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Abstract

Freivalds defined an acceptable programming system independent criterion for learning pro-
grams for functions in which the final programs were required to be both correct and “nearly”
minimal size, i.e, within a computable function of being purely minimal size. Kinber showed
that this parsimony requirement on final programs limits learning power. However, in scientific
inference, parsimony is considered highly desirable. A lim-computable function is (by definition)
one calculable by a total procedure allowed to change its mind finitely many times about its
output. Investigated is the possibility of assuaging somewhat the limitation on learning power
resulting from requiring parsimonious final programs by use of criteria which require the final,
correct programs to be “not-so-nearly” minimal size, e.g., to be within a lim-computable func-
tion of actual minimal size. It is shown that some parsimony in the final program is thereby
retained, yet learning power strictly increases. Considered, then, are lim-computable functions
as above but for which notations for constructive ordinals are used to bound the number of mind
changes allowed regarding the output. This is a variant of an idea introduced by Freivalds and
Smith. For this ordinal notation complexity bounded version of lim-computability, the power of
the resultant learning criteria form finely graded, infinitely ramifying, infinite hierarchies inter-
mediate between the computable and the lim-computable cases. Some of these hierarchies, for
the natural notations determining them, are shown to be optimally tight.
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1 Introduction

This work is in the context of computability-theoretic inductive inference or learning theory [Put63,
Gol67, JORS99, 0di99).

In Section 1.1 are informally presented what we need of the basic concepts and motivations
from inductive inference including parsimony constraints on inferred (learned) programs.

As we will see, degrees of parsimony will be measured with notations from Kleene’s O for
the constructive ordinals [Rog67]. Section 1.2 presents a corresponding informal introduction with
motivations and examples.

Section 1.3 summarizes our principal results. These feature infinite hierarchies of success criteria
re inferring parsimonious programs, and they are based on O-measured degrees of parsimony.

Section 2 contains the needed basic terminology and definitions presented rigorously.

Our main results are presented with proof in Section 3, and Section 4 presents further and
preliminary results and open questions.

1.1 Inductive Inference Machines and Parsimony

N denotes the set of natural numbers, {0,1,2,3,...}. A basic paradigm from machine inductive
inference pertains to the algorithmic, trial and error “learning” of programs for (computable) func-
tions f : N — N — given, as input, enumerations of the successive values of f, i.e., f(0), f(1),... .
We can think of a function f : N — N as encoding the set of all possible deterministic outcomes
of the experiments on some corresponding phenomenon (e.g., from chemistry): an input x to f
represents the code of a possible experiment, e.g., mixing particular volumes of particular chemi-
cals in a test tube, and f(x) represents the outcome, e.g., the mixture turned blue and fizzed (see,
for example, [BB75, CS83]).! A program p for such a function corresponds, then, to a predictive
explanation for the associated phenomenon. Possession of p enables one to predict the outcomes of
any experiment (with associated code) x regarding the phenomenon: use p to compute f(z) (and
decode). The trial and error aspect of algorithmically learning such explanatory programs p models
that the scientific community changes its “mind” over time as to explanations for a phenomenon.

Informally, acceptable programming systems (synonym: acceptable numberings) [Roghb8, Rog67,
MY78, Roy87| are those programming systems for the partial computable functions which are
intercompilable with naturally occurring general purpose programming formalisms such as Turing
machine formalisms and the LISP programming language.? The programs output by inductive
inference algorithms (or machines) will be from some fixed acceptable system ¢. ¢, denotes the
partial computable function : N — N computed by the program p in the p-system. When an
inductive inference machine M is given the successive values of a function f as input and, after
some resultant succession of (trial and error) output programs, it converges to a single program
p, we write M(f) = p. If this p is a correct program (explanation) for f, ie., if ¢, = f, we
say that M Ex-identifies f. If some M Ex-identifies every function in a class of functions C, we
write C € Ex. For example, the class of primitive recursive functions is in Ex, and the class of
computable functions is not [Gol67, BB75].

'Fulk [Ful85] argues that the set of possible, distinguishable experiments one can actually do on a phenomenon is
countable.

2Typically, for theoretical work, one works with numerical names for the programs in these systems — whence
the term ‘numbering.’



In scientific inference, parsimony of explanations is considered highly desirable. Program size is
one of many ways to measure parsimony of programs [JORS99], and one can think of parsimony as
a special case or variant of Occam’s Razor. It is known, for computability-theoretic inductive infer-
ence, that requiring the final and correct programs to be minimal size [Sch98] is highly restrictive
on inferring power [Fre75, Fre90] (and that the resultant inferring or learning power is dependent
on which acceptable programming system is employed). Known too is the adverse effect on learn-
ing power of requiring the final and correct programs to be merely within a computable factor of
minimal size [Kin74, Che82] (but that the resulting inferring power is independent of the under-
lying acceptable programming system [Fre75]). Hence, we see that, while parsimony is desirable,
parsimony restrictions of even the weaker kind described just above limit inferring power.?

In the present study we will be exclusively concerned with criteria of success for inductive
inference (parsimony restricted or not), and these criteria will be independent of the fixed underlying
acceptable programming system from which the output hypotheses are drawn. For computable f,

let MinProg( f) 2 the numerically least program for f. For C € Ex as witnessed by M, if there is
a computable function g such that, for every f € C, M(f) < g(MinProg(f)), then we say C € Mex
(as witnessed by M and g). In this setting we call g a parsimony factor. From [Kin74] we have,
then, that Mex C Ex.* For example, the set of functions which have value zero on almost all
arguments € (Ex — Mex) [Kin74]. However, the class Sy of functions f which, on input zero,
output a program for f is in Mex [Che82], and Sy is very large since, by the Kleene recursion
theorem [Rog67], it contains a 1-variant of each computable function [BB75].

1.2 Using Notations for Constructive Ordinals As Parsimony Measures

To begin explaining the results of the present paper: a lim-computable function is one calculable
by a total procedure allowed to change its mind finitely many times about its output.?

Let LimMex be the variant of Mex in which the parsimony factors g can be lim-computable. It
is noted in [Che82] that LimMex C Ex. Hence, even the parsimony restriction for which the parsi-
mony factors are allowed to be lim-computable lowers inferring or learning power compared with no
parsimony restriction. However, we see, by Corollary 35 in Section 3 below, that Mex C LimMex.
Hence, while use of lim-computable parsimony factors lowers learning power compared with no par-
simony restriction, use of lim-computable parsimony factors does not lower learning power as much
as the use of computable parsimony factors. Therefore, the use of lim-computable parsimony
factors partly assuages the limitation on learning power of parsimony restrictions compared with
computable parsimony factors. With the use of lim-computable parsimony factors some desirable
parsimony in the final programs is retained, yet learning power strictly increases over the use of
computable parsimony factors.

As we described above, a (total) procedure that computes a lim-computable function is allowed
to change its mind finitely many times about its output. One may, of course, consider the effects of
restricting the number of mind changes of such procedures. In a different context, Putnam [Put65]
studied mind change bounds £ € N on the way to convergence of lim-computable characteristic
functions and Ershov [Ers68a] showed these form a strict hierarchy in k.

3Case, Jain and Sharma [CJS96] study the effects on learning power of placing restrictions on the size differences
between successive hypotheses output by an inductive inference machine. This topic is not pursued herein.

4¢C’ denotes subset; ‘C’ denotes proper subset.

®Post [ShaT71] first noticed that such functions characterize the functions computable from an oracle for the halting
problem.



Intuitively ordinals [Sie65, KM67] are representations of well-orderings. 0 represents the empty
ordering, 1 represents the ordering of 0 by itself, 2 the ordering 0 < 1, 3 the ordering 0 < 1 < 2,
... . The ordinal w represents the standard ordering of all of N. w—+ 1 represents the ordering of N
consisting of the positive integers in standard order followed by 0. w + w represents the ordering of
N consisting of the even numbers in standard order followed by the odd numbers in standard order.
The constructive ordinals are just those that have a program (called a notation) in some system
which specifies how to build them (lay them out end to end, so to speak). We will employ, as our
system of notations, Kleene’s general system O [Kle38, Kle44, Kle55, Rog67, Sac90]. This system
has at least one notation for each constructive ordinal and comes with Kleene’s standard, useful
order relation <, on the notations in 0. <, naturally embeds into the ordering of the corresponding
constructive ordinals.

Everyone knows how to use finite ordinals (the natural numbers) for counting, including for
counting down. Freivalds and Smith [FS93] employed notations for constructive ordinals as devices
for algorithmic counting down.® They used such notations, for example, for algorithmic counting
down the mind changes of inductive inference procedures. This allowed for handling and studying
constructive, “transfinite” bounds on mind changes of inductive inference machines.

Herein we use notations u from O to bound the mind changes on the way to convergence of
(total) procedures for lim-computable functions. The resultant functions we call lim,,-computable.
In Section 2.4 below we will formally define the associated O-countdown functions and use them
to define formally the lim,-computable functions. Further below, in the current section, we present
some informal examples. Of course we want to use lim,-computable functions as parsimony fac-
tors. Actually, for u € O for a positive constructive ordinal, to make the corresponding parsimony
restricted inference criterion Lim,Mex acceptable system independent, we need to employ mono-
tonically non-decreasing lim,-computable parsimony factors. Of course it is natural anyhow to
employ non-decreasing parsimony factors. Our main results present interesting infinite hierarchies
for the criteria Lim,Mex associated with particular transfinite subsequences of w’s along certain
natural <,-paths. Thus, with the (non-decreasing) lim,-computable functions providing degrees of
parsimony, we get infinite gradations in inferring or learning power.

In the present paper, we do not study the interesting connection between the lim,-computable
functions and (transfinite) Ershov hierarchies [Add65, Ers68b, Ers70, EHKS81, Sel84].” However,
in [CS03], we show how to characterize the lim,-computable functions and variants in terms of
concepts from [EHKS81, Sel84].%

The finite ordinals have unique notations in O (see Section 2.3 below). For n € N, we write n
for the corresponding notation in 0. The lim,-computable functions are just those for which an
associated (total) mind changing procedure makes not more than n mind changes.

Let K be the diagonal halting problem set [Rog67]. Then, since K is c.e. [S0a96]°, the charac-

5The results of [FS93] are also informally surveyed in [GS95].

Case, Jain and Suraj [CJS95] announced preliminary versions of some of the results of the present work, and herein
are presented considerable improvements (and an emendation).

Subsequently to [CJS95], natural O-notations for constructive ordinals polynomial in w have been extensively
employed to provide natural classifications of standard problems within the context of learning grammars for formal
languages [JS97, AJS99, JS99].

"The Ershov hierarchies are based on effective iteration of the Boolean operations including up into the constructive
transfinite.

8While notations in O as employed in [Ers68b, Ers70, EHK81, Sel84] are not directly treated as counters, in
Jockusch’s review [Joc82] of [EHKS81] he provides the explicit intuition that a notation, as employed in [EHK81],
serves as a kind of counter. This intuition is also explicit in [GDO1].

9Where appropriate, we use “computably enumerable” (c.e.) and “computable” instead of “recursively enumer-



teristic function of K is liml—computauble.10
The first limit ordinal, w, and each constructive ordinal larger than w, have infinitely many
distinct notations in 0. Suppose w is any notation in O for w. The lim,,-computable functions are
just those for which some mind changing procedure declares, if and when it makes its first mind
change, the number of further mind changes that it may make about its output. Visually, think of
w as
0123 ...n...)

where the right parenthesis can be thought of as an “open” right hand end marker. The correspond-
ing counter starts at the right parenthesis (or at some number to the left of the right parenthesis);
if and when there is a first mind change, the counter algorithmically leaps to some n to the left;
this leaves room for at most n more mind changes with the counter moving to the left.

Let F(z) = max({pe(y) | @e(y) is defined A e,y < x}). Clearly, for any notation w in O for
w, F(z) is lim,-computable, non-decreasing and not dominated by any computable function. By
Lemma 22 below, F'is not lim,-computable.

For the next examples it is useful to discuss the very basic computable operations (for O-
notations), +,, X,, and {-'},. These operations on O naturally embed into the corresponding
(constructive) ordinal operations of addition, multiplication, and exponentiation, respectively.!!
Just as Kleene essentially changed his definition of +, between [Kle38] and [Kle55] to obtain some
auxiliary, useful properties, we have added an extra base case to his latter definition of +, to get
useful properties we need. Our definition of X, also features an extra base case over what would be
needed merely to get the embedding into the corresponding ordinal operation. We did this too for
technical usefulness. We guarantee thereby, for example, the technically helpful properties that,
forally, 0+,y=vy, 0%,y =0, and 1 X,y = y. In Section 2.5 below we present our “definitions”
of +4, Xo, and {-'}, (as theorems) and present the resultant properties we need.

Convention 1 If e is an expression evaluating to a number n in N, then e is the unique notation
for n in the O notation system.

Suppose w € O is for w and k € N. Of course w +, k is a notation for the ordinal w + k, which
ordinal looks like a copy of the ordinal w followed (on the right) by a copy of the ordinal k. The
lim,, 4 x-computable functions are those computed by (total) procedures which may make up to k&
mind changes before they behave like a lim,,-procedure. For w +, w = w X, 2, the corresponding
ordinal, w + w = w X 2, looks like a copy of w followed by a copy of w, i.e, like two copies of w laid
end to end. A lim,,x, 2-procedure is one which declares, if and when it makes its first mind change,
the number of further mind changes that it may make about its output, but can later revise this
number once (possibly making a mind change with the revision too). We leave to the reader to
work out the equivalence with visualizing a counter leaping and walking down from the right end
— in a picture of w x 2. For n > 2, a lim,,x,p-procedure is similar to a lim,x 2-procedure, except
that it can revise the number of further mind changes it may make (n — 1) times. w x, w = {w?},,
and the corresponding ordinal w x, w = w?, can be visualized as w copies of w laid out end to end.

able” (r.e.) and “recursive”, respectively, following recommendations in [Soa96].
10Recall that 1 is the notation in O for the finite ordinal 1.

Hntuitively, for u,v € O, u+, v is a program for laying out the ordinal |u|, followed by the ordinal |v]|, to form
the ordinal |u 4+, v]o. Xo, and {- '}, are for standardly iterating this action of +,.



A lim {wg}o—procedure is one that can revise the number of further mind changes it may make “w”
times; that is, it can computably pick any number as the number of such revisions it can make.'?

Suppose w € O is for w. For each n > 0, we next give a fairly natural example below (based
on pattern languages) of a function f, that is lim,»-computable, but not lim n»-1-computable. A
pattern language is (by definition) one generated by all the positive length substitution instances in a
pattern, such as, for ezample, abXYcbbZXa — where the variables (for substitutions) are depicted in
upper case and the constants/terminals in lower case.!® Let D; denote the finite set with canonical
index j and let W; be the c.e. set which is the domain of program ¢ in our fixed acceptable system
[Rog67]. Suppose n > 0. By careful modification of the proofs of [JS97, Theorem 1 and Corollary 1,
pages 74-80], we have that, for each n > 0, there exists a total function f,, such that,

(a) for each i, 7, if W; happens to be the union of 1 to n pattern languages and f, (i) = j, then
Dj is a set of (code numbers of) 1 to n patterns, the union of whose corresponding pattern
languages is W;, and,

(b) for each w € O for w, f, is lim,»-computable, but not lim n»-1-computable.

N.B. The notations featured above are natural ones for the corresponding ordinals — natural
for those of us accustomed to thinking in terms of building ordinals from, for example, finite
ordinals and w by 4+, X, etc. From Theorem 55 below in Section 4.2, we have, for example, a not
so natural notation v for w? such that f3 from just above is lim,-computable! This illustrates why
we emphasize that our counters for counting down are notations for ordinals (and not ordinals
themselves).!4 On the other hand, as we note in the last paragraph of Section 4.2 below, by an
obvious embedding, our Strong Hierarchy Theorem (Theorem 40 below) mutatis mutandis also holds
for some weaker systems of notations than O, including non-maximal systems based on exponential
polynomials in finite ordinals, w, ... . Such latter systems may have no “problematic” notations,
but the corresponding hierarchies are not as extensive as those based on O. By Theorem 59 (also

in Section 4.2) the interestingly “problematic” O-notations don’t appear for ordinals below w?.

1.3 Informal Summary of Results

By Theorems 20 and 23 in Section 3, we have that, for all n € N, Lim,Mex = Mex and, for all
u, v € O and notations w for w, such that u <, v’ <, ux,w, Lim,,Mex = Lim,Mex. Hence, this
suggests, for Lim,Mex strict hierarchies, we should examine leaps of notation from u to u X, w,
where w is a notation for w.

One of our main results, the Strong Hierarchy Theorem (Theorem 40 in Section 3 below) implies
that the collapses of Theorems 20 and 23 are optimal for u’s along certain natural <,-paths. In

'2This characterization of counting down from {w?}, very much depends on the use of this particular notation for
w?. See below for more on such dependence on notation for ordinals w? and higher.

3The pattern languages were formally introduced by Angluin [Ang80]. Since then, much work has been done
on pattern languages [Sal94a, Sal94b, CJK*01] and finite unions thereof [Shi83, Wri89, KMU95, BUV96, CJLZ99].
Nix [Nix83] as well as Shinohara and Arikawa [SA95] outline interesting applications of pattern inference algorithms.
For example, pattern language learning algorithms have been successfully applied toward some problems in molecular
biology (see [SSST94, SA95]). Pattern languages and finite unions of pattern languages turn out to be subclasses of
Smullyan’s [Smu61] Elementary Formal Systems (EFSs), and Arikawa, Shinohara and Yamamoto [ASY92] show that
the EFSs can also be treated as a logic programming language over strings. The investigations of the learnability of
subclasses of EFSs are interesting because they yield corresponding results about the learnability of subclasses of logic
programs. Hence, these results have relevance for Inductive Logic Programming (ILP) [MR94, LD94, BM95, Mit97].

Of course algorithmic counting down would seem to require working with a finite object/program such as a
notation instead of a possibly infinite object such as an ordinal.



particular it yields, for v,w € O where w is for w,
(i) Limg,ey, Mex C Limy,ey, o Mex, and
(ii) [v is a notation for a limit ordinal = (Vu <, v)[Limg,.; Mex C Limg,.; Mex]].
Hence, for example, for w € O for w, Theorem 40 implies the hierarchy shown in Figure 1.1?

Mex C Lim,Mex C Lim{wg}oMex Cc...C Lim{wQ}OMex C...
C Limg,u ,Mex C Lim{w(wﬂl)}oMex C...C Lim{w(wﬂﬂ)}ol\/[ex C...
C Lim{w(wxog)}oMeX C Lim{w(wxf@)nl}oMex C...C Lim{w(wazHog}oMex C...
C Lim{w(wag)}oMex C...

C le{w{wg}o}ol\/[ex C...C le{w{wg}oﬂﬁ}ol\/[ex C...

C le{w{w3}0+ow}oMeX C...C le{w{w2}0+o(w+oﬂ)}oMeX C...

= le{w{wg}o+o(w><og)}oMeX C.C le{w{wz}o+o((wxoz)+oﬁ)}OMeX o
C le{w{wg}o+o(on§)}oMex C...

C Lim{w{wg}0XOz}oMeX C...

C le{w{wg}o}ol\/[ex C...

C Lim{w{ww}o}ol\/[ex C...

Figure 1: Example optimal hierarchy along a natural <,-path for ordinals < ¢q.

The hierarchy of Figure 1 extends, for example, to certain notations for the € numbers and
beyond too (see the discussion after Theorem 40 in Section 3 below).

Theorem 40 features notations in O of the form {w"},, where w is for w. Our other main result,
the General Hierarchy Theorem (Theorem 32 in Section 3 below), holds for any notations u € O,
but the hierarchy it specifies is not as tight as that of Theorem 40. Theorem 32 yields, for all
u € O, for all w for w, Lim,Mex C Limy(, g}, Mex.

Theorem 32 implies, for example, there are infinite, infinitely ramifying hierarchies of our par-
simony restricted learning criteria which lie along <,-paths, which paths have notations for each
constructive ordinal (see the discussion following the proof of Theorem 32 and see Corollary 33).
The use of O (instead of other systems mentioned in this paper) enables us to have both Theorem 40
and Corollary 33.

15We note that by our carefully chosen definitions of +,, X,, and {-'}o, the following example equivalences, used
in this hierarchy, hold: w4+, w = w X, 2 and {w"}, Xo w = {ww“l}o.



Section 4, which presents further and preliminary results and open questions, is divided into
three sections.

Section 4.1 presents some preliminary results involving parsimony factors obtained by iterating
the limit taking process. Theorems 47 and 49 essentially characterize all the criteria LimZQ,ulMex,
where, for the associated parsimony factors, the first limit taken is restricted to <, w1 mind changes,
and the second limit taken is restricted to <, us mind changes. For example, by Theorem 47, for
notations we, wy for w, Lim?u27w1Mex = Ex. Theorem 53 yields Limigngex = Ex.

In Section 4.2, by Theorem 60, for u, v € O for the same ordinal < w?, Lim,Mex = Lim,Mex,
but, by Corollary 58, for each constructive ordinal o > w?, there exist notations u, v for a such that

Lim,Mex # Lim,Mex. It is also seen, in this same section, that if we define, for constructive
ordinals «, Lim,Mex def U, for o Lim,Mex, then there are only three distinct criteria of the
form Lim,Mex, and they are in C-order: Mex C Lim,Mex C Lim_ :Mex. This contrasts with
the subtle and finely graded and ramified infinite Lim,Mex-hierarchies based instead on u’s € O.

In Section 4.3 we recall the definition of the criteria Ex,, for u € O, essentially from [FS93].
This is a variant of Ex where the learning or inductive inference machines themselves make <, u
mind changes. From Theorems 62 and 66, we have that Mex ¢ |J,c o Ex,, and, for all u,w € O
such that w is for w, Exyx,(ut,1) € Lim,Mex. However, by Theorem 63, for all u € O, for all w
for w, Ex, C Limy(, 2y»w),Mex. Also, by Theorem 64, for u,v,w € O such that u <, {w"}, and
w is for w, we have, Ex, C Lim,.;, Mex.

2 Preliminaries

This section includes formal definitions from inductive inference, a description of notations for
constructive ordinals, formal definitions for O-countdown functions and the Lim,Mex criteria
mentioned above, and other necessary terminology.

2.1 Notation

As noted earlier, N denotes the set of natural numbers, {0,1,2,3,...}. NT denotes the set of
positive natural numbers, {1,2,3,...}. 4,j,k,m,n,p,q,s,t,w,z,y,z (with or without subscripts,

superscripts, ...) range over N. % denotes a non-member of N such that (Vn € N)[n < x < oo] (x*
represents ‘unbounded but finite’). u, v, range over NU{x}. XY, Z, (with or without superscripts,
subscripts, ...) range over subsets of N.

() denotes the empty set. €,¢&,C, C, D, D respectively denote ‘is a member of’, ‘is not a member
of’, ‘is a subset of’, ‘is a proper subset of’, ‘is a superset of” and ‘is a proper superset of’. T denotes
‘is undefined’. | denotes ‘is defined’.

For S, a subset of N, card(S) denotes the cardinality of S. So then, ‘card(S) < %’ means
that card(S) is finite. max(S) and min(S) denote, respectively, the maximum and minimum of
the set S, where max(()) = 0 and min()) = co. f,g,h and F,G, H (with or without subscripts,
superscripts, ...) range over total functions with arguments and values from N. We say that g
dominates f < (Vx)[g(xz) > f(z)]. 1 ranges over partial functions with arguments and values from
N. range(v) denotes the range of ¢. The set of all total computable functions of one variable is
denoted by R. C,S (with or without subscripts, superscripts, ...) range over subsets of R. P
(with or without subscripts, superscripts, ... ), ranges over predicates with arguments from N.



(+,-) stands for an arbitrary, computable, one-to-one encoding of all pairs of natural numbers
onto N that is strictly monotonically increasing in both arguments [Rog67]. Similarly, (-,...,")
can be used for encoding tuples of n numbers onto N. ' denote the corresponding inverses:
(X1, ..y ) = X5

As in Section 1.1 above ¢ denotes a fixed acceptable programming system. W), denotes the
domain of ¢,. ® denotes an arbitrary fixed Blum complexity measure for the ¢-system [Blu67].16

We let (z), ifx< d ®,(z) <
_ [ ep(@), ifz<sand @pz) < s;
Pp.s(z) { 1, otherwise.

As defined earlier in Section 1.1, for a computable function f, MinProg( f) def min({p | ¢, = [}).

The quantifier ‘vV*°’ means ‘for all but finitely many’; ‘9°°’ means ‘there exists infinitely many’;
and, ‘4" means ‘there exists a unique’.

2.2 Inductive Inference Criteria and Identification

In this section, we present relevant definitions and results from computability-theoretic learning
theory.

If ¢ is defined at least on 0, 1, ...,n—1, then let ¥[n] denote the sequence 1(0),1(1),...,¢¥(n—1).
Let SEG be the set of sequences of natural numbers, i.e., the set of all f[n], where f € R andn € N.
A learning machine [Gol67, BB75, CS83] is a computable mapping from SEG into N U {7}.

Natural number outputs are interpreted as programs in the ¢-system. Initially, a learning
machine is allowed to output ?’s to indicate that it has not decided on its first program output
yet, but once it outputs some program, it is not allowed to output ?’s again. We say that M(f)
converges to p (written M(f)] = p) iff (V*n)[M(f[n]) = p|; M(f) is undefined if no such p exists
(written M(f)1).

Definition 2 (Gold [Gol67], Blum—Blum [BB75]|, Case-Smith [CS83])

(a) M Ex—identifies f (written: f € Ex(M)) « (Fi | wi=f)IM(f)| =1].
(b) Ex = {S | (3M)[S € Ex(M)]}.

A machine M that Ex—identifies f eventually converges to a program for f in the ¢ system. The
criterion Ex is, however, independent of the acceptable programming system from which programs
for functions are learned.!” In other words, if ¢ is any acceptable programming system, and Exy,
is defined just as Ex is defined in Definition 2, except ¢ is replaced by 1 (therefore the outputs of
inductive inference machines are interpreted as programs in the 1) system), then Ex, = Ex.

The criterion Mex (Definition 3 just below) is also independent of the underlying acceptable
programming system [Fre75].

Definition 3 (Freivalds [Fre75], Chen [Che82])

(a) Suppose g is a total (not necessarily computable) monotonically non-decreasing function.

Then, a learning machine M g-Mex—identifies f (written: f € g-Mex(M)) <M Ex—identifies f

and M(f) < g(MinProg(f)).

5For example, if ¢ is based on Turing machines, we could take ®,(x) to be the number of Turing machine steps
Turing machine p executes on input = (undefined if infinite).

17 This result easily follows from the definition of Ex and the fact that any two acceptable programming systems
are computably isomorphic [Rogh8, Rog67].



(b) A learning machine M Mex-identifies S . there eists a computable monotonically non-
decreasing g such that S C g-Mex(M).
(c) Mex = {S | (3M)[M Mex-identifies S]}.

In the definition just above, the g’s represent parsimony factors by which the parsimony con-
straints are loosened. The final programs are, in a sense, nearly-minimal-size. Kinber was first
[Kin74, Fre75] to show that Mex C Ex.

Nearly minimal size program inference, as defined by Mex, requires that the final program size
be within a computable parsimony factor of the actual minimum program. In the present paper,
we relax the computable parsimony factor constraint imposed by Mex and investigate whether
learning power is thereby enhanced. One way we do so is by allowing lim-computable parsimony
factors. It will be convenient to refer sometimes to lim-computable functions as lim,-computable
functions — and their formal definition is handled with the next two definitions.

Definition 4 Suppose h: (N x N) — N. Then,

: def [y, if (V°U)[h(z,t) = yl;
tllgloh(x’t) o {T, otherwise.

We write h(x,o00) for tlim h(z,t).
Definition 5
(a) g: N — N is lim,-computable Y (3 computable h : (N x N) — N)(Vx)[g(z) = h(z,c0)].
(b) g : N — N is lim,-computable as witnessed by h g computable: (N x N) — N and
(Va)[g(x) = h(z,00)].

Intuitively, in Definition 5, h(x,t) is the output at discrete time ¢ of a mind changing algorithm
for g (acting on input x). (Vx)[g(z) = h(x,0)], for h computable, means, then, that, for all z, at
all but finitely many times ¢, the output of the mind changing algorithm on input z is g(x).

It is easy to show that

(3 lim-computable ¢)(V computable f)(V<z)[g(x) > f(z)].

We can extend Definition 5 to define lim,-computable functions from N — N, for n > 1. We
omit the details.

Definition 6

(a) A learning machine M Lim,Mex—identifies S & there is a monotonically non-decreasing
lim-computable function g such that, S C g-Mex(M).
(b) Lim,Mex = {S | (3M)|M Lim.Mex-identifies S]}.

Hence, our definition requires that the machines converge to a program that is not-so-nearly-
minimal-size.  'We mostly write LimMex instead of Lim,Mex. Chen [Che82] showed that
LimMex C Ex. From Corollary 35 in Section 3, Mex C LimMex.

In Definition 5, the underlying mind-changing algorithm is allowed to change its mind a finite,
yet unbounded, number of times. One may, of course, consider the effects of restricting the number
of mind changes of such algorithms.
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As noted earlier, in the context of computability-theoretic learning theory, Freivalds and
Smith [FS93] first introduced the use of notations for constructive ordinals to bound mind changes.

In this paper, we use notations for constructive ordinals to bound the mind changes in procedures
for lim-computable functions. We will formally define, for each notation v € O, the concept
of a lim,-computable function below (Definition 10). We will then use (non-decreasing) lim,-
computable functions as parsimony factors.

But first, we present an introduction to O, constructive ordinals, and needed associated prop-
erties.

2.3 O and Constructive Ordinals

We proceed very informally. Some familiarity with a treatment of constructive ordinals such as the
ones in [Rog67, Sac90] may be useful to readers of this section.

In Kleene’s system O [Kle38, Kled4, Kle55, Rog67, Sac90], 2° is (by definition) the notation for
the ordinal 0. Successor ordinals are those with an immediate predecessor; for example, 1,2,3,w +

1, ... are successor ordinals with respective immediate predecessors 0,1,2,w, ... . If u is a notation
for the immediate predecessor of a successor ordinal, then a notation for that successor ordinal is
(by definition) 2*. All other ordinals are limit ordinals; for example, w, w+w, ... are limit ordinals.

Kleene [Kle38, Kle44, Kleb5, Rog67, Sac90] defined a natural partial ordering of notations, <,, so
that two notations so ordered represent respective ordinals with the second larger than the first.
We omit details. Suppose ¢,(0), (1), ¢p(2),... are each notations in <, order. Suppose that
the corresponding ordinals are longer and longer initial segments of some limit ordinal which is
their sup. For example, some such p generates the respective notations for 0,1,2,... in <, order,
and w is the sup of this sequence. In general, then, p essentially describes how to build the limit
ordinal which is the sup of the ordinals with notations ¢,(0), (1), ¥p(2),... . A notation for
this limit ordinal is (by definition) 3 - 5. Clearly such limit ordinals have infinitely many such
notations, different ones for different generating p’s. Nothing else is a notation. We define ‘x =, 3’
to mean ‘x,y € O and x = g’. As in the literature on constructive ordinals, we use ‘x <, y’ for
‘r<oyVzr =9y, ‘c>,y tomean ‘y <, r and ‘x >, ¥y’ to mean ‘y <, x’. We also recall the
function | - |, : O — the set of ordinals, defined as follows [Kle38, Kle55, Rog67, Sac90]

11, = 0;
2%, = lulo + 1;
13- 5p|o = nh_{go I@p(n)lo-

For all z,y € O, it is true that, if x <, y then |z|, < |yl,. It is also true that, for all y € O,
if |yl, = B, then for every a < (3, there is an = such that x <, y and |z|, = 8. If v € O and
ul, = a, then we say that u is for a.

It is useful, while reading this paper, to remember that |1, =0, |2], = 1, and |4|, = 2. Hence,
for example, 4 is, then, the notation for the ordinal 2, i.e, 2 = 4.

We shall use the following properties of <, in later proofs.

Fact 7 (Kleene [Kle55]) For all x,y € N,
(a) x<,y=x€ ONy€EO.
(b)re 0O=1<,=.
(c) x<,y=y#1.
(d) x <,2Y =2 <,y.

11



(e) x <o 3-5P = (In)[z <, pp(n)].
(f)x<ozNy<oz2=>2<,yVTr=,yVa>,y.

The following fact about notations will also be used.
Fact 8 (Rogers [Rog67], Sacks [Sac90]) There exist computable functions hy and hy such that,
for allv € O,

(a’) Whl(l)) = {'LL | U <O U},’

(b) W,y = {{u1,u2) | ur <o ug <, v} is a well-ordering isomorphic to |v|,.

2.4 (0-Countdown Functions and Learning Criteria

Definition 9 A computable mapping F : (N x N) — O is an O-countdown function & for all
z, t, F(z,t + 1) <, F(z,t).

Intuitively, h in Definition 10 just below plays a similar role to A in Definition 5, and the
function F in Definition 10 serves as a “transfinite” counter that counts down from a preset value.
As before, t can be thought of a discrete time paramenter. Further explanation is given just after
Definition 10.

Definition 10 Suppose u € O. g : N — N is lim,-computable Y there exists a computable
function h : (N x N) — N and an O-countdown function ¥, such that, for all x and t,

(a) g(x) = h(x,0),
(b) F(2,0) <o u, and
(c) h(z,t+1) # h(z,t) = F(z,t + 1) <, F(z,1).

We define lim,,-computable as witnessed by F and h along the lines of part (b) of Definition 5;
we omit the details.

Part (b) of Definition 10 initializes the transfinite counter at <, u. From Fact 7(a), it follows
that part (c) restricts the counter values to be notations € O. By Fact 8, the notations <, u are
well-ordered; hence, part (c) also implies that the counter cannot descend infinitely. Part (c) also
guarantees that, when A has a mind change, then the counter must decrement. This part does not
restrict how much it decrements. It also allows the transfinite counter to decrement without an
accompanying mind change in h. Note that parts (b) and (c) imply that h(y,oo) is defined and
part (a) defines g(y) to be the value h(y,o00). Thus, F acts as a countdown function that starts
with a notation in O and then counts down.

In Definition 11 below, we use (non-decreasing) lim,-computable functions as parsimony factors.
This is similar to what we did in Definition 6. When lim,-computable functions are so used as
parsimony factors, we shall ofter refer to them as parsimony factors of order w.

Definition 11
Suppose u € O. Then,

(a) A learning machine M Lim,Mex—identifies S X there is a monotonically non-decreasing
limy, -computable function g such that, S C g-Mex(M).
(b) Lim,Mex = {S | (3M)[M Lim,Mex-identifies S|}.

In Definition 11 just above, we restrict the parsimony factor, g, to be monotonically non-
decreasing. The reason is that then (but not otherwise) the Lim,Mex criteria are easily shown
to be independent of the underlying acceptable system. It even turns out (and is easy to show)
that there is a limj-computable function g such that, for no n € N and for no lim,-computable,
monotonically non-decreasing function ¢’ do we have that ¢’ dominates g.

12



2.5 Basic Properties of O-Notations

We need the results of this section regarding addition, multiplication and exponentiation of ordinal
notations; as noted above, these operations are denoted +,, X, and {-'}, respectively. Recall from
Section 1.2 above that our 4+, and x, feature extra base cases over what would be needed merely
to get the embedding into the corresponding ordinal operations and that these extra base cases are
to ensure some additional technically useful properties.

In unparenthesized expressions involving these operations, {-'}, has higher priority than X,
which in turn has higher priority than +,.'®

Note 12 For these theorems, it is useful to recall that 1 is a notation for 0 and that 2 is a notation
for1 (ie., 111, =0, 12|, = 1) and that 0 and 7 are not notations (for any ordinal) in the O system
of notations.

Theorem 13 There exists a computable function +, such that, for all x,y € N,

Y, if © = 1; (clause i)
x, ify=1 AN z#0 A x# 1; (clause ii)
2@tom) ify—=9m A m#£0 A x#1; (clause iii)
3.5, ify=3-57 A x# 1, (clause iv)

( where (Vn)[pg(n) = x 4o ©p(n)] );
7, otherwise. (clause v)

THoy =

Furthermore, q in Clause (iv) just above is a computable, 1-1 function of x and p.

PRrROOF.
The proof is an easy modification of that of [Rog67, Theorem XVII, Chapter 11, pages 209-210]
and uses the 1-1 Parametric Recursion Theorem.!? |:|

The 1-1-ness of ¢ in Theorem 13 is crucial for proving the right-to-left implication of part (e)
of Theorem 14, which in turn is necessary for proving many results that follow.

The just above theorem is a modification of a theorem in [Kleb5]. The first Clause (clause (i))
has been added in order to make +, have the useful property: for all y, 1+, y = y (i.e., for all
Y, 0+, y = y), which is not true without the special handling of the z = 1 case.2’ This property
is used, for example, in the proof of Lemma 37. As in [Kle55], we treat the z = 0 case specially
(doing so helps to ensure that 04,2 = 27 (and not 1), which is essential in proving the right-to-left
side of Theorem 14(a).)

Theorem 14 For all x,y and z € N,
(a) 2,y € O < x+,y € 0.
(b) 2,y € 0= T 4+oYlo = |Tlo+ |Ylo.
(c)r,y€ ONy#1=x<,x+,y.
(d) 2,y € ONz <,y x+,2<o%+0Y.
(e) € O0ONz=yS T+o2=0T+0Y.
flye O N 2<,2<ox+oy < )Y <oyAx+oy = 2].
Furthermore, in the left-to-right implication of (f), y' is unique.

18 Also, we assume that each of these operators has higher priority than <,, <., >, ..., which have higher priority
than €, =, #, which have higher priority than A and V , which in turn have higher priority than = and <.

90ur extra base case causes no subtleties with modifying Rogers’ construction.

29Recall from Note 12, 1 is the notation for the ordinal 0.
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Proor.
The proof is straightforward, but tedious, and involves Fact 7(a-e) and careful application of
transfinite induction on notations.?! |

We note that, similar to the case of + for ordinals, 4, for notations is non-commutative; +, is,
however, also non-associative unlike 4 for ordinals. We adopt the convention that x4,y +,z means
(z +o6 y) +o z. The non-associativity of 4, leads to some subtleties while working with notations,
that are otherwise absent when working with ordinals.

We next define x,.22

Theorem 15 There is a computable function X, such that, for all z,y € N,

1, ify=1V x=1; (clause i)
Y, ifr=2 A y#1; (clause ii)
(x Xom)+ox, ify=2" A m#0A
T Xy = x#1 N x#2; (clause iii)
359, ify=3-52 AN x#1 AN x# 2, (clause iv)
(where (vn)pq(n) = = %o 9p(n)] )
7, otherwise. (clause v)

Furthermore, q as in Clause (iv) is a computable, 1-1 function of x and p.

ProoF.
The proof is also similar to that of [Rog67, Theorem XVII, Chapter 11, pages 209-210] (and
uses the 1-1 Parametric Recursion Theorem). ]

The 1-1-ness of ¢ in Theorem 15 is crucial for proving the right-to-left implication of part (e)
of Theorem 16, which in turn is necessary for proving many results that follow.

The first two Clauses (clauses (i) and (ii)) in the just above Theorem ensure that useful prop-
erties of x, hold. For example: (a) for all y, 1 X,y =1 (i.e., for all y, 0 X, y = 0); (b) for all y,
2%,y =1y (ie., for all y, 1 x,y = y). Property (b) just listed, is essential, for example, in proving
Lemma 25 presented further below.

Similar to the case of x (usually written -) for ordinals, X, for notations is not commutative;
however, x for ordinals is associative, but X, for notations is not. As for 4, in any unparenthesized
expressions involving X,, we associate to the left.

Analogous to Theorem 14, we have the following theorem for x,.

Theorem 16 For all z,y and z € N,
(a) z,ye O V=1V y=1sxx,y€ 0.
(b)xuyeojlajxoylo:lxlox|y|o'
(c)x>1 N Yy>2=2<,%%X0Y.
(d)x>01 Nye O N 2<,yYS T X2 <o XoYy.
(e)z=1V (€0 N 2=0y) ST Xo2=0T X0Y.
(f)lye O N x<,z<,x %oy (32 <o2)(TY |1 <oV <oy)[z =0 (x %Xoy") +o 2]
Furthermore, in (f)=, ' and y' are both unique.

21 An example of a proof by transfinite induction is part of the proof of Theorem 36. See [Kled4, Kle55, Sac90] for
other examples of such inductions.

228¢e Note 12 regarding the notations 1,2 € O.

14



PROOF.
As for +,, the proof is straightforward, but tedious, and involves Fact 7(a-e), Theorem 14(a-f)
and careful application of transfinite induction on notations. Il

Finally, we define exponentiation for notations in O as follows.??

Theorem 17 There is a computable function {-'}, such that, for all x,y € N,

1, ifr=1 A y#1; (clause i)

92, ifr=2V
(y=1 A z#1 A z#2); (clause ii)

{2V}, = {2m}o Xow, ify=2" A m#0A
o~ x#1 AN x#2; (clause iii)

359, ify=3-5P AN z#1 N x # 2, (clause iv)
( where (Yn)[ipg(n) = {2#7(M},] );

7, otherwise. (clause v)

Furthermore, q as in Clause (iv), is a computable, 1-1 function of x and p.

PRrOOF.
The proof is again similar to that of [Rog67, Theorem XVII, Chapter 11, pages 209-210] (and
uses the 1-1 Parametric Recursion Theorem). O

The 1-1-ness of ¢ in Theorem 17 is crucial for proving the right-to-left implication of part (e)
of Theorem 18.

Similar to exponentiation for ordinals, {- '}, for notations is neither commutative nor associative.
We note that, in general, for x,y € N, {z¥}, is quite different from Y.

The following are some useful properties of {- },.

Theorem 18 For all x,y and z € N,
(a) z,ye O N (x#1 VvV y#1)={a¥}, € O.
(b)z,yec O AN (x#1 V y#1)= [{zV}olo = lx|¥le.
(c)x>02 N y>,2=12<,{2Y},.
(d) x>,2 N z2<,y={x%}, <o {2Y}s.
(e)x>,2 N z=y€ 0= {27}, ={aY}, € O.
(f)z>o1 Ao <oz A yeO={a¥}, x,a' <, {xWHed},.

PROOF.
As for +, and x,, the proof is straightforward, but tedious, and involves Fact 7(b-e), Fact 8(b),
Theorem 16(a-d) and careful application of transfinite induction on notations. |

We note that, with modifications for special cases, the right-to-left implications of parts (a),
(d), (e) and (f) of Theorem 18 are true, but not necessary for this paper. So also is a property
similar to Theorem 16(f).

23 Again, see Note 12 regarding the notations 1,2 € O.
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3 Main Results

We recall that by Convention 1, for n € N, n is the unique notation in O for n. Clearly, we have

Proposition 19 For all u,v € O such that u <, v,
Mex = LimgMex C Lim,Mex C Lim,Mex C LimMex C Ex.

The next Theorem shows that one does not always get increased learning power by using
parsimony factors of greater orders. It shows more specifically that, when boosting the order u to
any order strictly <, the order obtained by multiplying (on the right, with Xx,) u by some w for w,
we get collapse of the corresponding parsimony restricted criteria.

Theorem 20 For all u,u’ € O and notations w for w, such that u <, u’ <, u X, w, Lim, Mex =
Lim,Mex.

Proor orF THEOREM 20. Follows from

Lemma 21 For allu,u’ € O and all notations w for w such that v’ <, uX,w, every monotonically
non-decreasing lim, -computable function is dominated by a monotonically non-decreasing lim,,-
computable function.

PROOF OF LEMMA 21. Let u,v/,w € O, where |w|, = w, be such that v’ <, u x, w. Using the
definition of X, and Fact 7(e), there exists k € N such that u’ <, u x, k. Clearly, such a k must be
greater than 0. Hence, it suffices to prove that for each k > 0, every monotonically non-decreasing
lim,  x-computable function is dominated by a monotonically non-decreasing lim,-computable
function.

Therefore, suppose k > 0 and g is a monotonically non-decreasing lim,, ,;-computable function
as witnessed by h and F. Therefore, for all z, F(z,0) <, u X, k. Let k’ be the largest integer,
0 < k' <k, such that, for all but finitely many =, F(z,00) >, u X, k’. Let z,, be such that, for all
T > T, F(x,00) >4 u X, k.

Clearly, by our choice of k' and x,,, there exist infinitely many = > x,, such that u x, ¥’ <,
F(z,00) <, u X0, k' + 1. Also, using Fact 8(a), X = {z > x, | u X, k' <, F(z,00) <o u X, k' + 1}
is computably enumerable. Let Y = {yo < y1 < ...} be an infinite computable subset of X.

We now define A/, F/ as follows.

For all x, let h'(z,0) = h(y,,t"), where ¢’ is the least number such that F(y,,t') <, u X, k' + 1;
for t > 0, W' (x,t) = h(ys, t' +t).

For all z, let F'(x,t) = u/, where F(y,, t'+t) = ux,k’ +,u’ (¢’ can be effectively found as follows:
since ux ok' <, F(yz, t'4+1t) <o uXok’+ou, by Theorem 14(f), (3! v’ <, w)[F(yz, t'+t) = uxk'+,u'];
then, using Fact 8(a), we can effectively find this u').

Let ¢'(x) = W(x,00). It is easy to verify that for all z, ¢’(x) > g(x), and ¢’ is monotonically
non-decreasing, and that A’ and F’ witness that ¢’ is lim,-computable. 0 (LEMMA 21)

Clearly, the theorem follows from Lemma 21. ] (THEOREM 20)

When u is a notation for a finite ordinal, we can get the following result.

Lemma 22 For alln € N, every monotonically non-decreasing limy,-computable function is dom-
inated by a monotonically non-decreasing computable function.
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PROOF.

From Lemma 21, we get that for every m > 0, every monotonically non-decreasing lim,,-
computable function is dominated by a monotonically non-decreasing lim;-computable function.
Hence, it is sufficient to prove that every monotonically non-decreasing lim;-computable function
is dominated by a monotonically non-decreasing computable function.

Therefore, suppose g is a monotonically non-decreasing lim;-computable function as witnessed
by h and F. Hence, for each x, there exists at most one ¢ such that h(z,t) # h(z,t+ 1).

Case 1: (V°x)(Vt)[h(z,t) = h(z,t + 1)].

In this case, let zg be such that (Vo > x0)(Vt)[h(z,t) = h(z,t + 1)]. Define ¢’ as follows: for all
z, ¢'(x) = h(zo + x,0).

Case 2:. Not Case 1.

Let X = {z | (3t)[h(x,t) # h(z,t +1)]}. Let Y = {yo < y1 < ...} be an infinite computable
subset of X. Define ¢ as follows: for all z, ¢’(x) = h(ys,t + 1), where ¢ is such that h(y,,t) #
h(yz,t + 1); clearly, by the properties of h and Y, there is exactly one such ¢ for each y € Y.

Also, in both the above cases, ¢’ is computable, monotonically non-decreasing and dominates

g- U
Hence, we get

Theorem 23 For alln € N, Lim,Mex = Mex.

One of our main results, our Strong Hierarchy Theorem (Theorem 40 below), shows that the
collapses of the previous two theorems are optimal for parsimony orders along naturally associated
<,-paths. Before we present our Strong Hierarchy Theorem, we present another of our main results,
our General Hierarchy Theorem, as the next theorem (Theorem 32 below). To do this, we require
some preliminary results.

As noted earlier, parsimony factors are always monotonically non-decreasing (lim,-computable)
functions. In constructions below, we sometimes first define lim,-computable functions that are
not necessarily monotonically non-decreasing, before we define appropriate parsimony factors that
dominate them. Lemma 24 below gives us useful sufficient conditions to determine the orders of so
obtained dominating parsimony factors.

Lemma 24 Suppose u € O. Suppose {1, | n € N} is a family of (partial) computable functions,
where each 1y, is a function from Nt to N (which are defined when all their arguments <, u),
with the following three properties:

(1) For up, ... ,uy <o u, ¥p(tn,...,up) can be obtained effectively from n and wuy, . .., uyp.

(2) For each n, 1y, is strictly monotonically increasing (with respect to <,) on each of its
arguments (as long as its arguments are <, u).

(8) For each n, ¥n(u, ..., u) <o Ynii(u,...,u).

Let v be a notation for limy, oo 11Uy (u, ..., u)l,, obtained using any computable procedure that
generates, in increasing order w.r.t <,, an infinite subset of {z <, ¥n(u,...,u) | n € N}. Then,
every lim,-computable function f is dominated by a monotonically non-decreasing lim,-computable

function f" (i.e., for all x, f(z) < f'(x)).

PROOF. Suppose the hypotheses. Suppose f is lim,-computable as witnessed by h and F. We will
define a function f’ bounding f, which is lim,-computable as witnessed by A’ and F’ defined below.
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Let
B (z,t) = max({h(2',t) |2’ <az})
F'(z,t) = v,41(F(0,1),F(L,1),...,F(z,1))
fllz) = h(z,o00).

It is easy to verify that f’, b/, F/ satisfy the properties as claimed. O

Lemma 25 Suppose u,w € O and w is for w. Then, for each lim,-computable g, there exists a
monotonically non-decreasing limy(y4 ,1yw},-computable g, such that g’ dominates g.

PrOOF OF LEMMA 25.

If g is a limp-computable function, then it is clearly computable. Define ¢’'(z) = max({g() |
i < x}). Clearly, ¢’ is computable, monotonically non-decreasing, and dominates g. Also, for all w
for w, {(04,1)"}, = 1. Since every computable function is also lim;-computable, the lemma holds
for u = 0.

For the u > 0 cases, we will use Lemma 24. Let v, be defined recursively as follows (Note:
we are only interested in defining 1, on arguments <, u; by Fact 8(a), doing so is algorithmically
possible.)

Firstly, for all ¢ € N, let

v = {(u+o1)*}o

For all ug <, u, let

Wo(uo) & up.
For all n > 0, for all ug,...,u, <, u, let
Un (U .-y ug) def (vn Xo Un) +o Yn—1(Un—1,- ., uo)
We note that ¥y (un,...,ug) is just the summation of v, X, Up,...,v1 X, ur,up in a right

associative manner. Clearly, {1, | n € N} satisfies property (1) of Lemma 24.

Claim 26 For all n, for all ug,...,u, <, u, we have that P (Un, ..., u0) <o Unt1-

ProoF oF CLAIM 26.

We prove this Claim by induction on n.
Base Case: n = 0.

Yo(ug) = ug. Also, v1 = {(u+, 1)1}, = u +, 1. Since uy <, u, we get 1o(ug) <o v1.
Inductive Case: Suppose the claim is true for n = k (Inductive Hypothesis (IH)).

We will show that it holds for n = k + 1.

V1 (Ut 1, - -5 U0) = Ukl Xo Ukl +o Yr(Uk, -, u0) <o (by TH) vpi1 Xo Ugs1 +o Vg1 = (by
Theorems 13 and 15) vp11 Xo (Ups1 +o 1) = {(u 4o D)ELY, X, (ups1 +o 1); also, since ugprq <,
u, we get?* that ug,; +o 1 <, u +, 1, and then, by parts (d) and (e) of Theorem 16, we get

{(u+ol)k+1}o Xo(uk—i-l +ol) <o {(U‘Fol)ki}o Xo(u"’ol) = (by Theorem 17) {(u+ol)k+2}o = Vk+2-
[0 (CLamM 26)

From Claim 26 and the definitions of ,,’s, we get for all n, ¥, (u,...,u) <, vp+1 <o (since
u >4 0) Ypt1(u,...,u). Hence, {¢,, | n € N} satisfies property (3) of Lemma 24.

24Proof: If ups1 = u, then ugpr1 +o 1 = 2Uk+1 = 2% = y 4, 1; otherwise, if ug1 <o u, then using the contrapositive
of Fact 7(d), we get ur+1 +o 1 <o u, which, by Theorem 14(c), is <o u 4+, 1. Therefore, urt+1 +o 1 <o u +, 1.
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Claim 27 Suppose n,un, ... ,ug and u,,...,uy are given such that for i < n, each u;,u; <, u,
and, there exists a j < n, such that
g )=, o
(a) for all j', j < j" <mn, uj = uj.
(b) uj <, u
Then Yn(tn, .. u0) <o Yn(ul, ... up).
PrOOF OF CLAIM 27. Suppose the hypotheses.

To show the claim, it suffices to show that for all j < n, 1;(uj,...,uo) <o (vj X, uj). For then,
since u; = uj for all j" such that j < j" <n, we get

Un(tp, - up) =0 ((va Xotp) +o (- Fo (V41 Xo Uj11) +o (v X0 uj)) ...))
=0 ((tn Xoun) +o (- Fo (Vj4+1 X0 uj+1) +o (v X0 j)) . ..))
>0 ((vn Xoun) +o (- +o (Vj+1 Xo Uj41) +o ¥j(uj, ..., u0)) . .))
=0 Un(Un,...,up).

We proceed with the proof of Claim 27. If j = 0, then 1o(ug) = ug <, ug. Also, by Theorem 17
we have that vy = 1. Furthermore, since we ensured that for all y, 1 X, y = y (as noted a few
paragraphs after Theorem 15), we get uf, = (vg X, ug). Hence, 1o(ug) <o (vo Xo ug).

If j > 0, then we have

wj(Uj,...,UQ) = ( Xo u]) +o Y- 1(uj IyeensU0)
<o (v Xo Uj) +o V) (by Claim 26)
=0 (vj X, (u] +01)) (by Theorem 15)
<o (v Xouj). (by Fact 7(d), Theorem 16)

0 (Cramv 27)

Thus v, is monotonically increasing in each of its arguments (as long as they are <, u).
Hence, property (2) of Lemma 24 is satisfied by {¢, | n € N}. We note that, for all n,
U (U, .. u) <o {(u+, 1)2H}, <, (by Theorem 18(d)) {(u +o 1)%},, for any w for w. Also,
for all n, lim, oo [¥n(u,...,u)lo = (lu+o 1lo)¥. Hence, taking v = {(u 4+, 1)"}, in Lemma 24,
Lemma 25 follows. 1 (LEMMA 25)

We next define, for each v € O, a useful, self-referential class of computable functions, C,,
that helps to establish our Hierarchy Theorems: C, is learnable with parsimony factors of order
{(u+52)"},, for any w for w (Lemma 30); however, C, is not learnable with parsimony factors of
order u (Lemma 31).

We recall that (-, -, -, ) denotes a computable bijection from N x N x N x N onto N and that
7}, 1 <4 < 4, denote the corresponding projection functions (i.e Wf(@:l, X9, X3,T4)) = X;).

Definition 28 Suppose u € O. Then,

Cy ={f| for some p
(a) hmxﬂooﬂl( (@)l =pA wp=Ff, and
(b) limy oo 75 (f(2))] > p, and
(c) 75(£(0)) <o u, and
(d) (Yz)[m3(f(z + 1)) <o m3(f(2))], and
}(6) (Vz)[m3(f (2)) # m5(f (@ + 1)) = 73(f (2 + 1)) <o m5(f(2))]-
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It is helpful to note the following facts about the just above definition. Values in the range
of each f € C, are interpreted as quadruples; on inputs 0,1,2,... to f, the first elements of these
quadruples may vary but they eventually settle down at some number, say p; the second elements
settle down at a number > p; the third elements form a non-increasing (w.r.t. <,) chain of notations
in O constrained to decrease whenever there is a mind change in the corresponding second elements;
finally, the fourth elements of the quadruple are completely unrestricted (which freedom we use in
the diagonalization in step 4 of the proof of Lemma 31).

Lemma 29 For every u € O, there exists a limy, 1-computable g (which is not necessarily mono-

tonically non-decreasing) and a machine M such that,
(a) M Ex-identifies C,, and
(b) for all p; € Cu, M(p;) < g(i).

PROOF. Let M be defined as follows. M(f[0]) = 0; for n > 0, M(f[n])
Let h and F be defined as follows.
For all 4, let h(i,0) =0, F(i,0) = u +, 1.

For all i,t¢, we define h(i,t +1),F(i,t + 1) as follows.

T (f(n—1)).

begin computation of h(i,t + 1), F(i,t + 1).
if (I%(O) >t
then
Let h(i,t + 1) = h(i,t) and F(i,t + 1) = F(i, t);
else
Let = be the largest value < ¢, such that (V' < z)[®;(x) < ¢].
Enumerate S = {u’ | v <, F(i,t)} for ¢ steps using a fixed enumerator.
(This is possible since S is uniformly c.e. in F(i,t), by Fact 8(a).)
if 75(p;(z)) € S within ¢ steps of the fixed enumeration above
then
Let h(i,t +1) = ma(pi(z)) and F(i,t + 1) = 75 (p;(2));
else
Let h(i,t + 1) = h(i,t) and F(i,t) = F(i,t).
endif
endif

end computation of h(i,t + 1), F(i,t + 1).

Let g(i) = h(i,00). It is easy to verify that g and M satisfy the requirements of the theorem.
L]

Now, given any v € O, by Lemma 29, there exists a lim,4,1-computable function g and a ma-
chine M which Ex-identifies C,, such that, for all i, ¢; € C,, implies that M(p;) < g(MinProg(y;)).
This ¢ is not necessarily monotonically non-decreasing. However, by noting that the Definition of
+, gives (u+,1) 4,1 = u+,2, and then using Lemma 25, we get that there exists a monotonically
non-decreasing lim(, 1 2)w},-computable function ¢’ such that ¢’ dominates g. Hence, we get the
following.

Lemma 30 For allu € O, for all w for w, Cy € Limy (4 2wy, Mex.
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Lemma 31 (Vu € 0)[C, ¢ Lim,Mex].

PROOF. Suppose by way of contradiction that C, C g-Mex(M), where g is a monotonically non-
decreasing lim,-computable function as witnessed by h and F.

Then by the Operator Recursion Theorem [Cas74, Cas94], there exists a 1-1 increasing function
p such that the initial segments (finite or infinite) ¢,.) may be defined as follows. Intuitively, while
defining these functions, we attempt to define ,g) such that ¢,y € Cy, and, either (a) M(p,))]
and MinProg(¢p (o)) is such that g(MinProg(¢p))) < M(wp)), or (b) M(py))T; failing this, we
will ensure that for some i > 0, ¢,;) € C, and either (a) M(pp;)! and OM(pp0i)) # Pp(i)s OF
M(p(i))T-

The procedure uses global variables cur_bound, cur_notation, cur_maxindex, cur_index, Cancel,
and last_mindchange. Then cur_bound, cur_notations, cur_maxindexg, cur_indexs, Cancels, and
last_mindchange, denote the values of these variables at the start of stage s.

Initially, we let cur_boundy = h(p(0),0), cur_notationy = w, cur_maxindexy = cur_boundg + 2.
cur_indexg = 1. Cancely = ), last_mindchange, = 0.

x5 denotes the least x such that ¢,)(x) has not been defined at the start of stage s. Thus
zo = 0. Go to stage 0.

Begin stage s.
1. For x < s, let ¥p(cur_indexs) (T) = @p(0) ()
2. Let y = xs.

repeat

2.1, Let @p(cur_index,) (¥) = (p(cur_index;), p(cur_maxindex; ), cur notations, 0).

2.2. If h(p(0),last_mindchange,) # h(p(0),y), then go to step 3.

2.3. If there exists i < cur_bounds, i ¢ Cancely, and z, such that x5 < z <y and ®;(z) < y,
then go to step 4.

2.4, Tf M(¢p(cur_index,)[y + 1]) > cur_bounds, then go to step 5.

2.5. Lety=y+1.

forever
3. For 2 <y, let 9,00)(2) = Ppfeur-indon) (%),
Decrement notation: cur_notations;1 = F(p(0),y).
Change current bound: cur_boundsy; = h(p(0),y).
Change current maximum index: cur_maxindexs4; = cur_maxindexg + cur_boundg;q + 2.
Record where the last mind change happened: last_mindchange,,; = y.
Carry forward unchanged all other global variables (cur_index and Cancel).
Go to stage s + 1. (Therefore z511 =y + 1.)
4. Let k € {0,1} such that

pi(2) # (p(cur_indexs), p(cur_maxindex;), cur notations, k). For z; < x < y, let ¢, )(z) =
(p(cur_index;), p(cur_maxindex), cur_notations, k).

Change to next unused index: cur_indexs;; = cur_indexg + 1.
Record diagonalized program: Cancels; = Cancels U {i}.

Carry forward unchanged all other global variables (cur_notation, cur_bound, cur_maxindex,
and last_mindchange).
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Go to stage s + 1. (Therefore xsy; =y + 1.)
5. Forazs <a <y, let ¥p(0) (.%') - (pp(cur_indexs)(w)'
Carry forward unchanged all global variables (cur_notation, cur_bound, cur_maxindex,
last_mindchange, cur_index, and Cancel).
Go to stage s + 1. (Therefore xsy; =y + 1.)

End stage s.

We now consider the following cases.

Case 1: Each stage is entered and terminates.

Since ordinals are well ordered, step 2.2 can succeed only finitely often. Thus, (as s goes to infin-
ity) cur_notationg, cur_bounds, cur_maxindex,, last_mindchange, all stabilize to, say, cur_notation,
cur_bound, cur_maxindex, last_mindchange. Now after the last success of step 2.2, step 2.3 can suc-
ceed only finitely often (< cur_bound+1 times, since each success of step 2.3 cancels a new program
< cur_bound). Thus for all but finitely many stages, step 2.4 must succeed. It follows, from steps
1 and 5, that Pp(cur_index) = ¥p(0) and M(Qop(cur_index)) outputs a program > h(p(0)7 OO) = g(p(O))
infinitely often.

Clearly, ¢p0) € Cu. Also, since ¢ is monotonically non-decreasing, ¢(p(0)) >
g(MinProg(gpP(O))) = g(MinPrOg(QPp(cur_index)))' Therefore, either M(@p(O))T or M(@p(o))l £
g(MinProg(p(0)))-

Thus ¢, € Cu — g-Mex(M).

Case 2: Stage s is entered but does not terminate.

In this case ¥p(cur_index,) € Cus DUt M(@p(cur_index,)) either does not converge, or converges to
a program < cur_bounds. However each of the programs < cur_bound; either convergently differs
from ¢, (cur_index,) (i-€., is in Cancels) or is undefined on all z > x5 (since step 2.3 does not succeed).
Thus, M does not g-Mex-identify ¢, (cur_index,) (In fact, in this case, M does not even Ex-identify

Pp(cur_index;) ) : O

Theorem 32 (General Hierarchy Theorem) For all u € O, for all w for w, Lim,Mex C
Lim{(u+02)w}oMex.

PROOF. By Theorem 14(c), we get that for all u, u <, (u +, 2), which, by Theorem 18(c), is
<o {(u+62)"}, (we recall that 2 = 22' = 4 >, 2). Hence, the theorem follows from Proposition 19
and Lemmas 31 and 30. O

Theorem 32 implies that there are infinite, infinitely ramifying hierarchies of parsimony re-
stricted learning criteria. Furthermore, we have

Corollary 33 There are infinite hierarchies of parsimony restricted learning criteria which lie
along <,-paths, which paths have notations for each constructive ordinal.

PrOOF. First fix w € O for w. Let O = {xg,z1,22,...}. Let yo = 20 = xo. Let ypi1 =
{(zn +0 2)"}o. Let znt1 = Yn+1 +o Tnt1. Then, by Theorem 14 parts (c¢) and (e), for all n,
Yn <o (Yn +o Tn) +o 2. This latter, by Theorem 18(c), is <, {((yn +o Tn) +0 2)" }o, which = yp,41.
Hence, the downward closure under <, of the set of O-notations, {yo <, y1 <o y2 <o - -}, is, for
terminology from [Rog67], a maximal, univalent system of notations, and, from Proposition 19 and
Theorem 32, (Vn € N)[Lim,, Mex C Lim,, ,, Mex]. O

As another Corollary to Theorem 32 and Proposition 19, we get
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Corollary 34 For all uw € O, Lim,Mex C LimMex.

Since LimgMex = Mex, we get
Corollary 35 Mex C LimMex.

Our next few results (Theorem 36, Lemma 37 and Lemma 39) lead up to another of our main
results, our Strong Hierarchy Theorem (Theorem 40), which essentially states that for notations of
the form {w"},, where v € O and w is for w, Theorem 20 gives as much collapsing as possible.

The following Theorem is a notational analog of Cantor’s Normal Form (CNF) Theorem?® for
ordinals ([Sie65, Theorem 2, Chapter XIV.19, page 323] and [KM67, Theorems 2 and 5, Chapter
VII, Section 7]).26 In Theorem 36 below, as stated, the parenthesization of the 4, terms to the
right is essential, since +, is not associative.

Theorem 36 (Notational CNF Theorem) For all v € O, for all w for w, for all x >, 0,

there exists a unique k € N, unique ng,n1,...,ny € N,
x <o {w"}o < < and unique vo,v1, ...,V where v >, vy > V1 ... >, Vg, such that
z = {w"}o Xong +o {0 }o Xon1 +o (- o {0 }o Xo 1) .. )).

Furthermore, for the left to right direction of the < statement just above, the wvalues of
k,ng,...,ng, and vy, ...,vg can be algorithmically obtained from v, w, and x.

We call the above unique representation of z <, {w"},, for v, w, and z as in the above theorem,
the notational CNF' of x with respect to {w"},. Where it is clear from the context, we will drop
the phrase “with respect to {w"},” while referring to the notational CNF of such an x. Also,
Theorem 36 above has several other variants that are also true; for example, we could get similar
theorems for notations of the form w; X, wa X, ws, or {w]?}, X, w3, where wy, ws and ws are
notations for w. We omit the details.

Furthermore, we note that for every ordinal o > 0, there exists a (unique) ordinal 3 such that
w? < a < WPt [Sie65, Theorem 2, Chapter XIV.18, page 321]. Therefore, the above Notational
CNF Theorem is sufficiently general to apply to notations for as large a constructive ordinal as we
may choose.

PrOOF OF NOTATIONAL CNF.

We first prove the ‘<’ part of the theorem.

(<) This direction of the proof uses reasoning and facts very similar to those used in the proofs
of Claims 26 and 27 of Lemma 25. It uses the fact that, for all w for w, and for all n € N, for all
V0" € 0,0 <o v = {w o Xon <o {w }o.

(=) The proof is by transfinite induction on v. Suppose v, w € O such that w is for w. Suppose
x € O such that 0 <, z <, {w"},.

Base Case: v = 0. Since {w%}, = 1, this case is vacuously true.
Inductive Case: v >, 0.
Inductive Hypothesis (IH): The (=) direction holds for all notations <, v.

25The CNF Theorem states: for any ordinal 8 > 0, there exists a unique k, unique no,n1,...,nr € N*, and unique
ordinals ag, a1, ...,ak, where ag > a1 > ... > ag, such that 8 = w* X ng + w* X n1 + ... +w X ng.

26For a web page describing a programmatic implementation of an algorithm that may be used to perform operations
such as addition, subtraction, etc., on ordinals represented in Cantor Normal Form, see [Beh97].
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We will show that the (=) direction holds for v.
Subcase 1: v = u +, 1.

Clearly, either z <, {w"}, or {w*}, <, x <, {w**el},. If the former is true, the (=) direction
follows from IH. Therefore, suppose the latter. Then, by Theorem 16(f), there exists a unique
n € Nt and a unique 2’ <, {w"}, such that z = {w"}, x,n +, 2’. If 2/ = 0, then clearly the (=)
direction holds with k = 0, v9 = u, and ny = n; otherwise, if = >, 0, the (=) direction follows by
applying IH to 2/ and noting that v >, u.
Subcase 2: v =3 - 5P,

Let {w"}, = 3 -59. Therefore, by Fact 7(e), (3n € N)[z <, @q4(n)]. From Theorem 17,
©q(n) = {w?r™M1, and since p,(n) <, v, the (=) direction follows using TH. [] (‘©’ PART)

Finally, we prove the ‘furthermore’ part of the theorem. Suppose v,w € O such that w
is for w. Suppose x € O such that 0 <, =z <, {w"},. By using Fact 8(a) we can enu-

merate, uniformly effectively in v and w, the set S = {(k,no,n1,...,nk,v0,01,...,0) | k €
N,ng,ni,...,nx € NT,v >4 vg >0 v1... >, v and {w}, X, ng +o (W }o Xo 11 4o (- +o
({w”}o Xong)...)) <o {w”}o}. Clearly, then, there is a procedure that is effective in v,w, and z
to find (k,ng,n1,...,nk, v, V1, ...,v;) € S such that = {w"}, X no 4o ({W" }o Xon1 40 (... +o

({ka}o Xo %) .- ))

1 (NoTtATIONAL CNF THEOREM)

We next present a lemma (Lemma 37) which is a strengthening of Lemma 25 for notations
in certain forms. In Lemma 25, if we let v = {w"},, for some notation v € O and some w
for O, then we get that every lim,-computable function is dominated by a parsimony factor of
order {({w"}o +01)"}o. Lemma 37, however, implies that we can in fact do much better and use
parsimony factors of order just {wV*el},.

Lemma 37 Suppose u <, {w'},, where w is for w. Then, every lim,-computable function is
dominated by a monotonically non-decreasing lim,vy,-computable function.

Proor or LEMMA 37.

Suppose v, w € O such that w is for w. If u = 0, then the lemma follows using reasoning similar
to that in the proof of Lemma 25. For the u >, 0 cases, we will use Lemma 24.

Firstly, for all notations z,y <, {w"},, we define the natural sum of x and y and denote the
operation by (+), ; this operation is a notational analog of the natural sum of ordinals from [KM67,
Chapter VII, Section 7, pages 259-260].%7

Suppose z,y >, 0. Let 2’s and y’s (unique) notational CNF's, obtained via the Notational CNF
Theorem 36, be

z o= {w}o xonh +o ({0 }o Xo 1) o (- 4o ({wF 1o X0 nfy) ..)),
y = {0}, xonh 4o ({w Yo X0 4o (- Ao (L5 1o xonjin) ...),
where k', k" € N, nf,...,nj,n,...,npm € Nt v >, 0)... >, v}, and v >, v ... >, v} (We

note that in general, &’ may be different from £”.)
By Fact 7(f), we get that for all o' € V' = {v} | i <k'}, for all v € V" = {v] | i < Ek"}, either
v <, v" or v =, 0" or v >, v". Let vg >, v1... >, U; be the notations in V' U V",

27N.B. our notational (+)o depends on the choice of the pre-given v and w.
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By Theorem 15 (clause i), we have that for all z,  x,0 = 0. Also, as we noted a few paragraphs
after Theorem 13, clause (i) of Theorem 13 is a special base case that we added to Kleene’s definition
of +, from [Kle55], in order to get that for all y, 0+, y = y. Thus, we have that for any z,y, € O,
(x00) +oy =y.

Using the facts from the just above paragraph, then, there is exactly one way to write z and y

as
r = {w"}, Xomy+o ({w o Xom] +o (... +o {w}o xomy) .. ),
y = {w}, xgm_g—i-o ({w*}, ><Om_/1/+o (oo ({w¥}, Xom_g) ),
where my, ..., mj and mg,...,mj are possibly 0, and v >, vg. Furthermore, we clearly can still

effectively determine all notations involved in the above representations of x and y. We call the
immediately above forms of x and y the mutually completed notational CNFs of x and y. It is
similarly possible to extend the definition of mutual completion of notational CNF's to sequences
of more than two notations. We omit the details.

Now, the natural sum of x and y: If x =0 or y =0,

def
x("—)oy = T +oY;

Otherwise, 2 (+)oy &

{w™}o xo (mp +mp) +o {w"}o X (M) +m7) +o (- .. +o ({0 }o X0 (M, +my)) .. ).

Clearly, (+), is an effective operation. It is also commutative and associative, unlike +,. Next,
we prove the following properties of (4), .

Claim 38 Suppose v,z,y,w € O such that w is for w. Suppose x,y <, {w"},. Then,
(a) z ("/‘)oly <o {w’}o, ,

(b) (V)Y <oy = (x(+)o¥ <oz (+)oy)],

(c) (Va)z’ <oz = (2" (+)oy <oz (+)oy)]-

Proor or CLAIM 38.
The proof is fairly straightforward, and, hence, we only sketch the details. Part (a) may
be proved along the lines of Claim 27 of Lemma 25. Part (c) follows from Part (b) and the

commutativity of (4),.
Part (b) may be proved by transfinite induction. In the induction, we use the fact that if the
leftmost term of (the notational CNF of) y that is different from the corresponding term of (the

notational CNF of) 3/ is {w"}, x,n9 and the corresponding term of y' is {w%}, X oMy, then either

v <o wo or (v) =v9 A n{ < ng). Then, we consider the mutually completed notational CNFs of
x(+)oy and x (+),y’ and use a proof that is similar to that of the proofs of Claims 26 and 27 of
Lemma 25, to show that = (+),y <o 2 (+)0 y- 1 (CrLam 38)

Next, we define a family of partial computable functions {¢, | n € N} that will enable us to
use Lemma 24 to get the desired result. For all n, for all ug, ..., u, <, u <, {w"},, let

Un Uy o) = ug (+)o -+ ()0 Un-

Clearly, using Claim 38, the definition of (4), and the fact that u >, 0, we see that u and
{tn, | n € N} satisfy the hypotheses of Lemma 24. Also, using Claim 38, it is easy to show
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that o = limy oo 1Un(u, ..., u)lo < [{w'}olo. Let v* be the unique notation for a such that
v* <, {w"},. Therefore, we have u <, v* <, {w"},.
Lastly, applying Lemma 24 to u, {¢,, | n € N} and v*, Lemma 37 follows. O (LEMMA 37)

As an application of Lemma 37, we get the following. It is important to note that, for any
notations v, w, where w is for w, the notations ({w'}, x, w) and {w’°l}, are not only for the
same ordinal, but also are ezactly the same number, i.e., notation (this follows from our carefully
chosen “definitions” of x, and {-'},).

Lemma 39 For all v,w € O, where w is for w, Ciyey, € Limyyey, o Mex.

ProOOF. Follows from Lemmas 29 and 37, using reasoning similar to that presented just before
Lemma 30. L]

As indicated earlier, we get, for notations in special form, the following strengthening of the
General Hierarchy Theorem (Theorem 32).

Theorem 40 (Strong Hierarchy Theorem) Suppose u,v,w € O where w is for w. Then,
(a) {w"}o <o u <o {w"}o X w] = Lim,Mex = Limy,,.; Mex,

(b) Lim{wu}oMex C Lim{wv}oxowMex,

(¢) v is a notation for a limit ordinal = [ for all u <, v, Limg,.; Mex C Lim,.) Mex].

PRrROOF. (a) Follows from Theorem 20.
(b) Follows from Lemmas 31 and 39, and Proposition 19.
(¢) Suppose v € O is for a limit ordinal and v' <, v. By part (b), we have Lim,,.,, Mex C

Lim{w(v/ﬂl)} Mex. Also, since v is for a limit ordinal, (v' +,1) <, v.2® Hence, by Theorem 18(d),
{w el <, {w'},. Therefore, by Proposition 19, Lim{w(v/ﬂy}oMex C Limg,.),Mex. Thus
Lim{wv/}oMeX C Limg,vy, Mex. [l

As a corollary to Theorem 40, we get

Corollary 41 Suppose u,v,w € O, where w s for w. Then,
u <, {w"}, = Lim,Mex C Lim,.; Mex.

PROOF.
Follows using an easy induction on v, along with Proposition 19, Theorems 36 and 40, and
Fact 7(e). L]
Next, suppose n € N and w is for w. Then, Theorem 40 gives us, for exam-

ple, (i) Limg,n, Mex C Limg, n1y Mex; (ii) Limg,n) Mex C Limg,w; Mex, and (iii)
Lim{w(wxﬂ)}OMex C Lim{w{wg}o}oMeX. We may repeatedly apply the Strong Hierarchy The-
orem to get a hierarchy of the form shown in Figure 1, Section 1.3.

Ordinal ¢ is the limit of the sequence w,w®,w*”, ...as well as the least fixed point of AB3[w”].
Furthermore, it is the least ordinal not expressible as a polynomial in 0,1,...,w using finitely
many applications of addition, multiplication and exponentiation.?? The example of Figure 1 may
be extended to notations for e numbers and beyond by a strategy we illustrate for €y. Let

S ={u|u<, some notation in w, {w®”}e, {wi® e}, ...}

28Proof: Since v’ <, v, by Fact 7(d), we get v/ 4,1 <, v. Since v is a limit ordinal, v’ 4+, 1 # v. Hence v’ 4+, 1 <, v.
298ee [Rog67, Exercises 11-51 to 11-53, Page 221].
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Let €’ be such that for all n, (a) pe(n) € S, (b) per(n) <o @er(n+ 1), and (c) for all u € S, there
exists an n such that u <, ¢u(n). Then, clearly, 3-5¢ € O and e = 3-5¢ is a notation for
0. Choosing any such e for ey, we can employ {w®}, as another notation for ¢y and continue the
hierarchy of Figure 1, by that shown in Figure 2 below, for example.

C Lim{we}oMex C Lim{we+ol}oMeX C...C Lim{we+og}oMeX C...

N

Limgetowy, Mex C ... C Lim{weﬂ{ww}o}oMex C...C Lim Mex C ...

{we+o{w{“’w}°}0}o

C Lim{wexog}ol\/{ex C ...

C Limgexowy, Mex C ... C Lim{wexo{ww}o}ol\/[ex C...C Lim{weXo{w{ww}o}o}oMex C...
- le{w{eg}o}oMex C...
- le{w{eg}o}oMex C...

C Lim{w{ew}o}oMex C ...

C Lim{w{e{ww}o}o}oMex C...

C Lim{w{ee}o}ol\/[ex C ...

C Lim{w{e{ee}o}o}ol\/[ex C...

Figure 2: Example optimal continuation of hierarchy of Figure 1 along a <,-path for ordinals < €;.

We have not attempted to obtain notational analogs of ordinal normal form theorems other than
for Cantor’s Normal Form Theorem but expect there are such results which would yield interesting
Strong Hierarchies for the Lim,Mex criteria and which are based on notations, e.g., for the €
ordinals, which do not have to be of the form {w"}, (for example, e just above).

4 Further Results and Future Work

As stated in Theorem 23, for all n € O, Lim,Mex = Mex. We had originally hoped that this
result would not be true and that there would be a fine hierarchy between Mex and LimMex
based on lim,-computable parsimony factors. In the next section we successfully explore some
different sources of restricted—parsimony fine structure.
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4.1 TIterated-Limits Parsimony Factors

Just as we defined lim,-computable in Definition 10, we may define, for n > 1, limy ., -
computable functions. These limy,  , -computable functions are used in the definitions of cor-
responding Lim,,  , Mex learning criteria.

We can extend Definition 4 to

Definition 42 Suppose n > 0. Suppose h : N**' — N. Then,

(a) for all x, and any sequence of n — 1 numbers t1, ..., tn_1,

lim A(@, taot,.. . 11 t) {y if (V[ tnr, ..t t) =yl

t—o00 T, otherwise.
(b) for each m such that 0 < m < n, for any sequence of n —m numbers tp,, ..., tn_1,
def ..
h(z,tp_1,. .. tm,00,...,00) = tli)noloh(x,tn,l,...,tm,t,oo,...,oo).

Definition 43 Suppose m,n € N such that 0 < m < n. Then,

F : N*™' — 0 is an (m,n)O-countdown function 4 for all x, for all sequences of n — m + 1
numbers tp, ..., tn, F(x,tn, ... t;m +1,00,...,00) <o F(z,tn, ..., tm,00,...,00).

We next illustrate our general definition for, n > 0, of lim;; _, -computable functions, via the
n = 2 case.

Definition 44 Suppose uz,u; € (O U {*}). Then,

g:N— N is limgmul—compumble & there eists computable h such that, for all x,t1,ts

(a) 9(x) = h(a,00,00),
(b) card({t | h(z, ta,t) # h(x,ta,t + 1)}) is finite,
(c) card({t | h(z,t,00) # h(z,t + 1,00)}) is finite,
(d) (u1 # %) = there exists a (1,2)O-countdown function F1 such that
Fl(.%',tg,()) <o uir A
h(w,tz,tl) #* h(w,tz,tl + 1) = Fl(x,tg,tl + 1) <o Fl(x,tz,tl),

an

(e) (ua # x) = there exists a (2,2)O-countdown function Fa such that
Fo(z,tz,00) <o ug A
h(l’,tg, OO) # h(xa to + 17 OO) = Fg(l',tg + 17 OO) <o FQ(xatQa OO)

We define lim%%m-computable as witnessed by h, Fi, and Fy along the lines of part (b) of

Definition 5; we omit the details.

Let N & {n | n € N}. It turns out that limj;  , -computable functions, where each u; € (INU
{*}), have useful characterizations as stated in Proposition 45 below. When we are proving results
for the Limy  , Mex criteria where each u; € (IN U {x}), we shall use these characterizations in
our proofs involving iterated limits below, since, then, we do not have to explicitly consider the

more complicated corresponding (m,n)O-countdown functions.

Proposition 45 Suppose n > 0 and uy,...,u, € (NU{x}). Then, g : N — N is limy -
computable < there exists a computable h : N*"*1 — N such that for all x,
(a) g(z) = h(x,00,...,00),

(b) for all i such that 1 < i < n and u; # *, for any sequence of n — i numbers t,, ..., tiy1,
card({t | h(z,tn, ... tiy1,t,00,...,00) # h(x,tn, ..., tiz1,t+1,00,...,00)}) < |uilo, and
(c) for all i such that 1 < i < n and u; = *, for any sequence of n — i numbers t,, ..., tiy1,

card({t | h(z,tn, ... tix1,t,00,...,00) # h(x,ty,... ,tix1,t + 1,00,...,00)}) is finite.
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We write lim"-computable for lim} _,-computable. For n > 0, we define Lim;, , Mex just
as in Definition 11, except that we use limy;  , -computable parsimony factors instead of lim,-
computable ones. We mostly write Lim"Mex instead of Lim{ , Mex.

For parsimony factors computed by two levels of iterated limits, the resulting learning criteria
turn out to be, in some cases, identical to Mex, and in other cases, to LimMex. This is illustrated
by the next two results. Proposition 46 just below is easy to prove.

Proposition 46

(a) For u € (O U {x}), LimiQMex = LimauMex = Lim,Mex.

(b) For uj,ug,vi,va € O, up <, v1 A uy <, vy = Limg’OMex - LimimulMex C
Lim? . Mex C Lim’Mex. o

V2,01

Theorem 47 For any notations wi and wa for w, LimfmwlMex = Ex.
PRrOOF. (C) Follows from the definition of Lim%u%wll\/lex.
(D) Suppose S € Ex as witnessed by M.

We first define the following two (computable) predicates. For each i, t; and ta, let P(i,te,t1) =
(V2 < 1)[@i(x) < 1] and QUi ta,t2) = (Vy | t2 < y < 0)[(Ve < y)[@i(x) < 1] = [M(gilte]) =
M(gily))])

Also, for all x,ta, let P(i,t2,00) = limy_,o0 P(i,t2,t) and Q(i, ta, 00) = limy_,oo Q(i,t2,t); then
Pli,ta,00) = (Vo < t2)[pi(e)]] and Q(its,00) = (Vy > 1)[(Ve < y)lpi(x)l] = M(gilta]) =
M (il4])].

We next define A’ as follows. It is to be understood, that for values of I/, any ?’s are changed
to 0’s.

10 _ [ M(@ilta]), if P(i,ta,t1) A Q(i,t2,t1);
Bili ta, ) = {O, otherwise.

The following can be easily verified.
(1) (Vi)(Vt1, t2)[P (i, ta, 1) = P(i, ta,t1 + 1)].
(2) (Vi) (Y1, 12)[Qi, ta, 1) = —Q(i, o, t1 + 1))].
(3) (Vi)(Vt1, ta) [P (i, t, 00) = ~P(i, ts + 1,00))].
(4) (Vi)(Vt1,12)[Q(3, t2, 00) = Q(i, 2 + 1,00)].

Item (1) implies that for all 4, to, card({t | P(i,t2,t) # P(i,to,t +1)}) < 1. Item (2) implies
that for all 4, to, card({t | Q(7, t2,t) # Q(i,t2,t+1)}) < 1. Hence, for all ¢, ta, card({¢ | (P(i,t2,t) A
Qi ta,t)) # (P(i,te,t +1) A Q(i,ta2,t +1))}) < 2. Therefore, from the definition of A/, we get
that for all 4,to, card({t | h'(i,t2,t) # h'(i,t2,t + 1)}) < 2. Similarly, from items (3) and (4), we
can conclude that card({¢ | h'(i,t,00) # h/(i,t + 1,00)}) < 2.

Let ¢'(i) = h'(i,00,00). Hence, g is a not necessarily monotonically non-decreasing, lim3 ,-
computable function. It is easy to verify that, for all i, if ¢; € Ex(M), then ¢'(i) = M(y;). Let p,
be the predecessor function for O (i.e., for all z, if x = 2¥, then p,(z) = y; po(z)T, otherwise.) Let
h be defined as follows. h(i,to,t1) = max({h/(z,te,t1) | x < i}). Let g(i) = h(i, 00, 00).
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We get for all 4, to, card({t | h(i,t2,t) # h(i,t2,t +1)}) < 2(i + 1); and for all ¢, card({¢ |
h(i,t,00) # h(i,t +1,00)}) < 2(i + 1). For all ¢, ¢t; and t9, let

2(i+1), if t7 = 0;

Fl(’i,tg,tl) = {po(Fl(’i,tQ,tl — 1)), ift1 >0 A h(’i,tg,tl) ?é h(i,tg,tl — 1);
Fi(i, ta,t1), otherwise.
2(i+ 1), if to = 0;

FQ(i,tQ,tl) = {po(FQ(i,tQ — 1,t1)), ifto >0 A h(’i,tQ,tl) #+ h(i,tg — 1,t1);
Fo(i,ta — 1,t1), otherwise.

Let wy and we be any notations for w. Clearly, h, F'; and Fy witness that g is a monotonically
non-decreasing limi%m—computable function. Also, g dominates ¢'.

Therefore, S € Lim?, ,, Mex. O

w2,w1

Corollary 48

For any notations wy and we for w, Mex C LimMex C Lim%UQ,wlMex = Ex.

2

The following theorem resolves the remaining relationships between Lim;, , Mex classes.

Theorem 49 For alln > 0: LimMex = Limé*Mex = Limzﬂl\/[ex = LimilMex.

PRrROOF OF THEOREM 49. We first prove Lemmas 50, 51 and 52. The theorem then follows easily
from these lemmas.

Lemma 50 FEvery lim-computable function g is a lz'mil-computable function.

PRrROOF OF LEMMA 50. Suppose g is lim-computable as witnessed by computable h. We define

b () = {h@f’y% if (Ve > y)[h(z, 1) = h(z,y)];

0, otherwise;

and
h(z,y), if (Vt|y<t<y+z2)|h(z,y)=h(x,1)];

ho(@,y, 2) = {0’( 0) Oﬂ(ler‘lée. y+2) [z, y) = h(z, 1))
Clearly, hy is a computable function. It is easy to verify the following:
(a) For each z,y, card({z | ha(x,y, 2) # ho(z,y,z2+1)}) < 1;
(b) For each x, card({y | h1(z,y) # hi(z,y + 1)}) < 1;
(c) For all x,y, ha(z,y,00) = hi(z,y);
(d) For all z, hy(z,00) = h(z,00) = g(z).
Clearly, g is lim%l—computable as witnessed by ho. O (LEMMA 50)

Lemma 51 Suppose n € N. Then, for each monotonically non-decreasing limiy*—computable func-
tion g, there exists a lim-computable function ¢’ such that ¢’ dominates g.
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Proor oF LEMMA 51. By induction on n.
The lemma clearly holds for n = 0. Suppose by induction that the lemma holds for n = m. We will
show that the lemma holds for n = m + 1. Therefore, suppose ¢ is a lim?, 41 +-computable function.
Hence, there exist h; and computable ho such that the following three conditions are true.

(a) For all z,y, hi(x,y) = he(x,y, c0).

(b) For all z, g(z) = hy(z, 00).

(c) For all z, card({y | h1(z,y) # hi(z,y+1)}) <m+ 1.
Case 1: For all but finitely many x, card({y | hi(x,y) # hi(z,y +1)}) < m.

In this case, it is easy to show that g(x) is lim?m*—computable. To see this, let yy be such that,

(Va | card({y | hi(z,y) # ha(z,y +1)}) = m+ 1)(Vy = yo)[h1(z,y) = h1(x, yo)]

Let hf, be computable, such that for all z, y and y, h)(z,y, z) = ha(x,y + yo, 2). It is easy to verify
that g is limfn,*—computable as witnessed by h). Hence, by the inductive hypothesis, there is a
lim-computable ¢’ such that ¢’ dominates g.
Case 2: For infinitely many x, card({y | h1(z,y) # hi(z,y + 1)}) = m + 1.

We define a function H as follows.

H(r) = min({(z,50,y1,¥2, - - Ym+1) | 2> 2 A (Vi <m)[y; <yjr1 A hi(z,y5) # hi(z,9541)]})

H is lim-computable since, for each x, the characteristic function of the set,

{<Zvy07ylay2a .. -aym+1> | z =2 x A (VJ < m)[y] < Yj+1 A hl(Z,yj) 7é hl(z’ijrl)]} is
lim-computable.

We next use H to define ¢’ satisfying the requirements of the lemma. First define Hy, Ho as
follows: suppose H(x) = (z,40,Y1,---,Ym+1); then let Hi(x) = z and Ha(z) = ym4+1. Clearly,
Hjy, Hy are lim-computable functions. Now it is easy to verify that, if z < 2/, then Hy(z) < Hy(2').
Let ¢'(x) = h1(H1 (), Ha(x)) = g(Hi(x)). Since hy, Hy, Hy are lim-computable functions, it follows
that ¢’ is also lim-computable and dominates g. [0 (LEMMA 51)

Lemma 52 FEvery limiﬂ—computable function g is limé*—computable.

PROOF OF LEMMA 52. Let hy, ho be such that
(a) for all z, g(x) = hi(z, c0);
(b) for all z,y, hi(x,y) = he(x,y,o0);
(c) for all z,y, card({t | ha(z,y,t) # ho(z,y,t + 1)}) < n.
For all 4, z,y, we define

ho(x,y,z), if card({t | ha(z,y,t) # ha(z,y,t+1)}) > i and z = 14+
i min({z" | card({t < 2’ | ho(x,y,t) # ho(z,y,t + 1
Gitog) - (0 a0 o) £ B+ DD

T, otherwise.

Intuitively, G%, for each x,y assumes that hs(z,y, ) makes exactly 4 mind changes. Based on this
assumption, it tries to compute limy_, oo ho(z,y, t).

We note that max({i < n | card({z | G4(z, 2)|}) > y}), is a lim-computable function in x, .
Let X be a computable function such that X (z,y,o0) = max({i < n | card({z | Gi(x,2)]}) > y}).
X (z,y,00) is monotonically non-increasing in y and is bounded by n. Moreover, for all x, for all
i > X(z,00,00), card({z | G4(z, 2)|}) is finite.
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We recall from Section 2.1 that max(()) = 0. Let H(z,y,z) = Gf(x’y’z)(x,w), where w =
max({w < z | Gf(m’y’z)(az,w’)l in < z steps}). Then, for all z, card({y | H(z,y,00) # H(z,y +
1,00)}) < n. Moreover, using the definition of X, Gg((x’oo’oo) and H, it is easy to verify that

H(x,00,00) = ha(z,00,00) = g(x). Lemma follows. 0 (LEMMA 52)

From Lemma 50, we get LimMex C LimilMex. Cleaurly7 for any lim—computable g, there
exists a monotonically non-decreasing lim- computable g"” such that ¢” dominates ¢’. Hence, by
Lemma 51, we get that for all n, Lim? ,Mex C LimMex. Finally, by Lemma 52, for all n,
le*’nMex - len’*Mex. Thus, the theorem follows from the above three lemmas.

- - [] (THEOREM 49)

Thus, if both u; and uo are 0, Lim?

to 0, leu2 « Mex is equal to either LimMex or Ex; otherwise, if u; is the member of {u1,us}

that is not 0, then leu2 uwyMex is identical to Lim,,, Mex.

We next briefly consider iterating limits to three levels. A proposition similar to Proposition 46
holds, but we omit stating it here. The following theorem shows that for parsimony factors that
use three levels of iterated limits, allowing even a small number of mind changes in each limit

essentially retains no parsimony in the final programs learned.

us.u, Mex = Mex. Else, when both of uj, ug are not equal

Theorem 53 Ex = Limi;zMex.
PROOF OF THEOREM 53. We first prove Lemma 54 below.

Lemma 54 Suppose f is a computable function from N*> — N. Let F(i) = limy .o f(i,t). Then,
there exists a lim? 5 5 function g such that, for all i, g(i) = max({F(j) | j <i A F(j)1}).

ProoOrF OF LEMMA 54. Suppose f,F are given as in the lemma. Below, we define
g9(.),h1(.,.), ha(.,.,.) and hs(.,.,.,.) (where hs is computable), such that each of the following seven
clauses is true.
(a) For all 4, g(i) = hq (i, 00);
(b) For all i,n, hy(i,n) = ha(i,n,c0).
(c) For all i,n,m, ha(i,n,m) = hs(i,n,m,0).
(d) For all ¢, card({n | hi(i,m) # hi(i,n+1)}) < 1.
(e) For all i,n, card({m | ha(i,n,m) # ha(i,n,m+1)}) < 2.
(f) For all 4,n,m, card({t | h3(i,n,m,t) # hs(i,n,m,t +1)}) < 2.
(&) 9(i) = max({F(j) | § <1 A F()1}).
The lemma then easily follows from the above clauses. We now define hs.
Let X5 = {j <i | (Yw <m)[f(j,n) = f(j,n+w)]}.
Let Y;™™ = {j < i| (Vw < m+ 8)[f(j,n) = F(j,n+w)]}.
Let Z5™™ = {j <i | Gw < H)[f(j,n+m) # f(j,n+m+w)]}.
Let Pg(z nym,t) = (X5 = YR and (XD ZE = (z | < i),

hs(i,n,m, t) = {max({f(j’ n) | € Xg™™), i Py(in,m, );
Y 0, otherwise.

2,m,m,t 2,m,m,t
Yy Z3

is monotonically non-increasing and is monotonically

If 4, n and m are fixed,
non-decreasing in ¢ (in the set containment sense). X3 is, clearly, fixed once i,m and n are.
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Thus, if t < t' < t”, then Ps(i,n,m,t) and =P5(i,n,m,t') implies = Ps(i,n, m,t"). So (f) is true.
Let
X" = Xy = X = {j < i | (Yw < m)[f(jin) = f(j,n + w)]}.
Yz‘mm—Y},mmoo—{J<l|( w)[f(G,n) = F(G;n+w)l}.
Zy"" =2 ={j <i | Qu)lf(,n+m) # f(j,n+ m+w)]}.
PQ(z mn)—Pg(z n,m,o0) = [(X5™" = Y™™ and (X5™™ U Z8"™ = {z |z <1i})].
Let ha(i,n,m) = h3(i,n,m,00). Thus (c) holds. It is easy to verify that

hao(i,n,m) = {max({f(j, n) i€ Xénm})v if Py(i,n, m);

0, otherwise.

Now X;nm is a monotonically non-increasing function of m, Y; "™ is independent of m, and
Z;’n’m is a monotonically non—increasing function of m. Thus, if m < m/ < m”, then Py(i,n,m)
and —P,(i,n,m’) implies =P (i,n,m”). It immediately follows that (e) holds. Let

Xyt = Xmoo ={j<i| (Vw)[ (J,n) = f(j,n+w)]}.

Y = e Z i GG () (£ (o) = fGon+ w)]),

2" = 75 = [ < | Fj)T). |

Pi(i,n) = Py(i,n,00) = [XV" = Y} and X" U Z0" = {a& |z < i}]

Let hq(i,n) = ha(i,n,00). Thus (b) holds.

It is easy to verify that

ha(i,n) = {maX({f(L n) | j e X)), if Py(i,n);

0, otherwise.
Note that X" = ¥;"" always holds. Thus Py (i, n) is equivalent to X" = {j < i | F(j)|}.

Hence, . . ‘
b (i, ) = {max({f(j, n)|j<i A F(j)l}), if Pi(i,n);

0, otherwise.

Note that for all é,n,n" such that n < n/, if Pl( ) then Pj(i,n'). Thus (d) holds. Let
g(i) = limy o0 h1(i,m). Thus (a) holds. Now, g( ) = (z oo) = max({F(j) | 7 <i AN F(j)]}).
Thus (g) holds. ] (LEMMA 54)

Since, for every machine M there exists a computable function f such that, (Vi | ¢; €
Ex(M))[f(i,00) = M(g;)] the theorem follows. ] (THEOREM 53)

There are many mostly uninvestigated questions still open. For v € O, do the Lim,Mex
criteria have “limiting-standardizability” style characterizations similar to those first obtained for
Mex in [Fre75]. Generally, except for the cases noted above and their easy consequences, for
uy, ..., Uy € (O U{*}), how do the learning classes Limy;  , Mex compare to one another?

4.2 Notation Dependence Results

As mentioned in Section 1.2, Case and Suraj [CS03] show how to characterize the lim,-computable
functions and variants in terms of concepts from [EHKS81, Sel84]. One of these characterizations is
exploited to prove

Theorem 55 (Case—Suraj [CS03]) Every lim-computable function is also lim,-computable, for
some notation v for w?.
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Using Theorem 55, we can get the following.

Theorem 56 For all C, if C € LimMex then there exists a notation v for w? such that C €
Lim,Mex.

PrOOF. Suppose C € LimMex as witnessed by M and a monotonically non-decreasing lim-
computable g. By Theorem 55, there exists a notation v for w?, such that g is lim,-computable.
Hence, C € Lim,Mex as witnessed by the same M and g. [l

Theorem 56 essentially says that for every class of functions that is LimMex-identifiable, there
is some notation v for an ordinal as small as w?
identifiable. However, we note that by General Hierarchy Theorem (Theorem 32), that one may
Lim, Mex-identify strictly more classes of functions by using a suitable notation v’ >, v.

Also, by Corollary 34, for all u € O, there exist a class of functions C such that C € (LimMex —

Lim,Mex). Hence, by Theorem 56, we have

, such that this class of functions is Lim,Mex-

Corollary 57 For eachu € O, there exists a notation v for w?, such that Lim,Mex ¢ Lim,Mex.

Using Corollary 57, we get

Corollary 58 For each constructive ordinal o such that o > w?, there exist notations u, v for o
such that Lim,Mex # Lim,Mex.

PROOF. Suppose « is a constructive ordinal > w? and u is for a. By Corollary 57, we get that
there exists a notation v’ for w?, such that Lim, Mex ¢ Lim,Mex.

Let v be a notation for a such that v’ <, v <, (v’ +, u); as noted in Section 2.3, such a
notation exists, and by Fact 7, it is unique. By Proposition 19, Lim,,Mex C Lim,Mex; therefore,
Lim,Mex ¢ Lim,Mex. Hence the corollary follows. Il

We do not know if there are u,v € O such that Lim,Mex C Lim,Mex and yet |ul, > |v],.
Also from [CS03], we have

Theorem 59 (Case—Suraj [CS03]) For all u,v € O, such that u and v are for the same ordinal
< w?, every lim,-computable function is also lim,-computable.

From Theorem 59, we get

Theorem 60 For all u,v € O, such that u and v are for the same ordinal < w?, Lim,Mex =
Lim,Mex.

It is interesting to ask what happens if we base parsimony restricted criteria on constructive
ordinals instead of on notations in O for them. One way to do so is to let, for any constructive

ordinal «,

. def
Lim,Mex =

U Lim,Mex.
u for a
While we have seen that the criteria Lim,Mex, for u € O, form subtle and finely graded
and ramified infinite hierarchies, there are but three distinct criteria of the form Lim,Mex, for

constructive ordinals «, and they form a linear, finite hierarchy thus.

Theorem 61
(a) For all constructive ordinals o such that o > w?, Lim,Mex = LimMex.
(b) Mex C Lim,Mex C Lim_.Mex.
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PROOF.

From Theorem 56, we get LimMex C Lim_ 2Mex. From Proposition 19, we get Lim_ 2Mex C
LimMex. Hence Part (a) follows.

(b) Follows from Theorems 60, 40 and 23. O

We have not fully considered the possible dependencies of the lim,-computable functions or
of the classes Lim,Mex on the many notation systems alternative to O([Amb95]). Of course,
for example, by an obvious embedding, our Strong Hierarchy Theorem (Theorem 40 just above)
mutatis mutandis clearly follows for computably related, non maximal ([Rog67]) notation sys-
tems based on exponential polynomials in finite ordinals, w, and a suitably specified collection
of € numbers. Also, we have not considered parsimony restricted criteria based on notations or
programs for non-well orderings (with, for example, no computable infinite descending chains)
[Ers68b, SSV97, AFS99].

4.3 Comparison with O-Bounded Mind Change Ex-Identification

We recall that SEG is the set of all finite initial sequences of natural numbers. We next consider,
for u,v € O, connections between the Lim,Mex criteria and the Ex,, criteria that were introduced
by Freivalds and Smith [FS93]. To define Ex,, we first define O-mind change counters, similar
to those defined in [JS97, AJS99]: an O-mind change counter is a computable mapping, F, from
SEG into O, such that for all n and f, F(f[n]) >, F(f[n + 1]). Now, for each u € O, a machine
M Ex,-identifies f if and only if M (i) Ex-identifies f, and (ii) there exists an O-mind change
counter F such that for every n, [? # M(f[n]) # M(fln + 1])] = F(f[n + 1]) <, F(f[n]) <, u.
As can be seen, the Ex,, criteria impose restrictions on the mind changes of the learning machines
themselves.

Besides [FS93], other works that study various aspects of imposing similar restrictions on
the mind changes of learning machines include those of Apsitis [Aps94]|, Ambainis [Amb95], Jain
and Sharma [JS97, JS99, JS01], Sharma, Stephan and Ventsov [SSV97], Ambainis, Freivalds and
Smith [AFS99] and, Ambainis, Jain, and Sharma [AJS99).

Theorem 62 Mex Z |J,co Exy.

PROOF OF THEOREM 62. Let C = {f | (V*z)[f(z) = 0] A 2% MinProg(f) > max({z | f(z) #
0}U{f(z) |z e N})}.

Now, for any finite set S C N x N, where, S is single-valued, i.e., S is the graph of a finite
partial function, let pzext(S) be a standard program for the zero-extension of S, i.e.,

()= { ¥ if (z,y) € S;
Ppzext(s) 0, if there is no y with (z,y) € S.

Let g(z) = max(pzext(S) | S €{0,---,2z} x {0,---,2z} and S is single-valued).

Let M(f[n]) = prext({(z, f(z)) | & <n A f(z) £0)).

Clearly, for any ¢, € C, g(e) bounds pzext(S), for S = {(x,pe(x)) | ve(z) # 0}. Hence M
g-Mex-identifies C.

We next show that, for all u € O, C € Ex,,.
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Note first that C is dense, i.e., for any element f[n] € SEG, there exists an extension g of f[n]
such that g € C. To see this, let z =1 + max({n} U {f(z) | x < n}). For each y, let

f(x), ifx<mn;
g@) =Ly,  ife=mn
0, otherwise.

Now, there exists a y € {z | z < x < 2z}, such that MinProg(g,) > 2. Thus g, € C.

Now suppose by way of contradiction that, for some v € O, C € Ex, as witnessed by some
machine M’ and O-mind change counter F. Since for every n, [? # M/(f[n]) # M/(f[n + 1])] =
F(f[n+1]) <, F(f[n]) <, u, and there are no infinite descending chains of notations in O, we get
that M’ makes only finitely many mind changes on any f. Therefore, there is a o such that M’
does not make a mind change on any 7 that is an extension of . Clearly, since C is dense, there
are infinitely many f’s in C that are each extensions of o; yet, M’ Ex,-identifies at most one of

them. Therefore, M’ does not Ex,-identify C.
Hence, the theorem follows. ] (THEOREM 62)

Theorem 63 For allu € O, for all w for w, Ex, C Limy, 2w}, Mex.

PROOF.

We show that for all u, for all w for w, Ex, C Limy(, 2yw},Mex. Then, the theorem follows
using Theorem 62.

Suppose C € Ex,, as witnessed by machine M and O-mind change counter F'. We first show
how to construct a (not necessarily monotonically non-decreasing) lim,,i-computable function g,
such that, (Vf € C)[g(MinProg(f) > M(f)]. In this interest, we present a simple modification of the
construction from the proof of Lemma 29 to get h and F that witness that g is lim, i1-computable.

Let h and F be defined as follows. For all i, let h(i,0) = 0, F(i,0) = u +, 1. For all i,¢, we
define h(i,t +1),F(i,t + 1) as follows.

begin computation of h(i,t 4+ 1), F(i,t + 1).

if ®;(0) > ¢
then
Let h(i,t +1) = h(i,t) and F(i,t + 1) = F(i, t);
else
Let x be the largest value < ¢, such that (V' < z)[®;(2’) < t].
Let h(i,t +1) = M(g;[z + 1]) and F(i,t + 1) = F'(pi[x + 1]).
endif

end computation of h(i,t + 1), F(i,t + 1).

Let g(i) = h(i,00). Clearly, for all 7 such that ¢; € C, we get h(i,00) = M(f); in particular,
for all f € C, h(MinProg(f),oc0) = M(f). Clearly, also, h and F witness that g is limy,1-
computable. Suppose w is a notation for w. Then, by Lemma 25, there exists a monotonically
non-decreasing limy(, 2yw},-computable function ¢’ which dominates g. It is easy to verify that
C € Limy(, oyw},Mex as witnessed by M and ¢'. Hence, Ex, C Limg(, 2w}, Mex. O
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Theorem 64 Suppose u,v,w € O such that u <, {w"}, and w is for w. Then,
Ex, C Limg,» Mex.

ProoF.

We show that for all u,v,w € O such that u <, {w"}, and w is for w, Ex, C Limg,.; Mex.
Then, the theorem follows using Theorem 62.

If v = 0, then {w"}, = 1. Therefore, Limg,.; Mex = Lim;Mex. From Corollary 23,
Lim;Mex = Mex. Also, Exg C Mex [Che82, Theorem 6.1, page 80]. Therefore, the v = 0 case
follows.

The v >, 0 case is similar to the proof of Theorem 63, except that it makes use of Lemma 37
instead of Lemma 25 and the fact that u <, {w"}, = u+,1 <, {w"},. We omit the details. []

As a corollary to the theorem just above, we get

Corollary 65 Suppose v,w € O such that w is for w. Then, Ex(,vy, C Limg,ey, x wMex.

For n € NT, Theorem 63 implies for all notations w for w, Ex, C Limg, 2y»),Mex; the
latter, by Theorem 60 and the fact that |[{(n+,2)"}olo = w, is = Lim,Mex. Chen [Che82,
Corollary 6.2, pages 80-81] shows that, in fact, Ex,, C Mex; hence Ex,, C LimyMex. However,
Ex,, Z Mex follows from Theorem 66 below.

Theorem 66 For all u,w € O such that w is for w, Exyy (u4,1) — Lim,Mex # §.

PRrOOF.

Let u,w € O be such that w is for w. We use C, from Definition 28 to show that C, €
Exyx,(uto1) — Lim,Mex. The negative part of this follows from Lemma 31.

The positive part follows, in part, from a careful analysis of a construction from [FW79] as
presented in [JORS99]. So that we do not need to present this construction again, in the remainder
of this proof we proceed informally to show that Cy, € Exyx,(u+,1)-

For f € C,, from Parts (a) through (e) of Definition 28, we see that lim, ., 75(f(z))] > a
program for f, and that this convergence involves <, w mind changes. Hence, informally, the
number of different values of 75(f(z)) on the way to convergence is <, (u +, 1).

Proposition 10.7 of [JORS99, Page 227] generalizes a result from [FW79], and careful examina-
tion of the proof of this Proposition (for the special case from [FW79]) provides the existence of
a machine we’ll call Mgy with the following useful property. If Mgy, receives as input both an
upper bound on a program for a function f and successively longer initial segments of f, then it
converges to a program for f. Furthermore, in the process, Mgy makes <, w mind changes.

We present informally, then, a machine M which witnesses that C, € Exyx,(u4,1)- For any
r € N and any function f, M, on f[x + 1], employs 75(f()) as a candidate upper bound on a
program for f to feed to My together with f[x + 1]; then M outputs Mgy ’s resultant output.
Each time 73 (f(x)) makes a mind change, the My component of M starts over. From above, M
need look at <, (u+,1) different values of 75(f(x)), and, for each of these, the Mgy component of
M can be restricted to make <, w mind changes. Hence, M makes <, (w X, (u+,1)) mind changes.
To see this, think of |w X, (u +, 1)], informally as (|ul, + 1) copies of w laid out end to end; and
the counting down for M as starting at the right end of the rightmost copy of w, jumping to right

end of the next copy of w to the left whenever 73(f(x)) makes a mind change, and counting down

inside its currently employed copy of w when operating Mgy between m3(f(x))’s mind changes.
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The notation (w X, (u 4+, 1)) makes it possible to find ones way algorithmically from right to left
across the corresponding ordinal conceptualized as (|ul, + 1) copies of w laid out end to end. []

Since for all u € O, Mex C Lim,Mex, using Theorem 62, we get the following corollary to
Theorem 66 above.

Corollary 67 For all u,w € O such that w is for w, Lim,Mex Z EX,(ut,1)-

We also note that the proof of Theorem 66 may be easily adapted to show that for all u,v € O,
such that [v], > w, we get Exyy (y4,1) — Lim,Mex # {).

It is open whether the comparisons of this section can be substantially improved.
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