
Anomalous Learning Helps Succinctness 1

John Case

Department of Computer and Information Sciences

University of Delaware

Newark, Delaware 19716

Email: case@cis.udel.edu

Sanjay Jain

Department of Information Systems and Computer Science

National University of Singapore

Singapore 0511, Republic of Singapore

Email: sanjay@iscs.nus.sg

Arun Sharma

School of Computer Science and Engineering

University of New South Wales

Sydney, NSW, 2033, Australia

Email: arun@cse.unsw.edu.au

1A preliminary version of this paper appeared in S. Arikawa, S. Goto, S. Ohsuga and T. Yokomori,
editors, Algorithmic Learning Theory, Proceedings of the First International Workshop, Tokyo, Japan,
pages 282-288, Japanese Society for Artificial Intelligence, October 1990 (Reprinted by Ohmsa – Springer
Verlag).

Abstract

It is shown that allowing a bounded number of anomalies (mistakes) in the final programs
learned by an algorithmic procedure can considerably “succinctify” those final programs. Nat-
urally, only those contexts are investigated in which the presence of anomalies is not actually
required for successful inference (learning). The contexts considered are certain infinite sub-
classes of the class of characteristic functions of finite sets. For each finite setD, these subclasses
have a finite set containing D. This latter prevents the anomalies from wiping out all the infor-
mation in the sets featured in these subclasses and shows the context to be fairly robust. Some
of the results in the present paper are shown to be provably more constructive than others.

The results of this paper can also be interpreted as facts about succinctness of coding finite
sets, which facts have interesting consequences for learnability of decision procedures for finite
sets.

1 Introduction

A subject encounters data about a concept. Based on this finite amount of data, the subject
conjectures a hypothesis about the concept. Availability of more data may cause the subject
to change its hypothesis. The subject is said to learn the concept just in case the sequence
of hypotheses conjectured stabilizes to a fixed hypothesis and this final hypothesis is a correct
representation of the concept.

Aspects of learning by humans may be cast in the above framework. It may also be argued
that the hypotheses inferred by humans tend to display the following characteristics:

• they are only an approximate representations of the concept;

• they are likely to be succinct.

Many studies in inductive inference have addressed the above two issues separately. For example
in the context of learning computer programs for computable functions, Case and Smith [CS83]
considered the situation in which the final program is allowed to make a finite, but bounded,
number of mistakes in computing the function. For the same learning task, Royer [Roy86] and
Fulk and Jain [FJ94] consider models in which the final program is allowed to make infinitely
many mistakes in computing the function, but the ‘density’ of these mistakes is bounded. The
subject of succinctness for function identification has also been considered by many authors, for
example, Freivalds [Fre75], Freivalds and Kinber [FK77], Kinber [Kin83], Chen [Che81, Che82],
Case, Jain, and Sharma [CJS95], Jain and Sharma [JS94], and Case, Jain and Suraj [CJS94].

However, while the above studies motivate each of inferring approximate solutions and
inferring nearly minimal solutions, none of these studies have reflected on why humans appear
to have a predilection for inferring solutions which are simultaneously approximate and succinct.
The present paper begins to address this issue by presenting some preliminary results suggesting
that, in many learning situations, approximate hypotheses may turn out to be far more succinct
than the minimal size, exact hypothesis.

The general framework of our results is identification in the limit of computer programs for
computable functions from their graphs. Specifically, our results are about learning programs
for the characteristic functions of finite sets, i.e., about identifying decision procedures for finite
sets.

Case and Smith [CS83] (also see Blum and Blum [BB75]) showed that learners allowed to
converge to programs that make a finite number of mistakes can learn strictly larger collections
of functions than those learners that are required to converge to exact programs. Thus, there
are collections of functions that can be learned only if anomalies are allowed in the final inferred
program. The collection of characteristic functions of finite sets can be trivially learned without
resorting to learners that commit anomalies in the final inferred program. Nonetheless, we show
that there are non-trivial collections of characteristic functions of finite sets for which allowing
an error in the final program yields tremendous savings in the size of the final program compared
with the minimal size exact program.

We now note a crucial property of the collections of characteristic functions of finite sets
considered in the present paper. A 1-error program for the collection of characteristic functions
of singleton sets can be trivially identified by a machine that simply outputs a decision procedure
for the empty set. Clearly, demonstrating the size advantages of allowing errors in the final
program for such example classes is not at all interesting since some 1-error programs for

1

deciding singleton sets are quite useless. For this reason, our results are about those collections
that contain, for each finite set D, the characteristic function of another finite set containing
D. Such collections are referred to as beefy. Clearly, a 1-error for each member of a beefy
class would be useful since most elements of such a class would be quite far from characteristic
functions of singleton sets.

We now informally describe some of our results. To this end, it is useful to go over some
recursion theoretic terminology. Programs can be treated as numbers and these numbers in
turn can be treated as corresponding program size measures (see Blum [Blu67b]). Fin denotes
the set of all characteristic functions of finite sets. For any total (possibly noncomputable)
function h, we say that program p is h-more succinct than a program q just in case h(p) < q,
i.e., the magnification of p by h is still not as large as q.

Our results are essentially of two kinds. One kind, provably less constructive than the other,
holds for any, not necessarily computable, “succinctness factor” h. The other holds for a much
more limited class of h. Proofs of the former kind of result (e.g., the proof of Theorem 10)
feature counting arguments, and our proofs of the latter kind (e.g,., the proof of Theorem 18)
involve more constructive, recursion theoretic arguments. The latter provide the advantage of
giving us an algorithmic handle on the classes for which we prove existence while the former
do not.

Corollary 9, which is a special case of Theorem 10 and which can be proved using a counting
argument, implies that for any total (noncomputable) function h, there is a beefy collection of
functions C such that there exists a learning machine M1 satisfying the following.

• M1 identifies a 1-error program in the limit for any member of Fin, and

• M1’s final conjecture on any f ∈ C is h-more succinct than the final conjecture of any
machine M on f that identifies in the limit a 0-error program for each member of C.

Theorem 11 shows that, in most cases, the beefy class C in Corollary 9 is not a recursively
enumerable class. Hence, the natural and convenient algorithmic handle of being an r.e. class is
just not available for the classes whose existence we show. We consider, then, a slightly less nat-
ural and convenient algorithmic handle on our classes which is available. Theorem 18 provides
a constructive existence featuring classes about which we have some algorithmic knowledge.
For expository convenience, we discuss here only a special case of this result, Corollary 16. We
first introduce a notation: a 1-extension of a partial computable function ψ is a total function f
such that, for each x in domain of ψ, f(x) = ψ(x) and for each x not in domain of ψ, f(x) = 1.

Corollary 16 shows that, for any limiting recursive h [Sha71, Sho59, Sho71, Soa87]1, from
an index of a program that computes h in the limit, we can algorithmically , find an r.e. index
for a class of partial recursive functions whose 1-extension, C, is beefy and such that there exists
a machine M1 that satisfies the following:

• M1 identifies in the limit a 1-error program for each member of Fin, and

• M1’s final conjecture on each f ∈ C is h-more succinct than the final conjecture of any
machine M on f that identifies in the limit a 0-error program for each member of C.

1Intuitively, limiting-recursive functions are (total) functions computed by programs which do not give correct
output until after some unspecified but finite number of trial outputs. See the formal definition near the end of
Section 2.

2

Unfortunately, as implied by Theorem 17, Corollary 16 does not hold for any arbitrary h.
Finally, an alternative interpretation of the results presented in the present paper is that

there are ‘non trivial’ finite sets for which a ‘slightly’ anomalous decision procedure is arbitrarily
more succinct than an exact decision procedure. Thus, the present paper may be viewed as
containing results about coding finite sets presented learning theoretically.

We now proceed formally.

2 Notation

Recursion-theoretic concepts not explained below are treated in [Rog67]. N denotes the set
of natural numbers, {0, 1, 2, 3, . . .}. N+ denotes the set of positive integers, {1, 2, 3, . . .}. Un-
less otherwise specified, a, e, i, j, k, l, m, n, q, r, s, u, w, x, y, z, with or without decorations
(decorations are subscripts, superscripts and the like), range over N . ∅, ∈,⊆, ⊂, ⊇, ⊃, de-
note empty set, element of, subset, proper subset, superset and proper superset respectively.
A, S, P , with or without decorations, range over sets. D, with or without superscripts, ranges
over finite sets. Fix a canonical indexing D0, D1, . . . of the finite sets [Rog67]. For the ease of
using finite sets as arguments to recursive functions, we identify finite sets with their canonical
indices. For n1 < n2, [n1 . . n2] denotes the set {x | n1 ≤ x ≤ n2}. card(S) denotes the
cardinality of S. max(S) and min(S) denote the maximum and minimum of set S, respectively.
max(S) = ∞, if card(S) is infinite. By convention min(∅) = ∞ and max(∅) = 0.

f , g, h and F , with or without decorations, range over total functions. η and θ, with or
without decorations, range over (possibly) partial functions. R denotes the class of all recursive
functions, i.e., total computable functions with arguments and values from N . For n ∈ N+,
Rn denotes the class of total recursive functions of n variables. C and S range over subsets of
R. For partial functions η and θ, η =a θ means that card({x | η(x) 6= θ(x)}) ≤ a. domain(η)
and range(η) denote domain and range of partial function η.

Suppose that E(x1, . . . , xn) is an expression with x1, . . . , xn as its only free variables. Then
λx1, . . . , xn E(x1, . . . , xn) denotes the function that maps (x1, . . . , xn) to the value E(x1, . . . , xn)
[Chu41, Rog67]. For example, λx x+1 denotes the function that maps x to x+1 and λx, y x+y
denotes the function that maps (x, y) to x+ y.

λx, y 〈x, y〉 denotes a fixed pairing function (a recursive, bijective mapping: N × N →
N) [Rog67]. λx, y 〈x, y〉 and its inverses are useful to simulate the effect of having multiple
argument functions. 〈·, ·〉 can be extended to encoding of multiple arguments in a natural way.

ϕ denotes a fixed acceptable programming system for the partial computable functions:
N → N [Rog58, Rog67, MY78]. ϕi denotes the partial computable function (of one argument)
computed by the i-th program in the ϕ system. Hereinafter program i refers to the i-th program
in the ϕ programming system. We shall speak of programs and numerical names or codes for
programs interchangeably; sometimes these numerical names are referred to as indices. In some
contexts p, range over natural numbers thought of, in those contexts, as programs. In other
contexts p ranges over total functions in which the range of p is thought of as a set of programs.
Occasionally we will write ϕi(x, y) as an abbreviation for ϕi(〈x, y〉). Wi = domain(ϕi). Wi is,
then, the recursively enumerable (r.e.) set accepted by ϕ-program i. Φ denotes an arbitrary
Blum complexity measure associated with acceptable programming system ϕ; such complexity
measures exist for any acceptable programming system [Blu67a, MY78].

3

For any set P ⊆ N , CP denotes the class of partial recursive functions {ϕp | p ∈ P}.
MinProg(f) denotes min({p | ϕp = f}). MinProg i(f) denotes min({p | ϕp =i f}).

χA denotes the characteristic function of A, the function which is 1 on A and 0 off A. Fin
denotes the class of characteristic functions of all finite sets, i.e., Fin = {χA | card(A) < ∞}.
We fix a recursive function Prog such that, for all finite sets D, Prog(D) is a program (in the
ϕ-system) for χD. The s-m-n theorem guarantees the existence of Prog [Rog67].

A total function h is called limiting recursive just in case there exists a g ∈ R2 such that
for each n ∈ N , h(n) = limt→∞ g(n, t).

The quantifiers ‘
∞
∀ ’ and ‘

∞
∃ ’ mean ‘for all but finitely many’ and ‘there exist infinitely many’,

respectively.

3 Preliminaries

A machine that learns a computer program for a computable function from its graph is presented
with initial fragments of the graph. We first formalize the notion of segment.

For m ∈ N , let Nm denote the set {x | x < m}. We define a segment to be a mapping from
Nm, for some m ∈ N , into N . We let SEG denote the set of all segments. We let σ and τ , with
or without decorations, range over SEG. |σ| denotes the length of σ.

For a (partial) function η, which is defined for all x < n, η[n] denotes the finite segment σ,
of length n, such that, for x < n, σ(x) = η(x).

Definition 1 [Gol67] An inductive inference machine (abbreviated: IIM) is an algorithmic
device that computes a mapping from SEG into N .

We let M, with or without decorations, range over inductive inference machines. In Defi-
nitions 3 and 4 below we spell out what, for this paper, it can mean for an inductive inference
machine to (reasonably) successfully learn (in the limit) a program for a recursive function. The
first of those definitions, Definition 3, has to do with a criterion of “perfect” success. The latter
one, Definition 4 has to do with success criteria which permit a bounded number of mistakes.
But, first, in Definition 2, we introduce a technical notion which says what it means for an
inductive inference machine to converge on a function.

Definition 2 [BB75, CS83] Suppose M is an inductive inference machine and f ∈ R. M(f)↓

(read: M(f) converges) ⇐⇒ (∃p)(
∞
∀ n)[M(f [n]) = p]. If M(f)↓, then M(f) is defined = the

unique p such that (
∞
∀ n)[M(f [n]) = p]; otherwise M(f) is said to diverge (written: M(f)↑).

Definition 3 [Gol67, BB75, CS83]
(a) M Ex-identifies f (written: f ∈ Ex(M)) ⇐⇒ (∃p | ϕp = f)[M(f)↓ = p].
(b) Ex = {S ⊆ R | (∃M)[S ⊆ Ex(M)]}.

Definition 4 [CS83] Let a ∈ N .
(a) M Exa-identifies f (written: f ∈ Exa(M)) ⇐⇒ (∃p | ϕp =a f)[M(f)↓ = p].
(b) Exa = {S ⊆ R | (∃M)[S ⊆ Exa(M)]}.

Clearly Ex0 = Ex. The following theorem (Theorem 5) due to Case and Smith [CS83]
describes a strict hierarchy of identification classes based on the number of anomalies allowed
in the final program.

4

Theorem 5 [CS83] Ex0 ⊂ Ex1 ⊂ Ex2 ⊂ · · ·.

Definition 6 [Blu67b, Mey72, MB72, RC86, RC94] A ϕ-program p is h-more succinct than a
ϕ-program q ⇐⇒ h(p) < q, i.e., the “magnification of p by h” is still not as large as q.

In contexts in which one machine M1 in one sense identifies a function f and another
machine M2 in a possibly different sense also identifies f , we sometimes informally speak of M1

identifying f h-more succinctly than M2 ⇐⇒ the final program witnessing the identification
of f by M1 is h-more succinct than the final program witnessing the identification of f by M2.

We next formally record the definition of a beefy class.

Definition 7 C is beefy ⇐⇒ [[C ⊆ Fin] ∧ [(∀D,finite)(∃D
′

,finite | D′ ⊇ D)[χD′ ∈ C]]].

4 Results

Our results featuring the existence of beefy collections of characteristic functions of finite sets
are essentially of two kinds. One kind, provably less constructive than the other, holds for any,
not necessarily computable, “succinctness factor” h. The other holds for a much more limited
class of h. Proofs of the former kind of results feature counting arguments, a simple special case
of which is illustrated in the proof of Proposition 8 below. The possibility of getting at least
some theorems, of the kind found in this paper, by counting arguments was first suggested to
the first author by Dana Angluin. Our proofs of the latter, more constructive results involve
recursion theoretic arguments rather than counting arguments.2

Proposition 8 (K-J Chen, unpublished) Suppose h is any total function. Suppose g is
recursive and e is a program for g. Then there are infinitely many recursive functions f such
that f =1 g and (∀i)[ϕi = f ⇒ i > h(e)].

Proof. Let C = {f ∈ R | f =1 g}. C is the set of all recursive functions which differ from
f at no more than one argument. Clearly, card(C) is ∞. Now, there are only finitely many
programs ≤ h(e). Let S = {f ∈ C | (∃i ≤ h(e))[ϕi = f]}. S is the set of all such functions
f ∈ C for which there is a ϕ-program ≤ h(e). Clearly, card(S) is finite. Thus, card(C −S) is ∞
and (∀f ∈ (C − S))(∀i)[ϕi = f ⇒ i > h(e)].

We present our results in three stages.

1. In Section 4.1, we show that there are beefy classes for which allowing anomalies in the
final program can result in convergence to arbitrarily succinct programs.

2. Section 4.2 looks at the nature of such beefy classes. In particular, it is shown that such
classes cannot be r.e.

3. The above negative result implies that there is no straightforward description (like an
algorithmic enumerator of programs) for functions in these beefy classes. Results in
Section 4.3 are aimed at finding a “partial” description of such beefy classes.

2Our results based on counting arguments could also be obtained by Komogorov complexity arguments [LV93];
however, our more constructive results, which provide an algorithmic handle on the classes whose existence we
prove, likely cannot.

5

4.1 Nonconstructive succinctness results

Theorem 10 is our first result showing the succinctness advantage of allowing anomalies in
the final program. For ease of discussion, we first present a special case of Theorem 10. This
result, Corollary 9, says that, for any total function h, there exists a beefy C such that there is a
machine M1 that Ex1-identifies Fin, the entire class of characteristic function of finite sets, and
M1 Ex1-identifies each function in C h-more succinctly than any machine that Ex-identifies
each function in C. Of course, the entire class of characteristic functions of finite sets is trivially
Ex-identifiable. The point of Corollary 9 is that even in cases where one does not have to allow
a possible anomaly in the final program to achieve success [CS83], allowing a possible anomaly
can, nonetheless, considerably cut down on the size of the final programs inferred! Beefiness is
important because, then, one anomaly is not so serious: if the sets were, for example, singletons,
a program with one anomaly to decide them might be totally useless.

Corollary 9 (∀ total h)(∃ a beefy C)(∃M1)[Fin ⊆ Ex1(M1) ∧ (∀M | C ⊆ Ex(M))(∀f ∈
C)[M(f) > h(M1(f))]].

We now discuss the general result.
Suppose h is any arbitrary total function and n ∈ N . A general question, then, would

be whether there exists a beefy C and n machines M1,M2, . . . ,Mn such that, for 1 ≤ k ≤ n,
machine Mk Exk-identifies Fin, and for any k < n, machine Mk+1 Exk+1-identifies each f ∈ C,
h-more succinctly than any machine that Exk-identifies each f ∈ C. It turns out, thanks to
Theorem 10 just below, that such is the case.

Theorem 10 (∀ total h)(∀n)(∃ a beefy C)(∃M1,M2, . . . ,Mn) [(∀k | 1 ≤ k ≤ n)[Fin ⊆
Exk(Mk)] ∧ (∀f ∈ C)(∀k < n)[MinProgk(f) > h(Mk+1(f))]].

Proof. First we describe machine Mj , 1 ≤ j ≤ n.
begin {Mj}
on input σ:

let D = {x | σ(x) 6= 0};
if card(D) < j then

let S = D

else
let S be the set consisting of j largest elements in D

endif ;
output Prog(D − S)

end {Mj}
It is easy to verify that, for 1 ≤ j ≤ n, Mj Exj-identifies Fin.
For each i ∈ N , we now define fi, a characteristic function of a finite set. For each i ∈

N , let Si denote the finite set [0 . . i]. To facilitate the description of fi, we introduce n

numbers ai,1, ai,2, . . . , ai,n defined as follows. We select ai,r’s in sequence as follows: for r ≤ n,
suppose ai,1, . . . , ai,r−1 have already been selected. We chose ai,r to be the least number, a,
greater than max(Si ∪ {ai,x | x < r}) such that each partial function computed by a program
≤ h(Prog(Si ∪ {ai,x | x < r})) is either, non 0 for infinitely many inputs, or, is 0 for all inputs
≥ a.

6

Formally, for 1 ≤ r ≤ n, ai,r = min({a > max(Si ∪ {ai,l | 1 ≤ l < r}) | (∀w ≤ h(Prog(Si ∪
{ai,l | 1 ≤ l < r})))[[card(y | ϕw(y) 6= 0) = ∞] ∨ [(∀z ≥ a)[ϕw(z) = 0]]]}).

Let fi = χ(Si∪{ai,l|1≤l≤n}). We take C = {fi | i ∈ N}. It is easy to verify that C is beefy and

(∀f ∈ C)(∀k < n)[MinProgk(f) > h(Mk+1(f))].

4.2 Beefy classes witnessing succinctness are not r.e.

A natural question is to investigate the nature of the candidate beefy classes witnessing suc-
cinctness results in the previous section. In particular, it would be nice if we could have an
algorithmic handle on them. Unfortunately, it turns out that the candidate class C in Theo-
rem 10 above, in many cases, is not a recursively enumerable class [Rog67]: Theorem 11 implies
that there exists a recursive, monotone increasing, function h such that, for all beefy recursively
enumerable classes C, there is a machine M that Ex-identifies C and, for infinitely many f in
C, the final program output on f by any machine that Ex1-identifies C is not h-more succinct
than M(f).

Theorem 11 (∃ a recursive, monotone increasing function h)(∀ beefy r.e. classes

C)(∃M)[[Fin ⊆ Ex(M)] ∧ (
∞
∃ f ∈ C)[M(f) ≤ h(MinProg1(f))]].

Theorem 11 follows from Lemmas 13 and 14. We first introduce a technical notion.

Definition 12 A set of programs P is called 2-discrete ⇐⇒ (∀i, j ∈ P | i 6= j)[card({x |
ϕi(x) 6= ϕj(x)}) > 2].

Lemma 13 For each k ∈ N such that CWk
is beefy, we can algorithmically find a k′ satisfying

the following three conditions:
(a) Wk′ ⊆Wk;
(b) CWk′

is beefy;
(c) Wk′ is 2-discrete;

(d) (∀x)(
∞
∀ j ∈Wk′)[ϕj(x) = 1].

Proof. We give an informal description for enumerating Wk′ from an enumeration of Wk.

Let W s
k′ denote the finite subset of Wk′ enumerated before Stage s. Thus W 0

k′ = ∅. Go to
Stage 0;
begin {Stage s}

Search for a j ∈Wk such that [0 . . s] ⊆ {x | ϕj(x) = 1} and, for all l ∈W s
k′ ,

card({x | ϕj(x)↓ 6= ϕl(x)↓}) > 2.
If and when such a j is found enumerate j in Wk′ . Go to Stage s+ 1.

end {Stage s}
It is easy to verify that the above construction for the enumeration of Wk′ satisfies the

lemma.

Lemma 14 (∃h ∈ R)(∀j | Wj is 2-discrete, CWj
is beefy and (∀x)(

∞
∀ l ∈ Wj)[ϕl(x) =

1])(∃M)[[Fin ⊆ Ex(M)] ∧ (
∞
∃ f ∈ CWj

)[M(f) ≤ h(MinProg1(f))]].

7

Proof. Below by implicit use of a suitably padded version of the s-m-n theorem, we define an
infinite sequence of ϕ-programs {p(i) | i ∈ N}, such that p is a recursive, strictly increasing
function, but first we show how to define h in terms of p.

We divide the collection of ϕ-programs {p(i) | i > 0} into groups. The m-th group consists
of m+ 2 programs. The 0-th group is {p(0), p(1)}. The 1-st group is {p(2), p(3), p(4)} and so

on. Formally, for m ∈ N , the m-th group is {p(k + m·(m+3)
2) | k < m+ 2}.

We define h in such a way that, for m ∈ N , h(m) is greater than the largest index in the

m-th group. This is achieved by setting, for each m, h(m) = p((m+1)·(m+4)
2).

We assume without loss of generality that the pairing function 〈·, ·〉 is such that
(∀j, k)[〈j, k〉 < 〈j, k + 1〉].

For all k, j, l ∈ N such that k < 〈j, l〉 + 2, we let

F (k, j, l) = p(k +
〈j, l〉 · (〈j, l〉 + 3)

2
).

Then F (k, j, l) denotes the k-th program in the 〈j, l〉-th group of programs mentioned above.
Groups numbered 〈j, l〉, l ∈ N , will be used to handle Wj. Clearly, from any j, we can uniformly
algorithmically create a 1-1 enumeration of Wj. Do so in a fixed way. ϕF (k,j,l) is defined to be

the (partial) function computed by the (
∑r=l−1

r=0 (〈j, r〉 + 2) + k)-th program in the 1-1 listing
of Wj if such a program exists; otherwise, ϕF (k,j,l) is undefined on all inputs. For j satisfying
the hypothesis of Lemma 14, for l ∈ N , the purpose of 〈j, l〉-th group is to contain at least
one program for a characteristic function in CWj

which is not computed by any program in the
〈j, r〉-th groups, r < l, such that this new characteristic function can be succinctly and exactly
identified.

If Wj is 2-discrete and CWj
is beefy, then functions in

⋃

r∈N

⋃

k≤〈j,r〉+1{ϕF (k,j,r)} are pairwise
different from each other at more than 2 arguments. Hence, in this case, for each r ∈ N , there
exists a k < 〈j, r〉 + 2, such that MinProg1(ϕF (k,j,r)) > 〈j, r〉 and h(〈j, r〉) > F (k, j, r).

Suppose j is as described in the hypothesis of Lemma 14. Then, for each i such that

p(i) ∈
⋃

r∈N

⋃

k≤〈j,r〉+1

{F (k, j, r)}, (1)

we have that ϕp(i) ∈ Fin. We give below the description of a machine M which Ex-identifies
Fin in such a way that, for all i satisfying (1) above, M converges to p(i) on input ϕp(i). Such
an M clearly witnesses the claim of Lemma 14.

begin {M}
on input f [n]:

let gi denote the function computed by the i-th program in the fixed 1-1 algorithmic
enumeration of Wj;

if (∃i < n)(∀x < n)[gi(x) = f(x)]
then
output F (k, j, l), where l = max({m | [

∑r=m−1
r=0 (〈j, r〉 + 2) ≤ i]})

and k = i−
∑r=l−1

r=0 (〈j, r〉 + 2)
else
output Prog({x < n | f(x) = 1})

8

endif
end {M}

It is easy to verify that M behaves as in the claim of Lemma 14.

4.3 Attempts at constructivity

One of our central concerns is constructivity for the classes of characteristic functions of finite
sets for which allowing anomalies results in identification by strictly more succinct programs.
We discuss our motivation for this concern.

The main result of the previous section implies that the beefy classes witnessing succinctness
results may not be r.e. If these classes were r.e. then we could hope for a “good” algorithmic
descriptor of the classes, that is, we could have a computer program that enumerated a program
for each member of the class. In the event of such a descriptor not being possible, we attempt
to find an alternative, if not as good, descriptor.

To this end, we introduce the following notion.

Definition 15 For P ⊆ N , we define C1(P) = {f | (∃j ∈ P)(∀x)[[ϕj(x)↓ ⇒ f(x) = ϕj(x)] ∧
[ϕj(x)↑ ⇒ f(x) = 1]]}. We say that C1(P) is 1-extension of the class of partial recursive
functions CP .

To understand the above definition, let P ⊆ N be given. Recall that CP denotes the collection
of partial recursive functions η such that P contains an index for η. 1-extension of a partial
recursive function θ is a total function that agrees with θ on those arguments on which θ is
defined, and is 1 on those arguments on which θ is undefined. Then, C1(P) is essentially the
collection of 1-extensions of partial recursive functions in CP .

Here is what we are able to say about the description of some of the beefy classes witnessing
succinctness results in this paper. If the succinctness factor is limiting recursive, then

• these beefy classes can be shown to be 1-extension of an r.e. class of partial recursive
functions;

• and one can algorithmically find an acceptor (or, equivalently a generator) for the r.e.
class from a program that computes the succinctness factor in the limit.

Somewhat more precisely, Corollary 16 (to Theorem 18) just below implies that, for any
limiting recursive h [Sha71, Sho59, Sho71, Soa87], from an index, i, of a program that computes
h in the limit, we can algorithmically , via a recursive function g, find an r.e. index g(i) for a class
of partial recursive functions whose 1-extension C1(Wg(i)) is beefy and there exists a machine

M1 that Ex1-identifies Fin and M1 Ex1-identifies each f ∈ C1(Wg(i)) h-more succinctly than
any machine that Ex-identifies C1(Wg(i)).

Corollary 16 (∃g ∈ R)(∀i, h | h = λx. lims→∞ ϕi(x, s) is total)[[C1(Wg(i)) is beefy] ∧

(∃M1)[Fin ⊆ Ex1(M1) ∧ (∀f ∈ C1(Wg(i)))[MinProg(f) > h(M1(f))]]].

9

A proof of Corollary 16 can be obtained by a moving anomaly marker construction and
is a special case of the general version, Theorem 18, presented later in the section. Such
constructions were first employed in [CS83].

However, before we present the general case of the result, it is worth noting that for arbitrary
total function h, there need not be an r.e. index for a class of partial recursive functions whose
1-extension is beefy and for which allowing one anomaly results in more succinct identification.
This is implied by the next theorem.

Theorem 17 (∀n)(∃ total h)(∀j)[C1(Wj) is beefy ⇒ (∃f ∈ C1(Wj))[MinProg(f) ≤
h(MinProgn(f))]].

Proof. Fix n. To facilitate the definition of h, we first introduce, for each i ∈ N , mi. If there
exists a recursive function g ∈ C1(Wi) such that MinProgn(g) > i, then mi = MinProg(g);
mi = 0 otherwise. We now define h:

h(i) =

{

m0, if i = 0;
1 + max({mi, h(i− 1)}), otherwise.

It is easy to see that h is increasing and, for some j, if C1(Wj) is beefy, then there exists a
g ∈ C1(Wj) such that MinProgn(g) > j.

We now show that, for each j such that C1(Wj) is beefy, there exists an f ∈ C1(Wj) such
that MinProg(f) ≤ h(MinProgn(f)). We take f = ϕmj

. Clearly, mj = MinProg(f) ≤ h(j).
But, since h is an increasing function and j < MinProgn(f), we have that MinProg(f) ≤
h(MinProgn(f)).

A straightforward Tarski-Kuratowski [Rog67] quantifier analysis of our construction in the
proof of Theorem 17 just above yields that the h presented there can be represented as three
iterated limits of a computable function. We suspect, but did not check that a modified con-
struction (if not the one given) would yield an h representable as two iterated limits of a
computable function.

We now present the general result from which Corollary 16 follows. This theorem presented
next shows that given a limiting recursive h, for any n ∈ N and an index, i, of a program which
computes h in the limit, we can algorithmically obtain, via a recursive function g, an r.e. index
g(i, n) for a class of partial recursive functions whose 1-extension is beefy and there exist n
machines M1,M2, . . . ,Mn such that for 1 ≤ k ≤ n, machine Mk Exk-identifies Fin, and for
any k < n, machine Mk+1 Exk+1-identifies each f ∈ C1(Wg(i,n)) h-more succinctly than any

machine that Exk-identifies each f ∈ C1(Wg(i,n)).

Theorem 18 (∃g ∈ R2)(∀n > 0)(∀i, h | h = λx. lims→∞ ϕi(x, s) is total)[[C1(Wg(i,n)) is

beefy] ∧ [(∃ M1,M2, . . . ,Mn)[(∀k | 1 ≤ k ≤ n)[Fin ⊆ Exk(Mk)] ∧ (∀f ∈ C1(Wg(i,n)))(∀k <
n)[MinProgk(f) > h(Mk+1(f))]]]].

Proof. Suppose i and n are given. By the s-m-n theorem [Rog67], we will construct a recursive
function p. It will be easy to see that, a program for p can be found algorithmically in i, n. We
define Wg(i,n) = {p(j) | j ∈ N}.

For 1 ≤ j ≤ n, let Mj be the machine described in the proof of Theorem 10. These same
machines serve our purpose in the present proof. Note that machine Mj Exj-identifies Fin.

10

For k ∈ N , we give, below, an informal description of program p(k). According to our
construction, ϕp(k) will converge on all except n arguments. We will define ϕp(k) in stages.

begin {Definition of ϕp(k)}
begin {Initialization}

1: for x ≤ k, let ϕp(k)(x) = 1;
{Note that this ensures that the class of functions C1(Wg(i,n)) is beefy.}

2: for 1 ≤ j ≤ n, let aj = k + j;
{We will use aj as moving markers. We will argue in Claim 19 that the aj ’s
eventually reach final values. These final aj ’s will be the only points at which
ϕp(k) is undefined.}

3: let y = k + n+ 1;
4: for all r ∈ N , let Injure(r) = 0;

{To facilitate seeing that this initialization of each Injure(r) preserves al-
gorithmicity, we note that, clearly, each individual initialization could be
carried out instead just before its first use.}

5: go to Stage 0;
end {Initialization}

begin {Stage s}
6: if there exist j and r such that the following hold:

6.1: j < n;
6.2: r ≤ ϕi(Prog([0 . . k] ∪ {al | 1 ≤ l ≤ j}), s);
6.3: Injure(r) < n;
6.4: ϕr(am)↓ = 1, for some m > j, and in at most s steps

then
6.5: let j and r be one such pair;
6.6: let Injure(r) = Injure(r) + 1;
6.7: for aj+1 ≤ x ≤ y, let ϕp(k)(x) = 0;
6.8: for j < m ≤ n, let am = y +m− j;
6.9: let y = y + n− j + 1

else
6.10: let ϕp(k)(y) = 0;
6.11: let y = y + 1

endif ;
7: go to Stage s+ 1

end {Stage s}
end {Definition of ϕp(k) }

As mentioned before, we let Wg(i,n) = {p(j) | j ∈ N}. Note that an index for p can be
algorithmically obtained from i and n.

For the rest of the proof we suppose i and n satisfy the hypotheses of Theorem 18. The
theorem follows from Claims 19, 20, and 21 below.

Claim 19 (∀k)(∀l | 1 ≤ l ≤ n)[al reaches a final value for program p(k)].

11

Proof. We give a proof by induction. We begin by showing that a1 reaches a final value. Let
s1 be the least Stage in program p(k) such that the following two conditions hold:

(1) (∀s ≥ s1)[ϕi(Prog([0 . . k]), s) = ϕi(Prog([0 . . k]), s1)];
(2) (∀r ≤ ϕi(Prog([0 . . k]), s1))[Injure(r) has reached its maximum value].
Clearly, such an s1 exists because ϕi is limiting recursive and condition 6.3 in the description

of program p(k) guarantees that, for no r ∈ N , does Injure(r) become greater than n. Now,
the only way in which a1 can move after Stage s1 is by selection of j = 0 and some r ≤
ϕi(Prog([0 . . k]), s) in step 6 of program p(k). But, such a situation would cause the value
of Injure(r) to increase contradicting the fact that Injure(r) has already reached its maximum
value.

Now, suppose, by induction, that for some m < n, a1, a2, . . . , am reach a final value. Using
an argument similar to the a1 case, we can show, from the induction hypothesis, that am+1

reaches a final value. 2

For the rest of the proof we take a1, a2, . . . , an to be their final values.

Claim 20 For each k ∈ N ,

ϕp(k)(x) =

1, if x ≤ k;
↑, if x ∈ {a1, a2, · · · , an};
0, otherwise.

Proof. Clear from the construction of program p(k). 2

Claim 21 (∀k)(∀j < n)(∀r ≤ lims→∞ ϕi(Prog([0 . . k]∪{am | m ≤ j}), s))[ϕ-program r makes
at least n− j errors in computing χ([0 . . k]∪{am|m≤n})].

Proof. If the final value of Injure(r) is ≥ n − j, we are done because then ϕ-program r

explicitly makes n − j errors computing χ([0 . . k]∪{am|m≤n}). Therefore, we suppose the final
value of Injure(r) is < n − j. Now, for each n − j markers aj+1, aj+2, . . . , an, ϕ-program r

does not converge to 1. But χ([0 . . k]∪{am|m≤n})(x) = 1 for x ∈ {aj+1, aj+2, . . . , an}. The claim
follows. 2

This completes the proof of Theorem 18. Of course, because of Theorem 17, we cannot
obtain such results for completely arbitrary h.

We considered beefy collections to ensure that our results were true for nontrivial classes.
Finally, we would like to note that our results can also be shown to hold for a slightly modified
notion of beefiness in which we require that for each pair of disjoint finite sets D′ and D′′, the
class C contain the characteristic function of a finite set D such that D′ ⊆ D and D′′ ⊆ D.
This notion is introduced below.

Definition 22 C is strongly beefy ⇐⇒ [[C ⊆ Fin] ∧ [(∀D′,D′′ finite | D′ ∩ D′′ =
∅)(∃D finite)[D′ ⊆ D ∧ D′′ ⊆ D ∧ χD ∈ C]]].

It is straightforward to show that analogs of Theorems 10 and 18 hold for strongly beefy
classes.

12

5 Acknowledgements

The research was supported in part by NSF grant CCR 832-0136 at the University of Rochester,
NSF grant CCR 871-3846 at the University at Delaware, a grant from the Siemen’s Corporation
at MIT, and an Australian Research Council grant at UNSW. We would also like to express our
gratitude to Professor S. N. Maheshwari of IIT, Delhi for making the facilities of his department
available to us. Finally, we would like to thank the referees for many helpful suggestions.

References

[BB75] L. Blum and M. Blum. Toward a mathematical theory of inductive inference. Infor-
mation and Control, 28:125–155, 1975.

[Blu67a] M. Blum. A machine independent theory of the complexity of recursive functions.
Journal of the ACM, 14:322–336, 1967.

[Blu67b] M. Blum. On the size of machines. Information and Control, 11:257–265, 1967.

[Che81] K. Chen. Tradeoffs in Machine Inductive Inference. PhD thesis, SUNY at Buffalo,
1981.

[Che82] K. Chen. Tradeoffs in inductive inference of nearly minimal sized programs. Infor-
mation and Control, 52:68–86, 1982.

[Chu41] A. Church. The Calculi of Lambda Conversion. Princeton Univ. Press, 1941.

[CJS94] J. Case, S. Jain, and M. Suraj. Not-so-nearly-minimal-size program inference. Tech-
nical Report 94-25, University of Delaware, Newark, Delaware, 1994.

[CJS95] J. Case, S. Jain, and A. Sharma. Complexity issues for vacillatory function identifi-
cation. Information and Computation, 116(2):174–192, February 1995.

[CS83] J. Case and C. Smith. Comparison of identification criteria for machine inductive
inference. Theoretical Computer Science, 25:193–220, 1983.

[FJ94] M. A. Fulk and S. Jain. Approximate inference and scientific method. Information
and Computation, 114(2):179–191, November 1994.

[FK77] R. Freivalds and E. B. Kinber. Limit identification of minimal Gödel numbers. Theory
of Algorithms and Programs 3;Riga 1977, pages 3–34, 1977.

[Fre75] R. Freivalds. Minimal Gödel numbers and their identification in the limit. Lecture
Notes in Computer Science, 32:219–225, 1975.

[Gol67] E. M. Gold. Language identification in the limit. Information and Control, 10:447–
474, 1967.

[JS94] S. Jain and A. Sharma. Program size restrictions in computational learning. Theo-
retical Computer Science A, 127(2):351–386, May 1994.

13

[Kin83] E. B. Kinber. A note on limit identification of c-minimal indices. Electronische
Informationverarbeitung und Kybernetik, 19:459–463, 1983.

[LV93] M. Li and P. Vitányi. An Introduction to Kolmogorov Complexity and Its Applications.
Texts and Monographs in Computer Science. Springer-Verlag, 1993.

[MB72] A. Meyer and A. Bagchi. Program size and economy of description. In Symposium
on the Theory of Computation, 1972.

[Mey72] A. Meyer. Program size in restricted programming languages. Information and Con-
trol, 21:382–394, 1972.

[MY78] M. Machtey and P. Young. An Introduction to the General Theory of Algorithms.
North Holland, New York, 1978.

[RC86] J. Royer and J. Case. Progressions of relatively succinct programs in subrecursive
hierarchies. Technical Report 86-007, Computer Science Department, University of
Chicago, 1986.

[RC94] J. Royer and J. Case. Subrecursive Programming Systems: Complexity and Succinct-
ness. Progress in Theoretical Computer Science. Birkhäuser Boston, 1994.

[Rog58] H. Rogers. Gödel numberings of partial recursive functions. Journal of Symbolic Logic,
23:331–341, 1958.

[Rog67] H. Rogers. Theory of Recursive Functions and Effective Computability. McGraw Hill,
New York, 1967. Reprinted, MIT Press 1987.

[Roy86] J. Royer. Inductive inference of approximations. Information and Control, 70:156–178,
1986.

[Sha71] N. Shapiro. Review of “Limiting recursion” by E.M. Gold and “Trial and error predi-
cates and the solution to a problem of Mostowski” by H. Putnam. Journal of Symbolic
Logic, 36:342, 1971.

[Sho59] J. Shoenfield. On degrees of unsolvability. Annals of Mathematics, 69:644–653, 1959.

[Sho71] J. Shoenfield. Degrees of Unsolvability. North-Holland, 1971.

[Soa87] R. Soare. Recursively Enumerable Sets and Degrees. Springer-Verlag, 1987.

14

