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Abstract

Freivalds defined an acceptable programming system independent criterion for learn-
ing programs for functions in which the final programs were required to be both correct
and “nearly” minimal size, i.e, within a computable function of being purely minimal size.
Kinber showed that this parsimony requirement on final programs severely limits learning
power. Nonetheless, in, for example, scientific inference, parsimony is considered highly de-
sirable. A lim-computable function is (by definition) one computable by a procedure allowed
to change its mind finitely many times about its output. Investigated is the possibility of
assuaging somewhat the limitation on learning power resulting from requiring parsimonious
final programs by use of criteria which require the final, correct programs to be “not-so-
nearly” minimal size, e.g., to be within a lim-computable function of actual minimal size.
It is interestingly shown that some parsimony in the final program is thereby retained, yet
learning power strictly increases. Also considered are lim-computable functions as above
but for which notations for constructive ordinals are used to bound the number of mind
changes allowed regarding the output. This is a variant of an idea introduced by Freivalds
and Smith. For this ordinal complexity bounded version of lim-computability, the power
of the resultant learning criteria form strict infinite hierarchies intermediate between the
computable and the lim-computable cases. Many open questions are also presented.

1 Introduction

Freivalds [Fre75] defined an acceptable programming system [Rog58, Rog67, MY78] indepen-
dent criterion for learning programs for functions in which the final programs were required
to be both correct and “nearly” minimal size, i.e, within a computable function of being
purely minimal size. Kinber [Kin74] announced that this parsimony requirement on final pro-
grams severely limited learning power. Refinements for which final programs are allowed to
be anomalous [BB75, CS83] appear in [Che81, Che82]. The language learning case is consid-
ered in [CJS89]. More stringent parsimony requirements on final programs have been studied
too [Fre75, Kin74, FK77, Kin77b, Kin83] [Fre90, JS91], for example, in which the final programs
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are required to be strictly minimal size. These parsimony restrictions even further limit learning
power in ways which are interestingly dependent on the underlying acceptable programming
system.

In, for example, scientific inference, parsimony is considered highly desirable; however,
the above mentioned results indicate that even weak parsimony restrictions limit learning or
inferring power. To begin explaining the results of the present paper: a lim-computable function
is (by definition) one computable by a procedure allowed to change its mind finitely many
times about its output. Investigated in this paper is the possibility of assuaging somewhat the
limitation on learning power resulting from requiring parsimonious final programs by use of
criteria which require the final, correct programs to be “not-so-nearly” minimal size, i.e., to be
within a lim-computable function of actual minimal size. It is interestingly shown (Theorem 4
below) that some parsimony in the final program is thereby retained, yet learning power strictly
increases.

Proposition 2, implies that, adding another limit to the parsimony bounding functions
results in no parsimony being preserved (and no loss of learning power).

In Section 6 we consider some refinements of our learning criteria. Especially interesting is a
refinement in Section 6.2 in which, for the lim-computable functions, notations for constructive
ordinals [Rog67] are used to bound the number of mind changes allowed regarding the output.
This is a variant of an idea introduced by Freivalds and Smith [FS91]. For this ordinal com-
plexity bounded version of lim-computability, the power of the resultant learning criteria form
strict infinite hierarchies intermediate between the computable and the lim-computable cases.
Interesting open questions are also presented regarding just how fine are the learning criteria
hierarchies generated by these ordinal complexity bounds.

2 Notation

N denotes the set of natural numbers, {0, 1, 2, 3, . . .}. i, j, k,m, n, p, q, s, t, w, x, y, z (with or
without subscripts, superscripts, . . . ) range over N . ‘*’ denotes a non-member of N such that
(∀n ∈ N)[n < ∗ < ∞] (‘*’ represents ‘unbounded but finite’). a, b, c, d, similarly, range over
N ∪ {∗}. x .− y denotes max({0, x − y}).

∅ denotes the empty set. ∈, 6∈,⊆,⊂ respectively denote ‘is a member of’, ‘is not a member
of’, ‘is a subset of’ and ‘is a proper subset of’. ↑ denotes ‘is undefined’. ↓ denotes ‘is defined’.

For S, a subset of N , card(S) denotes the cardinality of S. So then, ‘card(S) ≤ ∗’ means
that card(S) is finite. max(S) and min(S) denote, respectively, the maximum and minimum
of the set S, where max(∅) = 0 and min(∅) = ∞. f, g, h with or without decorations range
over total functions with arguments and values from N . For a ∈ (N ∪ {∗}), if η1 and η2 are
partial functions, then η1 =a η2 means that card({x | η1(x) 6= η2(x)}) ≤ a. domain(η) and
range(η) respectively denote the domain and range of the partial function η. The set of all total
computable functions of one variable is denoted by R. C and S, with or without decorations,
ranges over subsets of R.

ϕ denotes a fixed acceptable programming system for the partial computable functions:
N → N [Rog58, Rog67, MY78, Ric80, Ric81, Roy87, Mar89]. ϕp denotes the partial computable
function computed by program p in the ϕ-system; Wp denotes the domain of ϕp. Φ denotes an
arbitrary fixed Blum complexity measure for the ϕ-system [Blu67]. For a computable function

f , MinProg(f)
def
= min({p | ϕp = f}).

The quantifier ‘∀∞’ means ‘for all but finitely many’; ‘∃∞’ means ‘there exists infinitely
many’ and ‘∃!’ means ‘there exists a unique’. σ ranges over finite initial segments of total
functions. Any unexplained notation is from [Rog67].
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3 Explanatory Function Identification

A learning machine [Gol67, BB75, CS83] is a computable mapping from the set of all finite initial
segments of total functions: N → N into N ∪ {?}. Natural number outputs are interpreted as
programs in the ϕ-system. Initially, a learning machine is allowed to output ?’s to indicate that
it has not decided on its first program output yet, but once it outputs some program, it is not
allowed to output ?’s again. f [n] denotes the finite initial segment ((0, f(0)), (1, f(1)), . . . , (n−
1, f(n−1))). We say that M(f) converges to p (written M(f)↓ = p) iff (∃p)(∀∞n)[M(f [n]) = p];
M(f) is undefined if no such p exists.

Definition 1 ([Gol67, BB75, CS83]) Suppose a, b ∈ N ∪ {∗}.

(a) M Exa
b–identifies f (written: f ∈ Exa

b (M))
def
⇔ [(∃i | ϕi =a f)

(∀∞n)[M(f [n]) = i] ∧ card({n |? 6= M(f [n])6= M(f [n + 1])}) ≤ b].

(b) Exa
b = {S | (∃M)[S ⊆ Exa

b (M)]}.

Ex0
∗ is written sometimes as Ex and Exa

∗ is sometimes written as Exa. Theorem 1 below
gives some of the results about Exa

b criteria.

Theorem 1 ([CS83]) For all m,n,

(a) Exn+1
0 − Exn 6= ∅;

(b) Ex0
m+1 − Ex∗

m 6= ∅;

(c) Ex∗
0 −

⋃

n∈N

Exn 6= ∅;

(d) Ex0
∗ −

⋃

m∈N

Ex∗
m 6= ∅.

Blum and Blum [BB75] first showed that Ex ⊂ Ex∗.

4 Nearly-Minimal Identification

Freivalds considered the learning of minimal-size programs and showed that such learning is de-
pendent on the acceptable programming system from which programs for functions are learned.
He, however, considered a variant of such learning, where the conditions of parsimony on the
size of the final programs are relaxed. The a = 0, b = ∗ case of the definition immediately below
is essentially the way he relaxed the constraints on parsimony. The criteria of this definition
are acceptable programming system independent.

Definition 2 ([Fre75, Che82])

(a) A learning machine M Mexa
b–identifies S (written: S ⊆ Mexa

b (M))
def
⇔ there is a

computable function g such that, for all f ∈ S, M Exa
b–identifies f and M(f) ≤

g(MinProg(f)).

(b) Mexa
b = {S | (∃M)[S ⊆ Mexa

b (M)]}.
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In the definition above, the g represents a fudge factor by which the parsimony constraint
is loosened. The final programs are, in a sense, nearly-minimal-size.

Theorem 2 below gives some of the results about the Mexa
b criteria.

Theorem 2 ([Che82]) For all m,n, a, b,

(a) Mexa
b ⊆ Exa

b ;

(b) Ex −Mexn 6= ∅;

(c) Mexn+1
0 − Exn

m 6= ∅;

(d) Mex0
m+1 − Ex∗

m 6= ∅;

(e) Mex∗ = Ex∗;

(f) Exn
m ⊂ Mexn

∗ .

Corollary 1 For all m,n, a, b,

(a) Mexn ⊂ Exn;

(b) Mexa
m ⊆ Mexb

n ⇔ (a ≤ b) ∧ (m ≤ n).

Kinber [Fre75, Kin77a] announced that Mex ⊂ Ex. Jain has recently shown that Mexn+1
0 6⊆

Exn.

5 Not-So-Nearly-Minimal-Size Program Inference

Nearly minimal size program inference, as defined by Mex, requires that the final program size
be within a computable fudge factor of the actual minimum program. In the present paper,
we wish to successively relax the computable fudge factor constraint and investigate whether
the learning power is enhanced. The first means we choose to relax the constraint imposed
by Mex, is essentially to allow limd-computable fudge factors. Limd-computability is defined
below (Definition 4).

Definition 3

lim
t→∞

h(x, t)
def
=

{

y if (∀∞t)[h(x, t) = y];
↑ otherwise .

We write h(x,∞) for lim
t→∞

h(x, t).

Definition 4 g : N → N is limd-computable
def
⇔ (∃ computable h : (N × N) → N)(∀x)[g(x) =

h(x,∞)] ∧ (∀x)[card({t | h(x, t) 6= h(x, t + 1)}) ≤ d].

Intuitively, in Definition 4, h(x, t) is the output at discrete time t of a mind changing
algorithm for g (acting on input x). (∀x)[g(x) = h(x,∞)], for h computable, means, then, that,
for all x, for all but finitely many times t, the output of the mind changing algorithm on input
x is g(x). d is just a bound on how many times the mind changing algorithm for g is allowed
to change its mind.
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We write lim-computable for lim∗-computable. It is easy to show that there is a lim-
computable function g such that (∀ computable f)(∀∞x)[g(x) > f(x)]. Hence, the lim-
computable functions go way beyond the computable ones; in fact, they have been known since
Post [Sha71] to characterize the functions computable with an oracle for the halting problem.

It turns out that, for d 6∈ {0, ∗}, the class of limd-computable functions fail to have some
useful closure properties one easily (and correctly) takes for granted in the d ∈ {0, ∗} cases: it
is easy to show that, for d 6∈ {0, ∗}, there is a lim1-computable function g so that for no limd-
computable, monotone non-decreasing function g′ do we have g′ ≥ g. Of course, intuitively,
the fudge factors that make the most sense to use are monotone non-decreasing and many
proofs ostensibly require them too. Hence, in our definition just below, we employ the device of
considering only monotone non-decreasing fudge factors. This trick enables one, for example,
to show the criteria so introduced are acceptable programming system independent.

Definition 5

(a) A learning machine M LimdMexa
b–identifies S (written: S ⊆ LimdMexa

b (M))
def
⇔ there

is a monotone non-decreasing limd-computable function g such that, for all f ∈ S, M
Exa

b–identifies f and M(f) ≤ g(MinProg(f)).

(b) LimdMexa
b = {S | (∃M)[S ⊆ LimdMexa

b (M)]}.

Hence, our definition requires that the machines converge to a program that is not-so-nearly-
minimal-size. We mostly write LimMexa

b instead of Lim∗Mexa
b . The following proposition is

obvious.

Proposition 1 For all m,a,b,

(a) Mexa
b ⊆ LimMexa

b ⊆ Exa
b ;

(b) LimmMexa
b ⊆ Limm+1Mexa

b ;

(c) Lim0Mexa
b = Mexa

b .

The following theorem is essentially proved in Chen [Che82] using the class of functions of
finite support (i.e., functions that have value 0 on all but finitely many inputs).

Theorem 3 ([Che82]) For all n, Ex − LimMexn 6= ∅.

Theorem 4 below shows that relaxing the parsimony constraint on final programs from being
within a computable fudge factor of minimal size to being within a lim-computable fudge factor
of minimal size does result in an increase in learning power. However, by Theorem 3 above,
the requirement that final programs be within a lim-computable fudge factor of minimal size
nonetheless retains some parsimony in the final programs.

Theorem 4 For all n, LimMex −Mexn 6= ∅.

Theorem 4 turns out to be a consequence of a result we prove later (Theorem 14 in Section 6),
and, hence, we do not prove Theorem 4 here. Theorem 4 originally encouraged us to explore
whether there was a fine hierarchy between Mex and LimMex based on limd-computable
fudge factors. We consider this next.

Lemma 1 For each n > 0, every monotone non-decreasing limn-computable function is domi-
nated by a monotone non-decreasing computable function.
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Proof.

We do the n = 1 case only. The other cases are, then, a straightforward lift.
Suppose g is a monotone non-decreasing lim1-computable function as witnessed by com-

putable h.
Case 1: (∀∞x)(∀t)[h(x, t) = h(x, 0)].

Clearly in this case, there exists a g′, computable and monotone non-decreasing, such that
g′ ≥ g.

Case 2: (∃∞x)(∃t)[h(x, t) 6= h(x, 0)].

In this case, we define g′ as follows. g′(0) = g(0). For each x > 0, g′(x) is defined as
follows. Search for a y ≥ x and a t > 0 such that h(y, 0) 6= h(y, t) and h(y, t) ≥ g ′(x − 1); set
g′(x) = h(y, t), for the y and t so found. Clearly, g′ is computable, monotone non-decreasing,
and dominates g everywhere.

Clearly by Lemma 1, we have the following

Theorem 5 For each n ∈ N , LimnMexa
b = Mexa

b .

We had originally hoped the immediately previous theorem was not true, that there was a
fine hierarchy between Mex and LimMex based on limd-computable fudge factors. In the next
section we successfully explore some different sources of restricted parsimony fine structure.

6 Further Generalizations

In Section 6.1 we briefly explore the effect of allowing even looser fudge factors and indicate
many presently open questions.

We saw in Theorem 5 above that natural number bounds on convergence of limiting pro-
cedures for computing fudge factors do not provide a hierarchy of criteria between Mex and
LimMex. In Section 6.2 we consider constructive ordinal [Rog67] bounds on such limiting pro-
cedures instead. This approach was nicely inspired by [FS91]. We present in Section 6.2 some
interesting results providing a fine structure between Mex and LimMex. We also indicate
many questions open as of the writing of this preliminary report.

6.1 Looser Fudge Factors

One more way that we can examine how programs inferred can be allowed to be not-so-nearly-
minimal-size is by allowing even looser fudge factors. To this end, consider the following defi-
nitions.

Definition 6 For h : Nn+1 → N,x ∈ N, i < n, h(x, t1, t2, . . . , ti,∞, . . . ,∞) =
lim

ti+1→∞
h(x, t1, t2, . . . , ti, ti+1,∞, . . . ,∞).

Definition 7 f : N → N is limn
d1,d2,...,dn

-computable
def
⇔ (∃ computable h : Nn+1 →

N)(∀x)[f(x) = h(x,∞, . . . ,∞)] and (∀i | 1 ≤ i ≤ n)(∀x, t1, t2, . . . , ti)[
card({t | h(x, t1, . . . , ti−1, t,∞, . . . ,∞) 6= h(x, t1, . . . , ti−1, t + 1,∞, . . . ,∞)}) ≤ di].
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We write limn-computable for limn
∗,...,∗-computable. The above definitions could be also be

generalized to finite but unbounded (i.e., ∗) iterations of limits. In the definition below, we
use limn

d1,d2,...,dn
-computable functions to measure allowed deviance of programs from being

nearly-minimal-size.

Definition 8

(a) Suppose M is a learning machine. M Limn
d1,...,dn

Mexa
b–identifies S (written: S ⊆

Limn
d1,...,dn

Mexa
b (M))

def
⇔ there is a limn

d1,...,dn
-computable monotone non-decreasing func-

tion g such that, for all f ∈ S, M Exa
b–identifies f and M(f) ≤ g(MinProg(f)).

(b) Limn
d1,...,dn

Mexa
b = {S | (∃M)[S ⊆ Limn

d1,...,dn
Mexa

b (M)]}.

We mostly write LimnMexa
b instead of Limn

∗,...,∗Mexa
b . The following proposition implies

that, for fudge factors computed by two levels of unrestricted iterated limits, there is essentially
no longer any parsimony retained in the resultant final programs.

Proposition 2 Lim2Mexa = Exa.

Proof. (⊆) Trivial.
(⊇) Suppose S ⊆ Exa(M). Then, S ∈ Lim2Mexa as witnessed by M and lim2-computable

monotone non-decreasing g, such that, for all x, g(x)
def
= h(x,∞,∞), where h is defined below.

We first define h′ as below. It is to be understood, that for values of h′, ?’s are changed to 0’s.

h′(i, t1, t2) =















M(ϕi[t1]) if (∀x < t1)[Φi(x) ≤ t2]∧
(∀y | t1 ≤ y ≤ t2 ∧ (∀x < y)[Φi(x) ≤ t2])
[M(ϕi[t1]) = M(ϕi[y])]];

0 otherwise.

We then define h as
h(i, t1, t2) = max({h′(x, t1, t2) | x ≤ i}).

Clearly, h is monotone non-decreasing and can be seen to dominate h′.

Corollary 2 Mexn ⊂ LimMexn ⊂ Lim2Mexn = Lim3Mexn = . . . = Exn.

There are many mostly uninvestigated questions still open. What happens with the it-
erated limits when we consider criteria that don’t necessarily require convergence to a sin-
gle final program, such as Bca [Bar74, CS83]? Which LimdMexa

b criteria have “limiting-
standardizability” style characterizations similar to those first obtained for Mex in [Fre75].
Generally, except for the cases noted above and their trivial consequences, how do the learning
classes Limn

d1,...,dn
Mexa

b compare to one another?

6.2 Constructive Ordinal Bounds on Limits

We proceed very informally. Some familiarity with a treatment of constructive ordinals such
as the ones in [Rog67, Sac90] may be useful to readers of this section. Readers may also find
[FS91] useful in this regard.

Intuitively ordinals [Sie65] are representations of well-orderings. 0 represents the empty
ordering, 1 represents the ordering of 0 by itself, 2 the ordering 0 < 1, 3 the ordering 0 <

1 < 2, . . . . The ordinal ω represents the standard ordering of all of N . ω + 1 represents
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the ordering of N consisting of the positive integers in standard order followed by 0. ω + ω

represents the ordering of N consisting of the even numbers in standard order followed by
the odd numbers in standard order. The constructive ordinals are just those that have a
program (called a notation) in some system which specifies how to build them (lay them out
end to end so to speak). We will informally employ, as our system of notation, the variant of
Kleene’s system O presented in [Rog67]. In this system, 20 is (by definition) the notation for
0. Successor ordinals are those with an immediate predecessor; for example, 1, 2, 3, ω + 1, . . .

are successor ordinals with respective immediate predecessors 0, 1, 2, ω, . . . . If u is a notation
for the immediate predecessor of a successor ordinal, then a notation for that successor ordinal
is (by definition) 2u. All other ordinals are limit ordinals; for example, ω, ω + ω, . . . are limit
ordinals. Kleene [Kle38, Rog67, Sac90] defined a natural partial ordering of notations, <o, so
that two notations so ordered represent respective ordinals with the second larger than the first.
We omit details. Suppose ϕp(0), ϕp(1), ϕp(2), . . . are each notations in <o order. Suppose that
the corresponding ordinals are longer and longer initial segments of some limit ordinal which
is their sup. For example, some such p generates the respective notations for 0, 1, 2, . . . in <o

order, and ω is the sup of this sequence. In general, then, p essentially describes how to build
the limit ordinal which is the sup of the ordinals with notations ϕp(0), ϕp(1), ϕp(2), . . . . A
notation for this limit ordinal is (by definition) 3 · 5p. Clearly such limit ordinals have infinitely
many such notations, different ones for different generating p’s. Nothing else is a notation. As
in the literature on constructive ordinals, we use ‘x ≤o y’ for ‘x <o y ∨ x = y’, ‘x ≥o y’ to
mean ‘y ≤o x and ‘x >o y’ to mean ‘y <o x’. We also recall the function · o : O → the set of
ordinals, defined as follows [Kle55, Rog67, Sac90]

1 o = 0

2u
o = u o + 1

3 · 5p
o = lim

n→∞
ϕp(n) o

The following properties of <o will be useful to recall [Kle55, Rog67, Sac90].

Fact 1 For all x, y ∈ N ,

(a) x <o y ⇒ (x ∈ O ∧ y ∈ O).

(b) x ∈ O ⇒ 1 ≤o x.

(c) x <o y ⇒ y 6= 1.

(d) x <o 2y ⇒ x ≤o y.

(e) x <o 3 · 5p ⇒ (∃n)[x <o ϕp(n)].

(f) (x ≤o z ∧ y ≤o z) ⇒ (x <o y ∨ x = y ∨ x >o y).

The following fact on notations [Rog67, Sac90] is also important to us.

Fact 2 There exist computable functions h1 and h2 such that, for all v ∈ O,

(a) Wh1(v) = {u | u <o v} ∈ O;

(b) Wh2(v) = {〈u1, u2〉 | u1 <o u2 <o v} is a well-ordering isomorphic to v o.
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Everyone knows how to use natural numbers as counters. [FS91] introduced the use of
constructive ordinals as more general counters. In this subsection we use constructive ordinals
to count the allowed mind changes of limiting procedures.

Convention 1 If n ∈ N , then n is the unique notation of n in the O notation system.

So, for example, 0 = 1 and 0 o = 0; 2 = 221

= 4 and 2 o = 2.
In the definition of limd-computable (Definition 7) d ∈ N played the role of a counter for

allowed mind-changes in the limiting process. For each notation u in O, we will define limu-
computable (Definition 9), where, intuitively, u serves as a transfinite counter of allowed mind
changes in the limiting procedure. This definition will conflict slightly with Definition 7, and,
hence, after Definition 9, we no longer use Definition 7. As we will see, though, for d ∈ N ,
limd-computable from Definition 9 corresponds to limd-computable from Definition 7.

Intuitively, h in Definition 9 just below plays a similar role to h in Definition 7, and the
function tfcounter in Definition 9 serves as a transfinite counter. As before, t can be thought
of a discrete time paramenter. Further explanation is given just after Definition 9.

Definition 9 Suppose u ∈ O. g : N → N is limu-computable
def
⇔ there exist computable

functions h : (N × N) → N and tfcounter : (N × N) → N such that

(a) (∀y)[g(y) = h(y,∞)],

(b) (∀y, t)[tfcounter(y, t) ∈ O],

(c) (∀y)[tfcounter(y, 0) = u],

(d) (∀y, t)[tfcounter(y, t + 1) ≤o tfcounter(y, t)], and

(e) (∀y, t)[h(y, t + 1) 6= h(y, t) ⇒ tfcounter(y, t + 1) <o tfcounter(y, t)].

Part (b) of Definition 9 restricts the transfinite counter values to be notations ∈ O. Part (c)
of Definition 9 initializes the transfinite counter at u. By Fact 2, the notations <o u are
well-ordered; hence, part (d) of Definition 9 implies the counter cannot not descend infinitely.
Part (e) of Definition 9 guarantees that, when h has a mind change, then the transfinite counter
must decrement. This part does not restrict how much it decrements. It also allows the
transfinite counter to decrement without an accompanying mind change in h. These latter two
properties are combinatorially convenient. Note that parts (b) through (e) imply that h(y,∞)
is defined and part (a) defines g(y) to be the value h(y,∞).

For u ∈ O, we now (partly re-)define the learning criterion LimuMexa
b to be just like

LimMexa
b except that the fudge factor g is limu-computable as defined in Definition 9.

Lim∗Mex retains it original meaning. Clearly, for d ∈ N , LimdMexa
b from this definition

corresponds to LimdMexa
b from Definition 5. It is easy to show LimuMexa

b is acceptable
programming system independent.

We are interested in comparing, for various u ∈ O, the classes LimuMexa
b . We should note

that, unfortunately it is open and mostly uninvestigated1 whether, for all u, u′ ∈ O such that
u o = u′

o, LimuMexa
b = Limu′Mexa

b . Moreover, we do not know whether, for all u, u′ ∈ O
such that u o = u′

o, the class of limu-computable functions = the class of limu′-computable
functions. We have also not investigated the possible connections between the limu-computable
characteristic functions and the hierarchies of [Ers68]. We have further not considered the

1We know a few special cases.
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possible dependencies of the limu-computable functions or of the classes LimuMexa
b on the

choice of notation system [Kle38, Rog67].
Before we proceed to compare, for various u ∈ O, the classes LimuMexa

b , we state the
following six theorems.

Theorem 6 ([CK37, Kle55, Rog67, Sac90]) There exists a computable function +o such
that, for all x, y ∈ N ,

x +o y =











x if y = 1;
2(x+om) if y = 2m,m > 1;
3 · 5q if y = 3 · 5p, (where (∀n)[ϕq(n) = x +o ϕp(n)]);
7 otherwise .

Furthermore, q is a computable, 1–1 function of x and p.

The 1–1-ness of +o just mentioned is crucial for proving parts of Theorem 7, which in turn
are necessary for proving many result that follow.

+o has the following useful properties.

Theorem 7 ([CK37, Kle55, Sac90]) For all x, y and z ∈ N ,

(a) x, y ∈ O ⇔ x +o y ∈ O.

(b) x, y ∈ O ⇒ x +o y o = x o + y o.

(c) (x, y ∈ O ∧ y 6= 1) ⇒ x <o x +o y.

(d) (x ∈ O ∧ z <o y) ⇔ (x +o z) <o (x +o y).

(e) (x ∈ O ∧ y = z ∈ O) ⇔ (x +o y) = (x +o z).

(f) x ≤o z <o (x +o y) ⇒ (∃!z)[y′ <o y ∧ (x +o y′) = z].

Note that +o (on O) is non-commutative like + for ordinals; +o is, however, also non-
associative (on O) unlike + for ordinals. We adopt the convention that x +o y +o z means
(x +o y) +o z. The non-associativity of +o leads to some subtleties that are otherwise absent
when dealing with ordinals, as opposed to notations.

The next theorem is a slight modification of a theorem in [CK37]. The y = 2 case is treated
differently from therein and ensures that all the parts of Theorem 9 hold.

Theorem 8 ([CK37]) There is a computable function ×o such that, for all x, y ∈ N ,

x ×o y =



















1 if y = 1;
x if y = 2;
(x ×o m) +o x if y = 2m,m > 1;
3 · 5q if y = 3 · 5p, (where (∀n)[ϕq(n) = x ×o ϕp(n)]);
7 otherwise.

Furthermore, q is a computable, 1–1 function of x and p.

Like +o, ×o is neither commutative nor associative (on O), and, as for +o, in unparenthesized
expressions involving ×o, we associate to the left.

Analogous to Theorem 7, we have the following theorem for ×o.
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Theorem 9 For all x, y and z ∈ N .

(a) (y 6= 1) ⇒ [x, y ∈ O ⇔ x ×o y ∈ O].

(b) x, y ∈ O ⇒ x ×o y o = x o × y o.

(c) (x 6= 1 ∧ y 6= 1 ∧ y 6= 2) ⇒ [x, y ∈ O ⇔ x <o x ×o y].

(d) (x 6= 1) ⇒ [(x ∈ O ∧ z <o y) ⇔ x ×o z <o x ×o y].

(e) (x 6= 1) ⇒ [(x ∈ O ∧ y = z ∈ O) ⇔ x ×o y = x ×o z].

(f) x′ <o x ⇔ (∀y)[x ×o y +o x′ <o x ×o (y +o 1)].

(g) x ≤o z <o (x ×o y) ⇒ (∃!y′ <o y, x′ <o x)[z = (x ×o y′) +o x′].

Another theorem from [CK37] is the following, except for a slight modification for the y = 2
case as in Theorem 9.

Theorem 10 ([CK37]) There is a computable function expo such that, for all x, y ∈ N ,

x expo y =



















2 if y = 1;
x if y = 2;
(x expo m) ×o x if y = 2m,m > 1;
3 · 5q if y = 3 · 5p, (where (∀n)[ϕq(n) = x expo ϕp(n)]);
7 otherwise.

Furthermore, q is a computable, 1–1 function of x and p.

Again, similar comments about commutativity and associativity hold for expo as for ×o and
+o. The following are some of the properties of expo defined immediately above.

Theorem 11 For all x, y and z ∈ N .

(a) (y 6= 1) ⇒ [x, y ∈ O ⇔ x expo y ∈ O].

(b) x, y ∈ O ⇒ x expo y o = x o expo y o.

(c) (x 6= 1 ∧ x 6= 2 ∧ y 6= 1 ∧ y 6= 2) ⇒ [x, y ∈ O ⇔ x <o x expo y].

(d) (x 6= 1 ∧ x 6= 2) ⇒ [(x ∈ O ∧ z <o y) ⇔ x expo z <o x expo y].

(e) (x 6= 1 ∧ x 6= 2) ⇒ [(x ∈ O ∧ y = z ∈ O) ⇔ x expo y = x expo z].

(f) (x 6= 1) ⇒ [x′ <o x ⇔ (∀y)[(x expo y) ×o x′ <o x expo(y +o 1)]].

(g) x ≤o z <o (x expo y) ⇒ (∃!y′ <o y, x′ <o x, z′ <o (x expo y′))[z = ((x expo y′) ×o x′) +o z′].

We recall that ω = limn−>∞ n o.

Convention 2 w, with or without subscripts, ranges over notations for ω.

Similar to Proposition 1, we have

Proposition 3 For all u, v ∈ O such that u ≤o v and a,b ∈ N ∪ {∗},

(a) LimuMexa
b ⊆ LimvMexa

b ,

11



(b) Lim0Mexa
b = Mexa

b .

Again, similar to Lemma 1, we have

Lemma 2 For all u, v, w ∈ O such that v <o u ×o w, every monotone, non-decreasing limv-
computable function is dominated by a monotone, non-decreasing limu-computable function.

Proof. Let u, y, w ∈ O be such that y <o u ×o w. Using Fact 1, there exists k such that
y <o u ×o k. So it suffices to prove the lemma for y <o u ×o k, for each k. The proof proceeds
similarly to that of Lemma 1.

We will do only the k = 2 case. The other cases can be proved on similar lines.
Suppose g is a monotone, non-decreasing limu×o2-computable function as witnessed by h

and tfcounter .
Case 1: (∀∞y)[tfcounter(y,∞) >o u].

Let C = {y | tfcounter(y,∞) ≤o u}. Since C is finite, the set C ′ defined as C ′ = {〈y, n〉 |
y ∈ C ∧ h(y,∞) = n} is also finite and hence recursive.

For all y 6∈ C, u +o u ≥o tfcounter(y,∞) >o u. So, by Theorem 9, part (g), for all v 6∈ C, t,
there exists a unique ut such that 0 <o ut ≤o u and u +o ut = tfcounter(v, t). We note that
these ut’s can be found effectively. Define computable functions h′ and tfcounter ′ thus.

h′(v, t) =

{

n if 〈v, n〉 ∈ C ′;
h(y, t) if y 6∈ C.

tfcounter ′(y, t) =

{

u if y ∈ C;
ut if y 6∈ C ∧ tfcounter(y, t) = u +o ut.

Define g′(y) = h′(y,∞). Then, clearly, g′ is a monotone non-decreasing limu-computable func-
tion as witnessed by h′ and tfcounter ′ and g′ dominates g.
Case 2: Not Case 1.

So, (∃∞y)[tfcounter(y,∞) ≤o u]. Let C = {y | tfcounter(y,∞) ≤o u}. Note that C is an
infinite, recursively enumerable set. Hence, there exists C ′ ⊆ C, such that C ′ is recursive. Let
C ′ = {y0 < y1 < . . .} be such an infinite recursively enumerable subset of C. Define computable
functions h′ and tfcounter ′ thus.

h′(z, t) =

{

0 if tfcounter(yz, t) >o u;
h(yz, t) otherwise .

tfcounter ′(z, t) =

{

u if tfcounter(yz, t) >o u;
tfcounter(yz, t) otherwise .

Define g′(y) = h′(y,∞). Then, clearly, g′ is a monotone non-decreasing limu-computable
function as witnessed by h′ and tfcounter ′ and g′ dominates g.

The above lemma immediately gives us

Theorem 12 For all a, b, for all u, v, w ∈ O such that v <o u×o w, LimvMexa
b = LimuMexa

b .

The immediately above theorem shows that no gain in learning power results by using limv-
computable fudge factors instead of limu-computable fudge factors, if u and v are related as
above (i.e., there exists w ∈ O such that v <o u ×o w). Our next theorem, Theorem 13, shows
that, for suitable u ∈ O, when u o < ωω, learning power strictly increases if we use limu×ow-
computable fudge factors instead of limu-computable fudge factors. It is useful first to have the
immediately following proposition, our inspiration for which came from Cantor’s Normal Form
Theorem for ordinals [Sie65, Page 323].

We recall, by Convention 2, that w1, w2, . . . (as well as w) are all notations for ω.
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Proposition 4 For all m, for all w1, w2, . . . , wm+1, for all x, x <o (w1×o w2×o . . .×o wm+1) ⇔
(∃!n1, n2, . . . , nm+1)[x = (w1 ×o w2 ×o . . .×o wm ×o n1) +o (w1 ×o w2 ×o . . .×o wm−1 ×o n2) +o

. . . +o (w1 ×o nm) +o nm+1].
Furthermore, for the left to right direction, the values for n1, n2, . . . , nm+1 can be algorith-

mically found.

The above proposition can be proved by induction on m.

Convention 3 For every u ∈ O, n ∈ N , un = u expo n.

Theorem 13 For all w1, w2, . . . , wm+1, m, n,
Limw1×ow2×o...×owm+1

Mex − Limw1×ow2×o...×owmMexn 6= ∅.

Proof.

For typographical convenience, we will prove the theorem for the case when w1 = w2 =
. . . = wm+1 = w. The other cases easily follow. Also, we do only the n = 0 case here. The
n 6= 0 cases, then, can be proved easily by modifying steps 2.3 and 4 in the second half of this
proof. We first introduce some definitions that will help us in turn to define classes to prove
this theorem.

For all f , p, n, let
S(f, p, n) = {f(〈p, x〉) | f(〈p, x〉) 6= 0 ∧ card({y ≤ x | f(p, y) 6= 0}) ≤ n}.

Intuitively, S(f, p, n) is the set of all non-zero values in the pth cylinder of the computable
function f , provided there are less than n such values; otherwise, it is the first n non-zero values
in the pth cylinder. Suppose without loss of generality that 〈0, 0〉 = 0.

For all f and k > 0, let

L
f
1 = {f(〈0, 0〉)}

L
f
k+1 =

⋃

〈p,n〉∈L
f

k

S(f, p, n)

Intuitively, if L
f
1 = {〈p, n〉}, then L

f
2 is just S(f, p, n). For k > 0, L

f
k+1 is the union of sets

of numbers, each of whose cardinality and content are determined by one or more elements of

L
f
k . In the proof immediately below, we define and use a computable function f for which, for

k > 0, L
f
k+1 is a disjoint union of sets of numbers, each of whose cardinality and content are

determined by a distinct element of L
f
k . Such an f helps in clarity of presentation, though it is

not necessary for proving this theorem.
For all m, let Sωm = {f | lim

t→∞
f(〈1, t〉)↓ = p ∧ ϕp = f ∧ p ≤ max(Lf

m)}.

We will now construct an inductive inference machine M and limwm+1computable g such
that Sωm+1 ∈ Limwm+1Mex as witnessed by M and g. (We note that the same class can
be used for different w’s that are notations for ω.) For all n, define M(f [n]) as follows. Let
in = max({j | 〈1, j〉 < n}). Let M(f [n]) = f(〈1, in〉).

Firstly, we define total, computable functions ϕt
j for each j and t as follows.

ϕt
j(x) =

{

ϕj(x) if (∀y ≤ x)[Φj(y) ≤ t];
0 otherwise .

Next, for all j, t, p, n, let

T (〈j, t〉, p, n) = S(ϕt
j , p, n, ).

13



For all k > 0, and i, t, let

P
〈≤i,t〉
1 = {ϕj(〈0, 0〉) | j ≤ i ∧ Φj(〈0, 0〉) ≤ t}

P
〈≤i,t〉
k+1 =

⋃

j≤i

⋃

〈p,n〉∈P
〈≤i,t〉
k

T (〈j, t〉, p, n)

So, for all k > 0, lim
t→∞

P
〈≤i,t〉
k ⊇

⋃

j≤i∧ϕj∈R L
ϕj

k .

Also, let

card
〈≤i,t〉
k = card(P

〈≤i,t〉
k ).

sum
〈≤i,t〉
k =

∑

〈p,n〉∈P
〈≤i,t〉
k

n.

We now define h, tfcounter as follows. For all i, let h(i, 0) = 0; tfcounter(i, 0) = wm+1;

For t > 0, we define h(i, t) and tfcounter(i, t) as follows.

h(i, t) = max(P
〈≤i,t〉
m+1 );

Let n1 = i + 1 − card
〈≤i,t〉
1 . For 1 ≤ k ≤ m let nk+1 = sum

〈≤i,t〉
k − card

〈≤i,t〉
k+1 .

tfcounter(i, t) = wm ×o n1 +o wm−1 ×o n2 +o . . . +o w ×o nm +o nm+1.
Finally, we define g as follows. For all y, g(y) = h(y,∞).
It can be verified that g is limwm+1computable, as witnessed by h and tfcounter , and that

for every ϕi ∈ Sωm+1 , M(ϕi) ≤ g(MinProg(ϕi)).
We next show that Sωm+1 6∈ LimwmMex. We will show this only for m > 0 case. m = 0

case can be proved in a similar but much simpler manner.
Let ℘1, ℘2, . . . be the increasing sequence of prime numbers.

For all notations v of the form wm−1 ×o n1 +o wm−2 ×o n2 +o . . . +o w ×o nm−1 +o nm, for all
k, such that 1 ≤ k ≤ m, let

numv
k = nk.

For k ≤ m, let

prodv
k = 1 +

k
∏

i=1

℘1+ni

i .

We note that, for all v, prodv
0 = 2. Suppose v = wm−1 ×o n1 +o wm−2 ×o n2 +o . . . +o

w ×o nm−1 +o nm and v′ = wm−1 ×o n′
1 +o wm−2 ×o n′

2 +o . . . +o w ×o n′
m−1 +o n′

m. Then,

prodv
k = prodv′

k if and only if, for 1 ≤ i ≤ k, ni = n′
i.

Suppose by way of contradiction that Sωm+1 ∈ LimwmMex as witnessed by M and limwm-
computable g. Let h, tfcounter witness that g is limwm-computable. For u such that u o 6= 0,
any limu-computable function g is dominated by some limu-computable function g′ such that
g′ makes at least one mind change on every input; this can be proved on the lines of Lemma 1.

By the Operator Recursion Theorem, there exists a recursive 1–1, increasing e such that,
for all x, the functions ϕe(x) may be defined as follows.
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Let t be the least number such that h(e(0), t) 6= h(e(0), 0).

Let curbnd = h(e(0), t); curbot = current = 1; curtop = curbot + curbnd + 1.

Let v = tfcounter(e(0), t);

Let ϕe(0)(〈0, 0〉) = 〈prodv
0, 1 + numv

1〉.

for k = 0 to m − 2 do

ϕe(0)(〈prodv
k, 0〉) = 〈prodv

k+1, 1 + numv
k+2〉;

endfor

Let ϕe(0)(〈prodv
m−1, 0〉) = e(curtop);

For x ≤ max({〈0, 0〉, 〈prodv
0, 0〉, . . . , 〈prodv

m−1, 0〉}), such that ϕe(0)(x), has not been defined till
now let ϕe(0)(x) = 0. Let xs denote the least x such that ϕe(0)(x) has not been defined before
stage s.

Let Cancel = ∅.

Let lastmindch = t.

Go to stage 0.

Begin Stage s

1. For x < xs, let ϕe(current)(x) = ϕe(0)(x).

2. Let y = xs

repeat

2.1. If y is of the form 〈1, z〉, then let
ϕe(current)(y) = e(current).

Otherwise let ϕe(current)(y) = 0.

2.2. If h(e(0), lastmindch) 6= h(e(0), y + lastmindch), then go to step 3.
2.3. If there exists a i ≤ curbnd, i 6∈ Cancel, and xs < 〈0, x〉 < y, such that ϕi(〈0, x〉)↓ in

≤ y steps, then go to step 4.
2.4. If M(ϕe(current)[y + 1]) > curbnd, then go to step 5.
2.5. Let y = y + 1.

forever

3. Let v = tfcounter(e(0), lastmindch);

Let v̄ = tfcounter(e(0), lastmindch + y);

Let curbnd = h(e(0), lastmindch + y).

Let curbot = curtop + 1.

Let curtop = curtop + 1 + curbnd.

Let lastmindch = lastmindch + y

Let i be the least value such that numv̄
i 6= numv

i (So, prodv
i−1 = prodv̄

i−1. Also, for i ≤ k ≤
m − 1, ϕe(0)(〈prodv̄

k, .〉) has no non-zero values wherever it is defined till now.)

Let x be the least value such that ϕe(0)(〈prodv̄
i−1, x〉) has not been defined till now. Let

ϕe(0)(〈prodv
i−1, x〉) = 〈prodv̄

i , 1 + numv̄
i+1〉.

for k = i to m − 2 do

Let x be the least value such that ϕe(0)(〈prodv̄
k, x〉) has not been defined till now.

ϕe(0)(〈prodv̄
k, x〉) = 〈prodv̄

k+1, 1 + numv̄
k+2〉;
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endfor

Let x be the least value such that ϕe(0)(〈prodv̄
m−1, x〉) has not been defined till now.

Let ϕe(0)(〈prodv̄
m−1, x〉) = e(curtop);

For xs ≤ z < max({〈prodv̄
i−1, x〉, 〈prodv̄

i 〉, . . . , 〈prodv̄
m−1〉}) such that ϕe(0)(z) has not been

defined till now, let ϕe(0)(z) = 0.

Go to stage s + 1.

4. Let current = current+1. For i, 〈0, x〉 as found in step 2.3, let ϕe(0)(〈0, x〉) = ϕi(〈0, x〉)+1.

For xs ≤ y < 〈0, x〉, let ϕe(0)(y) = 0.

Let Cancel = Cancel ∪ {i}.

Go to stage s + 1.

5. For xs ≤ x ≤ y, let ϕe(0)(x) = ϕe(current)(x).

Go to stage s + 1.

End stage s

Case 1: Each stage is entered and terminates.
Since <o is well–founded, step 2.2 can succeed only a finite number of times. The value of

curbnd is changed only when step 2.2 succeeds. Since each time step 2.3 occurs, a new i <

curbnd is cancelled, step 2.3 can succeed only a finite number of times in between occurrences
of step 2.2. Thus, all but finitely often, step 2.4 succeeds. Also, since the values of current
and curtop are changed only when step 2.2 or step 2.3 succeeds, they eventually stabilize. Let
currentfin and curtopfin be the eventual values of these variables.

Furthermore, ϕe(0) = ϕe(currentfin), and is total. Let f = ϕe(0). We now show that

f ∈ Sωm+1 . Firstly, limt→∞ f(〈1, t〉) = e(currentfin). Next, f(〈0, 0〉) = 〈prodv
0, 1+num1

v〉, where
v = tfcounter(e(0), t), for t as found before stage 0. The only cause for f(〈prodv

0, x〉) to take a
non-zero value is either before stage 0 or when the step just before the for loop in step 3 occurs
with i = 1. This can happen, in all, only 1 + numv

1 times, which is ≤ π2(f(〈0, 0〉). Similarly, it

can be shown that for each 0 < k ≤ m, for each 〈p, n〉 ∈ L
f
k , card({x | f(〈p, x〉) 6= 0}) ≤ n. Also,

current is always ≤ curtop since step 4 can occur at most curbnd+1 times between occurrences

of step 3. Finally, e(curtop) ∈ L
f
m+1 at all stages, and since e is 1–1 increasing, e(currentfin) ≤

e(curtopfin). Hence, f ∈ Sωm+1 . However, M(f))↑ or M(f) 6≤ curbnd = lim
t→∞

h(p(0), t).

So, f 6∈ LimwmMex as witnessed by M and g.
Case 2: Some stage s starts, but does not terminate.

Let currentfin, curbndfin and curtopfin be the final values of current, curbnd and curtop
(i.e., those before stage s starts). Let f = ϕp(currentfin). It can be argued on lines similar

to those in Case 1 that f ∈ Sωm+1 . M, on all but finitely many initial segments of f outputs
a program ≤ curbndfin (otherwise step 2.4. would succeed). However, for all i ≤ curbndfin,
either i ∈ Cancel, and thus ϕi 6= f , or ϕi diverges on infinitely many inputs (otherwise step 2.3.
would succeed). It follows that M does not Ex-identify f .

From the above cases it follows that Sωm+1 6∈ LimwmMex as witnessed by M and g.

The immediately previous theorem leaves unanswered the comparisons of LimuMex with
LimvMex, when u o ≥ ωω and u ×o w ≤o v. The next theorem partly resolves some of these
comparisons.

Theorem 14 For all notations u, there exists a notation v >o u such that, for all n, LimvMex−
LimuMexn 6= ∅.
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Proof. We assume without loss of generality that u o ≥ ω. Consider the following class of
functions.

C = {f |

f(〈3,∞〉)↓ = p ∧ ϕp = f ∧

f(〈2,∞〉)↓ ≥ p ∧

(∀z)[f(〈2, z〉) 6= f(〈2, z + 1〉) ⇒ f(〈1, z〉) 6= f(〈1, z + 1〉)] ∧

(∀z)[f(〈1, z〉) ∈ O] ∧

(∀z)[f(〈1, z〉) ≥o f(〈1, z + 1〉)] ∧

f(〈1, 0〉) = u

}

It can be shown, using a variant of the proof of the negative part of Theorem 13, that
C 6∈ LimuMexn. We will show that there exists a v >o u such that C ∈ LimvMex.

Let M be such that, for every n, M(f [n]) is defined as follows. Let in = max({j | 〈3, j〉 <

n}). Let M(f [n]) = f(〈3, in〉). This machine clearly Ex-identifies any f ∈ C. We will construct
a Limv function, g, such that for every f ∈ C, g(MinProg(f)) ≥ M(f).

To this end let η1(j, t) = ϕj(〈2, t〉), and η2(j, t) = ϕj(〈1, t〉). Let h′ and tfcounter ′ be such
that the following 6 conditions are satisfied. (Note that such a h′, tfcounter ′ can be easily
constructed; we omit the details).

1. h′ and tfcounter ′ are total, computable functions.
2. (∀j, z)[h′(j, z) 6= h′(j, z + 1) ⇒ tfcounter ′(j, z) 6= tfcounter ′(j, z + 1)].
3. (∀j, z)[tfcounter ′(j, z) ∈ O].
4. (∀j, z)[tfcounter ′(j, z) ≥o tfcounter ′(j, z + 1)].
5. (∀j)[tfcounter ′(j, 0) = u +o 1].
6. if η1(j, .) and η2(j, .) are such that

[ (∀t)[η1(j, t)↓ ∧ η2(j, t)↓]∧
(∀z)[η1(j, z) 6= η1(j, z + 1) ⇒ η2(j, z) 6= η2(j, z + 1)]∧
(∀z)[η2(j, z) ∈ O]∧
(∀z)[η2(j, z) ≥o η2(j, z + 1)]∧
[η2(j, 0) = u] ]

then limt→∞[η1(j, t)] = h′(j,∞)].
Let g′(y) = h(y,∞), for every y. Clearly, g′ is a lim-computable function. Also,

g′(MinProg(f)) ≥ M(f), for f ∈ C.
We will next show that there exists a v such that some limv-computable function dominates

g′.
Let v = 2 expo(u ×o w);
Define h and tfcounter as follows.
For all j, t, h(j, t) = max({h′(i, t) | i ≤ j}).
For all j, tfcounter(j, t) = v, if t = 0.
tfcounter(j, t) = match(tfcounter ′(j, t), . . . , tfcounter ′(0, t)), for t > 0, where match is as

defined below.
(To avoid unnecessary complexity, we allow match to take a variable number of arguments.)

Let 2i be the notation for 2i. We now define match.
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Begin match(uj, uj−1, . . . , u0)

For 1 ≤ i ≤ j, let u′
i = (u ×o 2i) +o ui and vi = 2 expo u′

i.

Let sum0 = v0; for i < j, let sumi+1 = vi+1 +o sumi.

(Note that sumj is just the summation of vi’s in a right associative manner.)

Let match(uj , uj−1, . . . , u0) = sumj .

End match

We now define g as follows. For all y, g(y) = h(y,∞). Clearly g dominates g ′. We will next
show that g is indeed limv-computable as witnessed by h and tfcounter .

Note that (in the definition of match), since for all i, 1 ≤ i ≤ j, ui is ≤o u +o 1, we have
that u′

i <o u′
i+1, for 0 ≤ i < j. The following claim is helpful.

Claim 1 Suppose j ∈ N , and u0, . . . , uj ∈ O, for i ≤ j, are given. Assume further that
ui ≤ u +o 1, for i ≤ j. For i ≤ j, let sumi, u′

i and vi be as defined in the procedure for
match(uj , . . . , u0). Then, for k < j, vk+1 >o sumk.

Proof. By induction on k.
Base Case: k = 1.
Since u′

0 <o u′
1, sum0 = 2 expo u′

0 <o 2 expo u′
1 = v1 (using properties of +o and expo from

Theorems 7 and 11). Hence, v1 >o sum0.
Inductive Case: Suppose the claim is true for k = r − 1, where r < j − 1. We will show
that it holds for k = r. sumr = vr +o sumr−1 <o vr +o vr (by the inductive hypothesis)
= (2 expo u′

r) +o (2 expo u′
r) = 2 expo(u

′
r +o 1) ≤o 2 expo u′

r+1 = vr+1.
This proves the inductive hypothesis. 2

We continue with the proof of Theorem 14.
Let j be an arbitrary, fixed value. We note that h(j, t) 6= h(j, t + 1) implies that for

some i ≤ j, tfcounter ′(i, t) 6= tfcounter ′(i, t + 1). To show that g is limv-computable, it is
then sufficient to show that, given, for i ≤ j, ui ≤o u +o 1 and ūk <o uk, for some k ≤ j,
[match(uj , . . . , uk, . . . , u0) <o match(uj , . . . , ūk, . . . , u0)].

Now, in the definition of match, for 0 ≤ i ≤ j, let sumi, u
′
i and vi be as defined in the

procedure for match(uj, . . . , u0); also, let sumi, u
′
i and vi, be the values of sumi, u

′
i, vi respec-

tively, as defined in the procedure for match(uj , . . . , uk+1, uk, uk−1, . . . , u0). Thus, to show that
sumj >o sumj , it suffices to show vk >o sumk. But by Claim 1, we have vk >o sumk−1 and
thus, sumk <o vk ×o 2 = 2 expo(u

′
k +o 1) ≤o 2 expo u′

k = vk. Hence sumj >o sumj .

As a corollary to Theorem 14, we have

Corollary 3 For all u ∈ O, LimMex − LimuMexn 6= ∅.

Theorem 4 of Section 5 is a consequence of the immediately above result.
We conjecture that, for all constructive ordinals α, for suitable u ∈ O such that u o = α,

Theorem 13 can be extended to: Limu×owMex−LimuMexn 6= ∅. We are a bit more confident
of this conjecture for α < small constructive epsilon numbers [Sie65, CK37].

Just as we iterated limits in Section 6.1, we can do the same with our new definition
of LimuMexa

b and study the learning classes Limn
u1,...,un

Mexa
b . Generally, except for the

cases noted above and their trivial consequences, we do not know how the learning classes
Limn

u1,...,un
Mexa

b compare to one another.
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Of Algorithms and Programs, LSU, Riga, 1:221–223, 1974.

[Kin77a] E. B. Kinber. On a theory of inductive inference. Lecture Notes in Computer Science,
56:435–440, 1977.

[Kin77b] E. B. Kinber. On limit identification of minimal Gödel numbers for functions from
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