
Vacillatory Learning of Nearly Minimal Size Grammars

John Case

Department of Computer and Information Sciences

University of Delaware

Newark, DE 19716

USA

Email: case@cis.udel.edu

Sanjay Jain

Institute of Systems Science

National University of Singapore

Singapore 0511

Email: sanjay@iss.nus.sg

Arun Sharma

School of Computer Science and Engineering

The University of New South Wales

Sydney, NSW, 2033

Australia

Email: arun@.cs.unsw.oz.au

March 11, 2007

Abstract

In Gold’s influential language learning paradigm a learning machine converges in the limit

to one correct grammar. In an attempt to generalize Gold’s paradigm, Case considered the

question whether people might converge to vacillating between up to (some integer) n > 1

distinct, but equivalent, correct grammars. He showed that larger classes of languages can be

algorithmically learned (in the limit) by converging to up to n + 1 rather than up to n correct

grammars. He also argued that, for “small” n > 1, it is plausible that people might sometimes

converge to vacillating between up to n grammars. The insistence on small n was motivated

by the consideration that, for “large” n, at least one of n grammars would be too large to fit

in peoples’ heads. Of course, even for Gold’s n = 1 case, the single grammar converged to in

the limit may be infeasibly large. An interesting complexity restriction to make, then, on the

final grammar(s) converged to in the limit is that they all have small size. In this paper we

study some of the tradeoffs in learning power involved in making a well-defined version of this

restriction.

We show and exploit as a tool the desirable property that the learning power under our

size-restricted criteria (for successful learning) is independent of the underlying acceptable pro-

gramming systems. We characterize the power of our size-restricted criteria and use this char-

acterization to prove that some classes of languages, which can be learned by converging in the

limit to up to n + 1 nearly minimal size correct grammars, cannot be learned by converging

to up to n unrestricted grammars even if these latter grammars are allowed to have a finite

number of anomalies (i.e., mistakes) per grammar.

We also show that there is no loss of learning power in demanding that the final grammars

be nearly minimal size iff one is willing to tolerate an unbounded, finite number of anomalies

in the final grammars and there is a constant bound on the number of different grammars

converged to in the limit. Hence, if we allow an unbounded, finite number of anomalies in the

final grammars and the number of different grammars converged to in the limit is unbounded

but finite (or if there is a constant bound on the number of anomalies allowed in the final

grammars), then there is a loss of learning power in requiring that the final grammars be

nearly minimal size.

These results do not always match what might be expected from the cases, previously ex-

amined by Freivalds, Kinber, and Chen, of learning nearly minimal size programs for functions.

1 Preliminaries

Recursion-theoretic concepts not explained below are treated in [30]. N denotes the set of

natural numbers, {0, 1, 2, 3, . . .}, and I+ denotes the set of positive integers. Conventions (to

follow) as to the range of variables apply to these variables with or without decorations1. a and

b range over (N ∪ {∗}) and (I+ ∪ {∗}), respectively. f , g, h, and v range over (total) functions

with arguments and values from N . Other lower case letters near the front and rear of the

alphabet range over N . ⊆ denotes the subset relation, and ⊂ denotes proper subset. ∅ denotes

empty set. ↑ denotes undefined. ↓ denotes defined. max(S) and min(S) denote maximum and

minimum elements of the set S. By convention max(∅) = 0 and min(∅) =↑. card(S) denotes

the cardinality of S. L ranges over subsets of N which are usually construed as codings of

formal languages. L1∆L2 denotes (L1−L2)∪ (L2−L1), the symmetric difference of L1 and L2.

We let ϕ range over acceptable programming systems (numberings) for the partial recursive

functions: N → N [3, 23]. R denotes the set of all total computable functions. For i ∈ N and

f ∈ R, we say that ϕi ⊆ f just in case (∀x)[ϕi(x)↓ ⇒ ϕi(x) = f(x)]. We let Φ denote an

arbitrary fixed Blum complexity measure for the system ϕ. W ϕ
p denotes the domain of ϕp. Wϕ

p

is, then, the r.e. set/language (⊆ N) accepted by ϕ-program p. We can (and do) also think of

p as (coding) a (type 0 [19]) grammar for generating W ϕ
p . Wϕ

p,s = {x < s | Φp(x) < s}. We let

P range over subsets of N usually construed as sets of ϕ-programs/grammars. Let λx, y 〈x, y〉

denote a fixed pairing function (a recursive, bijective mapping: N × N → N [30]). λx, y 〈x, y〉

and its inverses are useful to simulate the effect of having multiple argument functions in the

systems ϕ. mingrammarϕ(L) denotes min({p | W ϕ
p = L}). We adopt the convention that

(∀i ∈ N)[i < ∗ < ∞]; intuitively, ∗ just means unbounded, but finite. L1 =a L2 means that

card(L1∆L2) ≤ a, and f1 =a f2 means that card({x | f1(x) 6= f2(x)}) ≤ a. E denotes the class

of all recursively enumerable languages ⊆ N . We let L range over subsets of E .

Definition 1 A text T for a language L is a mapping from N into (N ∪ {#}) such that L is

the set of natural numbers in the range of T . The content of a sequence, of natural numbers

and #’s, is the set of natural numbers in its range, where a text is just the infinite case of such

a sequence.

Intuitively, a text for a language is an enumeration or sequential presentation of all the

objects in the language with the #’s representing pauses in the listing or presentation of such

objects. For example, the only text for the empty language is just an infinite sequence of #’s.

We let T range over texts, and σ and τ range over finite sequences (of natural numbers and

#’s), i.e., over finite initial segments of texts. T [s] denotes the finite initial segment of T with

1Decorations are subscripts, superscripts and the like.

1

length s. Hence, domain(T [s]) = {z | z < s}. |σ| denotes the number of elements in σ. We say

that σ ⊆ τ (σ ⊂ τ) just in case σ is an initial segment (proper initial segment) of τ . Also, we

say that σ ⊂ T just in case σ = T [|σ|]. σ � (y) denotes the sequence formed by adding y to the

end of σ. Thus, if σ′ = σ � (y), then, for all x,

σ′(x) =











σ(x), if x < |σ|;

y, if x = |σ|;

↑, otherwise.

Definition 2 A learning function is a computable mapping from the set of all finite sequences,

of natural numbers and #’s, into N.

We let F range over learning functions, and we think of F(σ) as the (Gödel number of)

a grammar (based on the fixed acceptable programming system ϕ). We take F(σ) to be F’s

conjecture based on the finitely much data in σ. We let F[τ, σ] denote the set {F(τ ′) | τ ⊆

τ ′ ⊆ σ}. Suppose T is any text for a language L. We are interested in the extent to which, for

sufficiently large s, the grammars F(T [s]) generate L.

We consider more specifically what it means for a learning function to be successful on a

language. Gold [18] essentially proposed the following criterion of success (Definition 3) which

we call TxtEx-identification after [11] (the nomenclature in which was based on that in [12]).

The quantifiers ‘∀∞’ and ‘∃∞’ mean ‘for all but finitely many’ and ‘there exist infinitely many’,

respectively. The concepts introduced in Definitions 3, 6, and 7 below are implicitly parameter-

ized by the choice of acceptable programming system ϕ and the corresponding programs and

grammars.

Definition 3 F TxtEx-identifies L ⇐⇒ (∀ texts T for L)(∃p | W ϕ
p = L)(∀∞s)[F(T [s]) = p].

Essentially the concepts from Definitions 1, 2, and 3 constitute Gold’s influential language

learning paradigm discussed, for example, in [26, 29, 33, 32]. In an attempt to generalize Gold’s

paradigm, Case in [5] considered the question whether people converge to vacillating between

up to (some integer) n > 1 distinct, but equivalent, correct grammars. It was shown there that

larger classes of languages can be algorithmically learned (in the limit) by converging to up to

n + 1 rather than up to n equivalent, correct grammars. He argued that, for “small” n > 1,

it is plausible that people might sometimes converge to vacillating between up to n grammars.

Gold’s paradigm allows for convergence to only one grammar in the limit.

In the next section, we define appropriate notions from [5] and state some important results.

2

2 Language Learning by Vacillating Machines

In Definition 4 just below we spell out what it means for a learning function on a text to

converge in the limit to a finite set of grammars.

Definition 4 Suppose F is a learning function and T is a text. F(T)⇓ (read: T stabilizes F)

⇐⇒ {F(τ) | τ ⊂ T} is finite. If F(T)⇓, then F(T) is defined = {p | (∃∞τ ⊂ T)[F(τ) = p]};

otherwise, we say that F(T)⇑.

The following definition is a refinement of Definition 4.

Definition 5 Suppose F is a learning function and T is a text. Suppose b ∈ N+ ∪ {∗}. F(T)⇓b

(read: T b-stabilizes F) ⇐⇒ F (T)⇓ ∧ card(F(T)) ≤ b. If ¬F(T)⇓b, then we say that F(T)⇑b.

Clearly, F(T)⇓ and F(T)⇓∗ are the same notions. The next definition describes the criteria

of vacillatory identification of languages.

Definition 6 Let b ∈ N+ ∪ {∗}. A language learning function, F, is said to TxtFexa
b -identify

a language L ⇐⇒ (∀ texts T for L)[F(T)⇓b ∧ (∀p ∈ F(T))[Wϕ
p =a L]].

In TxtFexa
b -identification the b is a “bound” on the number of final grammars and the a is

a “bound” on the number of anomalies allowed in any of these final grammars. A “bound” of

∗ just means unbounded, but finite.

Definition 7 TxtFexa
b denotes the class of all sets L of languages such that some learning

function TxtFexa
b -identifies each language in L.

TxtFexa
b provides a set-theoretic summary of the power of individual learning functions to

TxtFexa
b -identify entire classes of languages. It is easy to show that it does not depend on the

particular choice of acceptable programming system ϕ on which it is based.

We proceed (Definition 8) to describe an interesting and useful restriction on learning func-

tions which generalizes notions of order independence from [2, 26, 16, 17].

Definition 8 [5] A learning function, F, is b-ary order independent ⇐⇒ (∀L |

some text for L b-stabilizes F)[(∃P of cardinality ≤ b)(∀ texts T for L)[F(T)⇓b = P]].

The following result from [6] is a generalization of results from [2, 26, 16, 17]. It is also an

ostensibly indispensable tool for proving Theorems 17 and 25.

Theorem 9 [6] There is an algorithm for transforming any b and any program for a learning

function F into a corresponding program for a learning function F′ such that F′ is b-ary order

independent and (∀a)(∀L)[F TxtFexa
b -identifies L ⇒ F′ TxtFexa

b -identifies L].

3

3 Convergence to Nearly Minimal Size Grammars

As noted above Case [5] argued that, for “small” n, it is plausible that people might sometimes

converge to vacillating between up to n grammars. The insistence on small n was motivated

by the consideration that, for “large” n, at least one of n grammars would be too large to fit

in our heads. This latter assumes, of course, that human brain storage is not magic, admitting

of infinite regress, etc. Of course, even for Gold’s n = 1 case, the single grammar converged to

in the limit may be infeasibly large. An interesting complexity restriction to make, then, on

the final grammar(s) converged to in the limit is that they all have small size. In this paper we

study some of the tradeoffs in learning power involved in making such a reasonable restriction

on the TxtFexa
b criteria.

Freivalds [15], and later Kinber [22] and Chen [13, 14], considered the case of learning small

size programs for computable functions. Case and Chi [8] consider the case of inferring small

size grammars within the context of Gold’s paradigm. Jain and Sharma [20, 21] show that

within this latter context the severe restriction of requiring the final grammar to be absolutely

minimal size produces a learning criterion dependent on the choice of acceptable programming

system ϕ. Freivalds previously [15] obtained a similar result in the context of learning minimal

size programs for computable functions. Generally, strictly minimal size programs or gram-

mars are hard to deal with2, and information-theoretic considerations suggest that such objects

may be so deficient in information content [31] as to be difficult to understand (even subcon-

sciously). Freivalds [15] invented a mathematically elegant, precise notion of nearly minimal size

programs—again in the context of learning programs for functions. In this paper we study the

extension to vacillatory learning, i.e., to the TxtFexa
b learning criteria.3 This extension turns

out to be non-trivial, its study ostensibly requiring the invention of new tools. Furthermore,

the results do not always match what might be expected from the case of learning programs for

functions. For convenience the concepts introduced in Definitions 10 and 12 below are explicitly

parameterized by the choice of acceptable system ϕ.

Definition 10 A language learning function, F, TxtMfexa
b -

identifies a class of languages L in the ϕ-programming system ⇐⇒ (∃ recursive h)(∀L ∈

L)[F TxtFexa
b -identifies L in the ϕ-programming system ∧ (∀ texts T for L)(∀p ∈ F(T))[p ≤

h(mingrammarϕ(L))]].

h in Definition 10 plays the role of a computable amount by which the final programs can

2For example, {i | i = mingrammarϕ(Wi)} is an immune set (see [30]).
3Essentially, this extension for the b = ∗ case turns out to be equivalent to applying program size restriction

ideas to behaviorally correct language identification; these issues are discussed in Section 6.

4

be larger than minimal size. Even this size restriction of course does not hold in general, but

it is not as severe as requiring that the final programs be strictly minimal size.

Remark 11 It is easy to argue that we may always take h to be monotone increasing in Defi-

nition 10.

Mathematically, TxtMfexa
b -identification is well-behaved. For example, Proposition 13

below asserts that it is independent of the choice of the acceptable programming system ϕ.

First we provide in Definition 12 a notation (analogous to that of Definition 7) providing a set-

theoretic summary of the power of individual learning functions to TxtMfexa
b -identify entire

classes of languages in the ϕ programming system.

Definition 12 TxtMfexa
b (ϕ) =

{L | (∃F)[F TxtMfexa
b -identifies L in the ϕ-programming system]}.

Proposition 13 just below says that the power of TxtMfexa
b -identification is independent

of the choice of acceptable programming system. This is a desirable result in its own right and

is a useful tool to prove other results. There is an analogous result regarding the learning of

nearly minimal size programs for functions in [15, 13, 14].

Proposition 13 (∀ϕ,ϕ′)[TxtMfexa
b (ϕ) = TxtMfexa

b (ϕ
′)].

Proof. Suppose F TxtMfexa
b -identifies L in the ϕ programming system. Let h be such that

for all texts T for L ∈ L, F(T) ≤ h(mingrammarϕ(L)). By Remark 11 we may assume, without

loss of generality, that h is monotone increasing.

Let g and g′ be monotone increasing, recursive functions such that for all i, ϕg(i) = ϕ′
i and

ϕ′
g′(i) = ϕi. Note that, for each L, mingrammarϕ(L) ≤ g(mingrammarϕ′(L)).

Define F′ as follows. F′(σ) = g′(F(σ)). Clearly, F′ TxtFexa
b -identifies L. Now consider a

text T for L ∈ L. Let j ∈ F′(T). Clearly, there exists an jF ∈ F(T), such that j = g′(jF).

Also j = g′(jF) ≤ g′(h(mingrammarϕ(L))) ≤ g′(h(g(mingrammarϕ′(L)))). It follows that F′

TxtMfexa
b -identifies L. 2

From now on it is permissible to write TxtMfexa
b for TxtMfexa

b (ϕ), and we do so.

4 A Characterization of TxtMfexa
b Criteria

We introduce below (Definition 15) an intrinsically interesting and technically useful notion

that will help us formulate a characterization of TxtMfexa
b . To that end, it is useful to first

5

introduce Definition 14 which provides an interesting new extension of the ordinary notion of

limit.

Definition 14 Suppose g is a recursive function in two variables and b ∈ N ∪ {∗}. Then we say

lims g(i, s)⇓b ⇐⇒ (∃P of cardinality ≤ b)[(∀∞s)[g(i, s) ∈ P] ∧ (∀p ∈ P)(∃∞s)[g(i, s) = p]].

If lims g(i, s)⇓b, we define b-lims g(i, s) = {p | (∃∞s)[g(i, s) = p]}; otherwise, b-lims g(i, s) is

undefined.

Definition 15 provides a nice extension of a concept originating with Freivalds [15] (and

later studied and extended by Chen [13, 14]) in the context of the learning of nearly minimal

size programs for functions.

Definition 15 L is text (a, b)-standardizable with a recursive estimate (abbreviated: L ∈

TxtFlsra
b) ⇐⇒ there exist recursive functions g and v such that, for all L ∈ L and i ∈ N , if

W
ϕ
i = L, then

(a) lims g(i, s)⇓b and (∀p ∈ b-lims g(i, s))[Wϕ
p =a L];

(b) for all j, if W
ϕ
j = L, then lims g(j, s)⇓b and b-lims g(i, s) = b-lims g(j, s);

(c) card({g(i, s) | s ∈ N}) ≤ v(i).

If recursive functions g and v witness that L ∈ TxtFlsra
b , then we write L ⊆ TxtFlsra

b (g, v).

It is easy to verify that TxtFlsra
b is acceptable programming system independent.

We give some intuitive insight into TxtFlsra
b . It will suffice to consider the a = 0 and

b = 1 cases. The grammar equivalence problem ({〈x, y〉 | W ϕ
x = Wϕ

y }) is well-known to be

Π0
2-complete [30]; hence, it cannot be accepted by a limiting recursive procedure. The role

of g in the definition of TxtFlsr0
1 is to indirectly provide a limiting recursive solution to this

problem for the special cases where the grammars generate languages in L: g finds (in the limit)

canonical grammars. Also, v places some extra constraint on how g reaches its limits.

Convention 1 For the rest of the paper we take ϕ to be a fixed acceptable programming system.

From now on we usually write ‘mingrammar’ for ‘mingrammarϕ’ and Wi for W
ϕ
i .

Theorem 17 below is a characterization of TxtMfexa
b . Our proof of this theorem ostensibly

requires, in addition to Theorem 9, the following variant of Theorem 9.

Theorem 16 [6] There is an algorithm for transforming any b and any program for a learning

function F into a corresponding program for a learning function F′ such that F′ is b-ary order

independent and (∀a)(∀L)[F TxtMfexa
b -identifies L ⇒ F′ TxtMfexa

b -identifies L].

The following theorem has analogs [15, 13, 14] for the learning of programs for functions.

6

Theorem 17 The following three statements are equivalent.

(1) L ∈ TxtMfexa
b .

(2) There exist recursive functions, g and v, a language learning function F such that

L ⊆ TxtFlsra
b (g, v), F TxtFexa

b -identifies L and (∀i | Wi ∈ L)(∀ texts T for Wi)[F(T) = b-

lims g(i, s)].

(3) There exist recursive functions, g and v, and a language learning function

F such that F TxtFexa
b -identifies L and (∀L ∈ L)[(∀ texts T for L)[F(T) = b-

lims g(mingrammar(L), s)] ∧ [card({g(mingrammar(L), s) | s ∈ N}) ≤ v(mingrammar(L))]].

Proof of Theorem 17.

(1) ⇒ (2). Suppose F TxtMfexa
b -identifies L. Let h be such that, for all L ∈ L, for all

texts T for L, for each i ∈ F(T), i ≤ h(mingrammar(L)). By Theorem 16, without loss of

generality, we may take F to be b-ary order independent. Also, by Remark 11, without loss of

generality we may take h to be monotone increasing. Let Ti be a text for Wi, such that Ti[s]

can be effectively computed from s and i. Let v(i) = h(i) + 1 and define g as follows:

g(i, s) =







F(Ti[s]), if F(Ti[s]) ≤ h(i);

0, otherwise.

It is clear that both g and v are recursive. We first show that (∀i | Wi ∈ L)(∀ texts

T for Wi)[F(T) = b-lims g(i, s)]. Let Wi ∈ L. Then, according to the definition of g, b-

lims g(i, s) = F(Ti). Furthermore, since F is a b-ary order independent language learning

function, we have b-lims g(i, s) = F(T), for any text T for Wi.

We now show that L ⊆ TxtFlsra
b (g, v). Suppose L ∈ L and Wi = L. Then Ti is a

text for L, and, since F TxtMfexa
b -identifies L, we have (∀p ∈ F(Ti))[Wp =a L ∧ p ≤

h(mingrammar(L)) ≤ h(i)]. Thus, by the definition of g, lims g(i, s)⇓b and b-lims g(i, s) = F(Ti)

and (∀p ∈ b-lims g(i, s))[Wp =a L]. Furthermore, if Wj = L, then b-lims g(j, s) = F(Tj) = b-

lims g(i, s), since Tj is also a text for L and F is b-ary order independent. Also, for any Wi ∈ L,

{g(i, s) | s ∈ N} ⊆ {k | k ≤ h(i)} ∪ {0}. Hence, card({g(i, s) | s ∈ N}) ≤ h(i) + 1 = v(i).

Therefore, L ⊆ TxtFlsra
b (g, v).

(2) ⇒ (3). Immediate, since mingrammar(L) is one of the grammars for L.

(3) ⇒ (1). Suppose that, g, v and F are such that g, v are recursive, and, for every

L ∈ L, (i) L ∈ TxtFexa
b (F), (ii) (∀ texts T for L)[b-lims g(mingrammar(L), s) = F(T)] and

(iii) card({g(mingrammar(L), s) | s ∈ N}) ≤ v(mingrammar(L)). Without loss of generality,

we assume that for every i, card({g(i, s) | s ∈ N}) ≤ v(i).

7

By the s-m-n theorem [30], there is a recursive function z such that for all i, j,

Wz(i,j) =



























Wp, if there exists an m such that

card({g(i, k) | k ≤ m}) = j

and p = g(i,m) for the least such m;

∅, otherwise.

We define F′ thus. Suppose T is an arbitrary text.

F′(T [x]) =























z(il, j), if (∃i ≤ x)(∃y ≤ x)[g(i, y) = F(T [x])] and

il = min({i ≤ x | (∃y ≤ x)[g(i, y) = F(T [x])]}) and

j = card({g(il, k) | (∀k′ < k)[g(il, k
′) 6= F(T [x])]});

0, otherwise.

Let

h(i) = max({z(k, l) | k ≤ i and l ≤ v(k)}).

Suppose T is a text for L ∈ L. Let card(F(T)) = b′ ≤ b. Let p1, p2, · · · , pb′ be members of

F(T). Let in, 1 ≤ n ≤ b′, be the b′ least integers for which there exist a y such that g(in, y) = pn.

Let yn, 1 ≤ n ≤ b′, be the least y such that g(in, yn) = pn. Let I = {in | 1 ≤ n ≤ b′} and

Y = {yn | 1 ≤ n ≤ b′}.

For any L ∈ L and any text T for L, let x0 be a sufficiently large number such that

(i) (∀x ≥ x0)[F(T [x]) ∈ F(T)] and

(ii) x0 ≥ max({max(I),max(Y)}).

Since, b-lims g(mingrammar(L), s) = F(T), we observe that (∀i ∈ I)[i ≤ mingrammar(L)].

Also, by the definition of F′, for all x ≥ x0, F′(T [x]) = z(in, jn), where jn = card({g(in, y) |

y ≤ yn}) and in ∈ I and yn ∈ Y correspond to the program F(T [x]) ∈ F(T). Furthermore,

(∀n | 1 ≤ n ≤ b′)[Wz(in,jn) = Wg(in,yn) ∧ [(∃p ∈ F(T))[Wz(in,jn) = Wp]]]. Hence, (∀n | 1 ≤ n ≤

b′)[Wz(in,jn) =a L]. Since, (∀n | 1 ≤ n ≤ b′)[in ≤ mingrammar(L)] and (∀n | 1 ≤ n ≤ b′)[jn ≤

v(in)], we have (∀n | 1 ≤ n ≤ b′)[z(in, jn) ≤ h(mingrammar(L))]. Thus, L ∈ TxtMfexa
b .

The following useful corollaries to Theorem 17 involve variants of a self-referential class

from [5]. We could not make it go for the self-referential class from [5]. Chen [13, 14] made

direct use of simpler self-referential classes from [12] to obtain a useful analog of Corollaries 18

and 19—but for the problem of learning programs for functions.

Corollary 18 Suppose n > 0. Let Ln = {L | L is ∞ ∧ (∀∞〈x, y〉 ∈ L)[Wy = L] ∧ [card({y |

(∃x)[〈x, y〉 ∈ L]}) ≤ n]}. Then Ln ∈ TxtMfex0
n.

Corollary 19 Let L∗ = {L | L is ∞ ∧ (∀∞〈x, y〉 ∈ L)[Wy = L] ∧ [card({y | (∃x)[〈x, y〉 ∈

L]}) ≤ mingrammar(L)]}. Then L∗ ∈ TxtMfex0
∗.

8

5 Comparison of Learning with and without Size Restrictions

Using Corollary 18 and a modification of a multiple recursion theorem argument from [5], we

show the following result which implies that some classes of languages can be algorithmically

learned (in the limit) by converging to up to n + 1 nearly minimal size grammars but cannot

be learned by converging to up to n unrestricted grammars even if these latter grammars are

allowed to have a finite number of anomalies per grammar.

Theorem 20 Suppose n > 0. Then TxtMfex0
n+1 − TxtFex∗

n 6= ∅.

Corollary 21 TxtMfexa
1 ⊂ · · · ⊂ TxtMfexa

n ⊂ TxtMfexa
n+1 ⊂ · · · ⊂ TxtMfexa

∗.

Proof of Theorem 20. For n ∈ N , define Ln+1 = {L ∈ E | [L is ∞] ∧ [card({y |

(∃x)[〈x, y〉 ∈ L]}) ≤ n + 1] ∧ [(∀∞〈x, y〉 ∈ L)[Wy = L]]}.

Clearly, by Corollary 18, Ln+1 ∈ TxtMfex0
n+1. It remains to show that Ln+1 6∈ TxtFex∗

n.

Suppose by way of contradiction that F TxtFex∗
n-identifies Ln+1. Then, by a padded ver-

sion of the (n + 1)-ary recursion theorem there are distinct self-other referential e1, e2, · · · , en+1

defining We1
,We2

, . . . ,Wen+1
, respectively as follows.

Informally we let Lastn(F, σ) denote the set of the last n distinct grammars output by F

when it is fed σ (if the number of distinct grammars output by F on σ is less than n, then we

let Lastn(F, σ) be the set of grammars output by F on σ).

Formally, define Lastn(F, T [x]) = F[T [m], T [x]], where m = min({x′ ≤ x |

card(F[T [x′], T [x]]) ≤ n}).

Let σ0 = ∅. Go to stage 0.

Begin stage s

for i := 1 to n + 1 do

enumerate 〈s, e1〉 in Wei
.

endfor;

Let σ = σs � (〈s, e1〉).

Dovetail steps 1 and 2 below until, if ever, step 1 succeeds. If and when step 1 succeeds, go

to step 3.

1. Search for a τ extending σ such that

content(τ) ⊆ {〈x, y〉 | y ∈ {e1, e2, · · · , en+1}} and

Lastn(F, τ) 6= Lastn(F, σ).

2. Go to substage 0.

Begin substage s′

9

Enumerate 〈s′, ej〉 into Wej
, j ∈ {1, 2, · · · , n + 1}.

Go to substage s′ + 1.

End substage s′

3. (∗ step 1 succeeds. ∗)

Let S = content(τ) ∪
⋃

j∈{1,2,···,n+1}[Wej
enumerated till now].

Enumerate S in Wej
, j ∈ {1, 2, · · · , n + 1}.

Let σs+1 be an extension of τ such that content(σs+1) = S.

Go to stage s + 1.

End stage s

We have the following two cases.

Case 1: Each stage terminates.

Then, We1
= We2

= We3
= · · · = Wen+1

. Let L = We1
. Let T = ∪s∈Nσs. Clearly T

is a text for L and L ∈ Ln+1. But, F(T)⇑n. Hence, F does not TxtFex∗
n-identify

Ln+1.

Case 2: Some stage s starts but does not terminate.

Let Lj = Wej
, j ∈ {1, 2, · · · , n + 1}. Clearly, for each j ∈ {1, 2, · · · , n + 1}, Wej

∈

Ln+1. Also, for each j ∈ {1, 2, · · · , n + 1}, content(σs � (〈s, e1〉)) ⊆ Lj . Since

step 1 does not succeed in stage s, for all extensions τ of σs � (〈s, e1〉) such that

content(τ) ⊆ {〈x, y〉 | y ∈ {e1, · · · , en+1}}, F(τ) ∈ Lastn(F, σs�(〈s, e1〉)). Moreover,

for 1 ≤ j1 < j2 ≤ n+1, Lj1 6=∗ Lj2 . Thus, there exists j ∈ {1, 2, · · · , n+1} such that,

for all i ∈ Lastn(F, σs), Lj 6=
∗ Wi. F, thus does not TxtFex∗

n-identify Lj ∈ Ln+1.

The above two cases imply the theorem.

We can show that, in the context of the learning of nearly minimal size programs for (total)

functions, the analog of the hierarchy of Corollary 21 collapses [10]. This result complements

results in [1, 12] and answers an open problem in [13].

Theorem 22 TxtMfex0
∗ −

⋃

n TxtFex∗
n 6= ∅.

Proof of Theorem 22. Let L∗ = {L | L is ∞ ∧ (∀∞〈x, y〉 ∈ L)[Wy = L] ∧ [card({y |

(∃x)[〈x, y〉 ∈ L]}) ≤ mingrammar(L)]}. By Corollary 19, L∗ ∈ TxtMfex0
∗. Suppose by way of

contradiction that F TxtFex∗
n-identifies L∗. Let S′ = {j ≤ n | card({y | (∃x)[〈x, y〉 ∈ Wj]}) ≤

n + 1}. Let m′ = max({y | (∃j ∈ S′)(∃x)[〈x, y〉 ∈ Wj]}). The rest of the diagonalization is

the same as the diagonalization in the proof of Theorem 20, except for the fact that the n + 1

10

distinct grammars, e1, e2, . . . , en+1, obtained using the n + 1-ary recursion theorem must be

such that e1 is padded > m′. We leave the details to the reader.

We exploit our characterization theorem (Theorem 17 above) and adapt anomaly hierarchy

results from [12] to obtain Theorem 23 below.

Theorem 23 TxtMfexm+1
1 − TxtFexm

∗ 6= ∅.

Corollary 24 TxtMfex1
b ⊂ TxtMfex2

b ⊂ · · · ⊂ TxtMfex∗
b .

Proof of Theorem 23. For a recursive function f , define Lf = {〈x, y〉 | f(x) = y}.

Let C = {f | ϕf(0) =m+1 f ∧ ϕf(0) ⊆ f}. Let L = {Lf | f ∈ C}. We claim that L ∈

TxtMfexm+1
1 −TxtFexm

∗ . Let w be a recursive function such that Ww(i) = {〈x, y〉 | ϕi(x) = y}.

Define F, g and v as follows.

F(σ) =

{

w(min({y | 〈0, y〉 ∈ content(σ)})), if (∃y)[〈0, y〉 ∈ content(σ)];

0, otherwise.

g(i, s) =

{

w(min({y | 〈0, y〉 ∈ content(Wi,s)})), if (∃y)[〈0, y〉 ∈ Wi,s];

0, otherwise.

v(i) = 2.

It is easy to see that

F TxtFexm+1
1 -identifies L,

g, v witness that L ∈ TxtFlsrm+1
1 and

(∀i | Wi ∈ L)(∀ texts T for Wi)[F(T)⇓1 ∧ lims g(i, s)⇓1 ∧ F(T) = 1-lims g(i, s)].

Thus, using Theorem 17, we have that L ∈ TxtMfexm+1
1 . The proof of C 6∈ Exm (in [12]) can

be easily modified to show that L 6∈ TxtFexm
∗ .

Theorem 25, to follow, says that, if we are willing to tolerate an unbounded finite number

of anomalies in final grammars, then, as long as there is a constant bound on the number of

different grammars converged to in the limit, there is no loss of learning power in demanding that

the final grammars be nearly minimal size. This theorem is possibly the technically hardest

to prove in the paper. Although Chen [13, 14] has an analogous result regarding learning

programs for functions, his proof depends on exploiting the totality and single-valuedness of

recursive functions. We apply Theorem 9 and Proposition 13 and employ a new combinatorial

trick.

Theorem 25 Suppose n > 0. Then TxtMfex∗
n = TxtFex∗

n.

11

Proof of Theorem 25. We need to show that, for any n, TxtFex∗
n ⊆ TxtMfex∗

n. Let F

be any learning function which TxtFex∗
n(F)-identifies L. Then, by Proposition 13, it suffices

to define an acceptable programming system ϕ′ and a learning function F′, such that L is

TxtMfex∗
n-identified by F′ in the ϕ′-programming system.

By Theorem 9, without loss of generality, we assume that F is n-ary order independent.

Let Tj denote a text for the r.e. language Wj such that Tj [x], the finite initial segment of Tj of

length x, can be recursively obtained from j and x.

Let Lastn(F, σ) be as defined in the proof of Theorem 20. Let Sx
j = Lastn(F, Tj[x]). Let

G
x,1
j < G

x,2
j < · · · < G

x,card(Sx
j
)

j be the elements of Sx
j . Let PreviousMindChange(j, x) =

max({k′ ≤ x | F(Tj[k
′]) 6∈ Sx

j }). We now define, effectively in k, W
ϕ′

k (via an enumeration

procedure).

Begin { procedure for enumerating W
ϕ′

k }

if (∃j)[k = (n + 1)j]

then (∗ this helps to make ϕ′ acceptable ∗)

Let W
ϕ′

k = W
ϕ
j .

else

Let p and r be such that r ≤ n and k = (n + 1)p + r.

Go to stage 0.

Begin stage s

For q = Gs,r
p , put Wϕ

q,s into W
ϕ′

k .

Go to stage s + 1.

End stage s

endif

End { procedure for enumerating W
ϕ′

k }

Clearly ϕ′ is an acceptable programming system since ϕ-indices can be reduced to ϕ′-indices

by the recursive function λy.[(n+1)y]. Also, let w be a monotone increasing recursive function

that reduces ϕ′-indices to ϕ-indices. We now describe a program for learning function F′.

Begin F′(T [x])

Let Px = {j ≤ x | [F(T [x]) ∈ Sx
j] ∧ [content(T [PreviousMindChange(j, x)]) ⊆ W

ϕ
j,x] ∧

[Wϕ
j,PreviousMindChange(j,x) ⊆ content(T [x])]}.

if Px = ∅

then

Output 0

12

else

Let kx = min(Px).

Output (n + 1)kx + rx, where 1 ≤ rx ≤ n and G
x,rx

kx
= F(T [x]).

endif

End F′(T [x])

We assert that, for any text T for L ∈ L, for all but finitely many x, F′ on T [x] will output

a grammar of the form (n+1)kx + rx, where 1 ≤ rx ≤ n, such that the following two conditions

hold.

(i) kx ≤ mingrammarϕ(L); and

(ii) W
ϕ′

(n+1)kx+rx
=∗ L.

Moreover, F′(T)⇓n. If our assertion is true, then the theorem follows since, for all but

finitely many x, (n + 1)kx + rx ≤ h(mingrammarϕ′(L)), where h = λy.[(n + 1)(w(y)+ 1)]. This

is because kx ≤ mingrammarϕ(L) implies that (n + 1)kx + rx ≤ (n + 1)(mingrammarϕ(L) + 1)

≤ (n+1)(w(mingrammarϕ′(L))+1) = h(mingrammarϕ′(L)). It remains to prove our assertion.

Let L ∈ L and T be any text for L. Consider F′ on T . Below let Px, kx and rx be as in

F′(T [x]).

Claim 26 (∀∞x)[mingrammarϕ(L) ∈ Px].

Proof of Claim 26. Since F is n-ary order independent and F TxtFex∗
n-identifies L,

(∃D | card(D) ≤ n)(∀ texts T for L)[F(T)⇓n = D]. Clearly, for all but finitely many x, D ⊆

Sx
mingrammarϕ(L)

. Hence, for all but finitely many x, mingrammarϕ(L) ∈ Px. (Claim 26)

Claim 27 (∀j)[(∃∞x)[j ∈ Px] ⇒ (∃D | card(D) ≤ n)[F(Tj)⇓n = D]].

Proof of Claim 27. We have two cases.

Case 1: W
ϕ
j = L.

Since F is n-ary order independent and F TxtFex∗
n-identifies L, clearly there exists

a set D of cardinality at most n such that F(Tj)⇓n = D.

Case 2: W
ϕ
j 6= L.

Suppose

¬[(∃D | card(D) ≤ n)[F(Tj)⇓n = D]]. Let m be such that, (content(T [m]) 6⊆

W
ϕ
j) ∨ (Wϕ

j,m 6⊆ L). Clearly such an m exists since W
ϕ
j 6= L. Also, since

¬(∃D | card(D) ≤ n)[F(Tj)⇓n = D], limx→∞ PreviousMindChange(j, x) is ∞.

Hence, (∀x | PreviousMindChange(j, x) > m)[j 6∈ Px]. (Claim 27)

13

Claim 28 (∀j)(∀r | 1 ≤ r ≤ n)[limx→∞ G
x,r
j ↓ ⇒ W

ϕ′

(n+1)j+r
=∗ W

ϕ

limx→∞ G
x,r
j

].

Proof of Claim 28. Clear from the construction of ϕ′. (Claim 28)

Let S = {k | (∃∞x)[F(T [x]) = k]}. From Claim 26 and the description of F′, we have that,

for all but finitely many x, kx ≤ mingrammarϕ(L). For each l ∈ S, let pl = min({j | (∃∞x)[j ∈

Px ∧ l ∈ Sx
j]}). From Claim 27, we have that, for each l ∈ S, for all but finitely many x, if

F(T [x]) = l, then pl ∈ Px. Also, for each l ∈ S, let rl be such that, for all but finitely many x,

Gx,rl
pl

= l (that such an rl exists follows from Claim 27). Thus, it follows that, for all but finitely

many x, F(T [x]) = l ⇒ F′(T [x]) = (n + 1)pl + rl. Also, by Claim 28, W
ϕ′

(n+1)pl+rl
=∗ W

ϕ
l . The

theorem follows. (Theorem 25)

Our next theorem (Theorem 29) contrasts sharply and surprisingly with both Theorem 25

just above and the situation regarding the learning of programs for functions [13, 14]. Theo-

rem 29 says that, if we allow an unbounded finite number of anomalies in final grammars and if

the number of different grammars converged to in the limit is unbounded but finite, then there

is a loss of learning power in requiring that the final grammars be nearly minimal size.

Theorem 29 (TxtFex0
∗ − TxtMfex∗

∗) 6= ∅.

Our proof of Theorem 29 employs Case’s operator recursion theorem [4], an infinitary re-

cursion theorem. The construction uses only a finite number of self-other referential grammars,

but the finite number is not determined in advance as it is with finitary multiple recursion

theorems.

Proof of Theorem 29. Let L = {L ∈ E | L is infinite ∧ [card({y | (∃x)[〈x, y〉 ∈ L]}) <

∞] ∧ (∀∞〈x, y〉)[〈x, y〉 ∈ L ⇒ Wy = L]}. Clearly L ∈ TxtFex0
∗. Suppose by way of

contradiction, there exists a learning function F which TxtMfex∗
∗-identifies L. Let h be as

in the Definition 10 for TxtMfex∗
∗-identification of L by F. By Remark 11 we may assume,

without loss of generality, that h is monotone increasing.

By implicit use of the operator recursion theorem, there exists a recursive, one-to-one func-

tion p such that, for i ≤ h(p(0)) + 1, Wp(i) may be described as follows. We now proceed to

give an informal effective construction of the Wp(i)’s in successive stages s ≥ 0. Let σ0 = ∅. Go

to stage 0.

Begin stage s

Let i = s.

repeat

14

for index := 0 to h(p(0)) + 1 do

Enumerate 〈i, p(index)〉 into W
p(index).

endfor

i := i + 1.

until (∃r ≤ h(p(0)) + 1)[F(σs � (〈s, p(r)〉) � (〈s + 1, p(r)〉) � · · · � (〈i − 1, p(r)〉)) > h(p(0))];

(∗ until clause succeeds ∗)

for index := 0 to h(p(0)) + 1 do

Enumerate 〈s, p(index)〉, 〈s + 1, p(index)〉, · · · , 〈i − 1, p(index)〉 into

Wp(0),Wp(1), · · · ,Wp(h(p(0))+1)

endfor

Let r be as found in the until clause above.

Let σs+1 be an extension of σs � (〈s, p(r)〉) � (〈s + 1, p(r)〉) � · · · � (〈i − 1, p(r)〉) such that

content(σs+1) = Wp(0) enumerated till now.

Go to stage s + 1.

End stage s

We have the following two cases.

Case 1: Each stage terminates.

Then Wp(0) = Wp(1) = · · · = Wp(h(p(0))+1). Let L = Wp(0). Clearly L ∈ L. Also,

T =
⋃

s∈N σs is a text for L and F on T outputs a grammar greater than h(p(0))

infinitely often. Since h is monotone increasing, F on T outputs a grammar greater

than h(mingrammar(L)) infinitely often. Thus, F does not TxtMfex∗
∗-identify L.

Case 2: Some stage s starts but never terminates.

For 0 ≤ r ≤ h(p(0)) + 1, let Lr = Wp(r). Clearly, for 0 ≤ r ≤ h(p(0)) + 1, Lr ∈ L.

Also, for 0 ≤ r < q ≤ h(p(0)) + 1, Lr 6=∗ Lq. Furthermore, (∀r ≤ h(p(0)) + 1)(∃ a

text T for Lr)(∀
∞x)[F(T [x]) ≤ h(p(0))]. If this were not the case, then the until

clause in stage s would have succeeded and stage s would have terminated. Since

the class of languages {Lr | 0 ≤ r ≤ h(p(0))+1} has h(p(0))+2 languages, pairwise

infinitely different, and the set of grammars {i | 0 ≤ h(p(0))} has h(p(0)) + 1

grammars, there exists an r such that (∀i ≤ h(p(0)))[Lr 6=∗ Wi]. Thus F does not

TxtMfex∗
∗-identify Lr ∈ L.

From the above two cases, it follows that L 6∈ TxtMfex∗
∗.

15

We generalize recursion theorem arguments from [22, 13, 14, 8] to show Theorem 30 imme-

diately below.

Theorem 30 (TxtFex0
1 − TxtMfexm

∗) 6= ∅.

Corollary 31 just below follows from Theorems 25 and 30 above.

Corollary 31 TxtMfexm
n ⊂ TxtFexm

n ⊂ TxtMfex∗
n.

Proof of Theorem 30. For any recursive function f , define Lf = {〈x, y〉 | f(x) = y}. Let

C = {f | (∀∞x)[f(x) = 0]}. Let L = {Lf | f ∈ C}. It is easy to see that L ∈ TxtFex0
1. Also

the proof of C 6∈ Mfexm
∗ (in [14]) can be easily modified to show that L 6∈ TxtMfexm

∗ .

In summary: there is no loss of learning power in demanding that the final grammars be

nearly minimal size iff one is willing to tolerate an unbounded, finite number of anomalies in the

final grammars and there is a constant bound on the number of different grammars converged to

in the limit. Hence, if we allow an unbounded, finite number of anomalies in the final grammars

and the number of different grammars converged to in the limit is unbounded but finite or if

there is a constant bound on the number of anomalies allowed in the final grammars, then there

is a loss of learning power in requiring that the final grammars be nearly minimal size.

6 Relation to Behaviorally Correct Text Identification

We now extend our definitions and results to behaviorally correct identification [11].

Definition 32

(a) F TxtBca-identifies L (written: L ∈ TxtBca(F)) ⇐⇒

(∀ texts T for L)(∀∞n)[WF(T [n]) =a L].

(b) TxtBca = {L | (∃F)[L ⊆ TxtBca(F)]}.

Definition 32 is from [11]. The a ∈ {0, ∗} cases were independently introduced in [28, 27].

We sometimes write TxtBc for TxtBc0.

We now extend the above definition to nearly minimal identification.

Definition 33

(a) F TxtMbca-identifies L (written L ⊆ TxtMbc(F)) ⇐⇒ L ⊆ TxtBca(F) and (∃h ∈

R)(∀L ∈ L)(∀ texts T for L)(∀∞n)[F(T [n]) ≤ h(mingrammar(L))].

16

(b) TxtMbca = {L | (∃F)[L ⊆ TxtMbca(F)]}.

Since, for all L and h, there exist only finitely many grammars ≤ h(mingrammar(L)), we

immediately have

Proposition 34 For all a, TxtMbca = TxtMfexa
∗.

We now state a result from [11] which is useful in proving Theorem 36.

Theorem 35 [11] For all m, {L | card(L) ≤ 2m + 1} 6∈ TxtBcm.

Theorem 36 For all m, TxtMfex2m+1
1 − TxtBcm 6= ∅.

Proof of Theorem 36. Let Lm = {L | card(L) ≤ 2m+1}. Let iN be a grammar for N . Let

F be such that for all σ, F(σ) = iN . Clearly, F TxtMfex2m+1
1 -identifies Lm. By Theorem 35,

Lm 6∈ TxtBcm.

The above, along with Theorems 37 and 38, gives the relationship between all the criteria,

discussed in this paper, involving nearly minimal size grammars and the criteria TxtBca.

Theorem 37 [6] For all m, TxtFex2m
∗ ⊆ TxtBcm.

Theorem 38 [6] TxtBc − TxtFex∗
∗ 6= ∅.

7 Conclusion

The present paper investigated the impact of requiring the final grammars to be nearly minimal

in the context of vacillatory identification of languages. A useful characterization of this size

restricted notion was established and employed to show that there are collections of languages

that can be learned by converging in the limit to up to n+1 correct grammars, but that cannot

be learned by converging to up to n unrestricted grammars even if these latter grammars are

allowed to have a finite number of anomalies per grammar. In the terminology of the present

paper, there are collections of languages that can be TxtMfex0
n+1-identified, but that cannot

be TxtFex∗
n-identified.

It was also shown that there is no loss of learning power in demanding that the final gram-

mars be nearly minimal iff one is willing to tolerate an unbounded, finite number of anomalies

in the final grammars and there is a constant bound on the number of different grammars

converged to in the limit. That is, for n ∈ N+, TxtMfex∗
n = TxtFex∗

n. It was also shown that

this latter result does not hold for n = ∗ by establishing TxtMfex∗
∗ to be properly contained

in TxtFex∗
∗.

Figure 1 provides a summary of the results discussed in the present paper.

17

8 Acknowledgement

We would like to thank an anonymous referee for several valuable comments. The research

was supported in part by NSF grants CCR 8320136 at the University of Rochester and CCR

8713846 at SUNY, Buffalo. Work done in part while the second author was at the University

of Rochester and the first and third authors were at SUNY, Buffalo. The preliminary version

of this paper appeared in the Proceedings of the Second Annual Workshop on Computational

Learning Theory, Santa Cruz, California, August 1989. [9]

References

[1] J. M. Barzdin and K. Podnieks. The theory of inductive inference. In Mathematical

Foundations of Computer Science, 1973.

[2] L. Blum and M. Blum. Toward a mathematical theory of inductive inference. Information

and Control, 28:125–155, 1975.

[3] M. Blum. A machine independent theory of the complexity of recursive functions. Journal

of the ACM, 14:322–336, 1967.

[4] J. Case. Periodicity in generations of automata. Mathematical Systems Theory, 8:15–32,

1974.

[5] J. Case. The power of vacillation. In D. Haussler and L. Pitt, editors, Proceedings of the

Workshop on Computational Learning Theory, pages 133–142. Morgan Kaufmann Pub-

lishers, Inc., 1988. Expanded in [7].

[6] J. Case. The power of vacillation in language learning. In preparation, 1992.

[7] J. Case. The power of vacillation in language learning. Technical Report 93-08, University

of Delaware, 1992. Expands on [5]; journal article under review.

[8] J. Case and H. Chi. Machine learning of nearly minimal size grammars. Unpublished

Manuscript, 1986.

[9] J. Case, S. Jain, and A. Sharma. Convergence to nearly minimal size grammars by vacillat-

ing learning machines. In R. Rivest, D. Haussler, and M. K. Warmuth, editors, Proceedings

of the Second Annual Workshop on Computational Learning Theory, Santa Cruz, Califor-

nia, pages 189–199. Morgan Kaufmann Publishers, Inc., August 1989.

18

[10] J. Case, S. Jain, and A. Sharma. Complexity issues for vacillatory function identification.

In Proceedings, Foundations of Software Technology and Theoretical Computer Science,

Eleventh Conference, New Delhi, India. Lecture Notes in Computer Science 560, pages

121–140. Springer-Verlag, December 1991.

[11] J. Case and C. Lynes. Machine inductive inference and language identification. In

M. Nielsen and E. M. Schmidt, editors, Proceedings of the 9th International Colloquium

on Automata, Languages and Programming, volume 140, pages 107–115. Springer-Verlag,

Berlin, 1982.

[12] J. Case and C. Smith. Comparison of identification criteria for machine inductive inference.

Theoretical Computer Science, 25:193–220, 1983.

[13] K. Chen. Tradeoffs in Machine Inductive Inference. PhD thesis, SUNY at Buffalo, 1981.

[14] K. Chen. Tradeoffs in inductive inference of nearly minimal sized programs. Information

and Control, 52:68–86, 1982.

[15] R. Freivalds. Minimal Gödel numbers and their identification in the limit. Lecture Notes

in Computer Science, 32:219–225, 1975.

[16] M. Fulk. A Study of Inductive Inference machines. PhD thesis, SUNY at Buffalo, 1985.

[17] M. Fulk. Prudence and other conditions on formal language learning. Information and

Computation, 85:1–11, 1990.

[18] E. M. Gold. Language identification in the limit. Information and Control, 10:447–474,

1967.

[19] J. Hopcroft and J. Ullman. Introduction to Automata Theory Languages and Computation.

Addison-Wesley Publishing Company, 1979.

[20] S. Jain and A. Sharma. Restrictions on grammar size in language identification. In David

Powers and Larry Reeker, editors, Proceedings MLNLO’91, Machine Learning of Natu-

ral Language and Ontology, Stanford University, California. Document D91-09, DFKI:

Kaiserslautern FRG, 1991, pages 87–92, March 1991.

[21] S. Jain and A. Sharma. Program size restrictions in computational learning. Theoretical

Computer Science A, 1994. To appear.

[22] E. B. Kinber. On a theory of inductive inference. Lecture Notes in Computer Science,

56:435–440, 1977.

19

[23] M. Machtey and P. Young. An Introduction to the General Theory of Algorithms. North

Holland, New York, 1978.

[24] D. Osherson, M. Stob, and S. Weinstein. Note on a central lemma of learning theory.

Journal of Mathematical Psychology, 27:86–92, 1983.

[25] D. Osherson, M. Stob, and S. Weinstein. Learning theory and natural language. Cognition,

17:1–28, 1984.

[26] D. Osherson, M. Stob, and S. Weinstein. Systems that Learn, An Introduction to Learning

Theory for Cognitive and Computer Scientists. MIT Press, Cambridge, Mass., 1986.

[27] D. Osherson and S. Weinstein. Criteria of language learning. Information and Control,

52:123–138, 1982.

[28] D. Osherson and S. Weinstein. A note on formal learning theory. Cognition, 11:77–88,

1982.

[29] S. Pinker. Formal models of language learning. Cognition, 7:217–283, 1979.

[30] H. Rogers. Theory of Recursive Functions and Effective Computability. McGraw Hill, New

York, 1967. Reprinted, MIT Press 1987.

[31] J. Royer and J. Case. Intensional Subrecursion and Complexity Theory. Research Notes

in Theoretical Science, Pitman Press, 1992. Under preparation.

[32] K. Wexler. On extensional learnability. Cognition, 11:89–95, 1982.

[33] K. Wexler and P. Culicover. Formal Principles of Language Acquisition. MIT Press,

Cambridge, Mass, 1980.

20

-

-

-

-

-

-

6

6

6

-

-

-

-

-

-

6

6 6 6

66

�
�

�
�

���

�
�

�
�

���

�
�

�
�

���

�
�

�
�

���

�
�

�
�

���

�
�

�
�

���

�
�

�
�

���

�
�

�
�

���

�
�

�
�

���

	�
�

�
�

���

	�
�

�
�

���

	�
�

�
�

���

6

6

6 6

6

6

6

6

6

6

6

--

--

--

-

� -

6

6 6

6

- -

--

- -

Figure 1. Summary of results

TxtMfex1
3

TxtFex1
∗

TxtMfex1
1

TxtEx1

TxtMfex1
2 TxtMfex1

∗

TxtFex1
2 TxtFex1

3

TxtFex0
3TxtFex0

2

TxtMfex0
∗TxtMfex0

3TxtMfex0
2

TxtEx0

TxtMfex0
1

TxtFex0
∗

TxtFex∗
3TxtFex∗

2

TxtMfex∗
∗TxtMfex∗

3TxtMfex∗
2

TxtEx∗

TxtMfex∗
1

TxtFex∗
∗

A

A B denotes A ⊂ B.

B denotes A = B.

21

