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Abstract

Overgeneralization is a major issue in the identification of grammars for formal
languages from positive data. Different formulations of generalization and special-
ization strategies have been proposed to address this problem, and recently there
has been a flurry of activity investigating such strategies in the context of indexed
families of recursive languages.

The present paper studies the power of these strategies to learn recursively enu-
merable languages from positive data. In particular, the power of strong-monotonic,
monotonic, and weak-monotonic (together with their dual notions modeling spe-
cialization) strategies are investigated for identification of r.e. languages. These
investigations turn out to be different from the previous investigations on learning
indexed families of recursive languages and at times require new proof techniques.

A complete picture is provided for the relative power of each of the strategies
considered. An interesting consequence is that the power of weak-monotonic strate-
gies is equivalent to that of conservative strategies. This result parallels the scenario
for indexed classes of recursive languages. It is also shown that any identifiable col-
lection of r.e. languages can also be identified by a strategy that exhibits the dual of
weak-monotonic property. An immediate consequence of the proof of this result is
that if attention is restricted to infinite r.e. languages, then conservative strategies
can identify every identifiable collection.
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1 Introduction

Consider the identification of formal languages from positive data. A machine is fed all
the strings and no nonstrings of a language L, in any order, one string at a time. The
machine, as it is receiving strings of L, outputs a sequence of grammars. The machine is
said to identify L just in case the sequence of grammars converges to a grammar for L.
This is essentially the paradigm of identification in the limit introduced by Gold [Gol67].

Since only strings belonging to the language are available, if a learning machine
conjectures a grammar for some superset of the target language, it may not be “rational”
for the machine to revise this conjecture as data about the complement of the language
is not available. This is the problem of overgeneralization in learning formal languages
from positive data.

The notion of monotonic strategies has been proposed to model learning heuristics
that gradually refine their hypotheses. Learning machines following these strategies be-
have in such a way that their successive conjectures are an “improvement” on their
previous conjectures. These strategies can be grouped into the following two classes:

Generalization Strategies These strategies model learners that begin by hypothesiz-
ing a grammar for a language smaller than the target language and then build to the
target language. These strategies may also be thought of as modeling bottom-up
or specific to general search in practical machine learning systems (e.g., Muggleton
and Feng’s Golem [MF90]).

Specialization Strategies Generalization strategies improve upon their successive con-
jectures by emitting grammars for larger and larger languages. Alternatively, a
learner can begin with a grammar for a language larger than the target language
and then “cut down” its hypotheses to converge to a grammar for the target lan-
guage. Such strategies may be thought of as modeling top-down or general to
specific search in practical machine learning systems (e.g., Shapiro’s MIS [Sha81]
and Quinlan’s FOIL [Qui90]).

Recently there has been a flurry of results describing the power of these strategies
for identifying indexed families of recursive languages (see Lange and Zeugmann [LZ92b,
LZ93b, LZ93a, LZ93c, LZ92a], Lange, Zeugmann, and Kapur [LZK92, LZK96], and Ka-
pur [Kap92, Kap93], Kapur and Bilardi [KB92], Kinber [Kin94], Mukouchi [Muk92a,
Muk92b], and Mukouchi and Arikawa [MA93]).

The present paper studies and presents a complete picture of the power of these
strategies to identify r.e. languages. To facilitate the discussion of these notions and
results, we introduce some notation next.

The symbol ϕ denotes an acceptable programming system, and ϕi denotes the partial
computable function computed by the program with index i in the ϕ system. The lan-
guage accepted by the ϕ-program with the index i is denoted Wi. Hence, W0, W1, W2, . . .
is an enumeration of all the recursively enumerable languages, and i may be thought of
as a grammar (acceptor) for the r.e. language Wi. A text for an r.e. language L is an
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infinite sequence of numbers such that each element of L appears at least once in the
sequence and no nonelement of L ever appears in the sequence.

The three generalization strategies investigated in the literature are discussed next.
Jantke [Jan91] proposed the notion of strong monotonic strategies that upon being

fed a text for the language output a chain of hypotheses such that if grammar j is output
after grammar i, then Wi ⊆ Wj. The consequence of this requirement is that if a learner
incorrectly assumes a string to belong to the language being learned then it cannot revise
this assumption by emitting a hypothesis that does not include the string.

Wiehagen [Wie90] suggested that the requirement of strong monotonicity is too strin-
gent and proposed the notion of monotonic strategies to be those learners that produce
more general hypotheses only with respect to the language being identified. More pre-
cisely, if grammar j is conjectured after grammar i, then L ∩ Wi ⊆ L ∩ Wj. In other
words, a monotonic strategy is allowed to correct its mistaken assumption that certain
nonstrings of L belong to L but once it has correctly concluded that a string of L belongs
to L it is not allowed to output a hypothesis that contradicts such a conclusion.

Jantke [Jan91], motivated by the work on non-monotonic logics, introduced the notion
of weak-monotonic strategies to be such that if grammar j is conjectured after grammar
i and the set of strings seen by the machine when grammar j is conjectured is a subset
of Wi, then Wi ⊆ Wj. In other words, a weak monotonic learner can expel strings from
its hypothesis only if it encounters strings that cannot be accounted for by its current
hypothesis.

Kapur [Kap92], with a view to model specialization strategies, considered the dual
of the above three strategies. The above mentioned papers by Kapur, Lange, and Zeug-
mann have completely derived the relationship between these strategies in the context
of identification of indexed families of recursive languages. The present paper does the
same for recursively enumerable languages.

Work on these strategies can be traced back to the notion of conservative strategies
introduced by Angluin [Ang80]. Conservative strategies are such that they do not change
their hypotheses unless they encounter a string that cannot be explained by the current
hypothesis. Lange and Zeugmann [LZ93b] have shown that in the context of learning
indexed families of recursive languages, weak monotonic and conservative strategies have
equivalent power. Using new techniques we are able to show that this equivalence also
holds for learning recursively enumerable languages.

Another interesting result is that any identifiable collection of r.e. languages can also
be identified by a strategy satisfying the dual of weak-monotonicity requirement. We
would like to note that this relationship also holds in the context of indexed families of
recursive languages if one considers class comprising strategies (see Lange, Zeugmann,
and Kapur [LZK96]). However, new proof techniques are needed to establish the result
for r.e. languages. Additionally, as a consequence of the proof of this result, we are able
to show that if attention is restricted to only infinite r.e. languages, then conservative
strategies can identify every identifiable collection.

We now give an example where the situation for indexed families of recursive languages
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is different from that of r.e. languages. The collection of indexed families of recursive
languages identified by class comprising monotonic strategies is a strict subset of the
collection of indexed families of recursive languages identified by class comprising weak-
monotonic strategies. However, in the context of r.e. languages, the two collections are
incomparable.

The results presented in the paper yield the complete relationship between strong
monotonic, monotonic, weak-monotonic, dual-strong monotonic, dual-monotonic, dual-
weak-monotonic, and conservative strategies in the context of identification of r.e. lan-
guages.

In what follows we proceed formally. Section 2 introduces the notation and prelimi-
nary notions from language learning theory. Section 3 contains the definition of all the
strategies considered in the present paper. Results are presented in Section 4, where the
relationship between all the strategies is first pictorially summarized in Figure 1.

2 Preliminaries

2.1 Notation

Any unexplained recursion theoretic notation is from [Rog67]. The symbol N denotes the
set of natural numbers, {0, 1, 2, 3, . . .}. Unless otherwise specified, i, j, k, l, m, n, q, r, s, t,
x, and y, with or without decorations1, range over N . Symbols ∅, ⊆, ⊂, ⊇, and ⊃ denote
empty set, subset, proper subset, superset, and proper superset, respectively. Symbols
A and S, with or without decorations, range over sets. A denotes the complement of set
A. D, P, Q, with or without decorations, range over finite sets. Cardinality of a set S is
denoted by card(S). The maximum and minimum of a set are denoted by max(·), min(·),
respectively, where max(∅) = 0 and min(∅) is undefined.

〈·, ·〉 denotes an arbitrary, computable, bijective mapping from N×N onto N [Rog67].
By ϕ we denote a fixed acceptable programming system for the partial computable

functions: N → N [Rog58, Rog67, MY78]. By ϕi we denote the partial computable
function computed by the program with index i in the ϕ-system. Symbol R denotes
the set of all total computable functions. By Φ we denote an arbitrary fixed Blum
complexity measure [Blu67, HU79] for the ϕ-system. By Wi we denote the domain of
the partial computable function ϕi. Wi is, then, the r.e. set/language (⊆ N) accepted
(or equivalently, generated) by the ϕ-program i. L, with or without decorations, ranges
over languages, that is, subsets of N . L, with or without decorations, ranges over sets
of languages. E denotes the set of all r.e. languages. We denote by Wi,s the set {x | x <
s ∧ Φi(x) < s}.

1Decorations are subscripts, superscripts and the like.
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2.2 Language Learning

A sequence σ is a mapping from an initial segment of N into (N ∪ {#}). The content
of a sequence σ, denoted content(σ), is the set of natural numbers in the range of σ.
Intuitively, #’s represent pauses in the presentation of data. The length of σ is denoted
by |σ|; the length of the empty sequence is 0. For n ≤ |σ|, the initial sequence of σ of
length n is denoted by σ[n]. We let σ, τ , and γ, with or without decorations, range over
finite sequences. SEQ denotes the set of all finite sequences.

Definition 1 A language learning machine, M, is an algorithmic device which computes
a mapping from SEQ into N ∪ {⊥} such that if σ ⊆ τ and M(σ) 6= ⊥ then M(τ) 6= ⊥.

The symbol ⊥ denotes a nonnumeric element. The output of machine M on evidential
state σ is denoted by M(σ), where “M(σ) = ⊥” means that M does not issue any
hypothesis on σ. The reader should note the further requirement that once a machine
M on evidential state σ outputs a program (that is, M(σ) 6= ⊥), M continues to do
so on all extensions of σ. The reader should also note that this additional requirement
does not affect the collections of languages identified by the strategies introduced in the
present paper.

We let M, with or without superscripts, range over language learning machines.
(M0,M1,M2, . . . represents a special enumeration of of machines; see Proposition 5 be-
low.)

A text T for a language L is a mapping from N into (N ∪{#}) such that L is the set
of natural numbers in the range of T . The content of a text T , denoted content(T ), is
the set of natural numbers in the range of T . T [n] denotes the finite initial sequence of
T with length n. We next introduce Gold’s seminal notion of identification in the limit
of r.e. languages.

We say that M converges on text T to i (written M(T )↓ = i) if (
∞
∀ n)[M(T [n]) = i].

We say that M converges on text T (written M(T )↓) if there exists an i, such that M
on T converges to i; otherwise we say that M diverges on T (written M(T )↑).

Definition 2 [Gol67]

(a) M TxtEx-identifies L (written: L ∈ TxtEx(M)) ⇐⇒ (∀ texts T for L) (∃i |
Wi = L) (

∞
∀ n)[M(T [n]) = i].

(b) TxtEx = {L | (∃M)[L ⊆ TxtEx(M)]}.

Some of our proofs depend on the notion of locking sequences which we describe next.

Definition 3 [BB75, Ful90] Let M be a learning machine and L ⊆ N .

(a) A sequence σ is said to be a stabilizing sequence for M on L just in case content(σ) ⊆
L and (∀τ | σ ⊆ τ ∧ content(τ) ⊆ L)[M(τ) = M(σ)].
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(b) A sequence σ is said to be a locking sequence for M on L just in case σ is a
stabilizing sequence for M on L and WM(σ) = L.

Following two lemmas are also used in some of our proofs.

Lemma 1 [BB75, OSW82] If M TxtEx-identifies L, then there exists a locking se-
quence for M on L.

Lemma 2 [Ful90] From any learning machine M one may effectively construct M′ such
that the following hold:

(a) TxtEx(M) ⊆ TxtEx(M′).

(b) If L ∈ TxtEx(M′), then all texts for L contain a locking sequence for M′ on L.

We also compare the power of strategies discussed in the present paper with a re-
stricted version of identification in the limit in which a learning machine is allowed to
make only one conjecture which is required to be correct. This criterion of success is
referred to as finite identification and was also considered by Gold [Gol67].

Definition 4 [Gol67]

(a) M TxtFin-identifies L (written: L ∈ TxtFin(M)) ⇐⇒ (∀ texts T for L)
(∃i | Wi = L) (∃n0)[(∀n ≥ n0)[M(T [n]) = i] ∧ (∀n < n0)[M(T [n]) = ⊥]].

(b) TxtFin = {L | (∃M)[L ⊆ TxtFin(M)]}.

3 Generalization and Specialization Strategies

Before we consider the three generalization and the three specialization strategies de-
scribed in the introductory section, we discuss a technical point first.

In many cases, the effect of a strategy may be dependent on the scope of the con-
straints embodied in the strategy. We illustrate this issue and the notation about strate-
gies with the help of an example.

Consider the constraint on learners that requires them to conjecture hypotheses con-
sistent with the data. Formally, learners satisfying this requirement have the property
that on sequence σ, they output the grammar of a language that contains content(σ).
This requirement can be applied in two different ways, each application rendering possibly
different collections of languages identifiable. These applications are:

(a) Global consistency: A collection of languages L is identifiable by a globally consis-
tent learner just in case there exists an M that is consistent on all σ ∈ SEQ and
M identifies L.
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(b) Class consistency: A collection of languages L is identifiable by a class consistent
learner just in case there exists an M that is consistent on all sequences, σ, drawn
from languages in L and M identifies L.

Wiehagen and Leipe [WL76] have shown that the above two notions of consistency are
not equivalent.

3.1 Generalization Strategies

Taking into account the above discussion, we consider two versions for each of the three
generalization strategies: global and class. The global version requires the generalization
properties to hold on all languages whereas the class version requires the generalization
properties to hold only on the languages in the class of languages being identified. In
many cases the global and the class versions turn out to be equivalent.

We first consider strong-monotonicity.

Definition 5 [Jan91]

(a) M is said to be strong-monotonic on L just in case (∀σ, τ | σ ⊆ τ ∧ content(τ) ⊆
L)[M(σ) = ⊥ ∨ WM(σ) ⊆ WM(τ)].

(b) M is said to be strong-monotonic on L just in case M is strong-monotonic on each
L ∈ L.

(c) M is strong-monotonic just in case M is strong-monotonic on each L ⊆ N .

We now define the collections of languages identifiable by the global version (referred
to as G-SMON) and the class version (referred to as C-SMON) of strong-monotonic
strategies.

Definition 6 (a) G-SMON = {L | (∃M)[M is strong-monotonic and L ⊆
TxtEx(M)]}.

(b) C-SMON = {L | (∃M)[M is strong-monotonic on L and L ⊆ TxtEx(M)]}.

The next proposition shows that G-SMON = C-SMON.

Proposition 3 G-SMON = C-SMON.

Proof. Clearly, G-SMON ⊆ C-SMON. We now show that C-SMON ⊆ G-SMON.
Suppose L ∈ C-SMON as witnessed by M. We now informally describe a learner
M′ that behaves as follows: M′, fed σ, simulates M on each initial subsequence of σ
(including σ), and outputs a grammar for the union of all the languages whose grammars
are output by M on initial subsequences of σ (including σ). It is easy to verify that M′

is strong-monotonic and M′ identifies L.
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Hence, we only consider the global version of strong-monotonicity in the sequel, and
refer to the collections of languages identifiable by strong-monotonic learners as simply
SMON.

The next definition is about monotonic strategies.

Definition 7 [Wie90]

(a) M is said to be monotonic on L just in case (∀σ, τ | σ ⊆ τ ∧ content(τ) ⊆
L)[M(σ) = ⊥ ∨ WM(σ) ∩ L ⊆ WM(τ) ∩ L].

(b) M is said to be monotonic on L just in case M is monotonic on each L ∈ L.

(c) M is monotonic just in case M is monotonic on each L ⊆ N .

(d) G-MON = {L | (∃M)[M is monotonic and L ⊆ TxtEx(M)]}.

(e) C-MON = {L | (∃M)[M is monotonic on L and L ⊆ TxtEx(M)]}.

It is easy to show that the global version of monotonicity is equivalent to the require-
ment of strong monotonicity (i.e., G-MON = SMON). Therefore, we consider only the
class version of monotonicity in the sequel. In the literature C-MON is usually referred
to as MON.

The next definition introduces weak-monotonicity.

Definition 8 [Jan91]

(a) M is said to be weak-monotonic on L just in case (∀σ, τ | σ ⊆ τ ∧ content(τ) ⊆
L)[M(σ) = ⊥ ∨ [content(τ) ⊆ WM(σ) ⇒ WM(σ) ⊆ WM(τ)]].

(b) M is said to be weak-monotonic on L just in case M is weak-monotonic on each
L ∈ L.

(c) M is weak-monotonic just in case M is weak-monotonic on each L ⊆ N .

(d) G-WMON = {L | (∃M)[M is weak-monotonic and L ⊆ TxtEx(M)]}.

(e) C-WMON = {L | (∃M)[M is weak-monotonic on L and L ⊆ TxtEx(M)]}.

Clearly, G-WMON ⊆ C-WMON. Now, using Theorem 6 and Theorem 21, it will
be shown, in Corollary 22, that G-WMON = C-WMON. Since the two classes turn
out to be equivalent, we will often refer to them as just WMON.
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3.2 Specialization Strategies

Kapur [Kap92] considered the dual of the above generalization strategies to intro-
duce three specialization strategies. The next three definitions introduce dual-strong-
monotonicity, dual-monotonicity, and dual-weak-monotonicity.

Definition 9 [Kap92]

(a) M is dual-strong-monotonic on L just in case (∀σ, τ | σ ⊆ τ ∧ content(τ) ⊆
L)[M(σ) = ⊥ ∨ WM(σ) ⊇ WM(τ)].

(b) M is dual-strong-monotonic on L just in case M is dual-strong-monotonic on each
L ∈ L.

(c) M is dual-strong-monotonic just in case it is dual-strong-monotonic on each L ⊆ N .

(d) G-DSMON = {L | (∃M)[M is dual-strong-monotonic and L ⊆ TxtEx(M)]}.

(e) C-DSMON = {L | (∃M)[M is dual-strong-monotonic on L and L ⊆ TxtEx(M)]}.

Again as is the case with generalization strategies, the next proposition shows that
the global and the class versions of dual-strong-monotonicity are equivalent. The proof
of the proposition is similar to the proof of Proposition 3 (the only change required is
that the machine M′ outputs the grammar for the intersection of the languages whose
grammars are output by M on the initial subsequences).

Proposition 4 G-DSMON = C-DSMON.

Because of the above proposition, we only consider the global version of dual-strong-
monotonicity in the sequel, and refer to the class as simply DSMON. We next consider
dual-monotonic strategies.

Definition 10 [Kap92]

(a) M is dual-monotonic on L just in case (∀σ, τ | σ ⊆ τ ∧ content(τ) ⊆ L)[M(σ) =
⊥ ∨ WM(σ) ∩ L ⊆ WM(τ) ∩ L].

(b) M is dual-monotonic on L just in case M is dual-monotonic on each L ∈ L.

(c) M is dual-monotonic just in case it is dual-monotonic on each L ⊆ N .

(d) G-DMON = {L | (∃M)[M is dual-monotonic and L ⊆ TxtEx(M)]}.

(e) C-DMON = {L ⊆ E | (∃M)[M is dual-monotonic on L and L ⊆ TxtEx(M)]}.
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The reader should note that the global version of dual-monotonicity is essentially the
same as the requirement of dual-strong-monotonicity if one also allows the grammars
output by dual-strong-monotonic machines to additionally contain the elements which
have already appeared in the input. For this reason, we feel that the class G-DMON
does not yield any new insight into the nature of specialization strategies. Thus we will
consider only C-DMON in the sequel. In literature C-DMON is usually referred to as
DMON.

We next consider dual-weak-monotonicity.

Definition 11 [Kap92]

(a) M is dual-weak-monotonic on L just in case (∀σ, τ | σ ⊆ τ ∧ content(τ) ⊆
L)[M(σ) = ⊥ ∨ [content(τ) ⊆ WM(σ) ⇒ WM(σ) ⊇ WM(τ)]].

(b) M is dual-weak-monotonic on L just in case M is dual-weak-monotonic on each
L ∈ L.

(c) M is dual-weak-monotonic just in case it is dual-weak-monotonic on each L ⊆ N .

(d) G-DWMON = {L | (∃M)[M is dual-weak-monotonic and L ⊆ TxtEx(M)]}.

(e) C-DWMON = {L | (∃M)[M is dual-weak-monotonic on L and L ⊆ TxtEx(M)]}.

It will be shown in Theorem 19 that G-DWMON = TxtEx, that is, every identifi-
able collection of languages is also identifiable by a globally dual-weak-monotonic learner.
Now since G-DWMON ⊆ C-DWMON, we have that the global and the class versions
of dual-weak-monotonicity are equivalent. For this reason, we only consider the global
version in the sequel and refer to the class as simply DWMON.

3.3 Strategies with Both Requirements

Requiring both the normal and dual conditions yields three additional strategies. We
give the definition for strong monotonicity; the other two can be defined similarly.

Definition 12 [LZK92]

(a) M is both strong and dual-strong-monotonic on L just in case (∀σ, τ | σ ⊆ τ ∧
content(τ) ⊆ L)[M(σ) = ⊥ ∨ WM(σ) = WM(τ)].

(b) M is both strong and dual-strong-monotonic on L just in case M is both strong
and dual-strong-monotonic on each L ∈ L.

(c) M is both strong and dual-strong-monotonic just in case M is both strong and
dual-strong-monotonic on each L ⊆ N .

(d) G-BSMON = {L | (∃M)[M is both strong and dual-strong-monotonic and L ⊆
TxtEx(M)]}.
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(e) C-BSMON = {L | (∃M)[M is both strong and dual-strong-monotonic on L and
L ⊆ TxtEx(M)]}.

It is easy to show that G-BSMON = C-BSMON, and we refer to these classes
as simply BSMON in the sequel. Similarly, we can define G-BMON, C-BMON and
G-BWMON and C-BWMON. Also, G-BWMON = C-BWMON (using Theo-
rem 6 and Corollary 22 to Theorem 21); hence, we often refer to these two classes as
simply BWMON.

Also, similar to the case of G-DMON, we do not feel that G-BMON gives much
insight into the nature of monotonic strategies. We will thus consider only C-BMON
in the sequel. In the literature C-BMON is usually referred to as BMON.
Remark: It should be noted that except for the classes C-BMON and BSMON we do
not need the machines to output ⊥. This is because for SMON, C-MON, WMON,
G-BWMON, C-BWMON, G-BMON a machine can just output a grammar for ∅
instead of ⊥ and for DSMON, C-DMON, G-DMON, C-DWMON, G-DWMON,
the machine can output a grammar for N instead of ⊥. We do not know at this point
whether not allowing ⊥ will make a difference in the class C-BMON. For the class
BSMON, not allowing ⊥ essentially means that machine has to output its conjecture
on any input (even null input) and which should be a grammar for the input language.
This means that a machine following such a strategy can identify at most one language
(thus leading to a result such as BSMON ⊂ TxtFin).

Finally, we define Angluin’s [Ang80] notion of conservative strategies.

Definition 13 (a) M is conservative on L just in case (∀σ, τ | σ ⊆ τ ∧ content(τ) ⊆
L)[M(σ) = ⊥ ∨ [content(τ) ⊆ WM(σ) ⇒ M(σ) = M(τ)]].

(b) M is conservative on L just in case M is conservative on each L ∈ L.

(c) M is conservative just in case M is conservative on each L ⊆ N .

(d) G-CONSV = {L | (∃M)[M is conservative and L ⊆ TxtEx(M)]}.

(e) C-CONSV = {L | (∃M)[M is conservative on L and L ⊆ TxtEx(M)]}.
As a consequence of Theorem 6 and Theorem 21, in Corollary 22 it is shown that

C-CONSV = G-CONSV. Thus we often refer to these classes as simply CONSV.
In some of our theorems, we require a special effective enumeration of language learn-

ing machines as given by the following (folklore) proposition.

Proposition 5 There exists an recursive enumeration M0,M1, . . . of language learning
machines, such that the following is satisfied. Let I be any collection of language classes
identified by an strategy introduced in this paper. Then, (∀L ∈ I) (∃j)[L ∈ I as witnessed
by Mj].

A proof of the above proposition can be worked out on similar lines to the proof for
I = TxtEx case (see for example [OSW86]). We let M0,M1, . . . be one such enumeration
of machines.
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4 Results

It is easy to see that for

I ∈ {MON,DMON,BMON,WMON,DWMON,BWMON},

G-I ⊆ C-I. Before we present the theorems that imply the relationship between these
classes, it is helpful to summarize the relationship between the classes in the following
figure.
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Fig. 1: Relationship between various strategies (classes appearing in the same box are equiv-
alent; → denotes strict inclusion; absence of a directed path between two classes means that
the two classes are incomparable)

We now present a series of theorems and corollaries that derive the above picture.
The following theorem follows from the definition of various strategies.

Theorem 6 (a) TxtFin = BSMON.

(b) BSMON ⊆ G-CONSV.

(c) BSMON ⊆ (SMON ∩DSMON).

(d) C-BMON ⊆ (C-MON ∩C-DMON).

(e) C-BWMON ⊆ (C-WMON ∩C-DWMON).
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(f) G-BWMON ⊆ (G-WMON ∩G-DWMON).

(g) C-CONSV ⊆ C-BWMON.

(h) G-CONSV ⊆ G-BWMON.

(i) SMON ⊆ (C-MON ∩G-WMON).

(j) DSMON ⊆ (C-DMON ∩G-DWMON).

(k) BSMON ⊆ (C-BMON ∩G-BWMON).

The next two results can also be proved easily.

Theorem 7 (a) SMON ⊆ C-BMON.

(b) DSMON ⊆ C-BMON.

Proof. We show that SMON ⊆ C-BMON. It can similarly be shown that DSMON
⊆ C-BMON.

Suppose M is given such that L ⊆ TxtEx(M) and M is strong-monotonic. We
claim that M is both monotonic and dual-monotonic on each L ∈ L. Note that since
M is strong monotonic we only need to verify that (∀L ∈ L)(∀σ ⊆ τ | content(τ) ⊆
L)[M(σ) = ⊥ ∨ L ∩WM(τ) ⊇ L ∩WM(σ)].

But this follows from the fact that (∀L ∈ L)(∀σ | content(σ) ⊆ L)[M(σ) = ⊥ ∨
WM(σ) ⊆ L] (which is true since M is strong-monotonic and L ⊆ TxtEx(M)).

Let FIN = {L | card(L) < ∞}.

Theorem 8 SMON−DSMON 6= ∅.

Proof. It is easy to see that FIN ∈ SMON. We claim that FIN 6∈ DSMON. Suppose
M is given such that FIN ⊆ TxtEx(M). We will show that M cannot be dual-strong-
monotonic. Let σ be such that content(σ) = {0}, and WM(σ) = {0}. Let σ′ ⊇ σ be such
that content(σ′) = {0, 1} and WM(σ′) = {0, 1}. (Note that there exist such σ, σ′ since
M TxtEx-identifies FIN.) But then, WM(σ) ⊂ WM(σ′), and thus M is not dual-strong-
monotonic.

Theorem 9 DSMON−WMON 6= ∅.

Proof. Consider the following definitions.

Lj = {〈j, x〉 | x ∈ N}.
Lm

j = {〈j, x〉 | x < m}.
Let Tj be a text for Lj such that content(Tj[m]) = Lm

j .

Sj = {〈m, n〉 | m > 0 ∧ {〈j, x〉 | x ≤ m} ⊆ WMj(Tj [m]),n}.
L = {Lj | Sj = ∅} ∪ {Lm

j | Sj 6= ∅ ∧ (∃n)[〈m, n〉 = min(Sj)]}.
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We claim that L ∈ DSMON−WMON.
Let GN be a grammar for N . Let G∅ be a grammar for ∅. Let Gj denote a grammar

for Lj which can be effectively obtained from j. Let Gm
j denote a grammar for Lm

j , which
can be obtained effectively from j, m. Note that Sj is recursive. Let Ss

j = Sj∩{x | x ≤ s}.

M(T [s]) =



GN , if content(T [s]) = ∅;
Gj, if content(T [s]) 6= ∅ ∧

content(T [s]) ⊆ Lj ∧
Ss

j = ∅;
Gm

j , if content(T [s]) 6= ∅ ∧
content(T [s]) ⊆ Lj ∧
Ss

j 6= ∅ ∧
(∃n)[〈m, n〉 = min(Ss

j )];
G∅, otherwise.

It is easy to verify that M is dual strong monotonic and L ⊆ TxtEx(M).
We now show that L 6∈ WMON. Suppose that L ⊆ TxtEx(Mj). We will show that

in this case, Mj cannot be weak-monotonic. Consider Lj. Clearly, Sj 6= ∅ (otherwise
Lj ∈ L and Mj does not TxtEx-identify Lj). Suppose 〈m, n〉 = min(Sj). Now Lm

j ∈ Lj.
Suppose σ is an extension of Tj[m], such that content(σ) = Lm

j and WMj(σ) = Lm
j (note

that there exists such a σ since Lm
j ∈ L and L ⊆ TxtEx(Mj)). Now WMj(σ) = Lm

j 6⊇
WMj(Tj [m]) ⊇ content(σ) = Lm

j . Thus, Mj is not weak-monotonic on Lm
j ∈ L.

Corollary 10

(a) DSMON− SMON 6= ∅.

(b) C-DMON−WMON 6= ∅.

(c) G-DMON−WMON 6= ∅.

(d) C-BMON−WMON 6= ∅.

(e) C-MON−WMON 6= ∅.

As an aside to the above results, it is interesting to observe the following theorem
which says that there are collections of languages that can be identified by either strong-
monotonic learners or by dual-strong-monotonic learners, but which do not belong to
TxtFin.2 The reader should note that this result also nicely contrasts with Theo-
rem 6 (a).

Theorem 11 (DSMON ∩ SMON)−TxtFin 6= ∅.
2This fact was brought to our attention by one of the referees.
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Proof. Let L1
x = {2x}, and L2

x = {2x, 2x + 1}. Let A be a Σ2-complete set.
Let L = {L1

x | x ∈ A} ∪ {L2
x | x 6∈ A}.

We first show that L 6∈ TxtFin. Let Tx denote a text for {2x}. Suppose by way of
contradiction that L ∈ TxtFin as witnessed by M.

x ∈ A ⇒ L1
x ∈ TxtFin(M)

⇒ (∀n)[M(Tx[n]) = ⊥ ∨ 2x + 1 6∈ WM(Tx[n]),n]

⇒ L2
x 6∈ TxtFin(M)

⇒ ¬(x 6∈ A)

Thus x ∈ A ⇐⇒ (∀n)[M(Tx[n]) = ⊥ ∨ 2x + 1 6∈ WM(Tx[n]),n].
This contradicts Σ2 completeness of A. Thus, L 6∈ TxtFin.
We now show that L ∈ SMON ∩DSMON. Clearly, L ∈ SMON. We show that

L ∈ DSMON.
Let P be a recursive predicate such that x ∈ A iff (∃y)(∀z)[P (x, y, z)]. Let H be a

recursive function such that WH(x,y) may be defined as follows.

WH(x,y) =
{ {2x}, if (∀z)[P (x, y, z)];
{2x, 2x + 1}, if (∃z)[¬P (x, y, z)].

It is easy to verify that
(1) WH(x,y) ∈ {L1

x, L
2
x}, and

(2) x ∈ A ⇔ (∃y)[WH(x,y) = L1
x].

Thus if x 6∈ A, then (∀y)[WH(x,y) = L2
x = {2x, 2x + 1}]. On the other hand if x ∈ A,

then there exists a y such that (∀j < y)[WH(x,j) = L2
x] and [WH(x,y) = L1

x ⊂ L2
x]. It is

this property of H that the following construction of M exploits.
M(T [n]) is defined as follows.

M(T [n]) =



⊥, if content(T [n]) = ∅;
H(x, 0), if content(T [n]) = {2x} ∧ M(T [n− 1]) = ⊥;
H(x, j), if content(T [n]) = {2x} ∧ M(T [n− 1]) = H(x, j) ∧

2x + 1 6∈ WH(x,j),n;
H(x, j + 1), if content(T [n]) = {2x} ∧ M(T [n− 1]) = H(x, j) ∧

2x + 1 ∈ WH(x,j),n;
H(x, 0), if content(T [n]) = {2x, 2x + 1} ∧ M(T [n− 1]) = ⊥;
H(x, j), if content(T [n]) = {2x, 2x + 1} ∧ M(T [n− 1]) = H(x, j);
M(T [n− 1]), otherwise.

It is easy to verify, using properties of H discussed above, that M is dual strong
monotonic in nature. To verify that M TxtEx-identifies L, suppose T is a text for
L ∈ L. Let x be such that L ⊆ L2

x. Now if L = L1
x (and thus x ∈ A), then M(T ) would

converge to the least j such that WH(x,j) = L1
x. on the other hand if L = L2

x, then M(T )
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would converge to H(x, j), for some j (which by properties (1) and (2) of H above is a
grammar for L2

x). Thus, M TxtEx-identifies L.

We now compare the power of conservative learners with those of monotonic and
dual-monotonic learners.

Theorem 12 CONSV− (C-MON ∪C-DMON) 6= ∅.

Proof. The proof of this theorem adopts a technique used by Lange and Zeugmann
[LZ93b]. Consider the following languages.

L1 = {〈0, x〉 | x ∈ N};
Lm

2 = {〈0, x〉 | x ≤ m} ∪ {〈1, x〉 | x > m};
Lm,n

3 = {〈0, x〉 | x ≤ m ∨ x > n} ∪ {〈1, x〉 | m < x ≤ n}.
Let L = {L1} ∪ {Lm

2 | m ∈ N} ∪ {Lm,n
3 | m < n}.

It is easy to see that L ∈ CONSV.
We show that L 6∈ (C-MON ∪C-DMON).
Consider any machine M which TxtEx-identifies each L ∈ L.
Let σ be such that content(σ) = {〈0, x〉 | x ≤ m}, for some m ∈ N , and WM(σ) = L1.

(Note that there exists such a σ since L1 ∈ TxtEx(M).)
Let σ′ ⊇ σ be such that, for some n > m, content(σ′) = {〈0, x〉 | x ≤ m} ∪ {〈1, x〉 |

m < x ≤ n} and WM(σ′) = Lm
2 . (Note that there exists such a σ′ since Lm

2 ∈ TxtEx(M).)
Let σ′′ ⊇ σ′ be such that content(σ′′) ⊆ Lm,n

3 and WM(σ′′) = Lm,n
3 . (Note that there

exists such a σ′′ since Lm,n
3 ∈ TxtEx(M).)

We claim that M is neither monotonic nor dual-monotonic on Lm,n
3 ∈ L.

M is not monotonic on Lm,n
3 since 〈0, n+1〉 ∈ Lm,n

3 ∩WM(σ)∩WM(σ′′) but 〈0, n+1〉 6∈
WM(σ′).

M is not dual-monotonic on Lm,n
3 since 〈1, n + 1〉 6∈ Lm,n

3 ∪ WM(σ) ∪ WM(σ′′) but
〈1, n + 1〉 ∈ WM(σ′).

Corollary 13

(a) CONSV − SMON 6= ∅.

(b) CONSV −DSMON 6= ∅.

(c) CONSV −C-BMON 6= ∅.

Theorem 14 C-DMON−C-MON 6= ∅.

Proof. Consider the following languages.

Lj = {〈j, x〉 | x ∈ N}.
Lm

j = {〈j, x〉 | x < m}.
Let Tj be a text for Lj such that content(Tj[m]) = Lm

j .

Sj = {〈m, n〉 | m > 0 ∧ {〈j, x〉 | x ≤ m} ⊆ WMj(Tj [m]),n}.
L = {Lj | j ∈ N} ∪ {Lm

j | Sj 6= ∅ ∧ (∃n)[〈m, n〉 = min(Sj)]}.
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Note that this L is slightly different from that used in the proof of Theorem 9. In
this we have included all Ljs!

We claim that L ∈ C-DMON−C-MON.
Let GN be a grammar for N . Let G∅ be a grammar for ∅. Let Gj denote a grammar

for Lj which can be effectively obtained from j. Let Gm
j denote a grammar for Lm

j , which
can be obtained effectively from j, m. Note that Sj is recursive. Let Ss

j = Sj∩{x | x ≤ s}.

M(T [s]) =



GN , if content(T [s]) = ∅;
Gj, if content(T [s]) 6= ∅ ∧

content(T [s]) ⊆ Lj ∧
[Ss

j = ∅ ∨ Lm
j 6⊇ content(T [s]),

where 〈m, n〉 = min(Ss
j )];

Gm
j , if content(T [s]) 6= ∅ ∧

content(T [s]) ⊆ Lm
j ∧

Ss
j 6= ∅ ∧

(∃n)[〈m, n〉 = min(Ss
j )];

G∅, otherwise.

It is easy to verify that M is dual-monotonic on L and TxtEx-identifies each L ∈ L.
Now suppose Mj TxtEx-identifies each L ∈ L. We will show that Mj cannot be

monotonic on L.
Clearly, since Lj ∈ TxtEx(Mj), we have Sj 6= ∅. Suppose 〈m, n〉 = min(Sj).
Let σ be an extension of Tj[m] such that content(σ) = Lm

j and WMj(σ) = Lm
j . (Note

that there exists such a σ since Lm
j ∈ TxtEx(Mj).)

Let σ′ be an extension of σ such that content(σ′) ⊆ Lj, and WMj(σ′) = Lj. (Note that
there exists such a σ since Lj ∈ TxtEx(Mj).)

Mj is not monotonic on Lj since content(σ′) ⊆ Lj, 〈j, m〉 ∈ WMj(σ′) ∩WMj(Tj [m]) but
〈j, m〉 6∈ WMj(σ).

Corollary 15

(a) C-DMON−C-BMON 6= ∅.

(b) C-DMON− SMON 6= ∅.

We now briefly consider G-DMON. Note that DSMON ⊆ G-DMON ⊆ C-DMON.
Also,

(i) {L | (∀i, x)[〈i, x〉 ∈ L ⇔ 〈i, 0〉 ∈ L] ∧ card({i | 〈i, 0〉 ∈ L}) < ∞} is in SMON
but not in G-DMON.

(ii) a slight modification of the proof of Theorem 14, shows that G-DMON −
C-MON 6= ∅.

From the above, and Theorem 9, it follows that G-DMON is incomparable to
C-MON, SMON, WMON, and C-BMON.

We now briefly consider G-BMON.
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(i) G-BMON ⊆ SMON ∩G-DMON since, G-MON = SMON;
(ii) {L | (∀i, x)[〈i, x〉 ∈ L ⇔ 〈i, 0〉 ∈ L] ∧ card({i | 〈i, 0〉 ∈ L}) < ∞} is in SMON

but not in G-DMON (and thus not in G-BMON).
(iii) {L | card(L) < ∞} is in G-BMON but not in DSMON.
Thus, G-BMON is properly contained in SMON and is incomparable to DSMON.

Theorem 16 (C-MON ∩WMON)−C-DMON 6= ∅.

Proof. Consider the following languages.
L1 = {〈0, x〉 | x ∈ N}.
Lm

2 = {〈0, x〉 | x ≤ m} ∪ {〈1, x〉 | x > m}.
Lm,n

3 = {〈0, x〉 | x ≤ m} ∪ {〈1, x〉 | m < x < n} ∪ {〈2, n〉}.
Let L = {L1} ∪ {Ln

2 | n ∈ N} ∪ {Lm,n
3 | m < n}.

It is easy to see that L ∈ C-MON ∩WMON.
We claim that L 6∈ C-DMON. Suppose M TxtEx-identifies each L ∈ L. We will

then show that M cannot be dual-monotonic on L.
Let σ be such that content(σ) ⊆ L1 and WM(σ) = L1. (Note that there exists such a

σ since L1 ∈ TxtEx(M).)
Let σ′ be an extension of σ such that content(σ′) ⊆ Lm

2 , for some m, and WM(σ) = Lm
2 .

(Note that there exists such a σ′ since Lm
2 ∈ TxtEx(M).)

Let σ′′ be an extension of σ′ such that content(σ′′) = Lm,n
3 , for some n, and WM(σ) =

Lm,n
3 . (Note that there exists such a σ′′ since Lm,n

3 ∈ TxtEx(M).)
Now 〈1, n〉 6∈ Lm,n

3 = content(σ′′), 〈1, n〉 6∈ WM(σ)∪WM(σ′′) but 〈1, n〉 ∈ WM(σ′). Thus
M is not dual-monotonic on Lm,n

3 ∈ L.

Corollary 17

(a) C-MON−C-BMON 6= ∅.

(b) C-MON− SMON 6= ∅.

(c) C-MON−DSMON 6= ∅.

We now introduce a procedure, Proc, that is used in the proof of the next two theo-
rems. WProc(M,σ) is defined as follows.

Begin {WProc(M,σ)}
Let j = M(σ).

Go to stage 0.

Stage s

Let S = Wj,s.
if there exists a τ such that

|τ | ≤ s,
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σ ⊆ τ ,
content(τ) ⊆ S, and
M(σ) 6= M(τ)

then HALT (i.e., WProc(M,σ) does not enumerate anything else.)
else enumerate S and go to stage s + 1.
endif

End stage s

End {WProc(M,σ)}

The following lemma summarizes the properties of Proc.

Lemma 18 (a) For all M, σ, and s, Ls = WProc(M,σ) enumerated before stage s can be
effectively (in M, σ, and s) determined.

(b) For all M, σ, and s it can be effectively determined whether Proc(M, σ) halts
before stage s.

(c) WProc(M,σ) ⊆ WM(σ).
(d) Either Proc(M, σ) halts or content(σ) 6⊆ WM(σ) or σ is a locking sequence for M

on WM(σ).
(e) If content(σ) 6⊆ WM(σ), then WProc(M,σ) = WM(σ) and Proc(M, σ) does not halt.
(f) If content(σ) ⊆ WM(σ) and σ is a locking sequence for M on WM(σ), then

WProc(σ) = WM(σ).
(g) If content(σ) ⊆ WM(σ) and σ is a not a locking sequence for M on WM(σ), then

Proc(M, σ) halts (and thus WProc(M,σ) is finite).
(h) WProc(M,σ) enumerated before stage s, is contained in WM(σ),s−1. Thus, if

Proc(M, σ) halts in stage s, then WProc(M,σ) ⊆ WM(σ),s−1.
(i) Suppose σ ⊆ τ , content(τ) ⊆ WM(σ),s and M(σ) 6= M(τ). Then Proc(M, σ) halts

at or before stage max({|τ |, s}). Moreover, either content(τ) is contained in WProc(M,σ)

enumerated before stage |τ | or content(τ) 6⊆ WProc(M,σ).
(j) For all σ, τ , and M such that σ ⊆ τ and M(σ) 6= M(τ), either content(τ) 6⊆

WProc(M,σ) or content(τ) ⊆ WProc(M,σ) enumerated before stage |τ |.

Proof. (a) to (h) are easy to see from the definition of Proc. For (i) suppose the
hypothesis. Clearly, at or before stage max({s, |τ |}), the procedure for Proc(M, σ) would
detect this mind change and halt. The second clause in the conclusion now follows using
part (h). Part (j) follows using parts (c) and (i).

We now consider the following two important simulation results that use Proc and
the above properties of Proc (Lemma 18).

Theorem 19 TxtEx = G-DWMON.

Proof. Clearly, G-DWMON ⊆ TxtEx. We show that TxtEx ⊆ G-DWMON.
Suppose M is given. We assume without loss of generality that M is such that for
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every L ∈ TxtEx(M), each text T for L has a locking sequence for M on L as a prefix
(Lemma 2).

We define a machine M′ on initial sequences of a text T as follows. Together with
M′ we also define a function X. Intuitively, X just keeps track of the last point n′ in the
text T , where Proc(M, T [n′]) was output by M′.

Begin {M′(T [n]), X(T [n])}
0. if n = 0, then

1. Let X(T [n]) = 0.
2. Let M′(T [n]) = Proc(M, T [n]).

else

3. Let n′ = X(T [n−1]) (note that n′ is such that the last Proc(M, T [s]) considered
by M′ on initial segments of T [n] was for s = n′.)

4. if Proc(M, T [n′]) halts in ≤ n stages
then
5. if content(T [n]) 6⊆ WProc(M,T [n′]),

then
6. Let X(T [n]) = n.
7. Let M′(T [n]) = Proc(M, T [n]).
else
8. Let X(T [n]) = n′.
9. Let M′(T [n]) be a grammar (obtained effectively from content(T [n]))

for content(T [n]).
endif

10. elseif M(T [n′]) 6= M(T [n])
then
11. if content(T [n]) 6⊆ WProc(M,T [n′]) enumerated by stage n + 1

then
12. Let X(T [n]) = n.
13. Let M′(T [n]) = Proc(M, T [n]).
else
14. Let X(T [n]) = n′.
15. Let M′(T [n]) = Proc(M, T [n′]).
endif

else
16. Let X(T [n]) = n′.
17. Let M′(T [n]) = Proc(M, T [n′]).
endif

endif

End {M′(T [n]), X(T [n])}

20



We claim that M′ is dual-weak-monotonic and TxtEx-identifies each L in TxtEx(M).
First note that X(T [n]) ≤ n and X(T [n+1]) ≥ X(T [n]). Also note that X(T [n]) = n ⇔
[n = 0 ∨ X(T [n]) 6= X(T [n− 1])]. Furthermore, if X(T [n + 1]) 6= X(T [n]), then for all
n′ ≤ n, content(T [n + 1]) 6⊆ WProc(M,T [X(T [n′])]). To see this, note that if X(T [n + 1]) 6=
X(T [n]), then this is because of the execution of step 6 or 12 above for M′(T [n + 1]),
which can happen only if content(T [n + 1]) 6⊆ WProc(M,T [n′]), where n′ = X(T [n]) (using
Lemma 18 and the success of the corresponding If conditions). Also, if X(T [n]) = n′,
then M′(T [n]) = Proc(M, T [n′]) or WM′(T [n]) = content(T [n]) ⊆ WProc(M,T [n′]). Hence,
M′ is dual-weak-monotonic on each L ⊆ N .

Thus, it only remains to prove that M′ TxtEx-identifies every language TxtEx-
identified by M. For this suppose T is a text for L ∈ TxtEx(M). Note that since M
satisfies the condition in Lemma 2, T contains a locking sequence for M on L. Thus,
limn→∞X(T [n]) converges. Let t = limn→∞X(T [n]). Now consider the following two
cases.
Case 1: Proc(M, T [t]) does not halt.

In this case, consider M′(T [n]) for n > t. Clearly, if clause at step 4 does
not hold. We claim that if clause at step 10 also cannot hold. To see this
suppose otherwise. Thus, using Lemma 18 (i), if clause at step 11 must also
hold (since Proc(M, T [t]) does not halt). But then X(T [n]) 6= X(T [t]). It
follows that for all n > t, M(T [n]) = M(T [t]) and M′(T [n]) = Proc(M, T [t]).
Also, by Lemma 18(parts (d), (e), (f)) WProc(M,T [t]) = WM(T [t]) = L. Thus M′

TxtEx-identifies L.

Case 2: Proc(M, T [t]) halts.

In this case for all n > t, in M′(T [n]), if clause at step 4 succeeds and the if
clause at step 5 fails. It follows that L is finite and M′ outputs, in the limit
on T , a grammar for content(T ). Thus M′ TxtEx-identifies L.

Remark: A careful analysis of the above proof reveals that it almost shows that TxtEx ⊆
CONSV; the only place the dual-weak-monotonicity (instead of conservativeness) is
used is at Step 9. Hence if we modified Step 9 in the above proof to simply output
Proc(M, T [n′]) then M′ becomes a conservative machine that identifies every infinite
language identified by M (but maybe unsuccessful on finite languages). Hence, this
shows that if attention is restricted to infinite languages, conservative machines are as
powerful as general machines. We summarize this observation in the following corollary.
Let E∞ denote the collection of all infinite r.e. languages.

Corollary 20 (∀L ⊆ E∞)[L ∈ CONSV ⇐⇒ L ∈ TxtEx].

Theorem 21 C-WMON ⊆ G-CONSV.
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Proof. Proof of this theorem is similar to that of Theorem 19. There are two issues
one needs to address in the simulation as done by M′ in Theorem 19. First in step 9, one
cannot output a grammar for content(T [n]), because that could violate conservativeness;
hence, one outputs Proc(M, T [n′]) (this is fine since if M is weak monotonic then it
cannot identify any proper subset of WProc(M,T [n′]).) The second difference arises due
to the fact that for identification by a weak-monotonic machine one may not be able
to assume that every text contains a locking sequence. Thus in steps 6,7 one needs
to do some rearrangement of the input text (this is because one needs to argue that
if X does not converge on (rearranged) text T , then so does M.) Rest of the proof is
similar to the proof of Theorem 19. We now proceed to give the details. For simplicity
of presentation we give a somewhat different description of machine M′ as compared to
that corresponding description in the proof of Theorem 19.

We define M′ as follows. Along with M′ we define a function X and a function
rearrange. Intuitively, X just keeps track of the “last Proc(M, T [n′])” output by M′

and rearrange is used for the rearrangement of the input text as hinted above. We
define rearrange only for the cases when X(T [n]) = n (note that X(T [n]) = n ⇔ n =
0 ∨X(T [n]) 6= X(T [n−1])). Also note that rearrange(T [n]), if defined, is a rearrangement
of T [n].

Begin M′(T [n]), X(T [n]), rearrange(T [n]).

0. if n = 0, then

Let X(T [n]) = 0.
Let rearrange(T [n]) = T [n].
Let M′(T [n]) = Proc(M, T [n]).

else

1. Let n′ = X(T [n−1]) (note that n′ is such that the last Proc(M, rearrange(T [s]))
considered by M′ on initial segments of T [n] was for s = n′.)

2. if there exists a σ ⊇ rearrange(T [n′]) such that
content(σ) ⊆ content(T [n]) ∧
|σ| ≤ 2n + |rearrange(T [n′])| ∧
M(σ) 6= M(rearrange(T [n′])) ∧
content(σ) 6⊆ WProc(M,rearrange(T [n′])) enumerated till stage |σ|+ 1.

then
2.1. Let τ denote one such σ. Let τ ′ be an extension of τ such that content(τ ′) =

content(T [n]).
2.2. Let X(T [n]) = n.
2.3. Let rearrange(T [n]) = τ ′.
2.4. Let M′(T [n]) = Proc(M, τ ′).

3. else
3.1. Let X(T [n]) = n′.
3.2. Let M′(T [n]) = Proc(M, rearrange(T [n′])).
endif
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endif

End M′(T [n]), X(T [n]), rearrange(T [n]).

We first show that M′ is conservative. We will then show that M′ TxtEx-identifies
every language L such that L ∈ TxtEx(M) and M is weak-monotonic on L. This will
complete the proof.

First note that X(T [n]) ≤ n and X(T [n + 1]) ≥ X(T [n]). Also note that X(T [n]) =
n ⇔ [n = 0 ∨ X(T [n]) 6= X(T [n − 1])]. Also note that, for n such that X(T [n]) = n,
rearrange(T [n]) is defined and is a rearrangement of T [n]. Also, the only conjectures
output by M′ are of the form Proc(M, rearrange(T [n])), such that X(T [n]) = n. Also
M′(T [n + 1]) 6= M′(T [n]) ⇔ X(T [n + 1]) = n + 1.

Furthermore, M′(T [n+1]) 6= M′(T [n]) (equivalently, X(T [n+1]) 6= X(T [n])) implies
that, T [n + 1] 6⊆ WProc(M,rearrange(T [n′])), where n′ = X(T [n]). To see this note that if
X(T [n+1]) 6= X(T [n]), then this is because of the execution of step 2.2. But then due to
the success of the If condition at step 2, we have that T [n + 1] 6⊆ WProc(M,rearrange(T [n′])),
where n′ = X(T [n]) (using Lemma 18, and the requirement for if condition to succeed).
Thus M′ behaves conservatively on all L ⊆ N .

Thus it only remains to prove that M′ TxtEx-identifies every language L such that
L ∈ TxtEx(M) and M is weak-monotonic on L. For this suppose T is a text for
L ∈ TxtEx(M). We first claim that limn→∞X(T [n]) converges. To see this sup-
pose otherwise. Let T ′ be the text

⋃
X(T [t+1]) 6=X(T [t]) rearrange(T [t + 1]). Note that

content(T ′) = content(T ), and that M on the text T ′ changes its mind infinitely often
(since X(T [n + 1]) 6= X(T [n]) implies that, there exists a σ, such that for n′ = X(T [n]),
rearrange(T [n′]) ⊆ σ ⊆ rearrange(T [n + 1]) such that M(σ) 6= M(rearrange(T [n′]))). A
contradiction. Thus limn→∞X(T [n]) converges. Let t = limn→∞X(T [n]). Note that
M′(T )↓ = Proc(M, rearrange(T [t])).

Now since the if at step 2 for M′(T [n]), does not succeed for any n > t, we have that
rearrange(T [t]) is a locking sequence for M on L, or L ⊆ WProc(M,rearrange(T [t])). In the for-
mer case clearly, L = WProc(M,rearrange(T [t])). In the later case, since WProc(M,rearrange(T [t])) ⊆
WM(rearrange(T [t])), it follows that L ⊆ WM(rearrange(T [t])), and thus by the weak-monotonicity
condition we have that L = WM(rearrange(T [t])). Thus L = WProc(M,rearrange(T [t])).

It follows that M′ TxtEx-identifies L.

The above proof together with Theorem 6 implies the following corollary which says
that the global and the class versions of weak-monotonicity and conservatism are equiv-
alent.

Corollary 22 G-WMON = C-WMON = G-BWMON = C-BWMON = G-CONSV
= C-CONSV.

Finally, we consider an alternative formulation of the notion of conservative strategy.
Angluin’s notion of conservatism requires the learner to conjecture the same grammar
unless the data presented includes a counterexample to the current hypothesis. We relax
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this requirement as follows: If the learner encounters an element that is not explained by
the current hypothesis then the learner can change its hypothesis, otherwise the learner
must output a grammar that is extensionally equivalent to the current hypothesis. The
following definition formally introduces this strategy, referred to as extensional conser-
vatism.

Definition 14 (a) M is extensionally-conservative on L just in case (∀σ, τ | σ ⊆
τ ∧ content(τ) ⊆ L)[M(σ) = ⊥ ∨ [content(τ) ⊆ WM(σ) ⇒ WM(σ) = WM(τ)]].

(b) M is extensionally-conservative on L just in case M is extensionally-conservative
on each L ∈ L.

(c) M is extensionally-conservative just in case M is extensionally-conservative on each
L ⊆ N .

(d) G-EXT-CONSV = {L | (∃M)[M is extensionally-conservative and L ⊆ TxtEx(M)]}.

(e) C-EXT-CONSV = {L | (∃M)[M is extensionally-conservative on L and L ⊆
TxtEx(M)]}.

It is easy to verify that G-CONSV ⊆ G-EXT-CONSV ⊆ C-EXT-CONSV ⊆
C-WMON. But, since G-CONSV = C-WMON (Theorem 21), the extensional no-
tion of conservatism turns out to be equivalent to the intensional notion of conservatism.
The next corollary summarizes these observations.

Corollary 23 G-CONSV = C-CONSV = G-EXT-CONSV = C-EXT-CONSV
= WMON = C-WMON = G-BWMON = C-BWMON.

The results presented in this paper are pictorially presented in Figure 1.
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