
Program Size Restrictions in Computational Learning

Sanjay Jain

Institute of Systems Science

National University of Singapore

Singapore 0511

Republic of Singapore

Email: sanjay@iss.nus.sg

Arun Sharma

School of Computer Science and Engineering

The University of New South Wales

Sydney, NSW 2033, Australia

Email: arun@cs.unsw.oz.au

March 11, 2007

Abstract

A model for a subject S learning its environment E could be described thus. S, placed in E,

receives data about E, and simultaneously conjectures a sequence of hypotheses. S is said to

learn E just in case the sequence of hypotheses conjectured by S stabilize to a final hypothesis

which correctly represents E. Computational learning theory provides a framework for studying

problems of this nature when the subject is a machine.

A natural abstraction for the notion of hypothesis is a computer program. The present

paper, in the above framework of learning, presents arguments for the final hypothesis to

be succinct , and introduces a plethora of formulations of such succinctness. A revelation of

this study is that some of the “natural” notions of succinctness may be uninteresting because

learning capability of machines under these seemingly natural constraints is dependent on the

choice of programming system used to interpret hypotheses.

1 Introduction

Consider the following description of a typical situation involving a subject S learning its

environment E. At any given time, a finite piece of data about E is made available to S.

S reacts to this finite information by conjecturing a hypothesis. Availability of additional

data may cause the learner to revise old hypotheses. S is said to learn or explain E just in

case the sequence of hypotheses conjectured by S eventually stabilizes to a final hypothesis

which correctly explains E. Computational learning theory provides a framework for studying

problems of this nature when the subject is a machine. This paradigm of learning originated

in the work of Gold [10]. Klette and Wiehagen [14], Angluin and Smith [1], Case [3], and

Osherson, Stob, and Weinstein [18] provide surveys of work in this area.

The present paper provides arguments in favor of placing “size” restrictions on the final

hypothesis in the above learning situation. It is shown that for numerous ‘natural’ formulations

of such size restrictions, the resulting learning models are dependent on the ‘programming sys-

tem’ used to interpret the hypotheses. The arguments and results are presented in the context

of two learning tasks that can be modeled in the above framework: scientific inquiry and first

language acquisition. Section 1.1 contains a description of how scientific inquiry could be mod-

eled as machine identification in the limit of computer programs for computable functions. In

Section 1.2, we describe how first language acquisition can be modeled as machine identification

in the limit of grammars for recursively enumerable languages. Section 1.3 contains motivation

for studying size restrictions in both the models.

1.1 A Model for Scientific Inquiry

Consider a scientist S investigating a real world phenomenon F . S performs experiments on F ,

noting the result of each experiment, while simultaneously conjecturing a succession of candidate

explanations for F . A criterion of success is for S to eventually conjecture an explanation which

S never gives up and which explanation correctly explains F .

Since we never measure a continuum of possibilities, we could treat S as performing discrete

experiments x on F and receiving back experimental results f(x). By suitable Gödel numbering,

we may treat the f , associated with F , as a function from N , the set of natural numbers, into

N . Then, a complete and predictive explanation of F is just a computer program for computing

f .

Thus, replacing the ever experimenting S with a machine in the above scenario yields a

plausible model for scientific inquiry—algorithmic identification in the limit of programs for

computable functions from their graphs. This is essentially the theme of inductive inference

studied by Gold [10].

1

1.2 A Model for First Language Acquisition

Motivated by psycholinguistic studies which conclude that children are rarely, if ever, informed

of grammatical errors, Gold [10] introduced the seminal notion of identification as a model

for first language acquisition. According to this paradigm, a child C (modeled as a machine)

receives (in arbitrary order) all the well-defined sentences, a text , of a language L, and simul-

taneously, conjectures a succession of grammars. A criterion of success is for C to eventually

conjecture a grammar for L which grammar C never gives up thereafter.

Languages are sets of sentences and a sentence is a finite object; the set of all possible

sentences can be coded into N . Hence, languages may be construed as subsets of N . A grammar

for a language is a set of rules that generates (or equivalently accepts [11]) the language; such

grammars are, in some cases, referred to as type 0 grammars. Languages for which a grammar

exists are called recursively enumerable. Henceforth, we work under the assumption that natural

languages fall into the class of recursively enumerable languages1.

Thus, replacing the child machine by an arbitrary machine in the above language learning

scenario, we have a plausible model for language acquisition—algorithmic identification in the

limit of grammars for recursively enumerable languages from their texts. This is essentially

Gold’s influential language learning paradigm discussed, for example, by Pinker [19], Wexler

and Culicover [29], Wexler [28], and Osherson, Stob, and Weinstein [18].

1.3 Motivations for Study of Program Size Restrictions

A drawback of the two learning models presented above is that there are no restrictions placed

on the size of the programs/grammars inferred in the limit. We present, below, arguments,

both for scientific inquiry and first language acquisition, motivating the desirability of placing

size restrictions on the final explanations conjectured by learning machines.

1.3.1 Scientific Inquiry

To begin with, “small” size explanations satisfy a variant of Occam’s Razor 2—a heuristic about

the desirability of parsimony. Succinct theories or explanations are many times likely to be

1See Langendoen and Postal [15] for an opposing viewpoint.
2Entia non sunt multiplicanda, præter necessitatem: attributed to the medieval philosopher William of Ock-

ham. However, W. M. Thorburn [26] raises some doubts as to whether William of Ockham ever used the above

expression to express his Critique of Entities, and writes in [27], “The Metaphysical (or Methodological) Law of

Parsimony (or Logical Frugality), indicated but not very distinctly expressed by Aristotle, was fully and finally

established, not by Ockham, but by his teacher Duns Scotus . . . ”. According to Thorburn [27], the terminology,

Occam’s Razor, seems to have first appeared in 1852 in the work of Sir William Hamilton. Moody [17] provides

a study of the philosophy of William of Ockham.

2

understood with less effort; thus, in these cases they facilitate smooth dissemination of scientific

information—an important aspect of the practice of science.

A case for the desirability of succinctness in explanations of phenomena can also be made

by arguing that useful explanations are such that the relevant features of the phenomena are

brought out instead of being inundated in a sea of irrelevant information. This may be illustrated

in the light of an anti-reductionist argument of Putnam [20]. Although, Putnam’s example is

in the context of his argument for the independent significance of higher level sciences like

psychology and sociology, therein lies a strong case for a meaningful explanation to be succinct.

Putnam argues that, although, laws of higher level sciences can be reduced to the laws of lower

level sciences—biology, chemistry, and ultimately elementary particle physics, these reductions

are often uninformative, intractable, and mostly not interesting. Clearly, the lack of succinctness

in these reduced explanations is one important reason why they fail to provide any significant

insight into the phenomena associated with the higher level sciences.

However, the desirability of learning succinct explanations has a sobering side to it. Most

learning criteria with the additional requirement of inferring succinct explanations pay a price

of decreased inferring power.

1.3.2 Language Acquisition

In the case of an algorithmic device inferring a grammar for a recursively enumerable language,

the size of the final stabilized grammar can be very “large.” This poses a difficulty for Gold’s

paradigm to be a model of language acquisition. We describe this problem in the context of

a child modeled as a machine.3 The human head is of bounded size. A simple result from

computability theory tells us that any recursively enumerable language can be generated by

infinitely many syntactically distinct grammars whose size is bigger than any prespecified bound

on the size of a child’s head. A child learning a language, hence, must converge to a grammar

which fits in its finite size head. This of course assumes that human brain storage is not magic,

admitting of infinite regress, etc. An interesting complexity restriction to make, then, on the

final grammar converged to in the limit is that it be of “small” size. It should of course be noted

that there exist recursively enumerable languages for which even the minimal size grammar is

larger than any prespecified bound on the size of the human head.

Our main concern, in the present paper, is to study the dependence of these size restricted

learning criteria on the underlying ‘programming system’ in which a learning machine’s con-

jectures are interpreted. A few words on programming systems is in order. An acceptable

programming system [23, 24, 16] is (by definition) one such that there are effective translations

back and forth between it and a standard Turing Machine formalism. It is also referred to as

acceptable numbering. Rogers [23] has shown that any two acceptable programming systems

3These motivations for succinctness in language learning are based on discussions with John Case.

3

are computably isomorphic; in other words, programs written in one acceptable programming

system are simply an algorithmic renaming of programs written in another acceptable program-

ming system. Case showed [21, 22, 25] that acceptable programming systems are characterized

as those in which every control structure is implementable. All general purpose programming

languages are essentially acceptable programming systems.

Our study builds on previous work by Freivalds [8], Chen [6, 7], Kinber [13, 12], and Case

and Chi [4].

We now proceed formally. Section 2 introduces notation and relevant notions from recur-

sive function theory. Preliminary concepts from theory of inductive inference are described in

Section 3. Results occupy Sections 4, 5, 6, and 7.

2 Notation

Recursion-theoretic concepts not explained below are treated in [24].

N denotes the set of natural numbers, {0, 1, 2, 3, . . .}, and N+ denotes the set of positive

integers, {1, 2, 3, . . .}. ∈, ⊆, and ⊂ denote, respectively, membership, containment, and proper

containment for sets (including sets of ordered pairs).

∗ denotes unbounded but finite; we assume (∀n ∈ N)[n < ∗ < ∞]. a and b, with

or without decorations, range over (N ∪ {∗}) and (N+ ∪ {∗}), respectively. Generally

e, i, j, k, l, m, n, x, y, z range over N .

We let D, P, S, with or without decorations, range over subsets of N . card(P) denotes the

cardinality of P . So then, ‘card(P) ≤ ∗’ means that card(P) is finite. min(P) and max(P),

respectively, denote the minimum and maximum element in P . We take min(∅) to be undefined

and max(∅) to be 0.

f, g, h and sometimes p, q, r, and v range over total functions. On many occasions, we will

use g and p to range over N , where g will be construed as a grammar and p will be construed

as a program; such usage will be clear from context. η and ξ range over partial functions. R

denotes the class of all recursive functions, i.e., total computable functions with arguments and

values from N . R+ denotes the class of all total computable functions with arguments from N

and values from N+. S and C range over subsets of R. For a ∈ (N ∪ {∗}), η1 =a η2 means

that card({x | η1(x) 6= η2(x)}) ≤ a. domain(η) and range(η) respectively denote the domain

and range of partial function η.

L, with or without decorations, ranges over subsets of N which subsets are usually construed

as codings of formal languages. E denotes the class of all recursively enumerable (r. e.) languages.

We let L, with or without decorations, range over subsets of E . L1∆L2 denotes (L1 − L2) ∪

(L2 − L1), the symmetric difference of L1 and L2. For a ∈ N ∪ {∗}, L1 =a L2 means that

card(L1∆L2) ≤ a.

4

We let ψ, ψ′, and ψ′′ range over acceptable programming systems for the partial recursive

functions: N → N . ψp denotes the partial recursive function computed by ψ-program p. W ψ
p

denotes domain(ψp). Wψ
p is, then, the r. e. set/language (⊆ N) accepted (or equivalently,

generated) by the ψ-program p. We let Ψ be an arbitrary Blum Complexity measure [2]

associated with acceptable programming system ψ; such measures exist for any acceptable

programming system [2]. Then, Wψ,s
i denotes the set {x | x < s ∧ Ψi(x) ≤ s}. In general given

a computable function f and an r. e. language L, minprogramψ(f) denotes min({p | ψp = f});

mingrammarψ(L) denotes min({p |Wψ
p = L}). For a large part of this document, we will use

a fixed acceptable programming system, which we will denote by ϕ. We will sometimes drop

the mention of ϕ from Wϕ
p , Wϕ,s

i , minprogramϕ(f), and mingrammarϕ(L).

Let λx, y 〈x, y〉 denote a fixed pairing function (a recursive, bijective mapping: N×N → N)

[24]. λx, y 〈x, y〉 and its inverses are useful to simulate the effect of having multiple argument

functions in an acceptable programming system ψ.

S ⊆ N is said to represent the set {(x, y) | 〈x, y〉 ∈ S}. S ⊆ N is called single-valued just in

case S represents a function. A single-valued set is said to be single-valued total (abbreviated:

svt) just in case the function it represents is total.

For any predicate Q, µn.[Q(n)] denotes the minimum integer n such that Q(n) is true if

such an n exists; it is 0 otherwise.

The quantifiers ‘
∞
∀ ’ and ‘

∞
∃ ’ mean ‘for all but finitely many’ and ‘there exist infinitely many,’

respectively. The quantifier ‘∃!’ means ‘there exists a unique.’

3 Preliminaries

Our study is about machine inference of two kinds of objects: computable functions and recur-

sively enumerable languages. In most of the exposition to follow, we will discuss a notion for

function inference first, and then describe an analogous notion for language learning.

3.1 Learning Machines

In Definition 1, below, we formally introduce what we mean by a machine that learns a function

and in Definition 3 we do the same for a machine that learns a language.

For any recursive function f and any natural number n, we let f [n] denote the finite initial

segment {(x, f(x)) | x < n}. Clearly, f [0] denotes the empty sequence. Let SEG denote the set

of all finite initial segments.

Definition 1 [10] A function learning machine is an algorithmic device, which computes a

mapping from SEG into N .

5

We now consider language learning machines. Definition 2 below introduces a notion that

facilitates discussion about elements of a language being fed to a learning machine.

Definition 2 A sequence σ is a mapping from an initial segment of N into (N ∪ {#}). The

content of a sequence σ, denoted by content(σ), is the set of natural numbers in the range of

σ. Length of σ, denoted by |σ|, is the number of elements in σ.

Intuitively, #’s represent pauses in the presentation of data. Let SEQ denote the set of all

sequences. We let σ and τ , with or without decorations, range over sequences. σ1 � σ2 denotes

the concatenation of σ1 and σ2, where σ = σ1 � σ2 is defined as follows:

σ(x) =







σ1(x) if x < |σ1|;

σ2(x− |σ1|) if x ≥ |σ1|.

Definition 3 A language learning machine is an algorithmic device, which computes a mapping

from SEQ into N .

SEG can be coded onto N . Also, SEQ can be coded onto N . Thus, in both Definitions 1 and

3, we are essentially dealing with machines that take as input natural numbers at a time, and

which from time to time, output natural numbers. Henceforth, we will refer to both function

learning machines and language learning machines as just learning machines. We let M, with

or without superscripts, range over learning machines (we reserve M with subscripts to denote

learning machines in a special kind of enumeration described at the end of Section 3.2).

3.2 Fundamental Learning Paradigms

3.2.1 Function Inference

In Definition 4, below, we spell out what it means for a learning machine to converge in the

limit on a function.

Definition 4 Suppose M is a learning machine and f is a computable function. M(f)↓ (read:

M(f) converges) ⇐⇒ (∃p)(
∞
∀ n) [M(f [n]) = p]. If M(f)↓, then M(f) is defined = the unique

p such that (
∞
∀ n)[M(f [n]) = p]; otherwise M(f) is said to be undefined.

We now introduce a criterion for a learning machine to be successful on a function. Defi-

nition 5-(a) introduces Ex-identification, a criterion for successful inference of functions. The

class Ex, referred to as the inferring power of Ex-identification, is described in Definition 5-(b).

Definition 5 [10]

(a) M Ex-identifies f (written: f ∈ Ex(M)) ⇐⇒ (∃p | ϕp = f)[M(f)↓ = p].

(b) Ex = {C | (∃M)[C ⊆ Ex(M)}.

6

Intuitively, Ex is a set theoretic summary of the capability of various learning machines to

Ex-identify entire collections of recursive functions.

The criterion introduced in Definition 5, along with its inferring power, is implicitly param-

eterized by the choice of acceptable programming system in which programs conjectured by the

learning machine are interpreted. A reason for not explicitly mentioning the acceptable pro-

gramming system is that the class Ex is independent of the choice of the underlying acceptable

programming system.

3.3 Language Learning

Definition 6 A text T for a language L is a mapping from N into (N ∪ {#}) such that L is

the set of natural numbers in the range of T . The content of a text T , denoted content(T), is

the set of natural numbers in the range of T .

Intuitively, a text for a language is an enumeration or sequential presentation of all the

objects in the language with the #’s representing pauses in the listing or presentation of such

objects. For example, the only text for the empty language is just an infinite sequence of #’s.

We let T , with or without superscripts, range over texts. T [n] denotes the finite sequence

of T with length n. Hence, domain(T [n]) = {x | x < n}.

In Definition 7 below we spell out what it means for a learning machine to converge in the

limit on a text.

Definition 7 Suppose M is a learning machine and T is a text. M(T)↓ (read: M(T) converges)

⇐⇒ (∃p)(
∞
∀ n) [M(T [n]) = p]. If M(T)↓, then M(T) is defined = the unique p such that

(
∞
∀ n)[M(T [n]) = p]; otherwise M(T) is said to be undefined.

We now introduce a criterion for a learning machine to be successful on a language. Based on

psycholinguistic studies of first language acquisition in children, Gold [10] proposed a criterion

of success called identification which we refer to as TxtEx-identification following Case and

Lynes [5].

Definition 8 [10]

(a) M TxtEx-identifies L (written: L ∈ TxtEx(M)) ⇐⇒ (∀ texts T for L)(∃p | Wp =

L)[M(T)↓ = p].

(b) TxtEx = {L | (∃M)[L ⊆ TxtEx(M)}.

The language learning criteria introduced in Definition 8, along with its inferring power, is

implicitly parameterized by the choice of acceptable programming system in which grammars

conjectured by the learning machine are interpreted. A reason for not explicitly mentioning

7

the acceptable programming system is that the class TxtEx is independent of the choice of the

underlying acceptable programming system.

It is easy to observe that there exists a recursive enumeration M0, M1, . . . of learning

machines such that, for all the criteria of inference, I, discussed in this paper (including Ex

and TxtEx) the following two properties hold.

(1) {I(Mi) | i ∈ N} = {I(M) | M is a learning machine}.

(2) For each i, there exist infinitely many j such that, I(Mi) = I(Mj).

We assume and make use of such an enumeration, M0, M1, . . ., in several of the proofs in the

paper without explicitly mentioning it.

4 Strictly Minimal Identification

A natural restriction to make on the size of the final program/grammar is to require that it

be of minimal size. In the context of function inference, such a notion was first studied by

Freivalds [8]. Definition 9 below describes this criterion and its inferring power.

Definition 9 [8, 13]

(a) M Minψ-identifies f (written: f ∈ Minψ(M)) ⇐⇒ (
∞
∀ n)[M(f [n]) = minprogramψ(f)].

(b) Minψ = {S | (∃M)[S ⊆ Minψ(M)]}.

Proposition 10 below implies that there exists an acceptable programming system in which a

single learning machine can identify the minimal program for some infinite collection of recursive

functions.

Proposition 10 (∃ψ)(∃S | card(S) is infinite ∧ S is an r.e. class of functions)[S ∈ Minψ].

Proof of Proposition 10: Let S = {f ∈ R | (∀x > 0)[f(x) = 0]}. Clearly S is an r.e. class

and card(S) is ∞. Consider the acceptable programming system ψ defined below. Note that ϕ

is our standard acceptable programming system.

begin {Definition of ψi}

if i is odd

then

ψi = ϕ(i−1)/2

else

ψi(0) = ϕi/2(0);

(∀x > 0)[ψi(x) = 0]

endif

8

end {Definition of ψi}

Clearly, ψ is an acceptable programming system. A machine M Minψ-identifies each f ∈ S

by searching for the minimum even i such that ψi(0) = f(0).

With a view to characterize Minψ-identification, Freivalds [8] introduced an interesting

technical notion called limit standardizability with a recursive estimate (abbreviated: LSR).

This notion, described in Definition 11 below, was later generalized by Chen [6, 7].

Definition 11 [8] S is limiting standardizable with a recursive estimate (written: S ∈

LSR) ⇐⇒ there exist recursive functions g and v such that, for all f ∈ S and i ∈ N , if

ϕi = f , then

(a) limn→∞ g(i, n) exists and ϕlimn→∞ g(i,n) = f ;

(b) for all j, if ϕj = f , then limn→∞ g(i, n) = limn→∞ g(j, n);

(c) card({g(i, n) | n ∈ N}) ≤ v(i).

The notion of LSR above is implicitly parametrized by the choice of acceptable programming

system; explicit parametrization is not called for because it is easy to verify that the class LSR

is independent of the choice of acceptable programming system. We write S ⊆ LSR(g, v) ⇐⇒

the recursive functions g and v witness as above that S ∈ LSR. Intuitively4, the role of g in

the definition of LSR is to provide a limiting recursive solution to a special case of the program

equivalence problem ({〈x, y〉 | ϕx = ϕy}) where the programs compute functions in S; also, v

places some extra constraints on how g reaches its limit. Freivalds [8] used the notion of LSR

to show the following characterization of Minψ-identification.

Theorem 12 [8] (∀S)[(∃ψ)[S ∈ Minψ]] ⇐⇒ S ∈ (Ex ∩ LSR)].

We study a language learning criterion analogous to Minψ-identification. Definition 13

below precisely defines the criterion of minimal grammar identification and its inferring power.

Definition 13

(a) M TxtMinψ-identifies L (written: L ∈ TxtMinψ(M)) ⇐⇒ (∀ texts T for L) (
∞
∀

n)[M(T [n]) = mingrammarψ(L)].

(b) TxtMinψ = {L | (∃M)[L ⊆ TxtMinψ(M)]}.

Proposition 14 below shows that there exists an acceptable programming system in which

a single learning machine can identify the minimal grammar for some infinite collection of r.e.

languages.

4This interpretation was brought to our attention by John Case.

9

Proposition 14 (∃ψ)(∃L | card({L ∈ L | card(L) is ∞}) is infinite ∧ L is an r.e. class of

languages)[L ∈ TxtMinψ].

Proof of Proposition 14: Let L = {L is single valued total | (∀x > 0)[〈x, 0〉 ∈ L]}. Consider

the acceptable programming system ψ defined below. Note that ϕ is our standard acceptable

programming system.

begin {Definition of Wψ
i }

if i is odd

then

let Wψ
i = W

ϕ
(i−1)/2

else

let Wψ
i = [{〈0, y〉 | y ∈ N} ∩Wϕ

i/2] ∪ [{〈x, 0〉 | x > 0}]

endif

end {Definition of Wψ
i }

Clearly, ψ is an acceptable programming system. A machine M TxtMinψ-identifies each

L ∈ L by searching for the minimum even i such that {〈0, y〉 | y ∈ N} ∩ L = {〈0, y〉 | y ∈

N} ∩Wψ
i .

With an intention of extending the work of Freivalds to the context of language learning,

Case and Chi [4] introduced TxtLSR (Definition 15), a notion analogous to LSR.

Definition 15 [4] L is text limiting standardizable with recursive estimate (written: L ∈

TxtLSR) ⇐⇒ there exist recursive functions g and v such that, for all L ∈ L and i ∈ N , if

Wi = L then

(a) limn→∞ g(i, n) exists and Wlimn→∞ g(i,n) = L;

(b) for all j, if Wj = L, then limn→∞ g(i, n) = limn→∞ g(j, n);

(c) card({g(i, n) | n ∈ N}) ≤ v(i).

We write L ⊆ TxtLSR(g, v) ⇐⇒ the recursive functions g and v witness as above

that L ∈ TxtLSR. It is easy to verify that the class TxtLSR is acceptable programming

system independent. Intuitively, the role of g in the definition of TxtLSR is to indirectly

provide a limiting recursive solution to a special case of the grammar equivalence problem

({〈x, y〉 | Wx = Wy}) where the grammars generate languages in L; also, v places some extra

constraints on how g reaches its limit.

Analogous to Freivalds’ characterization of Minψ described in Theorem 12, we characterize

TxtMinψ in terms of TxtEx and TxtLSR. A proof similar to Freivalds’ proof of Theorem 12

is sufficient if we only wish to characterize minimal grammar identification of infinite languages.

However, a modification of Freivalds’ proof technique, which modification handles finite lan-

10

guages, yields a complete characterization of TxtMinψ-identification as stated in Theorem 16

just below.

Theorem 16 (∀L) [(∃ψ)[L ∈ TxtMinψ] ⇐⇒ L ∈ (TxtEx ∩ TxtLSR)].

Proof of Theorem 16: Let L be given. We first show that (∃ψ)[L ∈ TxtMinψ] ⇒ [L ∈

TxtEx ∧ L ∈ TxtLSR].

Let ψ be an acceptable programming system such that L ∈ TxtMinψ. Clearly, L ∈ TxtEx.

We exhibit recursive functions g and v that witness L ∈ TxtLSR.

Let r1 be a recursive function reducing ψ-indices to ϕ-indices. Let r2 be a recursive function

reducing ϕ-indices to ψ-indices. Let learning machine M TxtMinψ-identify L. Let T i denote

a text uniformly formed from W
ϕ
i . Define v(i) = r2(i) + 1 and

g(i, n) =







r1(M(T i[n])) if M(T i[n]) ≤ r2(i);

r1(0) otherwise.

Clearly, for all i, card({g(i, n) | n ∈ N}) ≤ r2(i) + 1 = v(i). Now, if L ∈ L and

W
ϕ
i = L, then limn→∞ M(T i[n]) = mingrammarψ(L) ≤ r2(i). Hence, limn→∞ g(i, n) =

r1(mingrammarψ(L)), which is a ϕ-grammar for L. This proves one direction of the theorem.

We now show that [L ∈ TxtEx ∧ L ∈ TxtLSR] ⇒ (∃ψ)[L ∈ TxtMinψ]. Let learning

machine M TxtEx-identify L and let g and v witness that L ∈ TxtLSR (without loss of

generality assume that for all x, v(x) ≥ 1). We describe an acceptable programming system ψ

such that L ∈ TxtMinψ. Without loss of generality, let (∀i)[card({g(i, n) | n ∈ N}) ≤ v(i)].

To facilitate the description of ψ, we define a series of functions η, p, ξ, q1, and q2 below.

Let η, a partial recursive function, be defined as follows:

η(i, j) =















g(i, k) where k is the least integer such that

card({g(i, n) | n ≤ k}) = j + 1;

↑ otherwise.

Intuitively, η(i, j) is the (j+1)th grammar output by g on i. Clearly, η(i, j) is undefined for

j ≥ v(i). By the s-m-n theorem [24], there exists a recursive function p such that W ϕ
p(m) is as

follows:

begin {Definition of Wϕ
p(m)}

go to stage 0;

begin {Stage s}

if card({n | g(m,n) = m}) ≥ s

then

11

enumerate Wϕ,s
m ;

go to stage s+ 1

endif

end {Stage s}

end {Definition of Wϕ
p(m)}

Hence, for any language L ∈ L, for any ϕ-grammar i for L, W ϕ
p(i) = L if i is the limiting

value of g on any ϕ-grammar for L; otherwise Wϕ
p(i) is a finite set.

Let ξ(i, j) = p(η(i, j)).

For any L ∈ L, for any ϕ-grammar i for L, Wϕ
ξ(i,j) = L if the limiting value of g on i is the

(j + 1)th grammar output by g.

We now define the acceptable programming system ψ. For ease in describing ψ, we first

define two increasing recursive functions q1 and q2.

q1(i) =
∑

0≤j<i(v(j) + 1);

q2(i) = q1(i+ 1) − 1.

Intuitively, N is divided into segments of length v(0) + 1, v(1) + 1, . . . , etc. q1(i) and q2(i)

denote the endpoints of the i-th segment.

begin {Definition of Wψ
i }

if i = q2(k) for some k

then

let Wψ
i = W

ϕ
k

{This makes ψ acceptable.}

else

let j = min({k | q2(k) ≥ i});

let l = i− q1(j);

if ξ(j, l)↓

then

let Wψ
i = W

ϕ
ξ(j,l)

endif

endif

end {Definition of Wψ
i }

Clearly, ψ is an acceptable programming system since ϕ-indices could be reduced to ψ-

indices by the recursive function q2. We now define a two argument recursive function

ConvProg which for any j such that W
ϕ
j ∈ L, converges to a ψ-grammar for W

ϕ
j , i.e.,

limn→∞ ConvProg(j, n) exists and is equal to a ψ-grammar for W ϕ
j . Moreover, if Wϕ

j is in-

finite, then limn→∞ ConvProg(j, n) is equal to the minimal ψ-grammar for W ϕ
j .

12

begin {Definition of ConvProg(j, n)}

{We first define two values m1 and m2.}

{Recall from Section 2 that µn.[Q(n)] is 0 if no minimum n exists such that Q(n) is

true.}

m1 = µi.[(i ≤ g(j, n)) ∧ (∃k < v(i))[η(i, k)↓ = g(j, n) in ≤ n steps]];

m2 = µk.[(k < v(m1)) ∧ (η(m1, k)↓ = g(j, n) in ≤ n steps)];

ConvProg(j, n) = q1(m1) +m2

end {Definition of ConvProg(j, n)}

Claim 17 If W
ϕ
j ∈ L, then limn→∞ ConvProg(j, n) exists. Moreover, limn→∞ ConvProg(j, n)

is a ψ-grammar for W
ϕ
j .

Proof: Since limn→∞ g(j, n) exists, let limn→∞ g(j, n) = l. Let

m′
1 = µi.[(i ≤ l) ∧ (∃k < v(i))[η(i, k)↓ = l]]

and

m′
2 = µk.[(k < v(m′

1)) ∧ (η(m′
1, k)↓ = l)].

Clearly, limn→∞ ConvProg(j, n) = q1(m
′
1) + m′

2. Also, W
ψ
q1(m′

1
)+m′

2

= W
ϕ
ξ(m′

1
,m′

2
) =

W
ϕ
p(η(m′

1
,m′

2
)) = W

ϕ
p(l) = W

ϕ
l = W

ϕ
j (By definition of p, η, ψ, ξ). The claim follows.

Claim 18 [Wϕ
j ∈ L ∧ card(Wϕ

j) = ∞] ⇒ [limn→∞ ConvProg(j, n) = mingrammarψ(Wφ
j)].

Proof: Let g on any grammar for L ∈ L converge to gL. Let j be a ϕ grammar for an infinite

L ∈ L. Thus, for large enough n, g(j, n) = gL. Clearly, Wϕ
p(gL) = Wϕ

gL
= L (by definition of p).

Now, we have the following:

(1) (∀k, l | q1(k) ≤ l < q2(k))[[W
ψ
l is finite] ∨ [[Wψ

l = W
ϕ
ξ(k,l−q1(k))

= W
ϕ
p(η(k,l−q1(k)))

=

W
ϕ
η(k,l−q1(k))

] ∧ [card({n | g(η(k, l− q1(k)), n) = η(k, l− q1(k))}) is infinite]]]. (By definition of

ψ, p, ξ, η).

(2) Let m′
1 = µi.[(i ≤ gL) ∧ (∃k < v(i))[η(i, k)↓ = gL]] and m′

2 = µi.[(i < v(m′
1)) ∧

(η(m′
1, i)↓ = gL)]. Clearly, for all i < m′

1, W
ϕ
i = W

ψ
q2(i)

6= L (otherwise by definition of g and η

there would be a k < v(i) such that η(i, k) = gL).

From (1) and (2), we have that q1(m
′
1)+m′

2 is the minimal ψ-grammar for Wϕ
j = L. Hence,

ConvProg(g(j, n), n) converges to the minimal ψ-grammar for W ϕ
j . This proves the claim.

We now describe a machine M′ that TxtMinψ-identifies L.

begin {Definition of M′(T [n])}

if (∃i ≤ ConvProg(M(T [n]), n))[Wψ,n
i = content(T [n])]

then

13

output µi.[(i ≤ ConvProg(M(T [n]), n)) ∧ W
ψ,n
i = content(T [n])]

else

output ConvProg(M(T [n]), n)

endif

end {Definition of M′(T [n])}

Given any text T for L ∈ L, let n0 be so large that (∀n ≥ n0)[M(T [n]) = M(T [n0])]. Let

n1 > n0 be so large that (∀n ≥ n1)[ConvProg(M(T), n) = ConvProg(M(T), n1)]. Clearly, such

n0, n1 exist. We now have following two cases:

Case 1: card(L) = ∞.

In this case, by Claim 18, ConvProg(M(T), n) converges to the minimal ψ grammar

for L. Let n2 > n1 be so large that (∀n ≥ n2)(∀i < ConvProg(M(T), n1))[W
ψ,n
i 6⊆

content(T [n]) ∨ content(T [n]) 6⊆ W
ψ,n
i]. Clearly, such an n2 exists. Thus, for all n > n2,

M′ outputs ConvProg((M(T), n1)) — the minimal ψ-grammar for L.

Case 2: card(L) is finite.

In this case, by Claim 17, ConvProg(M(T), n) converges to a grammar for L in ψ program-

ming system. Let j ≤ ConvProg(M(T), n1) be the minimal ψ-grammar for L. By construction

of M′, for large enough n, M′ outputs j. This proves the theorem.

5 Nearly Minimal Identification

Freivalds [8] considered Ex-identification of programs which are of minimal size modulo a

recursive (fudge) factor, i. e., the programs inferred are nearly minimal size. Definition 19 just

below describes this notion.

Definition 19 [8, 7]

(a) Let h ∈ R. M h-Mexψ-identifies S (written: S ⊆ h-Mexψ(M)) ⇐⇒ (∀f ∈ S)[M(f)↓ ∧

ψM(f) = f ∧ M(f) ≤ h(minprogramψ(f))].

(b) Let h ∈ R. h-Mexψ = {S | (∃M)[S ⊆ h-Mexψ(M)]}.

(c) Mexψ = {S | (∃h ∈ R)[S ∈ h-Mexψ]}.

Intuitively, a learning machine M h-Mexψ-identifies S iff for each f ∈ S, M Ex-identifies

f in the acceptable programming system ψ, and the final stabilized output of M on f is no

bigger than h(minprogramψ(f)). It is easy to verify that for any ψ and ψ′, Mexψ = Mexψ′ ;

hence, we will refer to Mexψ as just Mex.

Freivalds showed an interesting result about h-Mexψ-identification described in Theorem 20

below. Theorem 20 and Proposition 10 implies Corollary 21 which says that the inferring power

of Minψ-identification is dependent on the choice of acceptable programming system ψ.

14

Theorem 20 [8] (∀h ∈ R | (∀x)[h(x) ≥ x])(∃ψ)(∀S) [S ∈ h-Mexψ ⇐⇒ card(S) <∞].

Corollary 21 [8] (∃ψ′, ψ′′)[Minψ′ 6= Minψ′′].

Case and Chi [4] considered an analog of nearly minimal identification in the context of

language learning; Definition 22 below introduces this notion.

Definition 22 [4]

(a) Let h ∈ R. M h-TxtMexψ-identifies L (written: L ⊆ h-TxtMexψ(M)) ⇐⇒ (∀L ∈ L)

(∀ texts T for L) [M(T)↓ ∧ W
ψ
M(T) = L ∧ M(T) ≤ h(mingrammarψ(L))]].

(b) Let h ∈ R. h-TxtMexψ = {L | (∃M)[L ⊆ h-TxtMexψ(M)]}.

(c) TxtMexψ = {L | (∃h ∈ R)[L ∈ h-TxtMexψ]}.

Intuitively, a learning machine M h-TxtMexψ-identifies L iff for each L in L, M TxtEx-

identifies L in the acceptable programming system ψ, and for each text T for L the final

stabilized output of M on T is no bigger than h(mingrammarψ(L)). It is easy to verify that

for any ψ and ψ′, TxtMexψ = TxtMexψ′ ; hence, we will refer to TxtMexψ as just TxtMex.

We are able to show in Theorem 23 below a language learning analog of Freivalds’ result

(Theorem 20). It should be noted that Theorem 23 below does not hold if ‘⇒’ in the statement

of theorem is replaced by ‘ ⇐⇒ ’.

Theorem 23 (∀h ∈ R)(∃ψ)(∀L) [L ∈ h-TxtMexψ ⇒ card({L | L ∈ L ∧ card(L) is ∞}) <

∞].

Proof of Theorem 23: Let h be as given in the hypothesis of the theorem. Without loss

of generality, we can assume that h is increasing. We now define an acceptable programming

system ψ such that if L ∈ h-TxtMexψ, then L has only a finite number of infinite languages.

To facilitate the description of ψ, we first define two recursive functions g1 and g2. But, first

we have the following notation:

Let H0(i) = i, H(i) = h(i) + 1. For j ≥ 2, let H j(i) = Hj−1(H(i)).

g1(0) = 0;

g2(i) = H i+2(g1(i) + 1);

g1(i+ 1) = g2(i).

For any j, s ∈ N , let σsj denote a finite sequence uniformly formed from j and s such that

the following two conditions hold.

(i) content(σsj) = W
ϕ,s
j ;

(ii) σsj ⊂ σs+1
j .

begin {Definition of Wψ
i }

1. if i = g1(k + 1) for some k ≥ 0

15

then

let Wψ
i = W

ϕ
k ;

exit

{This makes ψ acceptable.}

endif;

2. let j = min({k | g1(k + 1) ≥ i});

let S = {Hk(g1(j) + 1) | 0 ≤ k ≤ (j + 1)};

{Note that S contains j + 2 elements each H apart.}

if i 6∈ S

then

let Wψ
i = ∅

else

go to stage 0;

{Wψ
i will either be finite or equal to Wϕ

j }

begin {stage s}

if there exists k ≤ j such that Mk(σ
s
j) = i

then

go to stage s+ 1

else

enumerate Wϕ,s
j ;

go to stage s+ 1

endif

end {stage s}

endif

end {Definition of Wψ
i }

Claim 24 For any i, W
ψ
i is either finite or equal to W

ϕ
j , where j = min({k | g1(k + 1) ≥ i}).

Proof: Wψ
i can be infinite either due to step 1 or the enumeration by infinitely many stages

in step 2. In both cases, Wψ
i = W

ϕ
j , where j = min({k | g1(k + 1) ≥ i}).

Claim 25 Let L ∈ L ∧ card(L) = ∞. Then, g1(mingrammarϕ(L)) < mingrammarψ(L) ≤

g1(mingrammarϕ(L) + 1).

Proof: Clear from Claim 24 and step 1 in the construction of W ψ
i above.

Now suppose by way of contradiction that some machine Mk h-TxtMexψ-identifies L which

contains infinitely many infinite languages. Consider an infinite language L ∈ L such that

mingrammarϕ(L) = j > k. By Claim 25, we have g1(j) < mingrammarψ(L) ≤ g1(j + 1).

16

Clearly, T =
⋃

s∈N σ
s
j is a text for L. Assume that Mk(T) > g1(j) (otherwise Mk does not

TxtEx-identify L). We now consider the following three cases.

Case 1: Mk on T converges to a grammar i ∈ S = {Hk(g1(j) + 1) | 0 ≤ k ≤ (j + 1)}.

In this case, by construction, Wψ
i is finite, and thus, Mk does not h-TxtMexψ-identify L.

Case 2: Mk on T converges to a grammar i such that g1(j) < i < g1(j + 1) and i 6∈ S =

{Hk(g1(j) + 1) | 0 ≤ k ≤ (j + 1)}.

In this case, Wψ
i = ∅, and thus, Mk does not h-TxtMexψ-identify L.

Case 3: Not Case 1 and not Case 2.

Consider S = {Hk(g1(j)+1) | 0 ≤ k ≤ (j+1)}. Since cardinality of S is j+2, and there are

only j + 1 machines Mj′ , j
′ ≤ j, at least for one i ∈ S we have Wψ

i = W
ϕ
j = L. Also, for each

i ∈ S, h(i) < g1(j + 1). Thus, Mk does not converge to within h of the minimal ψ-grammar

for L.

The above cases prove the theorem.

Using techniques developed in Theorem 16, it is easy to verify that if L ∈ TxtEx and

card({L ∈ L | card(L) = ∞}) <∞, then for all ψ, L ∈ TxtMinψ.

Corollary 26 below follows from Theorem 23 and Proposition 14, and it says that TxtMinψ-

identification is dependent on the choice of acceptable programming system ψ — a seemingly

discouraging result as it precludes the study of TxtMinψ-identification as an interesting crite-

rion of language learning.

Corollary 26 (∃ψ′, ψ′′)[TxtMinψ′ 6= TxtMinψ′′].

Before we move on to other kinds of program size restrictions, we investigate a few more

characteristics of h-Mexψ-identification and h-TxtMexψ-identification criteria. Proposition 27

and Proposition 28 below are simple observations about these criteria.

Proposition 27 Suppose h ∈ R such that (∀x)[h(x) > x]. Then, (∀ψ)[λx.[h(x) − 1]-Mexψ ⊆

h-Mexψ].

Proposition 28 Suppose h ∈ R such that (∀x)[h(x) > x]. Then, (∀ψ)[λx.[h(x) − 1]-

TxtMexψ ⊆ h-TxtMexψ].

An interesting question to ask is whether there are acceptable programming systems for

which the containment in Propositions 27 and 28 is proper. Theorems 29 and 35 below imply

that such acceptable programming systems exist. However, Theorems 41 and 42 imply that

there exist acceptable programming systems for which this is not the case.

Theorem 29 Let h0, h1, h2, . . . be an infinite r.e. sequence of distinct non-decreasing recursive

functions such that (∀x)[hi(x) > x]. Then, (∃ψ) (∀i)[λx.[hi(x) − 1]-Mexψ ⊂ hi-Mexψ].

17

Proof of Theorem 29: For this proof, without loss of generality, we assume that the standard

acceptable programming system ϕ is such that there exists an infinite r.e. class of functions

which can be Minϕ-identified; Proposition 10 allows us to make such an assumption. Let

f0, f1, . . . be an infinite r. e. sequence of distinct total recursive functions identifiable in the

limit by minimal program in ϕ-system, i.e., {fi | i ∈ N} ∈ Minϕ.

Let Si = {f〈i,j〉 | j ∈ N}. We will use Si to show that hi-Mexψ 6= (λx.[hi(x) − 1])-Mexψ.

The function f〈i,j〉 will be used to diagonalize against the learning machine Mj .

To facilitate the description of acceptable programming system ψ, we first define recursive

functions g1, g2 below.

g1(0) = 0;

g2(k) = max({h0(g1(k)), h1(g1(k)), ..., hk(g1(k))});

g1(k + 1) = g2(k) + 2.

We set up the programming system ψ in such a way that for all i, for all but finitely

many j, ψ-program hi(g1(minprogramϕ(f〈i,j〉))) computes f〈i,j〉. We use the numbers from

g1(minprogramϕ(f〈i,j〉)) to hi(g1(minprogramϕ(f〈i,j〉)))−1 for diagonalization. We now give

a description of ψ.

begin {Definition of ψk(x)}

execute the following steps until ψk(x) is defined:

1. if k = g2(i) + 1 for some i

then

let ψk(x) = ϕi(x);

exit

{Note that this makes ψ an acceptable programming system.}

endif;

2. let lastfun = max({i | g1(i) ≤ k});

if (∀x′ ≤ x)[ϕlastfun(x
′)↓] ∧ (∀x′ < x)[ψk(x

′)↓]

then

proceed to step 3

else

diverge

{ Thus, here ψk(x) is undefined.}

endif;

3. if (∀i ≤ x)(∃x′ ≤ x)[ϕlastfun(x
′) 6= fi(x

′)]

then

let ψk(x) = ϕlastfun(x);

18

exit

endif;

4. let j = min({i | (∀x′ ≤ x)[fi(x
′) = ϕlastfun(x

′)]});

Let j1, j2 be such that j = 〈j1, j2〉;

if k = hj1(g1(lastfun))

then

let ψk(x) = ϕlastfun(x);

exit

endif;

{Note that this would ensure ψhj1
(g1(minprogramϕ(f〈j1,j2〉

))) = f〈j1,j2〉.}

5. if [(∃x′ ≥ x)[ϕlastfun(x
′)↓ 6= fj(x

′)]] ∨

[(∃x′ ≥ x)[[(∀x′′ ≤ x′)ϕlastfun(x
′′)↓] ∧ [Mj2(fj [x

′]) 6= k]]]

then

let ψk(x) = ϕlastfun(x)

else

diverge

{ Thus, here ψk(x) is undefined. }

endif

end {Definition of ψk(x)}

Claim 30 ψ is an acceptable programming system.

Proof: Clearly ψ is a programming system, and λi.[g2(i) + 1] reduces ϕ-indices to ψ-indices.

Hence, ψ is an acceptable programming system.

Claim 31 (∀j)(∀k)[[g1(j) ≤ k < g1(j + 1)] ⇒ (∀x)[ψk(x) = ϕj(x) ∨ ψk(x)↑]].

Proof: Whenever ψk(x) is defined in the above procedure, ψk(x) = ϕlastfun(x), where lastfun =

max({i | g1(i) ≤ k}). The claim follows.

Claim 32 (∀j1, j2)[[minprogramϕ(f〈j1,j2〉) > j1] ⇒ [[hj1(minprogramψ(f〈j1,j2〉)) ≥

hj1(g1(minprogramϕ(f〈j1,j2〉)))] ∧ [ψhj1
(g1(minprogramϕ(f〈j1,j2〉

))) = f〈j1,j2〉]]].

Proof: Let minprogramϕ(f〈j1,j2〉) > j1. It follows from Claim 31 that

minprogramψ(f〈j1,j2〉) ≥ g1(minprogramϕ(f〈j1,j2〉)),

which implies

hj1(minprogramψ(f〈j1,j2〉)) ≥ hj1(g1(minprogramϕ(f〈j1,j2〉))).

19

Now, let k = hj1(g1(minprogramϕ(f〈j1,j2〉))). We need to show that ψk = f〈j1,j2〉. Suppose

by way of contradiction that (∃x)[ψk(x)↑] (if no such x exists then by Claim 31 we will have

ψk = f〈j1,j2〉). Let x0 be the least such x. Now, if j calculated in step 4 is equal to 〈j1, j2〉, then

by the if statement at step 4, we have ψk(x0)↓. Therefore, let j 6= 〈j1, j2〉. But, then in step 5,

if condition will succeed, and thus, ψk(x0)↓. A contradiction. Hence, (∀x)[ψk(x)↓]. This proves

the claim.

Claim 33 (∀i)[Si ∈ hi-Mexψ].

Proof: Let machine M Minϕ-identify {fi | i ∈ N}. We define a machine M′ as fol-

lows: M′(f [n]) = hi(g1(M(f [n]))). By Claim 32, it follows that for all f〈i,j〉 such that

minprogramϕ(f〈i,j〉) > i, M′ hi-Mexψ-identifies f〈i,j〉. But, there are only finitely many

j such that f〈i,j〉 ∈ Si and minprogramϕ(f〈i,j〉) ≤ i. Thus, M′ can easily be modified to

hi-Mexψ-identify Si.

Claim 34 (∀i)[Si 6∈ (λx.[hi(x) − 1])-Mexψ].

Proof:

Suppose by way of contradiction, machine Mj (λx.[hi(x)−1])-Mexψ-identifies Si. Without

loss of generality, assume that minprogramϕ(f〈i,j〉) > i (since, if Mj (λx.[hi(x) − 1])-Mexψ-

identifies Si, then there are infinitely many machines that (λx.[hi(x) − 1])-Mexψ-identify Si).

Consider the function f = f〈i,j〉 ∈ Si. We show that Mj does not (λx.[hi(x)−1])-Mexψ-identify

f . This would prove the claim.

Assume that Mj(f)↓ ≥ g1(minprogramϕ(f)) (otherwise, by Claim 31, Mj does not Ex-

identify f). We consider the following two cases:

Case 1: Mj on f converges to k, where g1(minprogramϕ(f)) ≤ k <

hi(g1(minprogramϕ(f))).

Let x′ be so large that

a) x′ > 〈i, j〉;

b) (∀k′ < 〈i, j〉)(∃x < x′)[fk′(x) 6= f〈i,j〉(x)];

c) ¬(∃n ≥ x′)[M(f [n]) 6= k].

Clearly such an x′ exists. Now, for x = x′, if condition at steps 1, 3, 4, and 5 in the

construction of ψ are not satisfied. Thus, ψk(x
′)↑. Hence, in this case, Mj does not (λx.[hi(x)−

1])-Mexψ-identify f .

Case 2: Not case 1.

In this case, Mj on f does not converge to k0 = g1(minprogramϕ(f)). We claim that

ψk0 = f . This would imply that Mj on f does not converge to a small enough program, and

hence, Mj fails to (λx.[hi(x) − 1])-Mexψ-identify f .

20

Suppose by way of contradiction, (∃x)ψk0(x)↑ (otherwise by Claim 31 we would have

ψk0 = f). Let x0 be the least such x. Since, if condition at step 2 succeeds, either ψk0(x0)

is defined before step 5, or it would be defined at step 5 (since if condition at step 5 would

succeed). Thus, ψk0(x0)↓. A contradiction.

From the above two cases, it follows that Mj does not (λx.[hi(x)−1])-Mexψ-identify f ∈ Si.

Hence, Si 6∈ (λx.[hi(x) − 1])-Mexψ.

The theorem follows from Claims 33 and 34.

The above proof of Theorem 29 can be adapted for single valued total languages to show

Theorem 35 below—a language learning analog of Theorem 29. We give the details of such an

adaptation.

Theorem 35 Let h0, h1, h2, . . . be an infinite r.e. sequence of distinct non-decreasing recursive

functions such that (∀x)[hi(x) > x]. Then, (∃ψ) (∀i)[λx.[hi(x)−1]-TxtMexψ ⊂ hi-TxtMexψ].

Proof of Theorem 35: For this proof, without loss of generality, we assume that the standard

acceptable programming system ϕ is such that there exists an infinite r.e. class of single valued

total languages which can be TxtMinϕ-identified; proof of Proposition 14 allows us to make

such an assumption.

Let L0, L1, . . . be an infinite r.e. sequence of distinct svt languages identifiable in the limit

by minimal grammar in the ϕ-system, i.e., {Li | i ∈ N} ∈ TxtMinϕ.

Let Li = {L〈i,j〉 | j ∈ N}. We will use Li to show that hi-TxtMexψ 6= (λx.[hi(x) − 1])-

TxtMexψ. The language L〈i,j〉 will be used to diagonalize against the learning machine Mj .

To facilitate the description of acceptable programming system ψ, we first define recursive

functions g1, g2 below.

g1(0) = 0;

g2(k) = max({h0(g1(k)), h1(g1(k)), ..., hk(g1(k))});

g1(k + 1) = g2(k) + 2.

Clearly, g1 is an increasing recursive function. We set up the programming system ψ in such

a way that ψ-grammar hi(g1(mingrammarϕ(L〈i,j〉))) enumerates L〈i,j〉. We use the numbers

from g1(mingrammarϕ(L〈i,j〉)) to hi(g1(mingrammarϕ(L〈i,j〉))) − 1 for diagonalization. We

now give a description of ψ. Let T j be a text for Lj, such that T j [n] can be found effectively

from j, n.

begin {Definition of Wψ
k }

1. if k = g2(i) + 1 for some i

then

let Wψ
k = W

ϕ
i ;

exit

21

{Note that this makes ψ an acceptable programming system.}

else

proceed to stage 0

endif;

begin {Stage x}

2. let lastlan = max({i | g1(i) ≤ k});

3. if (∃w, y, z)[y 6= z ∧ {〈w, y〉, 〈w, z〉} ⊆W
ϕ,x
lastlan]

then

go to step 7

{Note that nothing more gets enumerated in W ψ
k . }

endif;

{Note that if Wϕ
lastlan is not single valued, then Wψ

k is finite.}

4. if (∃y)[〈x, y〉 ∈W
ϕ
lastlan]

then

proceed to step 5

else

nothing more gets enumerated in Wψ
k

endif;

{Note that steps 3 and 4 ensure that if Wϕ
lastlan is not svt, then Wψ

k is finite.}

5. let j = min({i |Wϕ,x
lastlan ⊆ Li});

let j1, j2 be such that j = 〈j1, j2〉;

if k = hj1(g1(lastlan))

then

enumerate Wϕ,x
lastlan in Wψ

k ;

go to stage x+ 1

endif;

{note that this would ensure Wψ
hj1

(g1(mingrammarϕ(L〈j1,j2〉
))) = L〈j1,j2〉}

6. if [(∃x′)[x′ ∈ [Wϕ
lastlan − Lj]] ∨ [(∃x′ > x)[Mj2(T

j [x′]) 6= k]]]

then

enumerate Wϕ,x
lastlan in Wψ

k ;

go to stage x+ 1

else

nothing more gets enumerated in Wψ
k .

endif

end {Stage x}

7. do not enumerate anything more in Wψ
k

end {Definition of Wψ
k }

22

Claim 36 ψ is an acceptable programming system.

Proof: Clearly, ψ is a programming system, and λi.[g2(i) + 1] reduces ϕ-indices to ψ-indices.

Hence, ψ is an acceptable programming system.

Claim 37 (∀j)(∀k)[[g1(j) ≤ k < g1(j + 1)] ⇒ [Wψ
k ⊆W

ϕ
j]].

Proof: The procedure for Wψ
k described above enumerates only subsets of Wϕ

lastlan, where

lastlan = max({i | g1(i) ≤ k}). The claim follows.

Claim 38 (∀j1, j2)[[mingrammarϕ(L〈j1,j2〉) > j1] ⇒ [[hj1(mingrammarψ(L〈j1,j2〉)) ≥

hj1(g1(mingrammarϕ(L〈j1,j2〉)))] ∧ [Wψ
hj1

(g1(mingrammarϕ(L〈j1,j2〉
))) = L〈j1,j2〉]]].

Proof: Suppose the hypothesis, i.e., mingrammarϕ(L〈j1,j2〉) > j1. It follows from

Claim 37 that mingrammarψ(L〈j1,j2〉) ≥ g1(mingrammarϕ(L〈j1,j2〉)), which implies

hj1(mingrammarψ(L〈j1,j2〉)) ≥ hj1(g1(mingrammarϕ(L〈j1,j2〉))).

Now, let k = hj1(g1(mingrammarϕ(L〈j1,j2〉))). We need to show that Wψ
k = L〈j1,j2〉.

Suppose by way of contradiction that (∃x)[W ϕ,x
mingrammarϕ(L〈j1,j2〉

) 6⊆ W
ψ
k] (if no such x exists

then by Claim 37 we will have Wψ
k = L〈j1,j2〉). Let x0 be the least such x. Now, if j cal-

culated in step 5 of stage x0 is equal to 〈j1, j2〉, then by the if statement at step 5 we have

W
ϕ,x0

mingrammarϕ(L〈j1,j2〉
) ⊆ W

ψ
k . Therefore, let j 6= 〈j1, j2〉. But, then in step 6, the if con-

dition will succeed and thus Wϕ,x0

mingrammarϕ(L〈j1,j2〉
) ⊆ W

ψ
k . This is a contradiction. Hence,

(∀x)[Wϕ,x
mingrammarϕ(L〈j1,j2〉

) ⊆W
ψ
k].

Claim 39 (∀i)[Li ∈ hi-TxtMexψ].

Proof: Let machine M TxtMinϕ-identify {Li | i ∈ N}. We define a machine M′ as follows:

M′(T [n]) = hi(g1(M(T [n]))).

By Claim 38, it follows that for all L〈i,j〉 such that mingrammarϕ(L〈i,j〉) > i, M′ hi-

TxtMexψ-identifies L〈i,j〉. But, there are only finitely many j such that L〈i,j〉 ∈ Li and

mingrammarϕ(L〈i,j〉) ≤ i. Thus, M′ can easily be modified to hi-TxtMexψ-identify Li.

Claim 40 (∀i)[Li 6∈ (λx.[hi(x) − 1])-TxtMexψ].

Proof: Suppose by way of contradiction, machine Mj (λx.[hi(x)− 1])-TxtMexψ-identifies Li.

Without loss of generality, assume that mingrammarϕ(L〈i,j〉) > i (since, if Mj (λx.[hi(x) −

1])-TxtMexψ-identifies Li, then there are infinitely many machines that (λx.[hi(x) − 1])-

TxtMexψ-identify Li). Consider the language L = L〈i,j〉 ∈ Li. We show that Mj does

not (λx.[hi(x) − 1])-TxtMexψ-identify L. This would prove the claim.

23

Assume that Mj(T
〈i,j〉)↓ ≥ g1(mingrammarϕ(L)) (otherwise Mj does not TxtEx-identify

L). We consider the following two cases:

Case 1: Mj on T 〈i,j〉 converges to k, where g1(mingrammarϕ(L)) ≤ k <

hi(g1(mingrammarϕ(L))).

Let x′ be so large that

(a) x′ > 〈i, j〉;

(b) (∀k′ < 〈i, j〉)(∃x)[x ∈W
ϕ,x
mingrammarϕ(L) − Lk′];

(c) ¬(∃n ≥ x′)[M(T 〈i,j〉[n]) 6= k].

Clearly, such an x′ exists. Now, in the definition of Wψ
k , the if condition in step 1 is not

satisfied and for x = x′, the if condition in steps 5 and 6 are not satisfied. Thus, W ψ
k is finite.

Hence, in this case Mj does not (λx.[hi(x) − 1])-TxtMexψ-identify L.

Case 2: Not case 1.

In this case, Mj on T 〈i,j〉 does not converge to k0 = g1(mingrammarϕ(L)). We claim that

W
ψ
k0

= L. This would imply that Mj on T 〈i,j〉 does not converge to a small enough grammar,

and hence, Mj fails to (λx.[hi(x) − 1])-TxtMexψ-identify L.

Suppose by way of contradiction, (∃x)[Wϕ,x
mingrammarϕ(L) 6⊆W

ψ
k0

] (otherwise by Claim 37 we

would have Wψ
k0

= L). Let x0 be the least such x. Now at stage x0, if condition at step 3 fails

and if condition at step 4 succeeds; hence, either W ϕ,x0

mingrammarϕ(L) is enumerated in Wψ
k0

before

step 6, or it would be enumerated at step 6 (since the if condition at step 6 would succeed). A

contradiction. Thus, Wψ
k0

= L.

From the above two cases, it follows that Mj does not (λx.[hi(x) − 1])-TxtMexψ-identify

L ∈ Li. Hence, Li 6∈ (λx.[hi(x) − 1])-TxtMexψ.

The theorem follows from Claims 39 and 40.

Theorem 41 and Theorem 42 below contrast with Theorem 29 and Theorem 35 above,

respectively. Theorem 41 is about function inference and Theorem 42 is about language learning.

We give a proof of Theorem 42; a similar proof can be worked out for Theorem 41.

Theorem 41 Let h0, h1, h2, . . . be an infinite r.e. sequence of distinct non-decreasing recursive

functions such that (∀x)[hi(x) ≥ x]. Then, (∃ψ) (∀i)[hi-Mexψ = λx.[x]-Mexψ].

Theorem 42 Let h0, h1, h2, . . . be an infinite r.e. sequence of distinct non-decreasing recursive

functions such that (∀x)[hi(x) ≥ x]. Then, (∃ψ) (∀i)[hi-TxtMexψ = λx.[x]-TxtMexψ].

Proof of Theorem 42: Let {hi | i ∈ N} be as given in the hypothesis of the theorem. Clearly,

for any acceptable programming system ψ and any i, (λx.[x])-TxtMexψ ⊆ hi-TxtMexψ. We

need to construct an acceptable programming system ψ, such that for all hi, hi-TxtMexψ ⊆

(λx.[x])-TxtMexψ. To facilitate the description of such a ψ, we define below two recursive

functions g1 and g2.

24

g1(0) = 0;

g2(i) = max({h0(g1(i)), h1(g1(i)), . . . , hi(g1(i))});

g1(i+ 1) = g1(i) + g2(i) + 1.

We let ψk = ϕj , where j = max({i | g1(i) ≤ k}). Clearly, ψ is an acceptable programming

system.

Consider any hi in the hypothesis of the theorem. Let M hi-TxtMexψ-identify L. We

construct a machine M′ that (λx.[x])-TxtMexψ-identifies L.

Let Si = {j | [mingrammarϕ(Wψ
j) ≤ i] ∧ [j ≤ hi(mingrammarψ(Wψ

j)]}. It should

be noted that the cardinality of Si is finite (since, there are only finitely many languages L

such that mingrammarϕ(L) ≤ i and for each such L there are only finitely many j such that

j ≤ hi(mingrammarψ(L))).

For each j ∈ Si, the minimal grammar of Wψ
j can be stored in a finite table. Formally, let

(∀j ∈ Si)[Table(j) = mingrammarψ(Wψ
j)].

We now define machine M′ as follows:

M′(σ) = k, where

k =







Table(M(σ)) if M(σ) ∈ Si;

g1(max({i | g1(i) ≤ M(σ)})) otherwise.

Consider any L ∈ L. If mingrammarϕ(L) ≤ i, then by the construction of Si, M′

(λx.[x])-TxtMexψ-identifies L. If mingrammarϕ(L) > i, then for any text T for L,

g1(mingrammarϕ(L)) ≤ M(T) < g1(1 + mingrammarϕ(L)). Thus, for any text T for

L, M′(T) = g1(mingrammarϕ(L)) = mingrammarψ(L). Hence, M′ (λx.[x])-TxtMexψ-

identifies L.

6 A Variant of Minimal Identification

Kinber [12], in the context of function inference, considered a variation on the theme of Minψ-

identification. He considered learning criteria in which, for some positive integer i, a learning

machine, fed a graph of a recursive function f , is required to converge to the ith minimal

program for f in the acceptable programming system ψ. We study a more general notion

than Kinber’s, both in the context of function inference and language learning. In the next

paragraph, we informally describe our criterion for language learning.

Let h ∈ R+ (i.e., h takes only non-zero values). Let L and ψ, respectively, be the lan-

guage to be learned and the choice acceptable programming system. We say that a learning

machine M h-TxtMinψ-identifies L iff M, fed any text for L, converges in the limit to the

h(mingrammarψ(L))th grammar for L in the acceptable programming system ψ. Analogous

learning criteria in the context of function inference are called h-Minψ-identification; the spe-

25

cial case of h-Minψ-identification, where h = λx.[i] for some i ∈ N+, was introduced by Kinber

[12].

We investigate relationships between these criteria and underlying acceptable programming

systems, both in the context of function inference and language learning.

Definition 43 below precisely states what we mean by the ith program for a recursive function

in an acceptable programming system ψ. The function inference criteria and its inferring power,

based on the variant of minimal identification just described, are introduced in Definition 44.

Definition 43 Suppose f ∈ R and i ∈ N+. We say that k is the ith ψ-program for f (written:

k = i-minprogramψ(f)) ⇐⇒ [[ψk = f] ∧ [card({j | (j < k) ∧ (ψj = f)}) = i− 1]].

Definition 44 Suppose h ∈ R+.

(a) M h-Minψ-identifies f (written: f ∈ h-Minψ(M)) ⇐⇒ (
∞
∀ n)[M(f [n]) =

h(minprogramψ(f))-minprogramψ(f)].

(b) h-Minψ = {S | (∃M)[S ⊆ h-Minψ(M)]}.

Clearly, λx.[1]-Minψ-identification is the same as Minψ-identification. For i ∈ N+, λx.[i]-

Minψ-identification was introduced by Kinber [12].

In Definition 45 below, we precisely state what we mean by the ith grammar for an r. e. lan-

guage in acceptable programming system ψ, and introduce the language learning criteria anal-

ogous to h-Minψ-identification in Definition 46.

Definition 45 Let i ∈ N+. We say that k is the ith ψ-grammar for L (written: k = i-

mingrammarψ(L)) ⇐⇒ [[Wψ
k = L] ∧ [card({j | (j < k) ∧ (Wψ

j = L)}) = i− 1]].

Definition 46 Suppose h ∈ R+.

(a) M h-TxtMinψ-identifies L (written: L ∈ h-TxtMinψ(M)) ⇐⇒ (∀ texts T for L)(
∞
∀ n)

[M(T [n]) = h(mingrammarψ(L))-mingrammarψ(L)].

(b) h-TxtMinψ = {L | (∃M)[L ⊆ h-TxtMinψ(M)]}.

Clearly, λx.[1]-TxtMinψ-identification is the same as TxtMinψ-identification.

Consider two non-decreasing recursive functions h1 and h2, both members of R+. Further-

more, let (∀x)[h1(x) ≥ h2(x)]. Then, for a given acceptable programming system ψ, we would

like to compare the inferring powers of h1-Minψ-identification with h2-Minψ-identification and

h1-TxtMinψ-identification with h2-TxtMinψ-identification. Theorem 47 below tells us that

for any acceptable programming system ψ, h2-Minψ is at least as big as h1-Minψ. Theorem 48

shows an analogous result for language learning. We give a proof for Theorem 48, an easier

version of which proof adapted for function inference is sufficient to show Theorem 47.

Theorem 47 (∀ψ)(∀ non-decreasing h1, h2 ∈ R+ | (∀x)[h1(x) ≥ h2(x)])[h1-Minψ ⊆ h2-

Minψ].

26

Theorem 48 (∀ψ)(∀ non-decreasing h1, h2 ∈ R+ | (∀x)[h1(x) ≥ h2(x)])[h1-TxtMinψ ⊆ h2-

TxtMinψ].

Proof of Theorem 48: Let M h1-TxtMinψ-identify L. We construct a learning machine M′

that h2-TxtMinψ-identifies L.

begin {Definition of M′(T [n])}

execute all stages n′ for n′ ≤ n;

output the result of the largest stage which halts in ≤ n steps;

output 0 if none of the stages halt in ≤ n steps;

begin {stage n′}

let j = M(T [n]);

search for a set S ⊆ {x | x ≤ j} such that

(1) [i ∈ S] ⇒ [[Wψ,n′

i ⊆ content(T [n])] ∧ [content(T [n′]) ⊆W
ψ
i]];

(2) [i = min(S)] ⇒ [card(S) = h1(i)];

if such an S is found, the result of stage n′ is

k ∈ S such that card({r | r ≤ k ∧ r ∈ S}) = h2(min(S))

end {stage n′}

end {Definition of M′(T [n])}

Let Sn,n′ denote the set found in stage n′ on input T [n]. We show that if L ∈ L then M′ h2-

TxtMinψ-identifies L. Let T be any text for L. Let n1 be so large that (∀n ≥ n1)M(T [n]) = j0,

where j0 = h1(mingrammarψ(L))th grammar for L. Let n2 ≥ n1 be so large that (∀i ≤

j0)[[W
ψ
i 6= L] ⇒ [[Wψ,n2

i 6⊆ L] ∨ [content(T [n2]) 6⊆ W
ψ
i]]]. Clearly, (∀n ≥ n′ ≥ n2), if stage n′

(of machine M′) on input T [n] halts then Sn,n′ = {i | (i ≤ j0) ∧ (Wψ
i = L)}. Let n3 ≥ n2 be

so large that stage n2 + 1 halts on input T [n] for all n ≥ n3. Clearly, such an n3 exists. Thus,

for all n ≥ n3, machine M′ will output h2(mingrammarψ(L))th grammar for L.

Continuing our discussion about h1 and h2, if we further place the restriction that

(∀x)[h1(x) > h2(x)], then we would like to know if h2-Minψ properly contains h1-Minψ and

h2-TxtMinψ properly contains h1-TxtMinψ. Theorem 49 below implies that there exist ac-

ceptable programming systems for which h2-Minψ properly contains h1-Minψ and Theorem 56

implies that there exist acceptable programming systems for which h2-TxtMinψ properly con-

tains h1-TxtMinψ. However, as will be clear later from Theorem 58 for function inference and

Theorem 60 for language learning, this scenario is not true for every acceptable programming

system.

Theorem 49 Let h0, h1, h2, . . . be an infinite r.e. sequence of distinct recursive functions ∈ R+.

(∃ψ)(∀i)[λx.[hi(x) + 1]-Minψ ⊂ hi-Minψ].

27

Corollary 50 [12] (∃ψ)(∀i ∈ N+) [λx.[i+ 1]-Minψ ⊂ λx.[i]-Minψ].

Proof of Theorem 49: Let f0, f1, . . . be an infinite r. e. sequence of distinct total recursive

functions whose minimal ϕ-programs are identifiable in the limit, i.e., {fi | i ∈ N} ∈ Minϕ;

Proposition 10 allows us to make such an assumption.

Let Si = {f〈i,j〉 | j ∈ N}. We will use Si to show that hi-Minψ 6= (λx.[hi(x) + 1])-Minψ.

The function f〈i,j〉 will be used to diagonalize against the learning machine Mj . To facilitate

the description of ψ, we first define two recursive functions g1 and g2 as follows:

g1(0) = 0;

g2(k) = max({h0(g1(k)), h1(g1(k)), ..., hk(g1(k))});

g1(k + 1) = g1(k) + g2(k) + 1.

Clearly, g1 is an increasing recursive function. We now give a description of acceptable

programming system ψ.

begin {Definition of ψk(x)}

execute the following steps until ψk(x) is defined:

1. if k = g1(i) for some i

then

let ψk(x) = ϕi(x);

exit

{Note that this makes ψ an acceptable programming system.}

endif;

2. let lastfun = max({i | g1(i) ≤ k});

if (∀x′ ≤ x)[ϕlastfun(x
′)↓] ∧ (∀x′ < x)[ψk(x

′)↓]

then

proceed to step 3

else

diverge

{ Thus, here ψk(x) is undefined.}

endif;

3. if (∀i ≤ x)(∃x′ ≤ x)[ϕlastfun(x
′) 6= fi(x

′)]

then

let ψk(x) = ϕlastfun(x);

exit

endif;

4. let j = min({i | (∀x′ ≤ x)[fi(x
′) = ϕlastfun(x

′)]});

let j1, j2 be such that j = 〈j1, j2〉;

if k < g1(lastfun) + hj1(g1(lastfun))

28

then

let ψk(x) = ϕlastfun(x);

exit

endif;

5. if [(∃x′ ≥ x)[ϕlastfun(x
′)↓ 6= fj(x

′)]] ∨

[(∃x′ ≥ x)[[(∀x′′ ≤ x′)[ϕlastfun(x
′′)↓]] ∧ [Mj2(fj [x

′]) 6= k]]]

then

let ψk(x) = ϕlastfun(x);

exit

else

diverge

{ Thus, here ψk(x) is undefined. }

endif

end {Definition of ψk(x)}

Claim 51 ψ is an acceptable programming system.

Proof: Clearly, ψ is a programming system, and g1 reduces ϕ-indices to ψ-indices. Hence, ψ

is an acceptable programming system.

Claim 52 (∀j)(∀k)[[g1(j) ≤ k < g1(j + 1)] ⇒ (∀x)[ψk(x) = ϕj(x) ∨ ψk(x)↑]].

Proof: Whenever ψk(x) is defined in the above procedure, ψk(x) = ϕlastfun(x), where lastfun =

max({i | g1(i) ≤ k}). The claim follows.

Claim 53 (∀j1, j2) [minprogramψ(f〈j1,j2〉) = g1(minprogramϕ(f〈j1,j2〉))]. Moreover,

(∀j1, j2)[[minprogramϕ(f〈j1,j2〉) > j1] ⇒ [(∀k)(g1(minprogramϕ(f〈j1,j2〉)) ≤ k <

g1(minprogramϕ(f〈j1,j2〉)) + hj1(g1(minprogramϕ(f〈j1,j2〉))))[ψk = f〈j1,j2〉]]].

Proof: By Claim 52 it follows that minprogramψ(f〈j1,j2〉) ≥ g1(minprogramϕ(f〈j1,j2〉)).

By step 1 in the construction of ψ, it follows that ψg1(minprogramϕ(f〈j1,j2〉
)) = f〈j1,j2〉. Hence,

minprogramψ(f〈j1,j2〉) = g1(minprogramϕ(f〈j1,j2〉)). Assume [minprogramϕ(f〈j1,j2〉) > j1].

Hence, g2(minprogramϕ(f〈j1,j2〉)) ≥ hj1(minprogramϕ(f〈j1,j2〉)).

Let g1(minprogramϕ(f〈j1,j2〉)) ≤ k < (g1(minprogramϕ(f〈j1,j2〉)) +

hj1(g1(minprogramϕ(f〈j1,j2〉)))). Suppose by way of contradiction that (∃x)[ψk(x)↑]. (If (∀x)

ψk(x)↓, then by Claim 52, ψk = ψg1(minprogramϕ(f〈j1,j2〉
)) = f〈j1,j2〉.) Also, let x′ be the least

number such that ψk(x
′)↑. If j found in step 4 of the construction is 〈j1, j2〉, then clearly,

ψk(x
′)↓. Therefore, let j found in step 4 be different from 〈j1, j2〉. But, then the if condition

at step 5 will succeed, since there is an x′ such that f〈j1,j2〉(x
′) 6= fj(x

′). Hence, (∀x′)ψk(x
′)↓.

This proves the claim.

29

Claim 54 (∀i)[Si ∈ hi-Minψ].

Proof: Let machine M Minϕ-identify {fi | i ∈ N}. We define a machine M′
i as follows:

M′
i(f [n]) = g1(M(f [n])) + hi(g1(M(f [n]))) − 1.

Clearly, by Claim 53, for all f〈i,j〉) such that minprogramϕ(f〈i,j〉) > i, we have that

M′
i hi-Minψ-identifies f〈i,j〉. But there are only finitely many j such that f〈i,j〉 ∈ Si and

minprogramϕ(f〈i,j〉) ≤ i. Thus, M′
i can easily be modified to hi-Minψ-identify Si.

Claim 55 (∀i)[Si 6∈ (λx.[hi(x) + 1])-Minψ].

Proof: Suppose by way of contradiction, machine Mj (λx.[hi(x) + 1])-Minψ-identifies

Si. Without loss of generality, assume that minprogramϕ(f〈i,j〉) > i (since if

Mj (λx.[hi(x) + 1])-Minψ-identifies Si, then there are infinitely many machines that

(λx.[hi(x) + 1])-Minψ-identify Si). Consider the function f = f〈i,j〉 ∈ Si. Clearly,

by claim 53, g1(minprogramϕ(f)), g1(minprogramϕ(f)) + 1, . . . , g1(minprogramϕ(f)) +

hi(g1(minprogramϕ(f)))−1 are the minimal hi(minprogramψ(f)) programs for f in ψ. We

show that g1(minprogramϕ(f)) + hi(g1(minprogramϕ(f))) is a program for f iff Mj on f

does not converge to g1(minprogramϕ(f))+hi(g1(minprogramϕ(f))). This would prove the

claim.

Let k = g1(minprogramϕ(f)) + hi(g1(minprogramϕ(f))). We have the following cases:

Case 1: Mj on f converges to k.

Let x′ be so large that

a) x′ > 〈i, j〉;

b) (∀k′ < 〈i, j〉)(∃x < x′)[fk′(x) 6= f〈i,j〉(x)];

c) ¬(∃n ≥ x′)[M(f [n]) 6= k].

Clearly, such an x′ exists. Now, for x = x′, the if condition at steps 1, 3, 4, and 5 in the

construction of ψ are not satisfied. Thus ψk(x
′)↑.

Case 2: Mj on f does not converge to k.

In this case, we claim that ψk = f . Suppose by way of contradiction (∃x)ψk(x)↑ (otherwise

by Claim 52 we would have ψk = f). Let x0 be the least such x. Since, the if condition at

step 2 in the construction of ψ succeeds, either ψk(x0) is defined before step 5, or it would be

defined at step 5 (since the if condition at step 5 would succeed), and thus, ψk(x0)↓. This is a

contradiction.

From the above two cases, it follows that Mj does not (λx.[hi(x)+1])-Minψ-identify f ∈ Si.

Hence, Si 6∈ (λx.[hi(x) + 1])-Minψ.

The theorem follows from Claims 54 and 55.

A proof of Theorem 56 below can be obtained by adapting the above proof of Theorem 49 for

single valued total languages. This adaptation is similar to the one in our proof of Theorem 35;

we omit the details this time.

30

Theorem 56 Let h0, h1, h2, . . . be an infinite r.e. sequence of distinct recursive functions ∈ R+.

(∃ψ)(∀i)[λx.[hi(x) + 1]-TxtMinψ ⊂ hi-TxtMinψ].

Corollary 57 (∃ψ)(∀i ∈ N+) [λx.[i+ 1]-TxtMinψ ⊂ λx.[i]-TxtMinψ].

Using Theorem 58 below we can show that for any two functions h1 and h2 ∈ R+, there

exists an acceptable programming system ψ such that h1-Minψ = h2-Minψ. Theorem 60 is

the language learning analog of Theorem 58. We give a proof of Theorem 60; a similar proof

can be worked out for Theorem 58.

Theorem 58 Let h0, h1, h2, . . . be an infinite r.e. sequence of distinct recursive functions ∈ R+.

(∃ψ)(∀i, j) [hi-Minψ = hj-Minψ].

The following special case of Theorem 58 is due to Kinber [12].

Corollary 59 [12] (∃ψ)(∀i1, i2 ∈ N+)[(λx.[i1])-Minψ = (λx.[i2])-Minψ].

Theorem 60 Let h0, h1, h2, . . . be an infinite r.e. sequence of distinct recursive functions ∈ R+.

(∃ψ)(∀i, j) [hi-TxtMinψ = hj-TxtMinψ].

Proof of Theorem 60: This proof uses a construction similar to the one in the proof of

Theorem 42. Let {hi | i ∈ N} be as given in the hypothesis of the theorem. We construct an

acceptable programming system ψ, such that for any hi and hj, hi-TxtMinψ = hj-TxtMinψ.

To facilitate the description of such a ψ, we define below recursive functions g1 and g2.

g1(0) = 0;

g2(i) = max({h0(g1(i)), h1(g1(i)), . . . , hi(g1(i))});

g1(i+ 1) = g1(i) + g2(i) + 1.

We let ψk = ϕj , where j = max({i | g1(i) ≤ k}). Clearly, ψ is an acceptable programming

system.

Consider any hi, hj as given in the hypothesis of the theorem. Let Mi hi-TxtMinψ-identify

L. We construct a machine Mj that hj-TxtMinψ-identifies L.

Let L0 = {L | mingrammarϕ(L) ≤ max({i, j})}. Let Si = {hi(mingrammarψ(L))-

mingrammarψ(L) | L ∈ L0}. Clearly, Si is a finite set since L0 is a finite set. For each k ∈ Si,

let hj(mingrammarψ(Wψ
k))-mingrammarψ(Wψ

k) be stored in a finite table. Formally, let

(∀k ∈ Si)[Table(k) = hj(mingrammarψ(Wψ
k))-mingrammarψ(Wψ

k)].

We now define machine Mj as follows:

Mj(σ) =















Table(Mi(σ)) if Mi(σ) ∈ Si;

g1(max({i | g1(i) ≤ Mi(σ)}))+

hj(g1(max({i | g1(i) ≤ Mi(σ)}))) − 1 otherwise.

31

Consider any L ∈ L. We have the following two cases:

Case 1: mingrammarϕ(L) ≤ max({i, j}).

In this case, by the definition of Si and Table, Mj hj-TxtMinψ-identifies L.

Case 2: mingrammarϕ(L) > max({i, j}).

In this case, the following four statements are true.

(1) g1(mingrammarϕ(L)) = mingrammarψ(L);

(2) g1(mingrammarϕ(L)) ≤ hi(mingrammarψ(L))-mingrammarψ(L)

< g1(1 + mingrammarϕ(L));

(3) g1(mingrammarϕ(L)) ≤ hj(mingrammarψ(L))-mingrammarψ(L)

< g1(1 + mingrammarϕ(L));

(4) (∀k | g1(mingrammarϕ(L)) ≤ k < g1(1 + mingrammarϕ(L)))[Wψ
k = L].

Let T be any text for L. Then, Mi(T) = hi(mingrammarψ(L))-mingrammarψ(L). It

is clear from the above statements 1, 2, 3, 4, and the definition of machine Mj that Mj(T) =

hj(mingrammarψ(L))-mingrammarψ(L). Hence, Mj hj-TxtMinψ-identifies L.

An interesting open question concerns given acceptable programming system ψ, the relation-

ship between
⋃

h∈R(h-Minψ) and Mex and also between
⋃

h∈R(h-TxtMinψ) and TxtMex.

7 Relaxing the Variant of Minimal Identification

We consider a relaxation of h-Minψ-identification and h-TxtMinψ-identification criteria in-

troduced in the previous section. We illustrate this new identification criteria in the context of

language learning.

Let h ∈ R+ (i.e., h takes only non-zero values). Let L and ψ, respectively, be the language

to be learned and the choice acceptable programming system. We say that a learning machine

M h-TxtLeminψ-identifies L iff M, fed any text for L, converges in the limit to jth ψ-

grammar for L, where j ≤ h(mingrammarψ(L)). An analogous criterion in the context of

function inference is called h-Leminψ-identification. A special case of h-Leminψ-identification

was briefly considered by Kinber [12]. As in the previous section, we study the relationships

between these new identification criteria and acceptable programming systems.

Definition 61 below describes our new function inference criteria and its inferring power.

Definition 61 Suppose h ∈ R+.

(a) M h-Leminψ-identifies f (written: f ∈ h-Leminψ(M)) ⇐⇒ (∃j ≤

h(minprogramψ(f)))(
∞
∀ n) [M(f [n]) = j-minprogramψ(f)].

(b) h-Leminψ = {S | (∃M)[S ⊆ h-Leminψ(M)]}.

32

For i ∈ N+, λx.[i]-Leminψ-identification was introduced by Kinber [12]. Definition 62

below is the language learning analog of Definition 61.

Definition 62 Suppose h ∈ R+.

(a) M h-TxtLeminψ-identifies L (written: L ∈ h-TxtLeminψ(M)) ⇐⇒ (∀ texts T for L)

(∃j ≤ h(mingrammarψ(L))) (
∞
∀ n) [M(T [n]) = j-mingrammarψ(L)].

(b) h-TxtLeminψ = {L | (∃M)[L ⊆ h-TxtLeminψ(M)]}.

Recall that ϕ is our standard acceptable programming system. Kinber [12] showed that

for all i ∈ N+, [S ∈ λx.[i]-Leminϕ] ⇒ [(∃ψ) [S ∈ Minψ]]. If we restrict ourselves to identi-

fication of infinite languages only, then a proof similar to Kinber’s shows an analogous result

for TxtLemin-identification. However, a modification of Kinber’s proof to take care of finite

languages yields a complete analog of Kinber’s result for language learning. Theorem 63 below

describes this result.

Theorem 63 (∀ non-decreasing h ∈ R+) [[L ∈ h-TxtLeminϕ] ⇒ [(∃ψ) [L ∈ TxtMinψ]]].

Proposition 64 below is an easy observation about h-Leminψ-identification. Proposition 65

is the language learning analog of Proposition 64.

Proposition 64 (∀h ∈ R | (∀x)[h(x) ≥ 2])(∀ψ)[λx.[h(x)− 1]-Leminψ ⊆ h-Leminψ].

Proposition 65 (∀h ∈ R | (∀x)[h(x) ≥ 2])(∀ψ)[λx.[h(x)− 1]-TxtLeminψ ⊆ h-TxtLeminψ].

Using Theorems 66 and 67 below we can show that there exist acceptable programming

systems for which the containment in Propositions 64 and 65 are proper. Proofs of Theorem 66

and 67 can be worked out using techniques illustrated in the earlier parts of this paper.

Theorem 66 Let h0, h1, h2, . . . be an infinite r.e. sequence of distinct non-decreasing recursive

functions such that (∀x)[hi(x) ≥ 2]. (∃ψ)(∀i)[λx.[hi(x) − 1]-Leminψ ⊂ hi-Leminψ].

Theorem 67 Let h0, h1, h2, . . . be an infinite r.e. sequence of distinct non-decreasing recursive

functions such that (∀x)[hi(x) ≥ 2]. (∃ψ)(∀i)[λx.[hi(x) − 1]-TxtLeminψ ⊂ hi-TxtLeminψ].

A proof similar to that used to prove Theorem 60 can be used to show the following two

theorems.

Theorem 68 Let h0, h1, h2, . . . be an infinite r.e. sequence of distinct recursive functions ∈ R+.

(∃ψ)(∀i, j)[hi-Leminψ = hj-Leminψ].

Theorem 69 Let h0, h1, h2, . . . be an infinite r.e. sequence of distinct recursive functions ∈ R+.

(∃ψ)(∀i, j) [hi-TxtLeminψ = hj-TxtLeminψ].

33

Proposition 70 below shows that h-TxtLeminψ-identification and h-TxtMexψ-

identification are, in some sense, similar. Proposition 71 is the language learning analog of

Proposition 70. We give a proof of Proposition 71; Proposition 70 has a similar proof.

Proposition 70 (∀ψ)[
⋃

h∈R(h-Leminψ) =
⋃

h∈R(h-Mexψ)].

Proposition 71 (∀ψ)[
⋃

h∈R(h-TxtLeminψ) =
⋃

h∈R(h-TxtMexψ)].

Proof of Proposition 71: Let h ∈ R be given. A simple result from recursive function theory

tells us that, for any acceptable programming system ψ, there exists a pad ∈ R2, monotonically

increasing in the second argument, such that (∀x)(∀i)[W ψ
pad(x,i) = Wψ

x]. Then, it is easy to see

that h-TxtLeminψ ⊆ TxtMex(λx.[pad(x, h(x))], ψ). Also, TxtMex(h, ψ) ⊆ (λx.[h(x) + 1])-

TxtLeminψ. This is because, if j is a grammar for L such that j ≤ h(mingrammarψ(L)),

then card({i ≤ j |Wψ
i = L}) ≤ h(mingrammarψ(L)) + 1.

Since, for any two acceptable programming systems ψ and ψ′,
⋃

h∈R(h-Mexψ) =
⋃

h∈R(h-

Mexψ′) and
⋃

h∈R(h-TxtMexψ) =
⋃

h∈R(h-TxtMexψ′), we have following Corollaries 72 and

73 to Propositions 70 and 71 above, respectively.

Corollary 72 (∀ψ,ψ′)[
⋃

h∈R(h-Leminψ) =
⋃

h∈R(h-Leminψ′)].

Corollary 73 (∀ψ,ψ′)[
⋃

h∈R(h-TxtLeminψ) =
⋃

h∈R(h-TxtLeminψ′)].

8 Conclusion

On first observation, results presented above seem to say that learning criteria requiring fi-

nal programs to conform to seemingly “natural” notions of succinctness are uninteresting (or,

mathematically dirty), as they are dependent on the programming system. However, we would

like to note that Freivalds [9] has shown, in the context of function inference, that some of these

programming system dependence results still hold if attention is restricted to a very ‘nice’ sub-

class of acceptable programming systems called Kolmogorov numberings (by definition, every

acceptable programming system can be reduced to a Kolmogorov numbering via a recursive

function with no more rapid than linear growth). Analogs of Freivalds’ results can be shown to

hold for language learning also.

All this seems to suggest that complexity restrictions on final hypothesis in general models

of learning will most likely result in learning criteria which are dependent on the choice of the

underlying acceptable programming system. This dependence may turn out to be a fundamental

fact about learning rather than a mere mathematical inconvenience. Thus, for the task of

learning succinctly, it may be desirable to investigate different programming systems for different

learning situations. Adapting the ideas presented in the present paper to practical programming

systems is a very interesting open direction.

34

9 Acknowledgements

We would like to express our gratitude to John Case, Mark Fulk, and Dan Osherson for en-

couragement. Motivations for the present study came out of discussions with John Case. Our

results build on the techniques of Freivalds, Kinber, and Chen.

Sanjay Jain was supported in part by NSF grant CCR 832-0136 at the University of

Rochester. Arun Sharma was supported in part by NSF Grant CCR 871-3846 at SUNY at

Buffalo and University of Delaware.

We would also like to thank Prof. S.N. Maheshwari of IIT Delhi for making the facilities of

his department available to us during the preparation of this manuscript.

Finally, we thank an anonymous referee for several helpful suggestions.

References

[1] D. Angluin and C. Smith. A survey of inductive inference: Theory and methods. Computing

Surveys, 15:237–289, 1983.

[2] M. Blum. A machine independent theory of the complexity of recursive functions. Journal

of the ACM, 14:322–336, 1967.

[3] J. Case. Learning machines. In W. Demopoulos and A. Marras, editors, Language Learning

and Concept Acquisition. Ablex Publishing Company, 1986.

[4] J. Case and Chi. Machine learning of nearly minimal size grammars. Unpublished

Manuscript, 1986.

[5] J. Case and C. Lynes. Machine inductive inference and language identification. Lecture

Notes in Computer Science, 140:107–115, 1982.

[6] K. Chen. Tradeoffs in Machine Inductive Inference. PhD thesis, SUNY at Buffalo, 1981.

[7] K. Chen. Tradeoffs in inductive inference of nearly minimal sized programs. Information

and Control, 52:68–86, 1982.

[8] R. Freivalds. Minimal Gödel numbers and their identification in the limit. Lecture Notes

in Computer Science, 32:219–225, 1975.

[9] R. Freivalds. Inductive inference of minimal programs. In M. Fulk and J. Case, editors,

Proceedings of the Third Annual Workshop on Computational Learning Theory, pages 3–20.

Morgan Kaufmann Publishers, Inc., August 1990.

35

[10] E. M. Gold. Language identification in the limit. Information and Control, 10:447–474,

1967.

[11] J. Hopcroft and J. Ullman. Introduction to Automata Theory Languages and Computation.

Addison-Wesley Publishing Company, 1979.

[12] E. B. Kinber. A note on limit identification of c-minimal indices. Electronische Informa-

tionverarbeitung und Kybernetik, 19:459–463, 1983.

[13] E.B. Kinber. On a theory of inductive inference. Lecture Notes in Computer Science,

56:435–440, 1977.

[14] R. Klette and R. Wiehagen. Research in the theory of inductive inference by GDR math-

ematicians – A survey. Information Sciences, 22:149–169, 1980.

[15] D. T. Langendoen and P. M. Postal. The Vastness of Natural Languages. Basil Blackwell

Publisher Limited, Oxford, England, 1984.

[16] M. Machtey and P. Young. An Introduction to the General Theory of Algorithms. North

Holland, New York, 1978.

[17] Ernst E. Moody. The Logic of William of Ockham. New York, Sheed and Ward Inc., 1935.

[18] D. Osherson, M. Stob, and S. Weinstein. Systems that Learn, An Introduction to Learning

Theory for Cognitive and Computer Scientists. MIT Press, Cambridge, Mass., 1986.

[19] S. Pinker. Formal models of language learning. Cognition, 7:217–283, 1979.

[20] H. Putnam. Reductionism and the nature of psychology. Cognition, 2:131–146, 1973.

[21] G. Riccardi. The Independence of Control Structures in Abstract Programming Systems.

PhD thesis, SUNY/ Buffalo, 1980.

[22] G. Riccardi. The independence of control structures in abstract programming systems.

Journal of Computer and System Sciences, 22:107–143, 1981.

[23] H. Rogers. Gödel numberings of partial recursive functions. Journal of Symbolic Logic,

23:331–341, 1958.

[24] H. Rogers. Theory of Recursive Functions and Effective Computability. McGraw Hill, New

York, 1967. Reprinted, MIT Press 1987.

[25] J. Royer. A Connotational Theory of Program Structure. Lecture Notes in Computer

Science 273. Springer Verlag, 1987.

36

[26] W. M. Thorburn. Occam’s Razor. Mind, pages 287–288, 1915.

[27] W. M. Thorburn. The myth of Occam’s Razor. Mind, pages 345–353, 1918.

[28] K. Wexler. On extensional learnability. Cognition, 11:89–95, 1982.

[29] K. Wexler and P. Culicover. Formal Principles of Language Acquisition. MIT Press,

Cambridge, Mass, 1980.

37

