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Abstract

Machine learning of limit programs (i.e., programs allowed finitely many

mind changes about their legitimate outputs) for computable functions is stud-

ied. Learning of iterated limit programs is also studied. To partially motivate

these studies, it is shown that, in some cases, interesting global properties of

computable functions can be proved from suitable (n + 1)-iterated limit pro-

grams for them which can not be proved from any n-iterated limit programs for

them. It is shown that learning power is increased when (n+1)-iterated limit

programs rather than n-iterated limit programs are to be learned. Many trade-

off results are obtained regarding learning power, number (possibly zero) of

limits taken, program size constraints and information, and number of errors

tolerated in final programs learned.
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1 Preliminaries

1.1 Notation

Any unexplained recursion theoretic notation is from [33]. N denotes

the set of natural numbers, {0, 1, 2, 3, . . .}. Unless otherwise specified,

c, e, i, j, k, l, m, n, r, s, t, u, v, w, x, y, z, with or without decorationsa, range over N .

∗ denotes a non-member of N and is assumed to satisfy (∀n)[n < ∗ < ∞]. a and

b with or without decorations, range over N ∪ {∗}. ∅ denotes the empty set. ⊆

denotes subset. ⊂ denotes proper subset. For S, a subset of N , card(S) denotes

the cardinality of S. ↑ denotes undefined. max(·), min(·) denote the maximum and

minimum of a set, respectively, where max(∅) = 0 and min(∅) =↑.

η and θ range over partial functions with arguments and values from N . η(x)↓

denotes that η(x) is defined; η(x)↑ denotes that η(x) is undefined.

f, g, h, p, q, F and G with or without decorations range over total functions with

arguments and values from N . For n ∈ N and partial functions η and θ, η =n θ

means that card({x | η(x) 6= θ(x)}) ≤ n; η =∗ θ means that card({x | η(x) 6= θ(x)})

is finite. domain(η) and range(η) denote the domain and range of the function η,

respectively.

We say that η is monotone
def
⇔ (∀x, y | x < y)[η(x)↓ < η(y)↓]. Thus η is

monotone iff it is a strictly increasing total function.

〈i, j〉 stands for an arbitrary, computable, one-to-one encoding of all pairs of

natural numbers onto N [33] (we assume that 〈i, j〉 ≥ max({i, j}) and that 〈·, ·〉 is

increasing in both its arguments). π1 and π2 denote the corresponding, computable

inverses: for all x, y, π1(〈x, y〉) = x and π2(〈x, y〉) = y. Similarly we can define

〈·, . . . , ·〉 for encoding multiple natural numbers onto N .

ϕ denotes a fixed acceptable programming system for the partial computable

functions: N → N [32, 33, 25]. (Case showed the acceptable systems are character-

ized as those in which every control structure can be constructed; Royer and later

Marcoux examined complexity analogs of this characterization [30, 31, 34, 26].) ϕi

denotes the partial computable function computed by program i in the ϕ-system.

Φ denotes an arbitrary Blum complexity measure [5, 21] for the ϕ-system. The set

of all total recursive functions of one variable is denoted by R. C, with or without

decorations, ranges over subsets of R. MinProga(f) denotes min({i | ϕi =a f}).

For a = 0, we often drop 0 in MinProg0(f), i.e., MinProg(f) = MinProg0(f).

aDecorations are subscripts, superscripts and the like.



We sometimes consider partial computable functions with multiple arguments

in the ϕ system. In such cases we implicitly assume that a 〈·, . . . , ·〉 is used to code

the arguments, so, for example, ϕi(x, y) stands for ϕi(〈x, y〉).

A function f is said to be the zero-extension of η
def
⇔

f(x) =

{

η(x) x ∈ domain(η);

0 otherwise.

EvntlyConst denotes the set of eventually constant functions, i.e., {f |

(∃c, n)(∀x > n)[f(x) = c]}.

The quantifiers ‘
∞

∀ ’ and ‘
∞

∃ ’, essentially from [5], mean ‘for all but finitely many’

and ‘there exist infinitely many’, respectively.

1.2 Fundamental Function Inference Paradigms

An Inductive Inference Machine (IIM) [20] is an algorithmic device which takes as

its input a set of data given one element at a time, and which from time to time,

as it is receiving its input, outputs programs. IIMs have been used in the study of

machine identification of programs for computable functions as well as algorithmic

learning of grammars for languages [4, 10, 11, 18, 20, 28, 40].b For a survey of this

work see [1, 28, 23, 7].

M, with or without decorations, ranges over the class of inductive inference ma-

chines. For inference of a computable function f by an IIM M, the graph of f is fed

to M in any order. Without loss of generality [4, 10], we will assume that M is fed

the graph of f in the sequence (0, f(0)), (1, f(1)), (2, f(2)), . . .. For all computable

functions f , f [n] denotes the finite initial segment ((0, f(0)), (1, f(1)), . . . , (n −

1, f(n − 1))). Let INIT = {f [n] | f ∈ R ∧ n ∈ N}. Variables σ and τ , with

or without decorations, range over INIT. |τ | denotes the number of elements in

τ . Thus |f [n]| = n. content(τ) denotes the set of pairs in the range of τ . Thus

content(f [n]) = {(i, f(i)) | i < n}. M(σ) is the last output of M by the time it has

received input σ. We will assume, without loss of generality, that M(σ) is always de-

fined. We say that M(f) converges to i (written: M(f)↓ = i) iff (
∞

∀ n)[M(f [n]) = i];

M(f) is undefined if no such i exists.

bThe separation, but not the strong separation results in the present paper go through for

language learning. We have not yet investigated language learning analogs of most of our other

results.



Definition 1 [20, 4, 10] Suppose a ∈ N ∪ {∗}.

(a) M Exa-identifies a computable function f ∈ R (written: f ∈ Exa(M)) iff

both M(f)↓ and ϕM(f) =a f .

(b) Exa = {C ⊆ R | (∃M)[C ⊆ Exa(M)]}.

Case and Smith [10] introduced another infinite hierarchy of identification cri-

teria which we describe below. “Bc” stands for behaviorally correct. Barzdin [3]

essentially introduced the notion of Bc0.

Definition 2 [10] Suppose a ∈ N ∪ {∗}.

(a) M Bca-identifies a computable function f ∈ R (written: f ∈ Bca(M)) iff

(
∞

∀ n)[ϕM(f [n]) =a f ].

(b) Bca = {C ⊆ R | (∃M)[C ⊆ Bca(M)]}.

We usually write Ex for Ex0 and Bc for Bc0. Theorem 3 just below states

some of the basic hierarchy results about the Exa and Bca classes.

Theorem 3 For all n ∈ N ,

(a) Exn ⊂ Exn+1,

(b)
⋃

n∈N Exn ⊂ Ex∗,

(c) Ex∗ ⊂ Bc,

(d) Bcn ⊂ Bcn+1,

(e)
⋃

n∈N Bcn ⊂ Bc∗, and

(f) R ∈ Bc∗.

Parts (a), (b), (d), and (e) are due to Case and Smith [10]. John Steel first

observed that Ex∗ ⊆ Bc and diagonalization in part (c) is due to Harrington and

Case [10]. Part (f) is due to Harrington [10]. Blum and Blum [4] first showed that

Ex ⊂ Ex∗. Barzdin [3] independently showed Ex ⊂ Bc.

2 Limiting Programs

2.1 Definition and Motivation of Limiting Programs

For each i, consider the following corresponding procedure for “computing” a (par-

tial) function ϕ1
i .



On input x

for t = 0 to ∞

Start a new clone of ϕ-program i running on input (x, t)

endfor

It is to be understood that

1. each iterate of the for-loop finishes since it merely starts a process running

and

2. in some iterates of the for-loop the process started may itself never converge.

ϕ1
i (x)

def
= the unique y (if any) eventually output by all but finitely many of the

clones of ϕ-program i in the for-loop above. Equivalently, ϕ1
i (x)

def
= limt→∞ ϕi(x, t).

We shall refer to i as Lim
1-program i (in the ϕ1-system) when we are thinking

of i as encoding the for-loop above rather than as encoding ϕ-program i.

Intuitively, Lim
1-program i (in the ϕ1-system) is a procedure, which on an

input for which it has an output, is allowed to change its mind finitely many times

about that output (or even about whether to output at all). N.B. there may be no

algorithm for signaling when a Lim
1-program has stopped changing its mind about

its output.

The partial functions which are the limit of some total computable function

are well known to be characterized as exactly the partial functions computable

relative to an oracle for the halting problem [37, 29, 19, 38, 39].c This result and

its relativizations were first noticed and used by Post [36] and have been employed

(sometimes with rediscovery) many times. [24] studied acceptable programming

systems for partial functions computable relative to oracles. Most of the results of

this paper would hold also for such programming systems, but we will present our

results directly about systems such as ϕ1.

The creation of clones as in Lim1-program i above can be iterated. This moti-

vates the following.

ϕn
i (x)

def
= lim

t1→∞
lim

t2→∞
. . . lim

tn→∞
ϕi(x, t1, t2, . . . , tn)

We will sometimes say that i is a Lim
n-program for ϕn

i .

cThe class of partial functions which are the limit of some partial recursive function, i.e.,

{ϕ1

i
| i ∈ N}, is a larger class than the class of partial functions computable in the halting

problem.



In this paper we shall be interested in Lim
n-programs (from the ϕn

i system)

which happen to compute partial computable functions! We study the learning of

Limn-programs for computable functions. The n = 0 case is merely the special case

studied previously in the literature. We are interested in, among other things, the

tradeoffs between the size of n and the resultant ability to learn large classes of

computable functions. We shall see that, many times, larger classes can be learned

for n + 1 limits than for n.

The reader may be thinking that, for n > 0, Limn-programs are not particularly

useful. What does it profit one to have learned, say, a Lim1-program for an f ∈ R?

Well, with such a program one can discover values for f eventually (albeit without

knowing when one has found those values), but it is easy to argue that “eventually”

is too long to wait.

Actually, Limn-programs, for n > 0, can be quite useful.

In physics it is sometimes easier to infer a global property of a phenomenon than

it is to make more detailed predictions about observations; for example, Kepler’s

Laws are easier to derive than equations of motion of planets. In the next section

(Section 2.2) we show that it is, in some cases, possible to prove global properties of

a computable function from a suitable Lim1-program for it when it is not possible

to prove these properties from any of the ordinary (ϕ or Lim0) programs for it.

2.2 Further Motivation

We next provide the preliminaries for obtaining the provability results as advertised

just above at the end of previous section (Section 2.1).

We shall present our results for extensions of first order arithmetic. Regarding

expressing propositions in first order arithmetic, we shall proceed informally. If E

is an expression such as ‘Φi ≤ t’, or ‘ϕi is total’, we shall write � E � to denote

a naturally corresponding, fixed standard wff of first order arithmetic [27] which

(semantically) expresses E. We need and assume that

if E
′ is obtained from E by changing some numerical values, then � E

′ �

can be algorithmically obtained from those changed numerical values

and � E �.

It is understood that, if E contains references to partial functions, such as ϕ and

Φ, then in � E � these are, in effect, named by standard programs for them. It

is well known that wffs extensionally equivalent (with respect to standard models)

may not be intensionally or provably equivalent [14]. In what follows, when we



use the � E � notation, it will always be for propositions that are easily seen to

be (semantically) expressible in first order arithmetic.d ‘`’ denotes the provability

relation.

Theorem 4 Suppose T is an axiomatizable (i.e., r.e. [13]) first order theory which

extends Peano Arithmetic [27] and in which one cannot prove anything false about

totality of (partial) computable functions computed by programs in ϕ. Then there

are e0 and e1 such that ϕe0
= ϕ1

e1
is total, yet

1. (∀i | ϕi = ϕe0
)[T 6 `� ϕi is total �], and

2. [T `� ϕ1
e1

is total �].

Proof. Suppose the hypotheses. Fix an automatic theorem prover for T. In what

follows any reference to proving something in T within so many steps refers to steps

in the execution of this automatic theorem prover.

Clearly there is a ϕ-program e0 such that, for all x,

ϕe0
(x) = 1 + max({ϕi(x) | i ≤ x ∧ [T `� ϕi is total �] within x steps}).

Clearly ϕe0
is total and e0 satisfies the first clause in the statment of Theorem 4.

Also, there is a program e1 such that, for all x,

ϕe1
(x, t) =

{

0 if Φe0
(x) > t;

ϕe0
(x) otherwise.

A simple case analysis proves that ϕ1
e1

= limt→∞ ϕe1
(·, t) is total. Furthermore,

this proof of totality is clearly formalizable in Peano Arithmetic, hence, in T.

Since ϕe0
is total, ϕ1

e1
= ϕe0

.

The variant of Theorem 4 above in which ‘totality’ and ‘total’ are replaced by

‘monotonicity’ and ‘monotone’, respectively can clearly be proved by a slightly more

complex construction than that in the proof just above of Theorem 4. Monotonicity

is clearly an interesting global property of computable functions.

Also we can easily prove a variant of each of these theorems in which ϕ-programs

and ϕ1-programs are replaced by ϕn-programs and ϕn+1-programs, respectively.

In a sense we may consider the Limn-programs to be higher order . [2] con-

tains many results about learning a different class of higher order programs with

comparisons to some of those in the present paper.

dThese informal discussion of provability and expressibility are based on Section 4.3 of [35].



3 Learning Limiting Programs

3.1 Definitions

Definition 5 Let a ∈ N ∪ {∗}, n ∈ N .

(a) M Lim
n
Exa-identifies f ∈ R (written: f ∈ Lim

n
Exa(M)) iff M(f)↓ and

ϕn
M(f) =a f .

(b) Lim
n
Exa = {C ⊆ R | (∃M)[C ⊆ Lim

n
Exa(M)]}.

Definition 6 Let a ∈ N ∪ {∗}, n ∈ N .

(a) M Lim∗Exa-identifies f ∈ R (written: f ∈ Lim∗Exa(M)) iff M(f)↓ = i

such that ϕ
π1(i)
π2(i)

=a f .

(b) Lim∗Exa = {C ⊆ R | (∃M)[C ⊆ Lim∗Exa(M)]}.

We often denote Lim1Exa by LimExa (Lim1Ex0 by LimEx) and LimaEx0

by LimaEx.

Definition 7 Let a ∈ N ∪ {∗}.

(a) M LimBca-identifies f ∈ R (written: f ∈ LimBca(M)) iff (
∞

∀

n)[ϕ1
M(f [n]) =a f ].

(b) LimBca = {C ⊆ R | (∃M)[C ⊆ LimBca(M)]}.

We usually write LimBc for LimBc
0. We do not consider iterated limits for Bc-

identification since R ∈ LimBc (Theorem 14) and thus iterating limits does not

help.

3.2 Results

The next result implies that allowing an extra anomaly can sometimes more than

makeup for any finite number of limits.

Theorem 8 (∀i)[Exi+1 − Lim∗Exi 6= ∅].

Proof. Fix i. Consider the following class of functions:

C = {f | ϕf(0) =i+1 f}.

Clearly, C is in Exi+1. Suppose by way of contradiction machine M Lim
∗
Exi

identifies C. Then by the Kleene recursion theorem [33, Page 214] there exists an e

such that the (partial) function ϕe may be defined as follows.

Let ϕe(0) = e. Let xs denote the least x such that ϕe(x) has not been defined

before stage s. Thus x0 = 1. Go to stage 0.



Begin stage s

1. For each y ∈ N , let fy denote the function defined as follows.

fy(x) =















ϕe(x) x < xs;

y xs ≤ x ≤ xs + i;

0 otherwise.

2. Dovetail steps 3 and 4 in parallel until step 4 succeeds. If and when step 4

succeeds, go to step 5.

3. Let x = xs + i + 1.

repeat

ϕe(x) = 0; x = x + 1.

forever

4. Search for a y ∈ N and n > xs + i + 1 such that, M(ϕe[xs]) 6= M(fy[n]).

5. If and when 4 above succeeds, let y and n be as found in step 4. For xs ≤ x ≤

xs + i, let ϕe(x) = y. For xs + i < x < n such that ϕe has not been defined

till now, let ϕe(x) = 0.

6. Go to stage s + 1.

End stage s

Now consider the following cases:

Case 1: Infinitely many stages are executed.

In this case, let f = ϕe ∈ C. Clearly, M(f)↑ (because of the success of step 4 in

each stage s).

Case 2: Some stage s starts but never finishes.

Let stage s be the stage which starts but never finishes. For each y, let fy be as

defined in step 1 of stage s.

Now for all y, fy ∈ C. Also for each y, M(fy)↓ = M(ϕe[xs]). But π2(M(ϕe[xs]))

can be a Lim
π1(M(ϕe[xs])) program for an i variant of at most finitely many fy.

Thus there exists an fy (∈ C) such that M does not Lim
∗
Exi identify fy.

From the above cases it follows that C 6∈ Lim
∗
Exi.

Similarly it can be shown that C = {f | ϕf(0) =∗ f} ∈ Ex∗ −
⋃

i Lim
∗
Exi.

Theorem 9 Ex∗ −
⋃

i∈N Lim∗Exi 6= ∅.

As a corollary to Theorems 8 and 9 we have



Corollary 10 (∀a ∈ N ∪ {∗})[Lim
a
Ex0 ⊂ Lim

a
Ex1 ⊂ Lim

a
Ex2 ⊂ · · · ⊂

Lim
a
Exi ⊂ Lim

a
Exi+1 ⊂ · · · ⊂ Lim

a
Ex∗].

A modification (which is similar in nature to the proof of Theorem 8) to the

proof of Bc − Ex∗ 6= ∅ in [10] can be used to show that:

Theorem 11 Bc− Lim∗Ex∗ 6= ∅.

Theorem 12 (∀j)[LimEx− Bcj 6= ∅].

Proof. Consider the following class of functions:

C = {f ∈ R | f is the zero-extension of ϕf(0)}.

It is easy to see that C ∈ LimEx. Suppose by way of contradiction that M Bcj

identifies C. Then by the Kleene recursion theorem [33] there exists an e such that

the (partial) function ϕe may be defined as follows.

Let ϕe(0) = e. Let xs denote the least x such that ϕe(x) has not been defined

before stage s. Go to stage 0.

Begin stage s

1. Let f be the zero-extension of ϕe[xs]. Search for y1, y2, . . . , yj+1, n such that

yj+1 > yj > . . . > y1 > n > xs and ϕM(f [n])(yi)↓, for each i such that

1 ≤ i ≤ j + 1.

2. If and when such y′
is and n are found let:

ϕe(yi) = ϕM(f [n])(yi) + 1, for 1 ≤ i ≤ j + 1.

ϕe(x) = 0, for xs ≤ x < yj+1 and x 6∈ {y1, y2, . . . , yj+1}.

3. Go to stage s + 1.

End stage s

Now consider the following cases:

Case 1: Infinitely many stages are executed.

In this case let f = ϕe ∈ C. However, ϕM(f [n]) 6=
j f for infinitely many n (by the

success of the search in step 1, in each stage s, and the diagonalization in step

2).

Case 2: Some stage s starts but never finishes.

Let stage s be the stage which starts but never finishes. Let f be the zero-extension

of ϕe. Now for all but finitely many n, for all but finitely many x, ϕM(f [n])(x)↑

(otherwise step 1 would succeed).



From the above cases it follows that C 6∈ Bcj .

As a corollary we have:

Corollary 13 (∀a ∈ N ∪ {∗})[Exa ⊂ LimExa].

Theorem 14 R ∈ LimBc.

Proof. Let M(f [n])=i such that,

ϕi(x, j) =















ϕk(x), if (∃l ≤ j)(∀y < n)[Φl(y) ≤ j ∧ ϕl(y) = f(y) ∧ Φl(x) ≤ j]
∧

k is the least such l;

0, otherwise.

It is easy to see that M witnesses that R ∈ LimBc.

The next Theorem implies that allowing an extra limit can sometimes more than

makeup for allowing an arbitrary but finite number of anomalies.

Theorem 15 (∀n)[Limn+1Ex − LimnEx∗ 6= ∅].

Proof. Consider the following class of functions:

Cn = {f ∈ R | f(0) is a Limn+1-program for f}.

Clearly, Cn ∈ Limn+1Ex. We show that C1 6∈ Lim1Ex∗. Proof can be easily

extended to show that Cn 6∈ LimnEx∗.

Suppose by way of contradiction that C1 ⊆ Lim1Ex(M). Then by the Kleene

recursion theorem [33] there exists an e such that the (partial) function ϕe may be

defined as follows.

We will construct ϕe in stages. e will be a Lim2-program for a function in

C1 − Lim1Ex∗(M). Let f = ϕ2
e (we will argue below that ϕ2

e is indeed a total

recursive function).

Let (∀t1, t2)[ϕe(0, t1, t2) = e]. Let xs denote the least x such that f(x) does not

become known before stage s. Go to stage 0.

Begin stage s

1. Dovetail steps 2 and 3 until step 2 succeeds. If and when step 2 succeeds, go to

step 4.

2. Search for an extension τ of f [xs] such that M(f [xs]) 6= M(τ).

3. Dovetail steps 3.x (x ≥ xs) in such a way that if step 2 does not succeed, then

each step gets infinite time.



3.x (Note: Basically in this step we try to define ϕ2
e(x). If step 2 does not succeed

then this step will be successful in defining ϕ2
e(x). Assuming that step 2

does not succeed: ϕ2
e(x) will be 0 if there exists a y ≥ x such that (

∞

∀

t)[ϕM(f [xs])(y, t) 6= 0]; otherwise ϕ2
e(x) will be 1).

Go to substage x:0.

Begin Substage x : 〈y, t〉

If y < x then go to substage x : (〈y, t〉 + 1).

Let t1 be the least t′1 such that there exists a t′2, for which ϕe(x, t′1, t
′
2) has

not been defined till now.

Dovetail step 3.x.1 and 3.x.2 until 3.x.1 succeeds. If and when step 3.x.1

succeeds, go to step 3.x.3.

3.x.1 Search for a t′ > t such that ϕM(f [xs])(y, t′) = 0.

3.x.2 Let w = 0.

repeat

Let u, v be such that w = 〈u, v〉.

If ϕe(x, u, v) has not been defined till now, then let ϕe(x, u, v) = 0.

Let w = w + 1.

forever

3.x.3 For all t2 such that ϕe(x, t1, t2) is not defined till now, let ϕe(x, t1, t2) = 1.

Go to substage x : (〈y, t〉 + 1).

End Substage x : 〈y, t〉

4. For x such that xs ≤ x < |τ |, let

ϕe(x, t1, t2) = y, where (x, y) ∈ content(τ) and ϕe(x, t1, t2) is not defined

till now. (Thus f(x) = y).

Go to stage s + 1.

(Note that M(f [xs] 6= f [xs+1])).

End stage s

Now consider the following cases:

Case 1: Infinitely many stages are executed.

In this case clearly, f is recursive. Also M(f)↑ (by the success of step 2, in each

stage s).

Case 2: Some stage s starts but never finishes.

Let stage s be the stage which starts but never finishes. Now, on all extensions

of f [xs], M converges to M(f [xs]). We claim that for x ≥ xs, if (∃y ≥ x)[(
∞

∀

t)[ϕM(f [xs])(y, t) 6= 0]], then f(x) = 0; f(x) = 1 otherwise. This is so because



if there exist y, t such that y ≥ x and [(∀t′ > t)[ϕM(f [xs])(y, t′) 6= 0]], then

substage x : 〈y, t〉, would never end, and thus, due to step 3.x.2, f(x) = 0;

if for all y ≥ x, [(
∞

∃ t)[ϕM(f [xs])(y, t) = 0]], then for all n, substage x : n

halts and thus f(x) = 1.

Thus clearly, f(x) is 1 for all but finitely many x or f(x) is 0 for all but finitely

many x. Thus f is recursive. Also f 6=∗ ϕ1
M(f [xs]).

From the above cases it follows that M does not Lim
1
Ex-identify f .

Similarly we can also prove

Theorem 16 Lim∗Ex −
⋃

n LimnEx∗ 6= ∅.

As a corollary to Theorems 15 and 16 we have

Corollary 17 (∀a ∈ N ∪ {∗})[Exa ⊂ Lim1Exa ⊂ Lim2Exa ⊂ · · · ⊂ LimiExa ⊂

Limi+1Exa ⊂ · · · ⊂ Lim∗Exa].

The following corollary follows from Theorems 8, 9, 15 and 16.

Corollary 18 (∀a, b, a′, b′ ∈ N ∪ {∗})[[LimaExb ⊆ Lima′

Exb′ ] ⇔ [a ≤ a′ ∧ b ≤

b′]].

4 Nearly Minimal Identification of Limiting Pro-

grams

Freivalds and Chen [15, 12, 11] studied the learning of nearly minimal size programs.

Here we study limiting analogs.

Definition 19 Let a, b ∈ N ∪ {∗} and h ∈ R.

a) M h-MLimaExb-identifies f ∈ R (written: f ∈ h-MLimaExb(M)) iff M

LimaExb-identifies f and M(f) ≤ h(MinProg(f)).

b) h-MLimaExb = {C ⊆ R | (∃M)[C ⊆ h-MLimaExb(M)]}.

c) MLimaExb =
⋃

h∈R h-MLimaExb.

We now show the following surprising theorem.

Theorem 20 (∀a, b ∈ N ∪ {∗} | a 6= 0)[MLimaExb = LimaExb].

Proof. We prove the theorem for a = 1. Other cases are similar. Suppose M is

given.



Let mi,t = min({t} ∪ {x | Φi(x) > t}). Let g be such that, ϕg(i)(x, t) =

ϕM(ϕi[mi,t])(x, t).

Let h(x) =
∑x

k=0 g(k).

Now consider the following machine M′.

M′(f [n]) = g(if [n]), where if [n] = min({n} ∪ {i | i ≤ n ∧ ϕi[mi,n] = f [mi,n] ∧

M(f [mi,n]) = M(f [n])}).

Now suppose f ∈ Lim1Exb(M). Clearly for large enough n, if [n] = min({i |

ϕi = f ∨ [limt→∞ mi,t exists and ϕi[limt→∞ mi,t] = f [limt→∞ mi,t] ∧ M(f) =

M(f [limt→∞ mi,t])]}). It follows that for large enough n, ϕ1
M′(f) = ϕ1

g(if [n])
=

ϕ1
M(f). Thus f ∈ Lim1Exb(M′). Let if = min({i | ϕi = f ∨ [limt→∞ mi,t ex-

ists and ϕi[limt→∞ mi,t] = f [limt→∞ mi,t] ∧ M(f) = M(f [limt→∞ mi,t])]}). Now

M′(f) = g(if ) ≤ h(MinProg(f)). Thus Lim1Exb(M) ⊆ h-MLim1Exb(M′).

5 Using Limiting Programs for Succinctness

Next we show that using Lim-programs to infer functions may considerably suc-

cinctify ([9]) the final result over using ordinary (ϕ) programs.

Theorem 21 (∃C ⊆ EvntlyConst | card(C) = ∞)(∃M)(∀h ∈ R)[C ⊆ LimEx(M)∧

(
∞

∀ f ∈ C)[h(M(f)) ≤ MinProg∗(f)]].

Moreover, in the immediately above Theorem (Theorem 21) we can take C to

be a set of functions computed by an r.e. sequence of Lim
1-programs.

Proof. Using the operator recursion theorem [6] we will describe a sequence of

programs p(0), p(1), . . . . Let fi = ϕ1
p(i) (it will be clear that fi is a total recursive

function; in fact fi ∈ EvntlyConst). We let C = {fi | i ∈ N}. We now describe

the construction of ϕp(i). For all t, let ϕp(i)(0, t) = i (thus fi(0) = i). Go to stage

1.

Definition of ϕp(i)

Begin stage s

1. For each t < s, let ϕp(i)(s, t) = 0.

2. Let ms = 1 + max({ϕj(p(i)) | j ≤ i ∧ Φj(p(i)) ≤ s}).

3. For k, l ≤ ms, let

ws
l,k = card({x < s | [card({j < ms | Φj(x) ≤ s}) = ms − k] ∧ [l =

min(N − {ϕj(x) | j < ms ∧ x < s ∧ Φj(x) ≤ s})]}).

For k, l ≤ ms, let cs
l,k =

∑

j≤ms,r<k ws
j,r +

∑

j<l w
s
j,k.



4. for k = 0 to ms

for r = 0 to ms

for l = 1 to ws
r,k

ϕp(i)(c
s
r,k + l, s) = r

endfor

endfor

endfor

5. Go to stage s + 1.

End stage s

End Definition of ϕp(i)

Clearly all stages halt. Note that for all but finitely many s, ms = 1 +

max({ϕj(p(i)) | j ≤ i∧ϕj(p(i))↓}). Let m = 1+max({ϕj(p(i)) | j ≤ i∧ϕj(p(i))↓}).

For (the finitely many) s such that ms < m, ws
l,k may not defined for some values

of l, k ≤ m. To simplify our exposition we assume that these ws
l,k are taken to be 0

in the analysis below. Since
∑ms

k=1

∑ms

l=1 ws
l,k = s, we have that there exist k, l ≤ m

such that the sequence w0
l,k, w1

l,k, w2
l,k, . . . diverges. Let k (≤ m) be the least value

such that there exists an l ≤ m such that the sequence w0
l,k, w1

l,k, w2
l,k, . . . diverges.

Let l (≤ m) be the least value such that w0
l,k, w1

l,k, w2
l,k, . . . does not converge. Now

let s be the least value such that for all s′ > s,

ms′ = ms;

ws′

l′,k′ = ws
l′,k′ , for k′ < k, l′ ≤ m and

ws′

l′,k = ws
l′,k for l′ < l.

Now it is easy to see that, for all s′ > s, ws′+1
l,k ≥ ws′

l,k. Thus we have that, for all

x > cs
l,k, fi(x) = l. Also, it is easy to see that for all x ≤ cs

l,k, fi(x)↓. Moreover, for

all j ≤ m, there exist infinitely many x such that ϕj(x) 6= l.

Now let M be a machine such that for all f , M(f [0]) = 0 and M(f [n]) =

p(f(0)), for n > 0. Clearly C ∈ LimEx(M). Let h ∈ R be given. Let j be such

that ϕj = h. Then for all i > j, for all r ≤ h(p(i)), ϕr is infinitely different from

fi.

As a corollary to the above theorem we have

Corollary 22 (∃C ⊆ EvntlyConst | card(C) = ∞)(∃M)(∀h ∈ R)(∀M′ | C ⊆

Ex∗(M′))[C ⊆ LimEx(M) ∧ (
∞

∀ f ∈ C)[h(M(f)) ≤ M′(f)]].

The above corollary can be generalized by replacing Ex by Lim
n
Ex and LimEx

by Lim
n+1

Ex.



6 Strong Separation

We now prove the following theorem. A corollary (Corollary 24) of its proof provides

a strong separation result. Other strong separation results can be found in [11, 8].

Theorem 23 (∀j ∈ N)(∃C ⊆ R)(∀M)(∃M′)(∀a ∈ N ∪ {∗})[[C ⊆ LimEx(M′)] ∧

[C 6∈ Bcj ] ∧ [(Exa(M) − C) ⊆ Exa(M′)] ∧ [(Bca(M) − C) ⊆ Bca(M′)]].

Proof. Fix j. Let M0,M1, . . . denote a standard recursive enumeration of all the

inductive inference machines.

We will construct functions p and q such that, for each i, the following five conditions

are satisfied.

(a) ϕ1
p(i) ∈ R.

(b) ϕ1
p(i) 6∈ Bcj(Mi).

(c) ϕ1
p(i)(0) = i and ϕ1

p(i)(1) = 0.

(d)

(d.1) ϕq(i) = ϕ1
p(i) OR

(d.2) ϕq(i) is an initial segment of ϕ1
p(i) and range(ϕ1

p(i) − ϕq(i)) = {0}.

(e) (∀x > 0)[

[ϕ1
p(i)(x) = 0 ∧ ϕ1

p(i)(x + 1) 6= 0] ⇒

[(∀r | 1 ≤ r ≤ j + 1)[ϕ1
p(i)(x + r) = 1] ∧ [ϕ1

p(i)(x + j + 2) = 2 + Φq(i)(x +

j + 1)] ∧ [ϕ1
p(i)(x + j + 3) = 0]]

].

Let C = {ϕ1
p(i) | i ∈ N}.

We will define p, q as claimed above later. First we show, given M, how to

construct M′ as claimed in the theorem (assuming the existence of p and q as

defined above).

For n > 0, let Sat(f [n]) be true iff the following two conditions are satisfied.

(1) (∀x < n)[Φq(f(0)) < n ⇒ ϕq(f(0))(x) = f(x)].

(2) (∀x < n − j − 4)[

[f(x) = 0 ∧ f(x + 1) 6= 0] ⇒

[(∀r | 1 ≤ r ≤ j + 1)[f(x + r) = 1] ∧ [f(x + j + 2) = 2 + Φq(f(0))(x + j +

1)] ∧ [f(x + j + 3) = 0]]

].



It is easy to see that, for all f , f ∈ C iff (∀n > 0)[Sat(f [n])].

Let M′(f [0]) = 0. For n > 0, if Sat(f [n]), then let M′(f [n]) = p(f(0)); else let

M′(f [n]) = M(f [n]). It is easy to see, from the properties of Sat discussed above

that M′ satisfies the conditions of the theorem.

We now construct p, q as claimed above. By, for example, the operator recursion

theorem [6] there exist recursive functions p and q such that the (partial) functions

ϕp(i) and ϕq(i) may be defined as follows. We define ϕp(i) and ϕq(i) in stages. Let

xs denote the least x such that ϕq(i) is not defined before stage s.

Description of ϕp(i) and ϕq(i)

For all t ∈ N , let ϕp(i)(0, t) = i. Let ϕq(i)(0) = i.

For all t ∈ N , let ϕp(i)(1, t) = 0. Let ϕq(i)(1) = 0.

Go to stage 0.

Begin stage s

1. Dovetail steps 2 and 3 until step 2 succeeds. If and when step 2 succeeds,

go to step 4.

2. Let g be the zero-extension of ϕq(i)[xs]. Search for n > xs, and for w > n,

such that for each r ≤ j, ϕMi(g[n])(w + r)↓ = 0.

3. repeat

Let 〈x, t〉 be the least number such that ϕp(i)(x, t) has not been

defined till now. Let ϕp(i)(x, t) = 0.

forever

4. Let n, w be as found in step 2.

4.1 For each x, such that xs ≤ x < w

Let ϕq(i)(x) = 0.

For all t such that ϕp(i)(x, t) has not been defined till now, let

ϕp(i)(x, t) = 0.

4.2 For each r ≤ j, let ϕq(i)(w + r) = 1.

For each r ≤ j and t ∈ N , such that ϕp(i)(w + r, t) has not been defined

till now, let ϕp(i)(w + r, t) = 1.

4.3 Let ϕq(i)(w + j + 1) = 2 + Φq(i)(w + j).

For all t ∈ N such that ϕp(i)(w + j + 1, t) has not been defined till now,

let ϕp(i)(w + j + 1, t) = 2 + Φq(i)(w + j).

4.4 Let ϕq(i)(w + j + 2) = 0.

For all t such that ϕp(i)(w + j + 2, t) has not been defined till now, let

ϕp(i)(w + j + 2, t) = 0.



5. Go to stage s + 1.

End stage s

End of description of ϕp(i) and ϕq(i)

Properties (a), (c), (d) and (e) follow immediately from construction. For prop-

erty (b) consider the following cases.

Case 1: Infinitely many stages are executed.

In this case clearly, ϕ1
p(i) = ϕq(i) ∈ R. Moreover for infinitely many n,

ϕMi(ϕ1
p(i)

[n]) 6=j ϕ1
p(i) (by the success of step 2, in each stage s and the di-

agonalization at step 4.2). Thus ϕ1
p(i) 6∈ Bcj .

Case 2: Some stage s starts but never finishes.

Let stage s be the stage which starts but never finishes. Clearly, ϕq(i) = ϕ1
p(i)[xs]

and ϕ1
p(i) is the zero-extension of ϕq(i)[xs]. Moreover, for all n > xs, for infinitely

many x, ϕMi(ϕ1
p(i)

[n])(x) 6= 0 (otherwise, step 2 would succeed in stage s).

From the above cases it follows that p also satisfies condition (b). The theorem

follows.

Since limn→∞ Sat(f [n]), in the above proof, can be used to distinguish between

functions in C and not in C, the following corollary can be obtained by an easy

modification of M′ above.

Corollary 24 (∀a ∈ N ∪ {∗})(∀C ∈ Exa)(∃C′ ⊇ C)[C′ ∈ LimExa − Exa].

At present it is open whether the above theorem can be generalized to show that

(∀a ∈ N ∪ {∗})(∀n)(∀C ∈ LimnExa)(∃C′ ⊇ C)[C′ ∈ Limn+1Exa − LimnExa].

7 Extension of LimEx Criterion to Learning with

Additional Information

7.1 Learning with Additional Information

In [17, 22] learning with the knowledge of upper bound on the program size of the

function being learned was introduced. In this approach, a machine identifying a

program for a recursive function from its graph, is provided with an upper-bound

on the minimal program for the function as additional information. Hence, to sim-

plify our exposition, learning machines with additional information can be viewed

as taking two arguments: an upper-bound on the minimal program and an initial



segment of graph of a function. In other words, learning machines identifying func-

tions with additional information are algorithmic devices that compute a mapping

from N × INIT into N .

M(j, f)↓ (read: M on f with additional information j converges) iff (∃i)(
∞

∀

n)[M(j, f [n]) = i]. M(j, f)↑ otherwise. If M(j, f)↓, then M(j, f) = i, where i is

such that (
∞

∀ n)[M(j, f [n]) = i].

Definition 25 [22] Let a, b ∈ N ∪ {∗}.

(a) M Bexa,b-identifies f ∈ R (written: f ∈ Bexa,b(M)) ⇐⇒ (∀x ≥

MinProgb(f)) (∃i | ϕi =a f) [M(x, f)↓ = i].

(b) Bexa,b = {C ⊆ R | (∃M)[C ⊆ Bexa,b(M)]} .

Intuitively, M Bexa,b-identifies f iff M, fed j, at least as large as the minimal

program that computes f with at most b errors, and graph of f , converges to a

program that computes f with at most a errors. The notion Bex0,0-identification

was first studied by Freivalds and Wiehagen [17].

If, in Definition 25, we further require that the final program conjectured be

the same for any upper-bound, we get a new identification criterion described in

Definition 26 below.

Definition 26 [22] Let a, b ∈ N ∪ {∗}.

(a) M ResBexa,b-identifies f ∈ R (written: f ∈ ResBexa,b(M)) ⇐⇒ (∃i |

ϕi =a f) (∀x ≥ MinProgb(f)) [M(x, f)↓ = i].

(b) ResBexa,b = {C ⊆ R | (∃M)[C ⊆ ResBexa,b(M)]} .

ResBex0,0-identification criterion was mentioned as GN+ in [16].

It is noted in [16, 22] that ResBex0,0 ⊂ Bex0,0. In [22] this is interpreted to

indicate a possible explanation for the superiority of non-classroom over classroom

language learning: in the classroom one is expected to learn the same grammar as

the teacher. It is proved in [22] that for all n ∈ N , R ∈ Bexn,n.

7.2 Learning Limiting Programs with Additional Informa-

tion

We now define the notion of learning limiting program with additional information.

Definition 27 Let a, b ∈ N ∪ {∗}.

(a) M BLimEx
a,b-identifies f ∈ R (written: f ∈ BLimEx

a,b(M)) ⇐⇒

(∀x ≥ MinProgb(f)) (∃i | ϕ1
i =a f) [M(x, f)↓ = i].

(b) BLimEx
a,b = {C ⊆ R | (∃M)[C ⊆ BLimEx

a,b(M)]} .



Definition 28 Let a, b ∈ N ∪ {∗}.

(a) M ResBLimEx
a,b-identifies f ∈ R (written: f ∈ ResBLimEx

a,b(M))

⇐⇒ (∃i | ϕ1
i =a f) (∀x ≥ MinProgb(f)) [M(x, f)↓ = i].

(b) ResBLimExa,b = {C ⊆ R | (∃M)[C ⊆ ResBLimExa,b(M)]} .

Theorem 29 R ∈ ResBLimEx0,0.

Proof. Consider the following function:

F (0) = 0. F (i) = min(N − {F (j) | j < i ∧ (∃x)[ϕj(x)↓ 6= ϕi(x)↓]}).

For each i define Gi as follows.

Given i, x, let j = min({k | F (k) = i ∧ ϕk(x)↓}) and then set Gi(x) = ϕj(x).

It is easy to see that both F and Gi are total and that ϕ1-programs for them can

be found algorithmically from i. Also for all i, j such that ϕi = ϕj ∈ R: F (i) = F (j)

and GF (i) = ϕi. The theorem follows from the fact that R ∈ Bex0,0 [17, 22].

Proof techniques used in [22] can be used to prove several more theorems re-

garding the relationships between the criteria of this section.
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