,s}$ and, for $s' = s, s+1, x_{e,s'}$ is the $(q_{e+1,s'}(I_{i_{e+1,s'}})+1)$ -th element of $H_{e,s'}$ from above. As $i_{d,s+1} = i_{d,s}$ and $J_{d,i_{d,s+1},s+1} = J_{d,i_{d,s},s}$ for all $d \leq e$, it follows by rule (c) that $q_{e+1,s+1}(I_{e+1,i_{e+1,s+1},s+1}) \geq q_{e+1,s}(I_{e+1,i_{e+1,s+1},s})$. Hence $x_{e,s+1} < x_{e,s}$ and that implies that $A_{s+1} >_{lex} A_s$. So A is a left-r.e. set.

Now we show that A is cohesive. So consider any d, e, k such that d < eand $k \geq 0$. Then, we claim that $q_{d+1}(x_e) \geq q_{d+1}(x_{e+k})$. To see this, suppose $2^k c \leq q_{e+k}(I_{i_{e+k}}) \leq 2^k c + 2^k - 1$. Thus, at least $2^i - 2^{i-e-k-1} \cdot (2^k \cdot 2^k)$.

7

 $(c+2^k)$, many x in $I_{i_{e+k}}$ have $q_{e+k}(x) \ge 2^k c$. Thus, $2^i - 2^{i-e-1}(c+1)$ of x in $I_{i_{e+k}}$ have $q_e(x) \ge c$ and thus $q_e(I_{e+k}) \ge c$. Now, for $x_{e+k} \in H_{e+k}$ and $x_e \in H_e$, $q_{d+1}(x_{e+k}) = \lfloor q_{e+k}(I_{e+k})/2^{k+e-d-1} \rfloor < (c+1)2^k/2^{k+e-d-1}$, and thus $q_{d+1}(x_{e+k}) \le c/2^{e-d-1}$. On the other hand, $q_{d+1}(x_e) = \lfloor q_e(I_e)/2^{e-d-1} \rfloor \ge \lfloor c/2^{e-d-1} \rfloor$. Thus, $q_{d+1}(x_{e+k}) \le q_{d+1}(x_e)$.

Thus, as $A = \{x_0, x_1, \ldots\}$, for all d, $q_{d+1}(x_e)$ is same for all but finitely many e. For each d it follows that $W_d(x_e)$ is the same value for almost all e. Thus A is cohesive.

Now consider $B \leq_m A$ via f where, for all i and $x \in I_i$, $f(x) = \max(I_i) + \min(I_i) - x$. Note that $f(x) = f^{-1}(x)$. Thus, f also witnesses $A \leq_m B$. Let $(A_s)_{s \in \mathbb{N}}$ be the left-r.e. approximation of A as given above and $(B_s)_{s \in \mathbb{N}}$ be a left-r.e. approximation of B. Then, the following holds for all e, s:

(*) If the least e+1 elements $x_{0,s}, x_{1,s}, \ldots, x_{e,s}$ of A_s satisfy that $f(x_{0,s})$, $f(x_{1,s}), \ldots, f(x_{e,s})$ are the unique elements of B_s below $\max(\{I_{i_{e,s}}\})$ then $x_0 = x_{0,s}, x_1 = x_{1,s}, \ldots, x_e = x_{e,s}$.

For a proof, assume that the above would be false for some e, s and let d be the least index such that $x_d \neq x_{d,s}$; by the left-r.e.-ness of the approximation, $x_d < x_{d,s}$. Furthermore, by (c), $i_{d,s} = i_d$ as otherwise d > 0 and $x_{d-1} \neq x_{d-1,s}$. So $f(x_{d,s}) < f(x_d)$ and $B \cap \{0, 1, \ldots, \max(I_{i_d})\} = \{f(x_0), f(x_1), \ldots, f(x_d)\}$. But $\{f(x_0), f(x_1), \ldots, f(x_d)\} <_{lex} \{f(x_{0,s}), f(x_{1,s}), \ldots, f(x_{d,s})\}$ and hence $B <_{lex} B_s$, a contradiction to $(B_s)_{s \in \mathbb{N}}$ being a left-r.e. approximation of B. So (*) is true. Now one can determine x_e by searching for the first stage s where $f(x_{0,s}), f(x_{1,s}), \ldots, f(x_{e,s})$ are the unique elements of B below $\max(\{I_{i_{e,s}}\})$ and then one knows that $x_e = x_{e,s}$. Thus, we get that A is recursive, in contradiction to A being cohesive. \Box

3 Ascending Closed Left-R.E. Sets

An ascending reduction is a recursive function f which satisfies $f(x) \leq f(x+1)$ for all x; $B \leq_{\text{asc}} A$ iff there is an ascending reduction f with B(x) = A(f(x))for all x. A is called ascending closed left-r.e. iff every $B \leq_{\text{asc}} A$ is a left-r.e. set.

Let A[n] denote the string $A(0)A(1) \dots A(n)$. Let C(x) denote the plain Kolmogorov complexity for x. That is, $C(x) = \min \{\log(y) : U(y) = x\}$, where U is a fixed universal Turing machine. The function mapping n to C(A[n]) is called the initial segment complexity of A and the next result shows that the initial segment complexity of ascending closed left-r.e. sets is sublinear.

Proposition 13. If A is an ascending closed left-r.e. set then the initial segment complexity $n \mapsto C(A[n])$ is a function of sublinear order.

Proof. Let c be any constant, and let G_n denote the interval $\{x : x \leq \lceil n/c \rceil\}$. For d < c, define B^d by $B^d(x) = A(cx + d)$. Thus $B^d \leq_{\text{asc}} A$. Let $(B^d_s)_{s \in \mathbb{N}}$ be left-r.e. approximations of B^d . For each n, let $d_n < c$ be the index for which $(B^{d_n}_{s} \cap G_n)_{s \in \mathbb{N}}$ converges slowest. Then given d_n and $B^{d_n} \cap G_n$, we can determine $B^d \cap G_n$ for each d < c and therefore A[n] as well. Hence, for some constant b_c and for all n, $C(A[n]) \leq n/c + b_c$. This shows that the complexity function $n \mapsto C(A[n])$ has sublinear order. \Box

Theorem 14. Let g be a recursive and unbounded non-decreasing function. Then there is an ascending closed left-r.e. set A such that $n \mapsto C(A[n])$ has at least the order n/g(n).

Proof. Without loss of generality assume $1 \leq g(i) \leq i$. Partition \mathbb{N} into intervals I_i of length 2^i : $I_i = \{2^i - 1, 2^i, 2^i + 1, \dots, 2^{i+1} - 2\}$. For each I_i , we will construct a subset $J_i = \lim_{s \to \infty} J_{i,s}$. Let $J_{i,0} = I_i$. At stage s, if there is an $e < \log(g(i))$ (which has not been handled earlier) and an x such that

 $\varphi_e(0) \downarrow \leq \varphi_e(1) \downarrow \leq \varphi_e(2) \downarrow \leq \ldots \leq \varphi_e(x) \downarrow \quad \text{and} \quad \varphi_e(x) > \max(I_i).$

Then, choose one such e and the corresponding x. Determine the two subsets $J_{i,s} \cap \{\varphi_e(y) : y \leq x\}$ and $J_{i,s} - \{\varphi_e(y) : y \leq x\}$, and let $J_{i,s+1}$ be that one of these two subsets which has the higher cardinality (in case of tie, choose arbitrarily). Note that during the approximation process $J_{i,s}$ gets halved at most $\log(g(i))$ times and therefore the limit J_i has at least $2^i/g(i)$ many elements.

Define A so that the characteristic function of A on the set J_i , in ascending order, is the binary representation of the least number a_i with $C(a_i) \ge 2^i/g(i)-2$ (where as many leading zeros are added as needed to use up all bits of J_i); A has no elements outside the sets J_i . Note that there is a recursive approximation $a_{i,s}$ to a_i from below.

The set A is left-r.e. as we can have an approximation A_s which takes on each $J_{i,s}$ the characteristic function of the binary representation of $a_{i,s}$ (with sufficiently many leading zeros added in); A_s is 0 on $I_i - J_{i,s}$. If the interval $J_{i,s}$ shrinks to $J_{i,s+1}$, then the bits of $a_{i,s}$ move to the left and some leading zeros are skipped; if $a_{i,s+1} > a_{i,s}$ then the bits are also ascending in lexicographic manner. Hence the resulting approximation is a left-r.e. approximation which runs independently on each interval I_i .

Now suppose $B \leq_{\operatorname{asc}} A$ via a recursive non-decreasing function φ_e . If the range of φ_e is finite, then B is clearly recursive. Now suppose that range of φ_e is infinite. Let r be the greatest index satisfying $g(r) \leq e$. Let $s_0 = s_1 = s_2 = \ldots = s_r$ be so large that $A_{s_0}(x) = A(x)$ for all $x \leq \max(I_r)$. For $k \geq r$, let $s_{k+1} > s_k$ be such that for all $s \geq s_{k+1}$ either $J_{k+1,s} \subseteq \operatorname{range}(\varphi_e)$ or $J_{k+1,s} \cap \operatorname{range}(\varphi_e) = \emptyset$. Note that s_{k+1} can be computed effectively from k.

Define the approximation $(B_k)_{k \in \mathbb{N}}$ of B as

$$B_k(x) = \begin{cases} A_{s_k}(\varphi_e(x)), & \text{if } \varphi_e(x) \le \max(I_k); \\ 0, & \text{if } \varphi_e(x) > \max(I_k). \end{cases}$$

This approximation is a left-r.e. approximation to B as it starts to consider the interval I_k , for k > r, only after stage s_k such that for all $s \ge s_k$, $J_{k,s} \subseteq \operatorname{range}(\varphi_e)$ or $J_{k,s} \cap \operatorname{range}(\varphi_e) = \emptyset$. In the first case all the bits of J_{k,s_k} are copied orderpreservingly into B_k and the left-r.e. approximation to A on I_k is turned into a

9

left-r.e. approximation to B on the preimage of I_k under φ_e ; in the second case all x with $\varphi_e(x) \in I_k$ satisfy $\varphi_e(x) \notin J_{k,s_k}$ and therefore $B_s(x) = 0$ for these xand all stages s. So A is an ascending closed left-r.e. set.

Furthermore, $C(a_i) \ge 2^i/g(i) - 2$. Also, we can compute a_i from the number i, the string $A[\max(I_i)]$ and the number of stages s at which $J_{i,s+1} \ne J_{i,s}$. Hence, for some b and almost all i we have

$$C(A[\max(I_i)]) \ge C(a_i) - \log i - \log g(i) - b \ge \frac{2^i}{2g(i)}$$

Taking now n with $\min(I_{i+1}) \leq n \leq \max(I_{i+1})$ and using that g is nondecreasing, we have that $C(A[n]) \geq \frac{n}{8g(n)}$ for almost all n. This proves the postulated bound. \Box

Another important type of sets are the 1-generic and weakly 1-generic sets [8]. As one cannot have left-r.e. 1-generic sets, one might ask for which reducibilities r there are r-closed left-r.e. weakly 1-generic sets. The next result shows that one can make such sets for the notion of ascending closed left-r.e. sets.

Recall that a set is *weakly* 1-generic iff for every recursive function f from numbers to strings there exist n and m with $f(n) = A(n+1)A(n+2) \dots A(n+m)$. The difference between weakly 1-generic and 1-generic is that here one requires the f to be total and independent of the values of A below n.

Theorem 15. There is an ascending closed left-r.e. weakly 1-generic set A.

Proof. We will be defining moving markers a_e , b_e and c_e , where $a_e \leq b_e \leq c_e$, $a_0 = 0$ and $a_{e+1} = c_e + 1$. Intuitively, we want to use the part $A(b_e)$, $A(b_e + 1)$, ..., $A(c_e)$ to ensure weak 1-genericity (by making $A(b_e)A(b_e + 1) \dots A(b_e + |\varphi_e(b_e)| - 1) = \varphi_e(b_e)$, if $\varphi_e(b_e)$ is defined). The part $A(a_e), \dots, A(b_e - 1)$ is used to ensure that A is ascending closed left-r.e.

At the beginning of stage s, the markers have values $a_{e,s}, b_{e,s}$ and $c_{e,s}$ respectively. We will have that $a_e = \lim_{s \to \infty} a_{e,s}, b_e = \lim_{s \to \infty} b_{e,s}, c_e = \lim_{s \to \infty} c_{e,s}$.

Let $a_{0,s} = 0$ for all s. Let $a_{e+1,s} = c_{e,s} + 1$, for all e, s. Initially $a_{e,0} = b_{e,0} = c_{e,0} = e$, and $A_0 = 0^{\infty}$. We will also use sets $J_{e',e,s}$, for e' < e. These sets are useful for defining A in such a way that, if $\varphi_{e'}$ witnesses an ascending reduction from B to A, then B is left-r.e. Initially, for all e, for $e' < e, J_{e',e,0} = \emptyset$. Below, for ease of presentation, we will only describe the changes from stage s to stage s+1; all variables which are not explicitly updated will retain the corresponding values from stage s.

Stage s:

- 1. If there exists an $e \leq s$ such that either Cond e.1 or Cond e.2 hold, then choose least such e and go to step 2. Otherwise go to stage s + 1.
 - Cond e.1: There exists e' < e such that, $J_{e',e,s} = \emptyset$ and range $(\varphi_{e'}) \cap \{x : x > c_{e,s}\}$ contains at least 2e + 2 elements as can be verified within s steps.
 - Cond e.2: $c_{e,s} = b_{e,s}$ and $\varphi_e(b_{e,s}) \downarrow$ within s steps.

- **2.** Fix least *e* such that Cond *e*.1 or Cond *e*.2 holds. If Cond *e*.1 holds, then go to step 3. Otherwise go to step 4.
- **3.** Fix one e' such that Cond e.1 holds for e'. Let $J_{e',e,s+1}$ be 2e+2 elements from range $(\varphi_{e'}) \cap \{x : x > c_{e,s}\}$. Update $b_{e,s+1} = \max(J_{e',e,s+1}) + 1$, $c_{e,s+1} = b_{e,s+1}$. For m > e, let $a_{m,s+1} = b_{m,s+1} = c_{m,s+1} = c_{m-1,s+1} + 1$. For m > e, and m' < m, let $J_{m',m,s+1} = \emptyset$.

Let A_{s+1} be obtained from A_s by (i) deleting all elements $\geq b_{e,s}$, and by (ii) inserting, for each m < e such that $J_{m,e,s} \neq \emptyset$, one new element (which was not earlier in A_s) from $J_{m,e,s}$.

Go to stage s + 1.

4. Suppose $\varphi_e(b_{e,s}) = y$.

Let $c_{e,s+1} = b_{e,s} + |y| + 1$.

For m > e, let $a_{m,s+1} = b_{m,s+1} = c_{m,s+1} = c_{m-1,s+1} + 1$. For m > e, and m' < m, let $J_{m',m,s+1} = \emptyset$.

Let A_{s+1} be obtained from A_s by (i) deleting all elements $\geq b_{e,s} + |y| + 1$, and by (ii) inserting, for each m < e such that $J_{m,e,s} \neq \emptyset$, one new element (which was not earlier in A_s) from $J_{m,e,s}$, and by setting (iii) $A_{s+1}(b_{e,s})\dots A_{s+1}(b_{e,s}+|y|-1)=y,$ Go to stage s + 1.

End stage s.

It can be shown by induction on e that $\lim_{s\to\infty} a_{e,s}$, $\lim_{s\to\infty} b_{e,s}$, $\lim_{s\to\infty} c_{e,s}$ indeed exist. For this, for e' < e, after $a_{e'}, b_{e'}$ and $c_{e'}$ have reached their final value, a_e does not get modified any further (a_e is set to $c_{e-1} + 1$, in the last stage in which c_{e-1} gets modified). Furthermore, once a_e reaches its final value, b_e can change at most e times due to Cond e.1 holding for some e' < e (and thus execution of step 3). Once b_e reaches its final value, c_e gets modified at most once due to success of Cond e.2 (and thus execution of step 4). The "2e + 2" in the algorithm description suffices since each index e has e indices below it, and, after all variables $a_{e'}, b_{e'}, c_{e'}$, with e' < e have stabilised, we encounter Cond e.1 at most once for each e' < e, and correspondingly Cond e.2 once in the beginning, and at most once after each modification of b_e via Cond e.1. Also, note that, for $m < e, J_{m,e,s} \subseteq \{x : a_{e,s} \le x < b_{e,s}\}.$

Let $A(x) = \lim_{s \to \infty} A_s(x)$. Now we show that A is weakly 1-generic. Suppose $a_{e'}, b_{e'}, c_{e'}$, for $e' \leq e$, reach their final values before stage s. If $\varphi_e(b_e)$ is defined then Cond e.2 succeeds in some stage $s' \geq s$, and step 4 defines $A_{s'+1}(b_e) \dots A_{s'+1}(b_e + |y| - 1) = y$, where $\varphi_e(b_e) = y$. Furthermore, A never gets modified on inputs $\leq c_{e,s'+1} = c_e$ after stage s'.

Now suppose $B \leq_{\rm asc} A$ as witnessed by φ_r . If range (φ_r) is finite, then clearly B is recursive. So assume range(φ_r) is infinite. Thus, for each e > r, Cond e.1 will succeed (eventually) for e' = r, after a_e has achieved its final value.

Define s_0 such that a_m, b_m, c_m , (for $m \leq r$) as well as $A[c_r]$ have reached their final values by stage s_0 . Let $s_{k+1} > s_k$ such that $J_{r,r+j,s_{k+1}} \neq \emptyset$, for all $j \leq k+1$. Let $B_k = \{x : \varphi_r(x) \in A_{s_k} \text{ and } \varphi_r(x) \leq c_{r+k,s_k}\}.$

Clearly $B(x) = \lim_{k \to \infty} B_k(x)$. Thus, to show that B is left-r.e. it suffices to show that $B_k \leq_{\text{lex}} B_{k+1}$. So consider the least $x \leq c_{r+k,s_k}$, if any, such that in some stage s', $s_k \leq s' < s_{k+1}$, Cond e.1 or Cond e.2 succeeds, and $x \geq b_{e,s'}$ (if there is no such x, then we are done). Clearly, $e \geq r$ by hypothesis on s_0 . Note that for $j \leq k$, $J_{r,r+j,s_k} \neq \emptyset$. Thus, $J_{r,r+j,s'} \neq \emptyset$. Thus, in stage s', $A_{s'+1}(x')$ is set to 1, for some $x' \in J_{r,e,s'}$ such that $A_{s_k}(x') = 0$. Note that $x' < b_{e',s} \leq x$. Let y' be least such that $\varphi_r(y') = x'$. Thus,

$$B_k \leq_{\text{lex}} A_{s'+1}(\varphi_r(0)) A_{s'+1}(\varphi_r(1)) \dots A_{s'+1}(\varphi_r(y')) \leq_{\text{lex}} B_{k+1}$$

as desired. \Box

Remark 16. Note that one can adjust the proof to show that there is a manyone closed left-r.e. and weakly 1-generic set. For this, main change in the construction would be to change Cond *e*.1 above to:

Cond e.1: There exists e' < e such that $J_{e',e,s} = \emptyset$, and for some z, z', for all $x \leq z, \varphi_{e'}(x) \downarrow \leq z'$ within s steps, and $\{\varphi_{e'}(x) : x \leq z\} \cap \{x : c_{e,s} < x \leq z'\}$ contains at least 2e + 2 elements.

Then, setting $J_{e',e,s+1}$ as in step 3, and making b_e to be > z', would achieve the goal, as any element in A which is larger than z' would be able to influence membership in $B = \{x' : \varphi(x') \in A\}$, only for x > z. We omit the details.

The next result shows that every r-cohesive set is ascending closed left-r.e. set. Thus, r-cohesive left-r.e. sets form a subclass of ascending closed left-r.e. sets. Recall that every cohesive set is r-cohesive.

Theorem 17. Every left-r.e. r-cohesive set is an ascending closed left-r.e. set.

Proof. Suppose A is a left-r.e. r-cohesive set. Suppose $B \leq_{\text{asc}} A$. Let $(A_s)_{s \in \mathbb{N}}$ be the left-r.e. approximation of A and f be a non-decreasing recursive function which witnesses that $B \leq_{\text{asc}} A$. If $\operatorname{range}(f) \cap A$ is finite, then clearly B is recursive. So assume $\operatorname{range}(f) \cap A$ is infinite. But then, for some x and for all $y \geq x$, $y \in A$ implies $y \in \operatorname{range}(f)$. Fix this x.

Let s_0 be such that for all $s \ge s_0$, for all $y \le x$, $A_s(y) = A(y)$; let $s_{n+1} > s_n$ be such that the least n + 1 members of $A_{s_{n+1}} - \{y : y \le x\}$ exist and are in range(f); note that one can effectively find such s_{n+1} from s_n . Let

$$B_n(y) = \begin{cases} A(f(y)), & \text{if } f(y) \le x; \\ 1, & \text{if } f(y) \text{ is among the least } n \text{ members} \\ & \text{of } A_{s_n} \text{ which are greater than } x; \\ 0, & \text{otherwise.} \end{cases}$$

It is easy to verify that B_n is an approximation of B. To see that $(B_n)_{n\in\mathbb{N}}$ form a left-r.e. approximation, we need to show that $B_n \leq_{\text{lex}} B_{n+1}$ for all n. So consider any n. If $B_n \not\subseteq B_{n+1}$, then there exists least y such that $y \in B_n - B_{n+1}$. Then f(y) is among the first n members of A_{s_n} which are greater than x and not among the first n+1 members of $A_{s_{n+1}}$ which are greater than x. As $(A_s)_{s\in\mathbb{N}}$ is left-r.e. approximation, we have that $A_{s_{n+1}}$ must contain a f(y'), x < f(y') < f(y), such that $f(y') \notin A_{s_n}$. But, then $y'' \in B_{n+1} - B_n$, for some $y'' \leq y'$. Thus, $(B_n)_{n\in\mathbb{N}}$ is a left-r.e. approximation of B. \Box

References

- Chaitin, G.J.: Incompleteness theorems for random reals. Advances in Applied Mathematics, 8(2), 119–146 (1987)
- Downey, R. Hirschfeldt, D.: Algorithmic randomness and complexity. Springer, New York (2010)
- Friedberg, R.M.: Three theorems on recursive enumeration. I. Decomposition. II. Maximal set. III. Enumeration without duplication. *The Journal of Symbolic Logic*, 23, 309–316 (1958)
- Lachlan, A.H.: On the lattice of recursively enumerable sets. Transactions of American Mathematical Society, 130, 1–37 (1968)
- Li, M., Vitányi, P.: An introduction to Kolmogorov complexity and its applications. 3rd edn. Springer, New York (2008)
- Myhill, J.: Solution of a problem of Tarski. The Journal of Symbolic Logic, 21(1), 49–51 (1956)
- 7. Nies, A.: *Computability and randomness*. Oxford University Press, New York (2009)
- Odifreddi, P.: Classical recursion theory. Studies in Logic and the Foundations of Mathematics, vol. 125. North-Holland, Amsterdam (1989)
- Post, E.: Recursively enumerable sets of positive integers and their decision problems. Bulletin of the American Mathematical Society, 50, 284–316 (1944)
- Robinson, R.W.: Simplicity of recursively enumerable sets. The Journal of Symbolic Logic, 32, 162–172 (1967)
- Rogers Jr., H.: Theory of recursive functions and effective computability. MIT Press, Cambridge (1987)
- Soare, R.I.: Cohesive sets and recursively enumerable Dedekind cuts. Pacific Journal of Mathematics, 31(1), 215–231 (1969)
- 13. Soare, R.I.: Recursively enumerable sets and degrees. Springer, Berlin (1987)
- Zvonkin, A.K., Levin, L.A.: The complexity of finite objects and the development of the concepts of information and randomness by means of the theory of algorithms. *Russian Mathematical Surveys*, 25(6), 83–124 (1970)