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1 Introduction

Consider the following learning situation. A learner receives data about the
environment, one piece at a time. As the learner is receiving the data, it
conjectures its hypothesis about how the environment works. The learner may
be considered to be successful if the sequence of hypotheses it conjectures
stabilizes to a correct explanation of the environment. This is essentially the
paradigm of inductive inference introduced by Gold [Gol67].

Formal definitions of the concepts informally introduced in the Introduction
are given in Section 2. In this paper, we will be focusing on language learning.
In this situation, the environment takes the form of a language from some class
of languages. The data might be a text for the language (that is, it contains all
and only the elements of the language, given one element at a time, in arbitrary
order with repetition allowed), or may be an informant for the language (that
is, it contains membership information about every element x: for each x, the
data informs the learner about whether x belongs to the language or not).
The hypothesis of the learner takes the form of indices (codes) of languages.
These indices are interpreted in some hypothesis space (index i will represent
the i-th language in the hypothesis space). We will always take the learners to
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be algorithmic and hypothesis space to be a recursively enumerable sequence
of (either recursive or r.e.) languages. The hypothesis space might be class
preserving (that is, the hypothesis space consists of only the languages in the
class being learned), or the hypothesis space may be class comprising (that is,
the hypothesis space may consist of other languages, besides the languages in
the class being learned) [ZL95].

A learner is strongly monotonic [Jan91] if its later conjectures contain its ear-
lier conjectures: that is the languages represented by the sequence of hypothe-
ses conjectured grow monotonically. A learner is iterative [LZ96,WC80,Wie76],
if its new conjecture depends only on the latest datum and its previous con-
jecture.

One often considers classes of languages that are indexed families [Ang80]: that
is, membership question for languages in the class can be effectively decided
from the index of the language. We refer the reader to [LZ96] for a recent sur-
vey on learning indexed families. Lange and Zeugmann [LZ92] asked whether
there exists an indexed family which can be strongly monotonically identi-
fied by a learner from informant, but which cannot be strongly monotonically
identified by an iterative learner from informant. We show that there exists
an indexed family which can be strongly monotonically identified using a class
preserving hypothesis space but cannot be strongly monotonically identified
by an iterative learner, even if the iterative learner is free in the choice of
the hypothesis space used. This contrasts with the situation for learning from
texts, where every indexed family which can be strongly monotonically identi-
fied can also be strongly monotonically identified by an iterative learner using
some appropriate hypothesis space [LZ92].

A conservative learner does not change its conjecture unless the data con-
tradict its hypothesis [Ang80]. Lange and Zeugmann [LZ93] asked whether
there exists an indexed family which can be learned from texts using only a
bounded number of mind changes, but cannot be conservatively learned from
texts. In this paper we answer this question positively by showing that there
exists an indexed family which can be learned from texts using at most two
mind changes, but which cannot be conservatively learned. Here note that
[LZ93] showed that every indexed family which can be learned using at most
one mind change can be conservatively learned.

2 Preliminaries

Any unexplained recursion theoretic notation is from [Rog67]. N denotes the
set of natural numbers. min(S) denotes the minimum element of the set S.
card(S) denotes the cardinality of the set S. A language is a subset of N .
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We let L, with or without subscripts, superscripts and the like, range over
languages. ∅ denotes the empty set (language). We let L range over sets of
languages. L is said to be an indexed family iff there exists a recursive function
f and a listing L0, L1, . . . of languages in L such that L = {Li : i ∈ N}, and
f(i, x) = 1 iff x ∈ Li.

Let 〈·, ·〉 denote a fixed computable bijective mapping from N ×N to N .

We let W0, W1, . . . denote a fixed standard acceptable numbering of all the
recursively enumerable sets (languages). E denotes the set of all recursively
enumerable languages.

A text T is a mapping from N into N ∪ {#}. A sequence σ is an initial
segment of a text. SEQ denotes the set of all finite sequences. The content
of a text T , denoted content(T ), is the set of natural numbers in the range
of T . content(σ) for a sequence σ is defined similarly. T is a text for L iff
content(T ) = L. Intuitively, a text T for L represents the presentation of
elements of L to the learner, with #’s representing pauses in the presentation
(for example, the only text for ∅ is #∞).

An informant I is a mapping from N into (N × {0, 1}) such that for all x,
exactly one of (x, 1) and (x, 0) is in the range of I. An information segment
is an initial segment of an informant. SEG denotes the set of all information
segments. PosInfo(I) denotes the set {x : (x, 1) is in the range of I}. NegInfo(I)
denotes the set {x : (x, 0) is in the range of I}. PosInfo(σ) and NegInfo(σ)
are defined similarly for information segment σ. I is an informant for L iff
PosInfo(I) = L and NegInfo(I) = N − L.

Λ denotes the empty sequence/information segment. |σ| denotes the length of
sequence/information segment σ. T [n] (respectively, I[n]) denotes the initial
segment of text T (respectively, informant I) with length n.

σ � τ denotes the concatenation of σ and τ . We sometimes abuse notation and
use σ � x (or σ � (x, b), for b ∈ {0, 1}) to denote the concatenation of sequence
σ with a sequence containing just the element x (just the pair (x, b)).

A learning machine is an algorithmic mapping (maybe partial) from SEQ (or
SEG) to N∪{?}. Intuitively, ? denotes that the learner does not wish to make a
conjecture on the current data. This is useful when the number of mind changes
allowed to the learner is limited. Intuitively, M(T [0]),M(T [1]),M(T [2]), . . .
can be considered as the sequence of conjectures made by M on T . A learner
M converges on T to i (written: M(T ) = i), iff for all but finitely many n,
M(T [n]) = i. Convergence on informants is defined similarly.

The conjectures of the learning machine are interpreted in some hypothesis
space H = H0, H1, . . .. Thus a conjecture i of the learner M is interpreted
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as the learner conjecturing the language Hi. In this paper, a hypothesis space
H = H0, H1, . . . is always an r.e. family of languages, that is, {〈i, x〉 : x ∈ Hi} is
recursively enumerable. In some cases (for the positive sides of our results), we
even take the hypothesis space to be an indexed family: that is {〈i, x〉 : x ∈ Hi}
is recursive.

Definition 1 [Gol67] Suppose H = H0, H1, . . . is a hypothesis space.

(a.1) M TxtEx-identifies L (using hypothesis space H) iff for all texts T for
L, (i) for all n ∈ N , M(T [n])↓ and (ii) there exists an i such that M(T ) = i
and Hi = L.

(a.2) M TxtEx-identifies L (using hypothesis spaceH) iff M TxtEx-identifies
each L ∈ L.

(b.1) M InfEx-identifies L (using hypothesis space H) iff for all informants I
for L, (i) for all n ∈ N , M(I[n])↓ and (ii) there exists an i such that M(I) = i
and Hi = L.

(b.2) M InfEx-identifies L (using hypothesis space H) iff M InfEx-identifies
each L ∈ L.

We will use the terms identify and learn as synonyms.

Definition 2 [Jan91] Suppose M is a learner from informants, and H =
H0, H1, . . . is the hypothesis space used by M.
M is said to be strongly monotonic on L iff for all L ∈ L, for all informants
I for L, for all m, n with m < n such that M(I[m]) and M(I[n]) are not ?,
HM(I[m]) ⊆ HM(I[n]).
M is said to InfSMon-identify L (using hypothesis space H) iff M is strongly
monotonic on L and M InfEx-identifies L.

Definition 3 [LZ96,WC80,Wie76] Suppose M is a learner from informants.
M is said to be iterative iff for all σ, τ ∈ SEG and (w, b) ∈ (N × {0, 1}),
M(σ) = M(τ) implies M(σ � (w, b)) = M(τ � (w, b)).

One can similarly define strongly monotonic and iterative learners for learning
from texts (though we will not be using them for this paper).

Note that for TxtEx and InfEx-learning (along with strongly monotonic
and conservative versions of these criteria) one may assume without loss of
generality that the learner is total. However, for iterative learning one cannot
assume so. That is the reason we explicitly required that the learner is defined
on all initial segments of texts for languages in the class L being learned.

Definition 4 [Ang80] Suppose M is a learner from texts and H = H0, H1, . . .
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is the hypothesis space used by M.
M is said to be conservative on L iff for all L ∈ L, for all texts T for L, for all
m, n with m < n such that M(T [m]) 6=?, if content(T [n]) ⊆ HM(T [m]), then
M(T [m]) = M(T [n]).
M is said to conservatively identify L (using H as hypothesis space) iff M is
conservative on L and M TxtEx-identifies L (using H as hypothesis space).

3 Results

The following solves an open problem from [LZ92].

Theorem 5 There exists an indexed family L such that

(a) some learner InfSMon-identifies L (using a class preserving hypothesis
space H = H0, H1, . . ., where one can effectively decide membership question
for Hi);

(b) no iterative learner can InfSMon-identify L (using any hypothesis space).

Proof. Let X0 = {〈0, 0〉}.

For y > 0, let Xy = X0 ∪ {〈1, y〉} ∪ {〈y + 1, z〉 : z ∈ N}.

For y > 0 and any finite subset D of N , let RD
y = X0 ∪ {〈1, y〉, 〈1, y + 1〉} ∪

{〈y + 1, z〉 : z ∈ D}.

Let L = {Xy : y ∈ N} ∪ {RD
y : y > 0, D is a finite subset of N}.

It is easy to verify that L is an indexed family.

The following learner M InfSMon-identifies L. For hypothesis space we as-
sume a 1–1 indexing of L where one can effectively, from any y ∈ N and any
finite set D, find an index for Xy and RD

y+1 (note that such an indexing can
easily be constructed). For ease of notation, we just indicate the hypothesis of
the learner as “index for L” rather than going into details of indexing.

For τ ∈ SEG, M(τ) is defined as follows.

If 〈1, y〉 6∈ PosInfo(τ) for any y, then M(τ) = index for X0;

Else, if there exists a y > 0 such that 〈1, y〉 ∈ PosInfo(τ), and 〈1, y−1〉, 〈1, y+
1〉 ∈ NegInfo(τ), then M(τ) = index for Xy (note that, for informants for
languages in the class, there can be at most one such y);

5



Else, if PosInfo(τ) = RD
y for some y > 0 and finite D, then M(τ) = index for

RD
y ;

Otherwise the learner repeats its previous hypothesis (i.e., M(τ) = M(σ),
where τ = σ � (w, b), for some (w, b) ∈ (N × {0, 1})).

It is easy to verify that the learner M InfSMon-identifies L.

We now show that no iterative learner can InfSMon-identify L using any
hypothesis space. Suppose by way of contradiction that iterative learner M
InfSMon-identifies L using hypothesis space H = H0, H1, . . ..

Let σ be a stabilizing sequence for M on input X0 (for learning from in-
formants) [Ful90,BB75]. That is, let σ be such that (a) PosInfo(σ) ⊆ X0,
(b) NegInfo(σ) ⊆ N − X0, (c) for all τ such that PosInfo(τ) ⊆ X0 and
NegInfo(τ) ⊆ N −X0, M(σ � τ) = M(σ). Note that there exists such a stabi-
lizing sequence as M InfEx identifies L (see [BB75]). Let y > 0 be such that
({〈1, y〉, 〈1, y +1〉}∪{〈y +1, z〉 : z ∈ N})∩ (PosInfo(σ)∪NegInfo(σ)) = ∅. Let
I be an informant for Xy, except that it does not contain information about
〈1, y + 1〉 (that is, PosInfo(I) = Xy, NegInfo(I) = (N − Xy) − {〈1, y + 1〉}).
Now M on input σ � I must converge to an index for Xy (since M converges
on σ � (〈1, y + 1〉, 0) � I to an index for Xy, M is iterative and M(σ) =
M(σ � (〈1, y + 1〉, 0))).

Let τ be an initial sequence of σ � I such that M(τ) is an index for Xy.
Then, M fails to strongly monotonically identify the set PosInfo(τ)∪ {〈1, y +
1〉, 〈1, y〉, 〈0, 0〉} (which belongs to L) from an informant for it which extends
τ (since HM(τ) = Xy 6⊆ (PosInfo(τ) ∪ {〈1, y + 1〉, 〈1, y〉, 〈0, 0〉})). A contradic-
tion.

This contrasts with the situation for learning from texts, where every in-
dexed family which can be strongly monotonically identified from texts can
be strongly monotonically identified by an iterative learner from texts (using
some appropriate hypothesis space) [LZ92].

The following solves an open problem mentioned in [LZ93]. Here note that
[LZ93] showed that every indexed family which can be learned using at most
one mind change can be conservatively learned. So the mind change result
obtained below is optimal.

Theorem 6 There exists an indexed family L such that

(a) some learner M TxtEx-identifies L using at most two mind changes on
any input text (that is, for all texts T , card({n : ? 6= M(T [n]) 6= M(T [n +
1])}) ≤ 2) using a class preserving hypothesis space H = H0, H1, . . ., where

6



one can effectively decide membership question for Hi;

(b) L cannot be conservatively TxtEx-identified by any learner using the stan-
dard acceptable numbering W0, W1, . . . as hypothesis space (and thus using any
recursively enumerable hypothesis space).

Proof. Let M0,M1, . . . denote a recursive enumeration of all learning ma-
chines.

Let Xi = {〈i, x〉 : x ∈ N}.

Let Ti(j) = 〈i, j〉. Thus Ti is a text for Xi.

Let Si = {〈s, r〉 : s ≥ 1 and one can verify within r steps that Mi(Ti[s])↓ and
content(Ti[s]) ⊂ WMi(Ti[s])}.

Here ⊂ denotes proper subset. Note that Si is a recursive set, a decision
procedure for which can be found effectively from i.

If Si is not empty, then let 〈si, ri〉 = min(Si).

Let L = {Xi : i ∈ N} ∪ {content(Ti[si]) : Si 6= ∅}.

Note that L is an indexed family. To see this, let L2j = Xj, and L2j+1 =
content(Tij [sij ]), where i0, i1, . . . is a 1–1 recursive enumeration of the set {w :
Sw 6= ∅}. Then, L = {Lj : j ∈ N}. Note that L0, L1, . . . is a 1–1 numbering for
L and for all i ≥ 0, one can effectively obtain a j such that Lj = Xi, and for
i such that Si 6= ∅, one can effectively find a j such that Lj = content(Ti[si]).

Furthermore, L cannot be conservatively identified: if Si = ∅, then Mi does
not TxtEx-identify Xi; if Si 6= ∅, then Mi on Ti[si] outputs a proper superset
of content(Ti[si]), and thus Mi cannot conservatively identify content(Ti[si]).

On the other hand the following learner M TxtEx-identifies L using at most
two mind changes. For this, we use the hypothesis space Hj = Lj. For ease of
notation, we just indicate the hypothesis of the learner as “index for L”.

If content(σ) = ∅, then M(σ) =?;

Else, if there does not exist an i such that ∅ ⊂ content(σ) ⊂ Xi, then, M(σ)
repeats its previous hypothesis (that is, M(σ) = M(σ′), where σ = σ′ �w, for
some w ∈ N ∪ {#});

Else, let i be such that ∅ ⊂ content(σ) ⊂ Xi. If it can be verified within |σ|
steps that Si 6= ∅ and content(σ) ⊆ content(Ti[si]), then M(σ) is the index
for content(Ti[si]); otherwise M(σ) is the index for Xi.
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It is easy to verify that the above learner TxtEx-identifies L. Also, it makes
at most two mind changes on any input text (possibly from the index for Xi

to the index for content(Ti[si]), and then to the index for Xi).
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