
On a Question About Learning Nearly Minimal Programs

Sanjay Jain

Department of Information Systems and Computer Science

National University of Singapore

Singapore 0511

Republic of Singapore

March 11, 2007

Abstract

Identification of programs for computable functions from their graphs by algorithmic devices
is a well studied problem in learning theory. Freivalds and Chen consider identification of ‘min-
imal’ and ‘nearly minimal’ programs for functions from their graphs. The present paper solves
the following question left open by Chen: Is it the case that for any collection of computable
functions, C, such that some machine can finitely learn a nearly minimal (n + 1)-error program
for every function in C, there exists another machine that can learn in the limit an n-error
program (which need not be nearly minimal) for every function in C? We answer this question
negatively.
Keywords: Machine learning, inductive inference, recursion theory, minimal programs, method-
ology of science.

1 Introduction

A function learning machine M is an algorithmic device which returns a sequence of either pro-
grams or “don’t know” indicators when presented with the graph of a target function f . It learns
(identifies, explains) the input function f with at most m errors and n mind changes if its output
sequence changes value at most n times and converges to a program which correctly computes f

on all but at most m input values. A class of functions is learnable (identifiable), with at most
m errors and n mind changes, if some algorithmic device learns each function in the class with at
most m errors and n mind changes.

Freivalds [Fre75] and Chen [Che81, Che82] studied the effect of requiring that the final hy-
pothesis held by the learner in the above model be of (nearly) minimal size. For nearly minimal
identification with at most m errors and n mind changes one requires, in addition to identification
with at most m errors and n mind changes, that the final programs be of nearly minimal size (see
formal definitions in Section 3). We direct the reader to [Fre75, Che81, Che82] for results relating
nearly minimal identification with other criteria of inference. It was left open in [Che82, Che81]
whether any class of functions which can be nearly minimally identified with at most n + 1 er-
rors and 0 mind changes can also be identified using at most n errors and finite number of mind
changes. In this paper we answer this question negatively. Along with the results in [Che82]
this completes the relationship between different criteria of explanatory identification and nearly
minimal identification.

1

We now proceed formally.

2 Notation

Recursion-theoretic concepts not explained below are treated in [Rog67]. N denotes the set of
natural numbers, {0, 1, 2, . . .}; The symbols a, b, i, j, k, l, m, n, s, t, x, and y, with or without
decorations (decorations are subscripts, superscripts and the like), range over natural numbers
unless otherwise specified. card(S) ≤ ∗ means that cardinality of the set S is finite. max(),min()
denote the maximum and minimum of a set, respectively. By convention max(∅) = 0 and min(∅) =
∞.

R denotes the set of all total recursive functions. h, f, g, with or without decorations, range over
total recursive functions. η, with or without decorations, ranges over partial functions. domain(η)
denotes the domain of η. For a ∈ N ∪ {∗}, we say that η1 =a η2 (read: η1 is an a-variant of η2)
iff card({x | η1(x) 6= η2(x)}) ≤ a. Thus, η1 =∗ η2 means that η1 and η2 are finite variants of each
other.

We let ϕ denote a standard acceptable programming system. ϕi denotes the partial recursive
function computed by the ith program in the standard acceptable programming system ϕ. We often
refer to the ith program as program i. In some contexts, p, with or without decorations, ranges
over programs. In other contexts p ranges over total functions, with its range being interpreted as
programs. For a recursive function f , MinProg(f) denotes the minimal program for f (in the ϕ

system), i.e., MinProg(f) = min({i | ϕi = f}).
〈i, j〉 stands for an arbitrary computable one to one encoding of all pairs of natural numbers

onto N [Rog67].

The quantifiers ‘
∞
∀ ’ and ‘

∞
∃ ’ means ‘for all but finitely many’ and ‘there exist infinitely many’

respectively.

3 Learning Paradigms

For any partial function η and any natural number n such that, for each x < n, η(x)↓, we let η[n]
denote the finite initial segment {(x, η(x)) | x < n}. Let INIT = {f [n] | f ∈ R ∧ n ∈ N}. We let
σ and τ , with or without decorations, range over INIT.

Definition 1 [Gol67] A learning machine is an algorithmic device which computes a mapping from
INIT into N ∪ {?} such that, if M(f [n]) 6=?, then M(f [n + 1]) 6=?.

We let M, with or without decorations, range over learning machines. In Definition 1 above,
‘?’ denotes the situation when M outputs “no conjecture” on some σ ∈ INIT.

In Definition 2 below we spell out what it means for a learning machine to converge in the limit.

Definition 2 Suppose M is a learning machine and f is a computable function. M(f)↓ (read:

M(f) converges) just in case (∃i)(
∞
∀ n) [M(f [n]) = i]. If M(f)↓, then M(f) is defined = the unique

i such that (
∞
∀ n)[M(f [n]) = i], otherwise we say that M(f) diverges (written: M(f)↑).

2

3.1 Explanatory Function Identification

We now formally define the criteria of inference considered in this paper.

Definition 3 [Gol67, CS83, BB75, BF74] Suppose a, b ∈ N ∪ {∗}.

(a) A learning machine M is said to Exa
b -identify f (written: f ∈ Exa

b (M)) just in case [(∃i |

ϕi =a f) (
∞
∀ n)[M(f [n]) = i] ∧ card({n |? 6= M(f [n])6= M(f [n + 1])}) ≤ b].

(b) Exa
b = {C | (∃M)[C ⊆ Exa

b (M)]}.

For a given f and M, we refer to each instance of the case, ? 6= M(f [n]) 6= M(f [n + 1]) as a
mind change by M on f . We often refer to Exa

∗ as Exa, Ex0
b as Exb and Ex0

∗ as Ex.
We next consider identification by nearly minimal programs.

Definition 4 [Fre75, Che82] Suppose a, b ∈ N ∪ {∗}.

(a) Suppose h is a recursive function. A learning machine M is said to h-Mexa
b -identify f (written

f ∈ h-Mexa
b (M)) iff M Exa

b -identifies f and M(f) ≤ h(MinProg(f)).

(b) Mexa
b = {C | (∃M)(∃h ∈ R)[C ⊆ h-Mexa

b (M)]}.

We often refer to Mexa
∗ as Mexa, Mex0

b as Mexb and Mex0
∗ as Mex. In Chen [Che82] (see also

[Fre75]) it was shown that

Theorem 1 For all m,n ∈ N , a ∈ N ∪ {∗}.

(a) Ex −Mexn 6= ∅.

(b) Ex0
0 −Mex∗

m 6= ∅.

(c) Exa
m ⊆ Mexa.

(d) Ex∗ = Mex∗.

(e) Mex0
m+1 − Ex∗

m 6= ∅.

(f) Mexn+1 − Exn 6= ∅.

However it was left open, whether Mexn+1
0 ⊆ Exn. We answer this question negatively in the next

section. Along with the results in [Che82] this completes the relationship between different Exm
n

and Mexm′

n′ criteria of inference.
The following proposition facilitates the proof of our result.

Proposition 1 There exists a recursively enumerable sequence M0,M1, . . . of learning machines
such that, for all learning machines M,

(∃i)(∀a ∈ N ∪ {∗})[Exa(M) ⊆ Exa(Mi)]

For a proof of the above proposition see for example [OSW86]. We let M0,M1, . . . be one such
enumeration.

3

4 Result

Theorem 2 (∀n)[Mexn+1
0 − Exn 6= ∅].

Proof. Fix n. We will describe a recursive 1–1 monotone increasing recursive function p (using
operator recursion theorem [Cas74]) and a sequence of functions f0, f1, . . . below. These will satisfy
the following properties:

(P1) fi(0) = i.
(P2) fi(1) ≤ i.
(P3) ϕp(〈i,fi(1)〉) =n+1 fi.
(P4) MinProg(fi) ≥ i.
(P5) fi 6∈ Exn(Mi).

Let C = {fi | i ∈ N}. Let h be such that h(i) = max({p(〈j, k〉) | j, k ≤ i}).
For f ∈ C, ϕp(〈f(0),f(1)〉) =n+1 f and p(〈f(0), f(1)〉) ≤ h(f(0)) ≤ h(MinProg(f)). Thus C ∈

Mexn+1
0 .

Also by property (P5) above it follows that C 6∈ Exn. It now remains to construct p and fi’s as
claimed above. We first define p. fi’s will be defined later. By operator recursion theorem [Cas74]
there exists a recursive monotone increasing p such that the functions ϕp(〈i,j〉) may be defined as
follows (we only need to consider ϕp(〈i,j〉), for j ≤ i).

Definition of ϕp(〈i,j〉).

ϕp(〈i,j〉) is defined in stages.

Initially let ϕp(〈i,j〉)(0) = i, ϕp(〈i,j〉)(1) = j.

Let xs denote the least x such that ϕp(〈i,j〉)(x) is not defined before stage s. Thus, x0 = 2. Note
that if stage s is started, then at the beginning of stage s, ϕp(〈i,j〉) is defined on exactly the
inputs 0, 1, . . . , xs − 1.

Intuitively, step 3 below searches for suitable values for ϕp(〈i,j〉), on inputs xs, xs +1, . . . , xs +n,
so that a mind change (by Mi) can be forced. While this search is being done, step 2 extends
ϕp(〈i,j〉) by defining it on inputs xs + n + 1, xs + n + 2,

Go to stage 0.

Stage s

1. Dovetail steps 2 and 3 until, if ever, step 3 succeeds. If and when step 3 succeeds, go to
step 4.

2. Let y = xs + n + 1.
repeat

Let ϕp(〈i,j〉)(y) = 0.
Let y = y + 1.

forever

3. For each k ∈ N , let gk denote the function

gk(x) =







ϕp(〈i,j〉)(x), if x < xs;
k, if xs ≤ x ≤ xs + n;
0, otherwise.

4

Search for a k ∈ N and m > xs + n such that Mi(gk[m]) 6= Mi(gk[xs]).
4. If and when step 3 above succeeds, let k,m be as found in step 3.

For xs ≤ x ≤ xs + n, let ϕp(〈i,j〉)(x) = k.
For xs + n < x ≤ m, let ϕp(〈i,j〉)(x) = 0.
Go to stage s + 1.

End stage s

End of definition of ϕp(〈i,j〉).

Now, we define fi. Fix i. Pick j ≤ i such that, for all l < i, ϕl(1) 6= j (by pigeonhole principle
there exists such a j). Below, we will pick a suitable extension of ϕp(〈i,j〉) as fi. Thus fi would
clearly satisfy properties P1 and P2. Since ϕp(〈i,j〉) is undefined on atmost n + 1 inputs, fi would
also satisfy property P3. Note that, by the choice of j, if ϕp(〈i,j〉) ⊆ g, then MinProg(g) ≥ i (since,
for such g, g(1) = j, and for all l < i, ϕl(1) 6= j). Thus fi would satisfy property P4. We now pick
fi based on the following two cases.
Case 1: In the construction of ϕp(〈i,j〉) all stages terminate.

In this case let fi = ϕp(〈i,j〉). Since all stages terminate, Mi(fi) diverges. Thus fi satisfies
property P5. Thus all the properties of fi as claimed above are satisfied.
Case 2: In the construction of ϕp(〈i,j〉), some stage s starts but does not terminate.

In this case, for each k ∈ N , let gk be as defined in stage s of the construction of ϕp(〈i,j〉). Note
that for each k ∈ N , ϕp(〈i,j〉) =n+1 gk. Let xs be as defined in the construction of ϕp(〈i,j〉). Now
Mi on each gk converges to Mi(ϕp(〈i,j〉)[xs]). However, a program can compute an n variant of gk,
for at most finitely many k. Thus, there exists a gk such that Mi does not Exn-identify gk and
MinProg(gk) ≥ i. Let fi = one such gk. Thus fi satisfies property P5. Thus all the properties of
fi as claimed above are satisfied.

As a corollary to Theorems 1 and 2 we have

Corollary 1 Let a, b, a′, b′ ∈ N ∪ {∗}.
Mexa

b ⊆ Exa′

b′ iff [a ≤ a′ ∧ b ≤ b′].
Exa

b ⊆ Mexa′

b′ iff [b′ = ∗ ∧ a ≤ a′ ∧ [a′ = ∗ ∨ b 6= ∗]].

5 Acknowledgements

I would like to thank Ganesh Baliga, John Case, Suraj Mandayam and Arun Sharma for helpful
discussions and comments. I thank the referees for several helpful suggestions.

References

[BB75] L. Blum and M. Blum. Toward a mathematical theory of inductive inference. Information and
Control, 28:125–155, 1975.

[BF74] J. M. Barzdin and R. Freivalds. Prediction and limiting synthesis of recursively enumerable classes
of functions. Latvijas Valsts Univ. Zimatm. Raksti, 210:101–111, 1974.

[Cas74] J. Case. Periodicity in generations of automata. Mathematical Systems Theory, 8:15–32, 1974.

[Che81] K. Chen. Tradeoffs in Machine Inductive Inference. PhD thesis, SUNY at Buffalo, 1981.

5

[Che82] K. Chen. Tradeoffs in inductive inference of nearly minimal sized programs. Information and
Control, 52:68–86, 1982.

[CS83] J. Case and C. Smith. Comparison of identification criteria for machine inductive inference.
Theoretical Computer Science, 25:193–220, 1983.

[Fre75] R. Freivalds. Minimal Gödel numbers and their identification in the limit. Lecture Notes in
Computer Science, 32:219–225, 1975.

[Gol67] E. M. Gold. Language identification in the limit. Information and Control, 10:447–474, 1967.

[OSW86] D. Osherson, M. Stob, and S. Weinstein. Systems that Learn, An Introduction to Learning Theory
for Cognitive and Computer Scientists. MIT Press, Cambridge, Mass., 1986.

[Rog67] H. Rogers. Theory of Recursive Functions and Effective Computability. McGraw Hill, New York,
1967. Reprinted by MIT Press, Cambridge, Massachusetts in 1987.

6

