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Abstract. Most theoretical models of inductive inference make the idealized assumption that
the data available to a learner is from a single and accurate source. The subject of inaccuracies
in data emanating from a single source has been addressed by several authors. The present paper
argues in favor of a more realistic learning model in which data emanates from multiple sources,
some or all of which may be inaccurate. Three kinds of inaccuracies are considered: spurious data
(modeled as noisy texts), missing data (modeled as incomplete texts), and a mixture of spurious and
missing data (modeled as imperfect texts).

Motivated by the above argument, the present paper introduces and theoretically analyzes a
number of inference criteria in which a learning machine is fed data from multiple sources, some of
which may be infected with inaccuracies. The learning situation modeled is the identification in the
limit of programs from graphs of computable functions. The main parameters of the investigation are:
kind of inaccuracy, total number of data sources, number of faulty data sources which produce data
within an acceptable bound, and the bound on the number of errors allowed in the final hypothesis
learned by the machine.

Sufficient conditions are determined under which, for the same kind of inaccuracy, for the same
bound on the number of errors in the final hypothesis, and for the same bound on the number of
inaccuracies, learning from multiple texts, some of which may be inaccurate, is equivalent to learning
from a single inaccurate text.

The general problem of determining when learning from multiple inaccurate texts is a restriction
over learning from a single inaccurate text turns out to be combinatorially very complex. Significant
partial results are provided for this problem. Several results are also provided about conditions under
which the detrimental effects of multiple texts can be overcome by either allowing more errors in the
final hypothesis or by reducing the number of inaccuracies in the texts.

It is also shown that the usual hierarchies resulting from allowing extra errors in the final program
(results in increased learning power) and allowing extra inaccuracies in the texts (results in decreased
learning power) hold.

Finally, it is demonstrated that in the context of learning from multiple inaccurate texts, spurious
data is better than missing data which in turn is better than a mixture of spurious and missing data.
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1. Introduction. A scenario in which an algorithmic learner attempts to learn
its environment may be described thus. At any given time, some finite data about
the environment is made available to the learner. The learner reacts to this finite
information by conjecturing a hypothesis to explain the behavior of its environment.
Availability of additional data may cause the learner to revise its old hypotheses. The
learner is said to be successful just in case the sequence of hypotheses it conjectures
stabilizes to a final hypothesis which correctly represents its environment.

The above model, generally referred to as identification in the limit , originated in
the pioneering work of Putnam [19], Gold [12], and Solomonoff [25, 26]. More recently,
this model has been the subject of numerous studies in computational learning theory
(see, e.g., [13, 20, 10, 27, 1]). A problem with this model is the idealized assumption
that the data available to the learner is from a single and accurate source. The subject
of inaccuracies in the data available to a learning machine has been previously studied
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by Schäfer-Richter [23], Fulk and Jain [11], Osherson, Stob and Weinstein [17], Jain
[14, 15]. Each of these studies, however, also makes the assumption that the data
available to the learner is from a single source. The present paper argues that in
realistic learning situations, data available to a learner is from multiple sources, some
of which may be inaccurate. We discuss these issues in the context of a specific
learning scenario, namely, scientific inquiry modeled as identification of programs
from graphs of computable functions. Although we present our results in the context
of this particular learning task, we note that some of our arguments and techniques
can be applied to other learning situations, too.

Consider a scientist S investigating a real world phenomenon F . S performs
experiments on F , noting the result of each experiment, while simultaneously conjec-
turing a succession of candidate explanations for F . A criterion of success is for S

to eventually conjecture an explanation which S never gives up and which correctly
explains F . Since we never measure a continuum of possibilities, we could treat S

as performing discrete experiments x on F and receiving back experimental results
f(x). By using a suitable Gödel numbering we may treat f associated with F as
a function from N , the set of natural numbers, into N . Also, assuming a suitable
neo-mechanistic viewpoint about the universe, f is computable. A complete and pre-
dictive explanation of F , then, is just a computer program for computing f . Thus,
algorithmic identification in the limit of programs for computable functions from their
graph yields a plausible model for scientific inquiry.

Let us consider some common practices in scientific inquiry. Data is usually
collected using different instruments, possibly at different places (for example, as-
tronomers use data from different telescopes situated at different locations). In many
cases, experimental errors may creep in or the instruments may simply be faulty. In
some extreme cases, the same instrument may record conflicting readings at different
times. Also, occasionally it may be infeasible to perform experiments (for example,
determining the taste of cyanide). Moreover, experimental findings of one scientist
are generally available to others. All this tends to suggest that often a scientist re-
ceives data from multiple sources, many of which are likely to be inaccurate. The
present paper incorporates these observations in the standard learning model. We
now proceed formally.

Section 2 presents the notation; Section 3 presents the preliminary notions about
identification in the limit and inaccurate data. Section 4 introduces the main subject
of this paper, viz., learning in the presence of multiple sources of inaccurate data. In
this section, we also discuss some of our results informally. Section 5 presents our
results with proofs.

2. Notation. Recursion-theoretic concepts not explained below are treated in
[22]. N denotes the set of natural numbers, {0, 1, 2, 3, . . .}, and N+ denotes the
set of positive integers, {1, 2, 3, . . .}. ∈, ⊆, and ⊂ denote, respectively, membership,
containment, and proper containment for sets.

We let e, i, j, k, l, m, n, r, s, t, u, v, w, x, y, and z, with or without decorations1,
range over N . We let a, b, c, with or without decorations, range over N ∪ {∗}.

[m, n] denotes the set {x ∈ N | m ≤ x ≤ n}. We let S, with or without
decorations, range over subsets of N and we let A, B, C, and D, with or without
decorations, range over finite subsets of N . min(S) and max(S) respectively denote
the minimum and maximum element in S (max(S) is undefined if S contains infinitely

1Decorations are subscripts, superscripts, primes and the like.
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many elements). We take min(∅) to be ∞ and max(∅) to be 0. card(S) denotes the
cardinality of S. ∗ denotes unbounded but finite. We let (∀n ∈ N)[n < ∗ < ∞]. So
then, ‘card(S) ≤ ∗’ means that card(S) is finite.

Let λx, y 〈x, y〉 denote a fixed pairing function (a recursive, bijective mapping:
N × N → N) [22]. λx, y 〈x, y〉 and its inverses are useful to simulate the effect of
having multiple argument functions. π1 and π2 are corresponding projection functions,
i.e., (∀x, y)[π1(〈x, y〉) = x ∧ π2(〈x, y〉) = y].

η and ξ range over partial functions. For a ∈ (N ∪ {∗}), we say that η1 is an
a-variant of η2 (written η1 =a η2) iff card({x | η1(x) 6= η2(x)}) ≤ a. Otherwise we
say that η1 is not an a-variant of η2 (written η1 6=a η2). domain(η) and range(η)
respectively denote the domain and range of partial function η. Let A ⊆ N , c ∈ N .
We say that η(A) = c iff, for all x ∈ A, η(x) = c. If S1, S2 are two sets, then S1∆S2

denotes (S1 − S2) ∪ (S2 − S1).
R denotes the class of all recursive functions of one variable, i.e., total computable

functions with arguments and values from N . f, g, and h, with or without decorations,
range over R. C and S, with or without decorations, range over subsets of R.

We fix ϕ to be an acceptable programming system [21, 22, 16] for the partial
recursive functions: N → N . ϕi denotes the partial recursive function computed by
ϕ-program with index i. Wi denotes domain(ϕi). Wi is, then, the r.e. set/language (⊆
N) accepted (or equivalently, generated) by the ϕ-program i. We let Φ be an arbitrary
Blum complexity measure [4] associated with acceptable programming system ϕ; such
measures exist for any acceptable programming system [4]. Wi,s denotes the set
{x | x < s ∧ Φi(x) ≤ s}.

In some contexts p and q, with or without decorations range over programs.
In other contexts p, q range over total recursive functions, with the range of p, q

being interpreted as (indexes for) programs. In some contexts P , with or without
decorations, ranges over programs. In other contexts, P ranges over sets of programs.

For any predicate Q, µn Q(n) denotes the minimum integer n such that Q(n) is
true if such an n exists; it is undefined otherwise. For any set A, 2A denotes the power
set of A. Ak denotes the Cartesian product of A with itself k times. The quantifiers

‘
∞

∀ ’, ‘∃!’ and ‘
∞

∃ ’ mean ‘for all but finitely many’, ‘there exists a unique’ and ‘there
exist infinitely many’ respectively.

3. Preliminaries. The kind of data a scientist handles in the investigation of a
phenomenon F is an ordered pair (x, f(x)), where f is the function associated with F

and f(x) is the result of experiment x on F . At any given time, a scientist conjectures
a hypothesis after seeing a finite sequence of such ordered pairs. We let SEQ denote
the set of all finite sequences of ordered pairs. Finite sequences are also referred to as
initial segments. As already mentioned, a hypothesis is simply a computer program
identified by its index in a given fixed acceptable programming system. Based on
these observations, we describe a learning machine in Definition 3.1 below. We let σ

and τ , with or without decorations, range over SEQ. content(σ) denotes the set of
pairs appearing in σ. The length of σ, denoted by |σ|, is the number of elements in
σ. σ � (x, y) denotes the concatenation of (x, y) at the end of sequence σ.

Definition 3.1. A learning machine is an algorithmic device that computes
a mapping from SEQ into N . We let M, with or without decorations, range over
learning machines.

Scientific inquiry is a limiting process. There is no fixed order in which exper-
iments may be performed, and a scientist is never sure if any new evidence would
cause a revision of the currently held hypothesis. The notion of a text is described
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in Definition 3.2 to model the infinite sequence of experimental data a scientist may
encounter in the course of investigating a phenomenon.

Definition 3.2.

1. A text is any infinite sequence of ordered pairs. We let T , with or without
decorations, range over texts.

2. The set of pairs appearing in a text T is denoted by content(T ).
3. Let a total function f : N → N , and a text T be given. T is for f just in

case content(T ) = {(x, y) | f(x) = y}.
4. The initial finite sequence of T of length n is denoted by T [n].

Definition 3.3 below describes what it means for a learning machine to converge
on a text.

Definition 3.3.

Suppose M is a learning machine and T is a text. M(T )↓ (read: M(T ) converges)

⇐⇒ (∃p)(
∞

∀ n)[M(T [n]) = p]. If M(T )↓, then M(T ) is defined = the unique p such

that (
∞

∀ n)[M(T [n]) = p]; otherwise M(T ) is said to diverge (written: M(T )↑).

Definition 3.4 below describes what it means for a learning machine to successfully
learn a function.

Definition 3.4. [12, 3, 8]

1. M Exa-identifies a total function f (written: f ∈ Exa(M)) ⇐⇒ (∀ texts T

for f)(∃p | ϕp =a f)[M(T )↓ = p].
2. Exa = {S | (∃M)[S ⊆ Exa(M)]}.

Definition 3.4 above models the situation in which a scientist has access to an
accurate source of data. Since totally accurate experimental data is seldom available,
models of scientific inquiry should accommodate inaccuracies. In the paradigm under
discussion, inaccurate data is modeled by inaccurate texts. First, we consider in
brief the kinds of inaccuracies that may arise in experimentation. The subject of
inaccuracies in the data available to a learning machine has been previously studied
by Schäfer-Richter [23], Fulk and Jain [11], Osherson, Stob and Weinstein [17], Jain
[14, 15].

• Noisy Data: Experimental error, usually caused by faulty equipment, may
result in spurious data that is not representative of the phenomenon under
investigation.

• Incomplete Data: It may not be feasible to perform certain experiments
either due to technological limitations or due to ethical considerations. Such
situations result in incomplete data.

• Imperfect Data: In most experimental investigations, the inaccuracies are
a mixture of both noisy and incomplete data. Such situations are said to
yield imperfect data.

The three kinds of inaccuracies discussed above suggest three natural extensions
to the notion of texts defined below.

Definition 3.5. [11, 17, 14] (also see [23]) Let a text T and a function f ∈ R
be given. Let a ∈ N ∪ {∗}. Then,

1. T is said to be a-noisy for f just in case {(x, y) | f(x) = y} ⊆ content(T ) and
card(content(T ) − {(x, y) | f(x) = y}) ≤ a.

2. T is said to be a-incomplete for f just in case content(T ) ⊆ {(x, y) | f(x) = y}
and card({(x, y) | f(x) = y} − content(T )) ≤ a.

3. T is said to be a-imperfect for f just in case card({(x, y) | f(x) =
y}∆content(T )) ≤ a.
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Definition 3.6 below describes what it means for a learning machine to learn a
function from inaccurate texts. We give the definition for noisy texts; the corre-
sponding notions for incomplete and imperfect texts (respectively called, InaExb and
ImaExb) can be defined similarly.

Definition 3.6. [11, 17, 14] (also see [23]) Let a, b ∈ N ∪ {∗}.

1. M NaExb-identifies a total function f (written: f ∈ NaExb(M)) ⇐⇒ (∀
a-noisy texts T for f)(∃p | ϕp =b f)[M(T )↓ = p].

2. NaExb = {S | (∃M)[S ⊆ NaExb(M)]}.

4. Multiple Inaccurate Texts. The previous section described a paradigm
that models a scientist receiving data from a single, albeit possibly inaccurate source.
In actual scientific practice, a phenomenon is investigated by a number of different
scientists, each performing their own experiments. In due course of time, the data of
one scientist becomes available to another through scientific journals, word of mouth,
personal communications, etc. Thus, a scientist conjectures hypotheses based on data
coming from a number of different sources. This situation could be modeled in the
present paradigm as a machine receiving multiple texts, some or all of which are
inaccurate. It should be noted that the presence of inaccuracies in at least some of
the texts is essential for this model to be different because learning from multiple
texts, each of which are accurate, is equivalent to learning from a single accurate text.

Before we define learning from multiple inaccurate texts, we need to tinker with
the definition of a learning machine to account for data coming from more than one
source. Definition 4.1 below describes learning machines that receive multiple streams
of data.

Definition 4.1. Let k ∈ N+. A learning machine with k streams is an algorith-
mic device that computes a mapping from SEQk into N .

Again, we let M, with or without decorations, range over learning machines with
multiple streams; it will be clear from context if we mean a learning machine with a
single stream. Definition 4.2 below describes what it means for a learning machine to
converge on multiple texts.

Definition 4.2. Let k ∈ N+. Let M be a learning machine and
T1, T2, . . . , Tk are k texts. M(T1, T2, . . . , Tk)↓ (read: M(T1, T2, . . . , Tk) con-
verges) ⇐⇒ (∃p)(∃n)(∀n1, n2, . . . , nk | n1 ≥ n, n2 ≥ n, . . . , nk ≥
n)[M(T1[n1], T2[n2], . . . , Tk[nk]) = p]. If M(T1, T2, . . . , Tk)↓, then M(T1, T2, . . . , Tk)
is defined = the unique p such that (∃n)(∀n1, n2, . . . , nk | n1 ≥ n, n2 ≥ n, . . . , nk ≥
n)[M(T1[n1], T2[n2], . . . , Tk[nk]) = p]; otherwise M(T1, T2, . . . , Tk) is said to diverge
(written: M(T1, T2, . . . , Tk)↑).

Definition 4.3 below describes what it means for a learning machine to learn a
function from multiple number of inaccurate texts. We give the definition for noisy
texts; the corresponding notions for incomplete and imperfect texts may be defined
similarly.

Definition 4.3. Let j, k ∈ N+. Let a, b ∈ N ∪ {∗}.

(a) A learning machine M MuljkN
aExb-identifies a total function f (written: f ∈

MuljkN
aExb(M)) ⇐⇒ (∀ k texts T1, T2, . . . , Tk such that at least j out of these k

texts are a-noisy for f)(∃p | ϕp =b f)[M(T1, T2, . . . , Tk)↓ = p].

(b) MuljkN
aExb = {S | (∃M)[S ⊆ MuljkN

aExb(M)]}.

So, a machine MuljkN
aExb- ( MuljkIn

aExb-, MuljkIm
aExb-) identifying a func-

tion f , upon being fed k texts at least j of which are a-noisy (a-incomplete, a-
imperfect) for f , converges to a program for a b-variant for f . Henceforth, when
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discussing MuljkN
aExb, etc., those texts for which the inaccuracy is within the re-

quired bound are referred to as acceptable texts. We next note that the only interesting
cases are those for which the number of acceptable texts is a majority of the total
number of texts.

Consider a collection of recursive functions C. Assume f1, f2 ∈ C to be such that

f1 6=2a f2. Then, for all k, we have C 6∈ Mul
b k

2
c

k N0Exa. This is because among k

texts there may be b k
2 c accurate texts for both f1 and f2. To avoid such problems,

we only consider those cases in which a strict majority of the texts are acceptable. 2

We now discuss our results before presenting them with proofs in the next section.
One of our central aims is to investigate the relationship between identification

from a single inaccurate text and identification from multiple inaccurate texts, where
the inaccuracy is of the same kind. For noisy texts, for instance, this question can be
phrased as: How does NaExb relate to MuljkN

cExd for various values of a, b, c, d and
j, k? Similar questions can be posed for incomplete and imperfect texts. This general
question turns out to be combinatorially very difficult, and only partial results are
presented in this paper.

First, the following immediate proposition states that for the same bound on the
number of inaccuracies and the same kind of inaccuracy, identification from multiple
inaccurate texts cannot be better than identification from a single inaccurate text,
that is, collections of functions that can be identified from multiple inaccurate texts
can also identified from a single inaccurate text.

Proposition 4.4. Let j, k ∈ N , such that k ≥ j. Let a, b ∈ N ∪ {∗}.
1. MuljkN

aExb ⊆ NaExb.

2. MuljkIn
aExb ⊆ InaExb.

3. MuljkIm
aExb ⊆ ImaExb.

The natural question is when does the above proposition yield an equality. That is,
we would like to have sufficient conditions for when identification from multiple texts
is no worse than identification from a single inaccurate text. Results in Section 5.1
give some conditions such that,— for each kind of inaccuracy (noise, incompleteness,
and imperfection)—if a collection of functions can be learned from a single inaccurate
text, then it can also be learned (with the same bound on the number of errors in the
final program) from multiple inaccurate texts, provided the bound on the number of
inaccuracies in at least a majority of the acceptable texts is the same as the bound
on the number of inaccuracies in the single inaccurate text.

The next natural question is under what conditions identification from multiple
texts, some of which may be inaccurate, constitutes a restriction on identification
from a single inaccurate text. More precisely, we would like to answer the question:
For what relationship between a, b, c, d and j, k, NaExb − MuljkN

cExd 6= ∅? Unfor-
tunately, this question turns out to be very difficult, and we are only able to provide
partial results for identification from 3 texts, at least 2 of which are acceptable (that
is, for the case j = 2 and k = 3). Theorem 5.4 in Section 5.2 is a very general re-
sult that gives sufficient conditions for a, b, c, d such that NaExb −Mul23N

cExd 6= ∅.
Unfortunately these conditions turn out to be somewhat intricate, but the reader can
get a feel for special cases of these conditions presented in Corollaries 5.5, 5.6, 5.7,

2It should be noted that if for all f1, f2 ∈ C, f1 =2a f2, then all functions in C are finite variants
of any fixed function in the class. We feel that such cases are not interesting, because if at least j

out of k input texts are acceptable for a function f ∈ C, then one can easily find a program p (in the
limit) such that, at least j out of k input texts are acceptable for ϕp (though, this ϕp may not be in
C).
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and 5.8. These results are presented in Section 5.2.

Also, in Section 5.2, we consider the cases where the restrictive effects of learning
from multiple inaccurate texts can be compensated. More precisely, we identify the
relationship between a, b, c, d such that NaExb ⊆ Mul23N

cExd. This is achieved by
either allowing a greater upper bound on the number of errors tolerated in the final
program (that is, by making d greater than b) or by making the quality of acceptable
texts better than the quality of single inaccurate text (that is, by making c smaller
than a). An interesting result on these lines is that for each type of inaccuracy, the
collections of functions identified from a single inaccurate text can also be identified
from 3 texts, at least 2 of which are acceptable with the same bound on the number of
inaccuracies as the single text, provided we are prepared to tolerate twice the number
of errors in the final program. This follows from Theorems 5.9, 5.19, and 5.22.

In Section 5.3, we consider the effects of increasing the bound on the number
of errors tolerated in the final program keeping other parameters the same and the
effects of increasing the bound on the number of inaccuracies in the acceptable texts
keeping other parameters the same. We are able to show the expected result that for
each inaccuracy type, larger collections of functions become identifiable if we

• increase the bound on the number of errors allowed in the final program
(keeping other parameters the same), or

• decrease the bound on the number of inaccuracies allowed in the input texts
(keeping other parameters the same).

Results discussed so far have been about the same kind of inaccuracies. Finally,
in Section 5.4, we present results that compare one kind of inaccuracy with another in
the context of identification from multiple texts. Our findings show that noisy texts
are better for learnability than incomplete texts. This observation may be interpreted
as saying that spurious data is preferable to missing data. However, we also show that
imperfect texts are worse for learnability than incomplete texts, which can be seen as
saying that a mixture of spurious and missing data is less desirable than only missing
data.

5. Results. We now present results relating various criteria of inference intro-
duced in Section 4. Most results in the present paper are about the case in which a
learning machine is receiving data from 3 sources, at least 2 of which are acceptable.
Section 5.1 presents results about those cases in which learning from multiple texts
is not a restriction on learning power. Section 5.2 presents results where learning
from multiple texts is a restriction on learning power, and also about cases where the
deleterious effects of learning from multiple inaccurate texts can be compensated by
either allowing extra errors in the final program or by improving the quality of the
acceptable texts. Section 5.3 presents the hierarchy results and Section 5.4 presents
some results about the interaction between different kinds of of inaccuracies.

From a purely technical point of view, results presented in Section 5.2 are the
most difficult results of this paper. Also, we are able to establish more results for
noisy texts than for incomplete and imperfect texts.

5.1. When Identification from Multiple Texts is Not Restrictive. We
consider cases when learning from multiple inaccurate texts is equivalent to learning
from a single inaccurate text. Parts (1), (2), and (3) of the next result show that
for each kind of inaccuracy, the collections of functions that can be identified from a
single text with a finite number of inaccuracies is exactly the same as the collections
of functions that can be identified (with the same bound on the number of errors
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allowed in the final program) from multiple texts, at least a majority of which have
only a finite number of inaccuracies.

Theorem 5.1. Let j, k ∈ N , k ≥ j > b k
2 c. Let a ∈ N ∪ {∗}.

1. MuljkN
∗Exa = N∗Exa.

2. MuljkIn
∗Exa = In∗Exa.

3. MuljkIm
∗Exa = Im∗Exa.

4. MuljkN
0Exa = MuljkIn

0Exa = MuljkIm
0Exa = Exa.

Proof. Given k texts T1, T2, . . . , Tk, construct a text T such that (x, y) ∈
content(T ) ⇐⇒ card({i | (x, y) ∈ content(Ti)}) ≥ bk

2 c + 1. It is easy to see

that if at least bk
2 c+1 of the k texts are ∗-noisy (∗-incomplete, ∗-imperfect, accurate)

for f then so is T . The theorem follows.
We now introduce a technical notion that is used in later proofs. Let P be a finite

set of programs. Define program Unify(P ) as follows:
begin ϕUnify(P )(x)

Search for i ∈ P such that ϕi(x)↓.
If and when such an i is found, output ϕi(x) (for the first such i found).

end ϕUnify(P )(x)
The next result shows that for a ∈ N ∪ {∗}, the collections of functions for which

an exact program can be identified from a single text with the number of inaccuracies
bounded by a is exactly the same as the collections of functions for which an exact
program can be identified from multiple texts, at least a majority of which have at
most a inaccuracies.

Theorem 5.2. Let j, k ∈ N , k ≥ j > b k
2 c. Let a ∈ N ∪ {∗}.

1. MuljkN
aEx = NaEx.

2. MuljkIn
aEx = InaEx.

3. MuljkIm
aEx = ImaEx.

Proof. (1) Proposition 4.4 yields MuljkN
aEx ⊆ NaEx. We now show that

NaEx ⊆ MuljkN
aEx.

Let M NaEx-identify C. We show how to Ex-identify f ∈ C from k texts at
least j of which are a-noisy for f . Let n, S = {i1, i2, . . . , ij} ⊆ {1, 2, . . . , k}, P =
{pi1 , pi2 , . . . , pij

}, be such that,
(i) for all l ∈ S and m ≥ n, M(Tl[m]) = pl,
(ii) if p, q ∈ P , then card({x | ϕp(x)↓ 6= ϕq(x)↓}) = 0, and
(iii) card(S) = j.
Clearly, such n, S, P exist (let S ⊆ {i | Ti is a-noisy for f} be a set of cardinality j;
let n be such that, for all l ∈ S, M converges on Tl after seeing at most n inputs; let
P = {M(Tl) | l ∈ S}. Then n, S, P satisfy (i), (ii), and (iii)). Clearly, a machine M′,
given texts T1, . . . , Tk, can find such an n, S, P in the limit. Now since M on Tl, l ∈ S,
converges to pl and card(S) > k − j, there exists an l ∈ S such that ϕpl

= f . This
along with (ii) above implies that Unify(P ) is a program for f . This proves Part (1).

Part (2) and (3) can be proved similarly.
The next result shows that for a ∈ N ∪ {∗}, the collections of functions for which

a ∗-error program can be identified from a single text with the number of inaccuracies
bounded by a is exactly the same as the collections of functions for which a ∗-error
program can be identified from multiple texts, at least a majority of which have at
most a inaccuracies.

Theorem 5.3. Let j, k ∈ N , k ≥ j > b k
2 c. Let a ∈ N ∪ {∗}.

1. MuljkN
aEx∗ = NaEx∗.
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2. MuljkIn
aEx∗ = InaEx∗.

3. MuljkIm
aEx∗ = ImaEx∗.

Proof. (1) Proposition 4.4 yields MuljkN
aEx∗ ⊆ NaEx∗. We now show that

NaEx∗ ⊆ MuljkN
aEx∗.

Let M NaEx∗-identify C. We show how to Ex∗-identify f ∈ C from k texts at
least j of which are a-noisy for f . Let n, S = {i1, i2, . . . , ij} ⊆ {1, 2, . . . , k}, P =
{pi1 , pi2 , . . . , pij

}, be such that,
(i) for all l ∈ S and m ≥ n, M(Tl[m]) = pl,
(ii) if p, q ∈ P , then card({x | ϕp(x)↓ 6= ϕq(x)↓}) ≤ n, and
(iii) card(S) = j.
Clearly, such n, S, P exist (let S ⊆ {i | Ti is a-noisy for f} be a set of cardinality j;
let P = {M(Tl) | l ∈ S}; let n be so large that for all l ∈ S, M converges on Tl after
seeing at most n inputs and f =n/2 ϕp, for all p ∈ P ; Then n, S, P satisfy (i), (ii) and
(iii)). Clearly, a machine M′, given texts T1, . . . , Tk, can find such an n, S, P in the
limit. Now since M on Tl, l ∈ S, converges to pl and card(S) > k − j, there exists
an l ∈ S such that ϕpl

=∗ f . This along with (ii) above implies that Unify(P ) is a
program for a finite variant of f . This proves Part (1).

Parts (2) and (3) can be proved similarly.

5.2. When Identification from Multiple Texts is Restrictive. In this sec-
tion we initially tackle the question of when, for the same kind of inaccuracy, learning
from multiple texts, some of which may be inaccurate, is a restriction over learning
from a single inaccurate text. That is, we consider the question: For which values
of a, b, c, d and j, k, is NaExb − MuljkN

cExd 6= ∅? As already noted this turns out
to be very difficult question. For the case j = 2 and k = 3, we are able to provide
significant partial answers. These results follow from a very complex diagonalization
argument.

In this section, we then consider the related question of when the restriction of
identification from multiple texts can be compensated. That is, for what values of
a, b, c, d, is NaExb ⊆ Mul23N

cExd. These results use simulation arguments.
We first present results for noisy texts (Section 5.2.1), followed by results for

incomplete texts (Section 5.2.2). Only few results are presented for imperfect texts.

5.2.1. Noisy Texts. We present a general theorem that covers numerous cases
in which identification from multiple noisy texts is a restriction over identification
from a single noisy text. Unfortunately, the conditions in the theorem turn out to
be very complex, and the reader is advised to see the four corollaries, presented
immediately after the statement of the theorem, for cases in which multiple texts
pose a restriction. However, we first try to give a intuitive motivation of the theorem.
Consider the question of where we are trying to compare identification from a single
noisy text and identification from 3 texts, at least 2 of which are noisy. Further let,
• a be the bound on the noise level of the single text,
• b be the bound on the number of errors allowed in programs inferred from the single

text,
• c be the bound on the noise level of the acceptable texts in the case of identification

from multiple texts, and
• d be the bound on the number of errors allowed in programs inferred from multiple

texts.
We would like to know when

NaExb − Mul23N
cExd 6= ∅.
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Now, let us see the effects of altering each of the parameters. Increasing a or decreasing
b makes the class NaExb smaller. Similarly, decreasing c and increasing d makes the
class Mul23N

cExd larger. The following theorem tells us how much we can “stretch”
the parameters a, b, c, d such that there are still collections of functions that can be
identified from single noisy text but not from 3 texts, at least 2 of which are acceptable.

Theorem 5.4. Let a, b, c, d ∈ N be given. If there exist r, α ∈ N such that,

r − b ≤ α ≤ min({b, r}),
r ≤ c,
2r > a, and
d < max({b + α − r

2 , b + α
3 }),

then NaExb−Mul23N
cExd 6= ∅. Before giving a proof of the above result, we present

corollaries. The first corollary says that for given a, b, c ∈ N such that a is greater,
but not too greater, than c (c ≤ a ≤ 2c − 1) and c is no greater than b, there are
collections of functions for which a b-error program can be identified from an a-error
text, but for which even a (b + d c

2e − 1)-error program cannot be identified from 3
texts, at least 2 of which are c-noisy for the function being learned.

Corollary 5.5.

Let a, b, c ∈ N be such that c ≤ a ≤ 2c − 1, c ≤ b. Then, NaExb −
Mul23N

cExb+d c
2
e−1 6= ∅.

Proof. Take r = α = c in Theorem 5.4.
The next three corollaries are more variations on this theme and give insight into

how much the parameters a, b, c, d can be stretched.
Corollary 5.6. Let a, b, c ∈ N be such that c ≤ a ≤ 2c − 1, c

2 ≤ b ≤ 3
4d

a+1
2 e.

Then, NaExb − Mul23N
cExd 4b

3
e−1 6= ∅.

Proof. Take r = c, α = b in Theorem 5.4.
Corollary 5.7. Let a, b, c ∈ N be such that c ≤ a ≤ 2c − 1, a

2 < b ≤ c. Then,

NaExb − Mul23N
cExd 3b

2
e−1 6= ∅.

Proof. Take r = α = b in Theorem 5.4.
Corollary 5.8. Let a, b, c ∈ N be such that c ≤ a ≤ 2c−1, max({ c

2 , 3
4d

a+1
2 e}) ≤

b ≤ a
2 . Then NaExb − Mul23N

cExd2b− a+2

4
e−1 6= ∅.

Proof. Take r = da+1
2 e, α = b in Theorem 5.4.

We now give a proof of Theorem 5.4. The proof turns out to be somewhat complex
because we have to come up with a collection of functions that can be identified from
a single noisy text, but which cannot be identified from 3 texts, at least 2 of which
are noisy. To design this collection of functions, we employ a technique from the
study of identification from single inaccurate texts [11]. We then employ the operator
recursion theorem [5] to construct a diagonalization argument to show that this class
cannot be identified from 3 texts, at least 2 of which are noisy. The diagonalization
technique is an adaptation of the techniques used elsewhere in the study of inductive
inference; we direct the reader to a survey of such techniques [6].

Proof. (Theorem 5.4) Assume the hypothesis and fix r, α satisfying the hypothesis.
Let A = {〈0, x〉 | 0 ≤ x < r}.
Consider the following class of functions.

C = {f ∈ R | the following conditions hold:
(1)f(A) = f(〈0, 0〉) ∈ {1, 2, 3};
(2)(∀i ∈ {1, 2, 3} − {f(〈0, 0〉)})[(max({f(〈i, 〈x, 0〉〉) | x ∈ N}) exists) ∧

(ϕmax({f(〈i,〈x,0〉〉)|x∈N}) =b f)];
(3)(∀i ∈ {1, 2, 3})(∀x, y, z)[f(〈i, 〈x, y〉〉) = f(〈i, 〈x, z〉〉)] }



LEARNING FROM MULTIPLE SOURCES 11

Intuitively, A is the set of points where some coding is done. (A is the only place
where inaccuracies will matter). a-noise is not enough to spoil the coding in A for
NaExb-identification. However, r-noise is enough to spoil the coding for Mul23N

cExd-
identification.

It is easy to show that C ∈ NaExb. To see this suppose T is a-noisy text for f ∈ C.
Since 2r > a, there exists an i ∈ {1, 2, 3} and x ∈ A, such that (x, i) 6∈ content(T ).
This along with clause (2) in the definition of C implies that ϕmax({f(〈i,〈x,0〉〉)|x∈N}) =b

f . Now, max({f(〈i, 〈x, 0〉〉) | x ∈ N}), can be determined, in the limit, from T due to
cylindrification in clause (3). It follows that C ∈ NaExb.

We now show that C 6∈ Mul23N
cExd.

The essentially idea for diagonalization is that, a machine cannot Exd-identify C
if the coding in A (due to clause (1) in definition of C) is spoiled. So, suppose by way
of contradiction that machine M Mul23N

cExd-identifies C.

Then by the Operator Recursion Theorem[5], there exists a recursive, 1-1 and
increasing p, with p(0) > 1, defined as follows in stages.

We define ϕp(i) in Stages s ≥ 3. Let xs
3 denote the least x such that, for all y,

ϕp(1)(〈3, 〈x, y〉〉) is not defined before Stage s.

For x < α, let ϕp(1)(〈0, x〉) = 2. For α ≤ x < r, let ϕp(1)(〈0, x〉) = 3. Let
ϕp(1)(〈1, 〈0, 0〉〉) = p(1), and ϕp(1)(〈2, 〈0, 0〉〉) = p(2).

For x < α, let ϕp(2)(〈0, x〉) = 1. For α ≤ x < r, let ϕp(2)(〈0, x〉) = 3. Let
ϕp(2)(〈1, 〈0, 0〉〉) = p(1), and ϕp(2)(〈2, 〈0, 0〉〉) = p(2).

Let σ3
1 , σ3

2 and σ3
3 be such that

content(σ3
1) = {(x, 2) | x ∈ A}∪{(x, 3) | x ∈ A}∪{(〈1, 〈0, 0〉〉, p(1)), (〈2, 〈0, 0〉〉, p(2))},

content(σ3
2) = {(x, 1) | x ∈ A}∪{(x, 3) | x ∈ A}∪{(〈1, 〈0, 0〉〉, p(1)), (〈2, 〈0, 0〉〉, p(2))},

content(σ3
3) = {(x, 1) | x ∈ A}∪{(x, 2) | x ∈ A}∪{(〈1, 〈0, 0〉〉, p(1)), (〈2, 〈0, 0〉〉, p(2))}.

Intuitively, we will form three (nearly identical) texts T1, T2, and T3 with the
initial segments σ3

1 , σ
3
2 , σ

3
3 as defined above. Note that these three texts spoil the

coding in A (since all possible values of the coding are present in two of these texts).
Now the basic idea in the diagonalization below, is to either

(1) force infinitely many mind changes by M (see step 4 in the construction) —
in this case T1 and T2 form the c-noisy texts for the diagonalizing function — or

(2) based on what the final program M(T1, T2, T3), does on the inputs from A (see
step 2 in the construction), we do an appropriate diagonalization of the same form as
done in Ex-hierarchy theorem by [8] (see steps 5a,5c and 6a in the construction). The
diagonalization is done so as to maximize the errors of the final program under the
constraint of keeping the diagonalizing function within the class (see the comments
at the end of step 2 in the construction). Steps 5b and 6b in the construction are
needed since one cannot effectively determine whether program M(T1, T2, T3) halts
on inputs from the set A (we can do it only in the limit).

Let ϕs
p(i) denote the part of ϕp(i) defined before Stage s. Go to Stage 3.

Begin Stage s

1. Let q = M(σs
1, σ

s
2, σ

s
3).

2. Let D1 = {x | x ∈ A ∧ Φq(x) ≤ s ∧ ϕq(x) = 1}.
Let D2 = {x | x ∈ A ∧ Φq(x) ≤ s ∧ ϕq(x) = 2}.
Let D3 = {x | x ∈ A ∧ Φq(x) ≤ s ∧ ϕq(x) ∈ N − {1, 2}}.
Let err1,2 = r − card(D3) + b − α.
Let err2,3 = r − card(D1) + b − r + α.
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Let err1,3 = r − card(D2) + b − r + α.
If err1,2 ≤ max({err1,3, err2,3}), then let extra err = b − r + α; otherwise
let extra err = b− α. If err1,3 > err2,3, then let l = 1 and l′ = 2; otherwise
let l = 2 and l′ = 1.
Let Xs ⊂ {〈4, x〉 | x ≥ s} denote the (lexicographically least) set of extra err

elements such that, for all x ∈ Xs, ϕp(1)(x) is not defined before Stage s.
(Note: Let Ti =

⋃

s σs
i . D1 (D2, D3) denote the points in A for which ϕq

seems to be correct if T2 and T3 (T1 and T3, T1 and T2) are the acceptable
texts for the function being learned and erri,j denotes the error we can force
if we chose a function such that Ti, Tj are correct texts for the function.
Informally, an attempt is made at every stage to try and make those two
texts correct so as to maximize the number of errors made by M’s current
output program.)

3. For x ∈ A, let ϕp(s)(x) = l′; Let ϕp(s)(〈3, 〈x
s
3, 0〉〉) = ϕp(1)(〈3, 〈x

s
3, 0〉〉) =

ϕp(2)(〈3, 〈x
s
3, 0〉〉) = p(s). For x ∈ domain(ϕs

p(1))−A, let ϕp(s)(x) = ϕp(1)(x).

4. For i ∈ {1, 2, 3}, let σ′
i be an extension of σs

i such that content(σ′
i) =

content(σs
i ) ∪ {(〈3, 〈xs

3, 0〉〉, p(s))}.
5. Dovetail Steps 5a, 5b and 5c until (if ever) one of Steps 5a, 5b succeeds
and at least one iteration of the loop at Step 5c is completed. If Step 5a
succeeds (before Step 5b (if ever) succeeds), then complete the then current
iteration of the repeat loop in Step 5c and go to Step 6a. If Step 5b succeeds
(before Step 5a (if ever) succeeds), then complete the then current iteration
of the repeat loop in Step 5c and go to Step 6b.

5a. Search for σ′′
i ⊇ σ′

i, i ∈ {1, 2, 3} such that M(σs
1, σ

s
2, σ

s
3) 6=

M(σ′′
1 , σ′′

2 , σ′′
3 ) and for all j, j′ ∈ {1, 2, 3}, for all x, y, z ∈ N , follow-

ing three conditions hold:
• content(σ′′

j ) − content(σ′
j) = content(σ′′

j′) − content(σ′
j′)

• If (〈j, 〈x, y〉〉, v) ∈ content(σ′′
1 ) and (〈j, 〈x, z〉〉, w) ∈ content(σ′′

1 ),
then v = w.
• If (x, y) ∈ (content(σ′′

1 ) − content(σ′
1)), then [[y = 0 ∧ x 6∈ A]

OR x ∈ Xs OR [For some i ∈ {1, 2, 3}, u, v ∈ N : x = 〈i, 〈u, v〉〉 and
ϕp(1)(〈i, 〈u, 0〉〉) has been defined till now and ϕp(1)(〈i, 〈u, 0〉〉) = y]].

(Remark: This substep looks for one set of suitable extensions of the
currently defined initial segments of the three texts which makes M
change its mind.)

5b. Search for x ∈ A − (D1 ∪ D2 ∪ D3) such that ϕq(x)↓.

5c. Let Addednew = ∅.
(Note: We use Addednew in order to identify the set of elements for
which we extend ϕp(1) in Step 5c. Addednew will be used (in Steps 6a
and 6b) provided at least one of Steps 5a or 5b succeeds).
Repeat

Let x be the least point not in Xs such that ϕp(1)(x) is not defined
till now. If for some i ∈ {1, 2, 3}, x is of the form 〈i, 〈u, v〉〉 and
ϕp(1)(〈i, 〈u, 0〉〉) is defined till now, then let ϕp(1)(x) = ϕp(2)(x) =
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ϕp(s)(x) = ϕp(1)(〈i, 〈u, 0〉〉); else, let ϕp(1)(x) = ϕp(2)(x) =
ϕp(s)(x) = 0.
Let Addednew = Addednew ∪ {x}.

Forever
6a. For all x, y such that (x, y) ∈ content(σ′′

1 ) − content(σs
1), let ϕp(1)(x) =

ϕp(2)(x) = y. Let σs+1
i be an extension of σ′′

i such that content(σs+1
i ) −

content(σ′′
i ) = {(x, ϕp(1)(x)) | x ∈ Addednew}. Go to Stage s + 1.

6b. Let σs+1
i be an extension of σ′

i such that content(σs+1
i )− content(σ′

i) =
{(x, ϕp(1)(x)) | x ∈ Addednew}. Go to Stage s + 1.

End Stage s

Now consider the following cases:

Case 1: All stages terminate.
Let

f(x) =

{

3, if x ∈ A;
ϕp(1)(x), otherwise.

Clearly, f ∈ C (since α ≤ b, ϕp(1) =b f and ϕp(2) =b f). Also, M on f makes
infinitely many mind changes, since Step 5b can succeed at most finitely many
times before Step 5a succeeds.

Case 2: Stage s (≥ 3) is the least stage which starts but never terminates.
Let q, err1,2, err2,3, err1,3, D1, D2, D3 be as defined in Steps 1, 2 in Stage s.

Now, max({err1,2, err2,3, err1,3}) ≥ err1,2+err2,3+err1,3

3 ≥ 3b+α
3 . Thus,

max({err1,2, err2,3, err1,3}) ≥ b + α
3 . Also, since err1,2 ≤ r + b − α, we

have max({err1,3, err2,3}) ≥ 2b−r+2α
2 . Thus, max({err1,2, err2,3, err1,3}) ≥

max({b + α − r
2 , b + α

3 }).

Case 2a: In Step 2 of Stage s it was found that err1,2 ≤ max({err1,3, err2,3}).
Let l, l′ be as found in Step 2. In this case domain(ϕp(s)) = N −Xs. Let f be any
fixed total extension of ϕp(s) such that, for all x ∈ Xs, we have f(x) 6= ϕq(x).

Clearly, f ∈ C (since ϕp(l) =b f and ϕp(s) =b f and f(〈0, 0〉) = l′). Let T1, T2, T3

be extensions of σ′
1, σ

′
2, σ

′
3 (as defined in Step 4 in Stage s) respectively such that

content(T1) − content(σs
1) = {(x, y) | f(x) = y ∧ (∀z)[(x, z) 6∈ content(σs

1)]}
and, for all j, [|σ′

1|+ j]th element of T1, [|σ′
2|+ j]th element of T2 and [|σ′

3|+ j]th

element of T3 are all the same. Clearly, M(T1, T2, T3) = q (otherwise Step 5a
would succeed).
Now, for all x ∈ A − Dl′ , f(x) 6= ϕq(x). (Since that was the way Dl′ was chosen
in Step 2 of Stage s). Thus, ϕq 6=max({err1,3,err2,3})−1 f .

Case 2b: In Step 2 of Stage s it was found that err1,2 > max({err1,3, err2,3}).
In this case domain(ϕp(1)) = N − Xs. Let f be a fixed total function such that
the following three conditions hold:

• f(A) = 3,
• f(x) = ϕp(1)(x), for x ∈ domain(ϕp(1)) − A, and
• (∀x ∈ Xs)[f(x) 6= ϕq(x)].

Clearly, f ∈ C (since ϕp(1) =b f , ϕp(2) =b f and f(〈0, 0〉) = 3). Let T1, T2, T3

be extensions of σ′
1, σ

′
2, σ

′
3 respectively such that content(T1) − content(σs

1) =
{(x, y) | f(x) = y ∧ (∀z)[(x, z) 6∈ content(σs

1)]} and for all j, [|σ′
1|+ j]th element
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of T1, [|σ′
2| + j]th element of T2 and [|σ′

3| + j]th element of T3 are all the same.
Also, it is clear that M(T1, T2, T3) = q (otherwise, Step 5a would succeed). Now,
for all x ∈ A−D3, f(x) 6= ϕq(x). (Since that was the way D3 was chosen in Step
2 of Stage s). Thus, ϕq 6=err1,2−1 f .

From the above cases, it follows that C 6∈ Mul23N
cExd.

The results established so far identified cases where multiple noisy texts are a re-
striction over learning from a single noisy text. The natural question that arises
is what are the cases where the restriction of learning from multiple noisy texts
can be compensated in some way. That is, for which values of a, b, c, d, NaExb ⊆
Mul23N

cExd. A quick look at the effects of the various parameters yields at least two
different ways in which the restrictive impact of multiple texts can be compensated.
These are:

• by allowing extra errors in the program inferred from multiple texts (that is,
by making d larger than b),

• by having a reduced bound on the number of noise elements in the multiple
texts (that is, by making c smaller than a).

Theorems 5.9 and 5.10 use the first technique; Theorems 5.12, 5.13, and 5.14 use
the second technique; and Theorem 5.11 can be seen as using a combination of the
two techniques to compensate for the deleterious effects of learning from multiple
texts. The technique used in these simulation arguments is to first collect all the
input points where there is a noise in some text. Then construct a program which
judiciously chooses the output on these inputs based on on the input texts and outputs
of the converging programs.

Theorem 5.9 below shows that the collections of functions for which a b-error
program can be identified from a single c-noisy text can also be learned from 3 texts,
at least 2 of which are c-noisy, provided we are prepared to tolerate up to twice the
number (2b) of errors in the final program.

Theorem 5.9. Let b, c ∈ N . Then, NcExb ⊆ Mul23N
cEx2b.

Proof. Suppose machine M NcExb-identifies C. We construct M′ such that M′

Mul23N
cEx2b-identifies C.

Let T1, T2, T3 be the three given texts out of which at least two are c-noisy for
f ∈ C.

Let i, j be distinct and such that: M(Ti)↓ and M(Tj)↓, Pi = M(Ti) and Pj =
M(Tj) and card({x | ϕPi

(x)↓ 6= ϕPj
(x)↓}) ≤ 2b. Let CLASH = {x | ϕPi

(x)↓ 6=

ϕPj
(x)↓}. Let S ⊆ CLASH be a set of cardinality b card(CLASH)

2 c.
Note that we can easily determine all the sets defined above and Pi, Pj as above

in the limit from the given texts.
M′ in the limit outputs a program p such that:

ϕp(x) =



















ϕPi
(x), if x ∈ S;

ϕPj
(x), if x ∈ CLASH − S;

ϕPi
(x), x ∈ N − CLASH ∧ x ∈ domain(ϕPi

);
ϕPj

(x), x ∈ N − CLASH ∧ x ∈ domain(ϕPj
);

↑, otherwise.

Since at least one of Pi, Pj is a b-error program for f , it is clear that p is a 2b-error

program for f . Thus, M′ Mul23N
cEx2b-identifies f .

In order to prove the rest of the results in this section (Theorems 5.10 to 5.14),
it is useful to define certain sets and texts. We will require these sets to satisfy
certain assumptions which can be assumed without loss of generality . We state these
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definitions and assumptions next, and we assume them without explicitly stating them
in the proofs.

Suppose a machine is trying to Mul23N
cExd-identify f (where c ∈ N). Suppose

the three texts provided as input to the machine are T1, T2, and T3, such that at least
two of these texts are c-noisy for f .

Definitions: Let T1, T2, and T3 be texts.

1. TUNION is a text such that content(TUNION ) = {(x, y) | (x, y) ∈
content(T1) ∨ (x, y) ∈ content(T2) ∨ (x, y) ∈ content(T3)}.

2. NOISE POINTS = {x | (∃y, z)[y 6= z ∧ (x, y) ∈ content(TUNION ) ∧
(x, z) ∈ content(TUNION )]}.

3. NOISE1,2 = {x | card({y | (x, y) ∈ content(T1)}) = card({y | (x, y) ∈
content(T2)}) ≥ 2 ∧ card({y | (x, y) ∈ content(T3)}) = 1}.

4. NOISE1,3 = {x | card({y | (x, y) ∈ content(T1)}) = card({y | (x, y) ∈
content(T3)}) ≥ 2 ∧ card({y | (x, y) ∈ content(T2)}) = 1}.

5. NOISE2,3 = {x | card({y | (x, y) ∈ content(T2)}) = card({y | (x, y) ∈
content(T3)}) ≥ 2 ∧ card({y | (x, y) ∈ content(T1)}) = 1}.

6. NOISE1,2,3 = NOISE POINTS − (NOISE1,2 ∪NOISE1,3 ∪NOISE2,3).

Assumptions: We make the following assumptions about the notions defined
above.

1. For all i ∈ {1, 2, 3}, card({x | (∃y, z)[y 6= z ∧ (x, y) ∈ content(Ti) ∧ (x, z) ∈
content(Ti)]}) ≤ c (since if the cardinality of noise points is greater than c,
then we know which two texts are c-noisy texts for f).

2. For all i, j ∈ {1, 2, 3} and for all x ∈ NOISE POINTS, card({y | (x, y) ∈
content(Ti) ∩ content(Tj)}) ≥ 1 (this is so because otherwise at least one of
Ti, Tj is not a c-noisy text for f , which implies that the remaining text is a
c-noisy text for f).

3. For all x, y, card({i | (x, y) ∈ content(Ti)}) 6= 1 (otherwise, surely f(x) 6= y

and we can thus drop (x, y) from consideration).

Note that if the above assumptions do not hold then we can convert the texts (in
the limit) to T ′

1, T
′
2 and T ′

3 such that at least two of these texts are c-noisy for f and
T ′

1, T
′
2, T

′
3 satisfy the assumptions given above.

The next theorem is a variation on Theorem 5.9 where we compensate for multiple
texts by allowing extra errors in the final program. In this case, instead of allowing
twice the number of errors in the final program, the upper bound on the number
of errors is expressed in terms of the error bound for single text, b, and the noise
level of the single text, c. We would like to note that the simulation carried out in
Theorem 5.10 just below is optimal in the following sense. If we keep the bound on
the number of inaccuracies in the texts same for the single text and for the acceptable
texts in the multiple case, and c ≤ b, then for all the collections of functions for which
a b-error program can be identified from a single c-noisy text, a b+d c

2e-error program
can also be identified from 3 texts at least 2 of which are only c-noisy. The optimality
of the result is in the sense that this simulation fails if we reduce the bound on the
number of errors allowed in the final program (of the multiple case) by even 1. This
was the diagonalization result described in Corollary 5.5.

Theorem 5.10. Let b, c ∈ N . Then, NcExb ⊆ Mul23N
cExb+d c

2
e.

Proof. Suppose machine M NcExb-identifies C. We construct M′ such that
M′ Mul23N

cExb+d c
2
e-identifies

C. Let T1, T2, T3 be three given texts out of which at least two are c-noisy for f .
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Let m = min({card(NOISE1,2), card(NOISE1,3), card(NOISE2,3)}).
Let S be a set of cardinality 3m such that card(S ∩ NOISE1,2) = card(S ∩
NOISE1,3) = card(S ∩ NOISE2,3).

Let X ⊆ NOISE POINTS − S be a set of cardinality d card(NOISE POINTS)−3m
2 e.

Let i, j be distinct and such that: M(Ti)↓ and M(Tj)↓, Pi = M(Ti) and Pj = M(Tj)
and card({x | ϕPi

(x)↓ 6= ϕPj
(x)↓ ∧ x 6∈ NOISE POINTS}) ≤ 2b. Let CLASH =

{x | ϕPi
(x)↓ 6= ϕPj

(x)↓ ∧ x 6∈ NOISE POINTS}.
Note that we can easily determine all the sets defined above and Pi, Pj as above in
the limit from the given texts. M′ in the limit outputs a program p such that:

ϕp(x) =



















































ϕPi
(x), if x ∈ X;

ϕPj
(x), if x ∈ NOISE POINTS − (X ∪ S);

y, if x ∈ CLASH ∧ (x, y) ∈ content(TUNION );
ϕPi

(x), if x ∈ N − (NOISE POINTS ∪ CLASH) and
x ∈ domain(ϕPi

);
ϕPj

(x), if x ∈ N − (NOISE POINTS ∪ CLASH) and
x ∈ domain(ϕPj

);
y, if x ∈ S ∧ (x, y) ∈ content(T1) ∩ content(T2) ∩ content(T3);
↑, otherwise.

Since at least one of Pi, Pj computes a b-variant of f , the number of errors com-

mitted by the ϕ program p ≤ b + m + d card(NOISE POINTS−S)
2 e, which is at most

b + d c
2e.

The next theorem uses a combination of increasing the bound on the number of
errors in the final program and having a smaller noise level than in the case of single
text to compensate for the restrictive effects of multiple texts. The thoerem shows
that given b, c, d ∈ N such that b is smaller, but not too smaller, than c (that is,
c
2 ≤ b ≤ c), all the collections of functions for which a b-error program can identified
from a single (2c−1)-noisy text can also be identified from 3 texts, at least 2 of which
are c-noisy, provided we are prepared to tolerate a bound of ≥ max({ 4b

3 , 2b − c
2})

on the number of errors in the final program. (Compare the following theorem with
Corollary 5.6).

Theorem 5.11. Let b, c, d ∈ N, c
2 ≤ b ≤ c be given. Then, N2c−1Exb ⊆

Mul23N
cExd if d ≥ max({ 4b

3 , 2b − c
2}).

Proof. Suppose machine M N2c−1Exb-identifies C. We construct machine M′

such that M′ Mul23N
cExd-identifies C. Let T1, T2, T3 be three texts given for a

function f ∈ C, such that at least two of the three texts are c-noisy for f .
Note that TUNION is a noisy text for f . If TUNION is a (2c− 1)-noisy text for f ,

then M′ can just output the programs output by M on TUNION to identify f with at
most d errors. Thus, assume that TUNION so formed contains more than 2c− 1 noisy
elements. A simple calculation shows that the amount of noise in TUNION is bounded

by
3c+card(NOISE1,2,3)

2 . If card(NOISE1,2,3) < c then TUNION is a (2c−1)-noisy text
for f . Thus, card(NOISE1,2,3) = c. Also, for all x ∈ NOISE1,2,3, we can assume that
there exist distinct yx

1 , yx
2 , yx

3 such that (x, yx
1 ) ∈ content(T2) ∩ content(T3), (x, yx

2 ) ∈
content(T1)∩content(T2), and (x, yx

3 ) ∈ content(T1)∩content(T3) (otherwise TUNION

contains at most 2c − 1 noisy elements).
Let i, j be distinct and such that: M(Ti)↓ and M(Tj)↓, Pi = M(Ti) and Pj =

M(Tj) and card({x | ϕPi
(x)↓ 6= ϕPj

(x)↓ ∧ x 6∈ NOISE POINTS}) ≤ 2b. Let
CLASH = {x | [ϕPi

(x)↓ 6= ϕPj
(x)↓] ∧ [x 6∈ NOISE POINTS]}. For m ∈ {i, j}, let
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δm = card({x | x ∈ NOISE POINTS ∧ [(x, ϕPm
(x)) ∈ content(Ti)∩content(Tj)]}).

Let δ = min(δi, δj). We can suppose without loss of generality that c − b ≤ δ ≤ b

(otherwise we can determine a text which is guaranteed to be c-noisy for f . For
example, suppose that δ = δi < c − b, then clearly one of Ti and Tj is not a c-noisy
text for f . This implies that the remaining text is a c-noisy text for f . Other cases are
similar. In any of these cases, M′ can simply input the correct c-noisy text obtained
by the above analysis into M and arrive (in the limit) at a program which is at most
b (≤ d) variant of f).

We will pick a µ ∈ N, µ ≤ c depending on δ. Let S ⊆ NOISE POINTS be a
set of cardinality µ. Let X ⊆ NOISE POINTS − S be a set of cardinality d c−µ

2 e.
M′ in the limit outputs a program pµ such that the following holds:

ϕpµ
(x) =



















































yx
k , if x ∈ S ∧ k ∈ {1, 2, 3} − {i, j};

yx
i , if x ∈ X;

yx
j , if x ∈ NOISE POINTS − (X ∪ S);

y, if x ∈ CLASH ∧ (x, y) ∈ content(TUNION );
ϕPi

(x), if x ∈ N − (NOISE POINTS ∪ CLASH) and
x ∈ domain(ϕPi

);
ϕPj

(x), if x ∈ N − (NOISE POINTS ∪ CLASH) and
x ∈ domain(ϕPj

);
↑, otherwise.

Now, the number of errors committed by M′ on f is bounded by maxerr =
max({b−µ+δ, b−δ +µ+d c−µ

2 e}) = dmax({b−µ+δ, b−δ +µ+ c−µ
2 })e. By choosing

µ = max({0, b 4δ−c
3 c}) we have maxerr = dmax({b + c−δ

3 , b − δ + c
2})e. The value of

maxerr is maximized for δ = c − b. Thus, maxerr = dmax({ 4b
3 , 2b − c

2})e. Thus, if

d ≥ dmax({ 4b
3 , 2b − c

2})e, then N2c−1Exb ⊆ Mul23N
cExd.

We now present three theorems that use the technique of making the bound on
the noise level of multiple texts smaller than the bound on the noise level of the single
text to compensate for the restrictive effect of multiple texts.

The result, just below, says that for b, c ∈ N such that b is fairly small compared
to c (that is, b < d c

2e), if for some collection of functions a b-error program can be
identified from a single (2c−1)-noisy text, then a b-error program can also be identified
from 3 texts, at least 2 of which are c-noisy.

Theorem 5.12. For b < d c
2e, N2c−1Exb ⊆ Mul23N

cExb.

Proof. Suppose machine M N2c−1Exb-identifies C. We describe M′ such that M′

Mul23N
cExb-identifies C. Let T1, T2, T3 be the three given texts out of which at least

two are c-noisy for f ∈ C.
As in Theorem 5.11, it can be shown that either TUNION , is a (2c − 1)-noisy for

f or else there exists a set X of cardinality c and distinct yx
1 , yx

2 , yx
3 , for each x ∈ X,

such that (∀x ∈ X)(∀i ∈ {1, 2, 3})(∀y ∈ {yx
1 , yx

2 , yx
3} − {yx

i })[(x, y) ∈ content(Ti)].
Now, let i ∈ {1, 2, 3} be such that M(Ti)↓. Let M(Ti) = Pi. For j ∈ {1, 2, 3} − {i},
let Dj = {x ∈ X | ϕPi

(x) = yx
j }. Let j ∈ {1, 2, 3} − {i} be such that card(Dj) ≤ c

2 .
Note that such a j exists. Now, for all x ∈ X, f(x) 6= yx

j (since otherwise Ti is a
c-noisy text for f and thus ϕPi

should be a b-variant of f). Hence, Tj is a c-noisy text
for f . Thus M(Tj)↓ and ϕM(Tj) is a b-variant of f . Clearly, in all the above cases M′

can in the limit easily output a program which is a b-variant of f .
The next theorem is like the previous one, but it does not require that error bound

on the final program, b, be fairly small compared to the bound on the noise level of
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the multiple texts, c. It says that for b, c ∈ N , if for some collection of functions a
b-error program can be identified from a single (2c)-noisy text, then a b-error program
can also be identified from 3 texts, at least 2 of which are c-noisy.

Theorem 5.13. Let b, c ∈ N . N2cExb ⊆ Mul23N
cExb.

Proof. Suppose machine M N2cExb-identifies C. We construct M′ such that
M′ Mul23N

cExb-identifies C.

Let T1, T2, T3 be three texts given for a function f ∈ C, such that at least two
of the three texts are c-noisy for f . A simple calculation shows that the amount of

noise in TUNION (with respect to the graph of f) is bounded by
3c+card(NOISE1,2,3)

2 .
Noting that card(NOISE1,2,3) is bounded by c, it follows that TUNION is a 2c-noisy
text for f . M′ outputs in the limit whatever is output by M, in the limit, on the text
TUNION . Thus, M′ Mul23N

cExb-identifies f . This proves the theorem.

Using a proof technique similar to the above, we can also establish the following
variation of the above result. Here the bound on the noise level of the single text is
expressed in terms of both the bound in the noise level of the multiple text (c) and
the bound on the number of errors in the final program (b). It says that for b, c ∈ N ,
if for some collection of functions a b-error program can be identified from a single
3c+2b

2 -noisy text, then a b-error program can also be identified from 3 texts, at least
2 of which are c noisy. We omit the proof.

Theorem 5.14. Let b, c ∈ N . Then, N
3c+2b

2 Exb ⊆ Mul23N
cExb.

5.2.2. Incomplete Texts. In this section we consider the effects of learning
from multiple texts on incomplete data. We first show a result that gives cases in
which identification from multiple incomplete texts is a restriction on identification
from a single incomplete text. We then give results which show the cases where the
restrictive effects of multiple inaccurate texts can be compensated. Unfortunately,
our results about incomplete texts are not as extensive as those for noisy texts.

The following theorem shows that given b, c such that b ≥ c > 1, there are
collections of functions for which a b-error program can be identified from a single
(b 3c

2 c − 1)-incomplete text, but for which even a (b + d c
2e − 1)-error program cannot

be identified from 3 texts, at least 2 of which are only c-incomplete for the function
being learned.

Theorem 5.15. Let b, c ∈ N, b ≥ c > 1. Then, Inb 3c
2
c−1Exb −

Mul23In
cExb+d c

2
e−1 6= ∅.

Proof. The proof uses ideas similar to those used in the proof of Theorem 5.4.
Suppose b, c are given as in the hypothesis. Let A = {〈0, x〉 | 0 ≤ x < b 3c

2 c},
A1 = {〈0, x〉 | 0 ≤ x < b c

2c}, A2 = {〈0, x〉 | b c
2c ≤ x < 2b c

2c}, A3 = {〈0, x〉 | 2b c
2c ≤

x < 3b c
2c}, and A4 = {〈0, x〉 | 3b c

2c ≤ x < b 3c
2 c}.

Note that card(A1) = card(A2) = card(A3) = b c
2c and card(A4) = 1 if c is odd

and 0 otherwise.

Consider the following class of functions

C = {f ∈ R | the following conditions hold:
(1)(∀i ∈ {1, 2, 3})(∀x ∈ Ai)[f(x) = f(〈0, (i − 1)b c

2c〉) ∈ {0, 1}];
(2)(∃!i ∈ {1, 2, 3})[f(Ai) = 1];
(3)(∀i ∈ {1, 2, 3} | f(Ai) = 0)[(max({f(〈i, 〈x, 0〉〉) | x ∈ N}) exists) ∧

(ϕmax({f(〈i,〈x,0〉〉)|x∈N}) =b f)];
(4)(∀i ∈ {1, 2, 3})(∀x, y, z)[f(〈i, 〈x, y〉〉) = f(〈i, 〈x, z〉〉)];
(5)(∀x ∈ A4)[ϕf(x) =b f ] }

Clearly, C ∈ Inb 3c
2
c−1Exb. We now show that C 6∈ Mul23In

cExb+d c
2
e−1.
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Suppose, by way of contradiction that machine M Mul23In
cExb+d c

2
e−1-identifies

C. Then, by the operator recursion theorem [5], there exists a recursive 1-1 increasing
p, p(0) > 1, defined below in stages.

We define ϕp(i) in Stages s ≥ 3.

Let xs
3 denote the least x such that for all y, ϕp(1)(〈3, 〈x, y〉〉) is not defined before

Stage s.

Let ϕp(1)(x) = 0 for x ∈ A1∪A3; ϕp(1)(x) = 1, for x ∈ A2; ϕp(1)(〈1, 〈0, 0〉〉) = p(1);
ϕp(1)(〈2, 〈0, 0〉〉) = p(2); ϕp(1)(x) = p(1) for x ∈ A4.

Let ϕp(2)(x) = 0, for x ∈ A2 ∪ A3; ϕp(2)(x) = 1, for x ∈ A1; ϕp(2)(〈1, 〈0, 0〉〉) =
p(1); ϕp(2)(〈2, 〈0, 0〉〉) = p(2); ϕp(2)(x) = p(2) for x ∈ A4.

Let σ3
1 , σ3

2 and σ3
3 be initial segments such that

content(σ3
1) = {(x, 0) | x ∈ A1} ∪ {(〈1, 〈0, 0〉〉, p(1)), (〈2, 〈0, 0〉〉, p(2))}.

content(σ3
2) = {(x, 0) | x ∈ A2} ∪ {(〈1, 〈0, 0〉〉, p(1)), (〈2, 〈0, 0〉〉, p(2))}.

content(σ3
3) = {(x, 0) | x ∈ A3} ∪ {(〈1, 〈0, 0〉〉, p(1)), (〈2, 〈0, 0〉〉, p(2))}.

Let ϕs
p(i) denote the part of ϕp(i) defined before Stage s. Go to Stage 3.

Begin Stage s

1. Let q = M(σs
1, σ

s
2, σ

s
3).

2. Let D1 = {x | Φq(x) ≤ s ∧ ((x ∈ A1 ∧ ϕq(x) = 0) ∨ (x ∈ A2 ∧ ϕq(x) =
1) ∨ (x ∈ A4 ∧ ϕq(x) = p(1)))}. Let D2 = {x | Φq(x) ≤ s ∧ ((x ∈
A1 ∧ ϕq(x) = 1) ∨ (x ∈ A2 ∧ ϕq(x) = 0) ∨ (x ∈ A4 ∧ ϕq(x) = p(2)))}.
If card(D1) ≥ card(D2), then let r = 1 and r′ = 2; otherwise, let r = 2 and
r′ = 1. Let Xs ⊂ {〈4, x〉 | x ≥ s} denote the (lexicographically least) set of
b elements such that, for all x ∈ Xs, ϕp(1)(x) is not defined before Stage s.

3. Let ϕp(s)(x) = 0, for x ∈ A3 ∪ Ar′ ; ϕp(s)(x) = 1 for x ∈ Ar;
ϕp(s)(x) = p(r′) for x ∈ A4; ϕp(s)(〈3, 〈x

s
3, 0〉〉) = ϕp(1)(〈3, 〈x

s
3, 0〉〉) =

ϕp(2)(〈3, 〈x
s
3, 0〉〉) = p(s). For x ∈ domain(ϕs

p(1))−A, let ϕp(s)(x) = ϕp(1)(x).

4. Let σ′
i be an extension of σs

i such that content(σ′
i) = content(σs

i ) ∪
{(〈3, 〈xs

3, 0〉〉, p(s))}.

5. Dovetail Steps 5a, 5b, and 5c until (if ever) one of Steps 5a, 5b succeeds
and at least one iteration of the loop at Step 5c is completed. If Step 5a
succeeds, (before Step 5b (if ever) succeeds), then complete the then current
iteration of the repeat loop in Step 5c and go to Step 6a. If Step 5b succeeds
(before Step 5a (if ever) succeeds), then complete the then current iteration
of the repeat loop in Step 5c and go to Step 6b.

5a. Search for σ′′
i ⊇ σ′

i, i ∈ {1, 2, 3} such that M(σs
1, σ

s
2, σ

s
3) 6=

M(σ′′
1 , σ′′

2 , σ′′
3 ) and for all j, j′ ∈ {1, 2, 3}, for all x, y, z ∈ N following

holds:
•content(σ′′

j ) − content(σ′
j) = content(σ′′

j′) − content(σ′
j′).

•If (〈j, 〈x, y〉〉, v) ∈ content(σ′′
1 ) and (〈j, 〈x, z〉〉, w) ∈ content(σ′′

1 ),
then v = w.
•If (x, y) ∈ (content(σ′′

1 ) − content(σ′
1)), then [x 6∈ A] ∧ [y = 0 OR

x ∈ Xs OR [For some i ∈ {1, 2, 3}, u, v ∈ N : x = 〈i, 〈u, v〉〉 and



20 G. Baliga, S. Jain AND A. Sharma

ϕp(1)(〈i, 〈u, 0〉〉) has been defined till now and ϕp(1)(〈i, 〈u, 0〉〉) = y]].
Intuitively, this substep attempts to look for a mind change.

5b. Search for x ∈ (A1 ∪ A2) − (D1 ∪ D2) such that ϕq(x)↓.

5c. Let Addednew = ∅.
(Note: We use Addednew in order to identify the set of elements for
which we extended ϕp(1) in this step. Addednew will be used (in Steps
6a and 6b) provided at least one of Steps 5a or 5b succeeds).
Repeat

Let x be the least point not in Xs such that ϕp(1)(x) is not defined
till now. If, for some i ∈ {1, 2, 3}, x is of the form 〈i, 〈u, v〉〉 and
ϕp(1)(〈i, 〈u, 0〉〉) is defined till now, then let ϕp(1)(x) = ϕp(2)(x) =
ϕp(s)(x) = ϕp(1)(〈i, 〈u, 0〉〉); else, let ϕp(1)(x) = ϕp(2)(x) =
ϕp(s)(x) = 0.
Let Addednew = Addednew ∪ {x}.

Forever

6a. For all x, y such that (x, y) ∈ content(σ′′
1 ) − content(σs

1), let ϕp(1)(x) =

ϕp(2)(x) = y. Let σs+1
i be an extension of σ′′

i such that content(σs+1
i ) −

content(σ′′
i ) = {(x, ϕp(1)(x)) | x ∈ Addednew}. Go to Stage s + 1.

6b. Let σs+1
i be an extension of σ′

i such that content(σs+1
i )− content(σ′

i) =
{(x, ϕp(1)(x)) | x ∈ Addednew}. Go to Stage s + 1.

End Stage s

Now consider the following cases:
Case 1: All stages terminate.

Let

f(x) =







0, if x ∈ A1 ∪ A2;
1, if x ∈ A3;
ϕp(1)(x), otherwise.

Clearly, f ∈ C (since c ≤ b, ϕp(1) =b f , and ϕp(2) =b f). Also, M on f makes
infinitely many mind changes since Step 5b can succeed at most finitely many
times before Step 5a succeeds.

Case 2: Stage s (≥ 3) is the least stage which never terminates.
In this case domain(ϕp(s)) = N −Xs. Let q, D1, D2, r, r

′ be as defined in Steps 1,
2 of Stage s. Consider any total extension f of ϕp(s) such that (∀x ∈ Xs)[ϕq(x) 6=
f(x)].
Clearly, f ∈ C (since ϕp(r′) =b f and ϕp(s) =b f). Let T1, T2, T3 be extensions of
σ′

1, σ
′
2, σ

′
3 (as defined in Step 4 in Stage s) respectively such that content(T1) −

content(σs
1) = {(x, y) | f(x) = y ∧ (∀z)[(x, z) 6∈ content(σs

1)]} and, for all j,
[|σ′

1| + j]th element of T1, [|σ′
2| + j]th element of T2 and [|σ′

3| + j]th element of
T3 are all same. First, notice that, for all such f and corresponding T1, T2, T3:
M(T1, T2, T3) = q (otherwise Step 5a would succeed). Second, notice that, for
all x ∈ (A1 ∪A2)− (D1 ∪D2), ϕq(x)↑ (otherwise Step 5b would succeed). Third,
from the choice of r, r′, it follows that program q makes at least d c

2e errors on
A1 ∪A2 ∪A4. Also, from the way f has been chosen, we have (∀x ∈ Xs)[f(x) 6=
ϕq(x)]. Thus, ϕq 6=b+d c

2
e−1 f .
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From the above cases, it follows that C 6∈ Mul23In
cExb+d c

2
e−1.

The above theorem demonstrated cases in which identification from multiple in-
accurate texts is a restriction over identification from a single inaccurate text. Like in
the case with noisy texts, we would like to explore situations in which the deleterious
effects of learning from multiple texts can be compensated. Again, like in the case of
noisy texts, this can be achieved in two different ways:

• by increasing the bound on the number of errors in the final program allowed
in identification from multiple texts;

• by increasing the bound on missing data in the single incomplete text (this
has the same effect as decreasing the bound on missing data in the multiple
texts).

Theorem 5.16 just below uses the second technique and Theorems 5.19 and 5.20 use
the first technique to compensate for the effects of multiple texts. The technique
used in these simulation arguments is to first collect the input points on which the
converging programs differ; then to construct a program which judiciously chooses
the output on these inputs based on the input texts and outputs of the converging
programs.

Theorem 5.16. Inc+b c
2
cExb ⊆ Mul23In

cExb.

The above theorem says that given b, c, if for a collection of functions a b-error
program can be identified from a single (c + b c

2c)-incomplete text, then a b-error
program can also be identified from 3 texts, at least 2 of which are c-incomplete for
the function being learned. A proof of this result requires the notion of stabilizing
sequence which we introduce next. Let L range over sets of ordered pairs.

Definition 5.17. [9] σ is said to be a stabilizing sequence for M on L ⇐⇒
[content(σ) ⊆ L and (∀τ | σ ⊂ τ ∧ content(τ) ⊆ L)[M(τ) = M(σ)]].

The following lemma is based on a similar lemma by Blum and Blum [3] (see also
Osherson and Weinstein [18]).

Lemma 5.18. (Based on a similar lemma in [3, 18]) Suppose M InaExb-identifies
f . Let L be such that L ⊆ {(x, y) | f(x) = y} ∧ card({(x, y) | f(x) = y} − L) ≤ a.
Then there exists a stabilizing sequence for M on L. Moreover, if σ is a stabilizing
sequence for M on L, then ϕM(σ) =b f .

We now give a proof of Theorem 5.16.

Proof. (Theorem 5.16) Suppose machine M Inc+b c
2
cExb-identifies C. We con-

struct M′ such that M′ Mul23In
cExb-identifies C.

Let T1, T2, T3 be three given texts out of which at least two are c-incomplete
for f ∈ C. Let TUNION be a text such that content(TUNION ) = content(T1) ∪
content(T2) ∪ content(T3). Without loss of generality we assume that (∀x)[card({y |
(x, y) ∈ content(TUNION )}) ≤ 1] (for if there are such x, y, z, i, j such that (x, y) ∈
content(Ti), (x, z) ∈ content(Tj) and y 6= z, then at least one of Ti, Tj is not a c-
incomplete text for f . Thus, the third text is a c-incomplete text for f). We can
also assume without loss of generality that (∀x)[card(i ∈ {1, 2, 3} | (∃y)[(x, y) ∈
content(Ti)]) 6= 2] (otherwise for such x’s the value of f(x) is known and thus without
loss of generality we can put (x, y) in the content of all three texts).

In the following, we try to locate a stabilizing sequence for M on an appropriate
subset of {(x, f(x)) | x ∈ N}. If one of the texts has a ‘high amount of incompleteness,’
then this may not be possible (see condition (iii) below); however, in this case it is
possible to determine the text which has a high amount of incompleteness.

Let n′, n′′ ∈ N , X ⊂ {0, 1, . . . , n′} and σ ∈ SEQ be such that, (i), (ii) and (iii)
below are satisfied.
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(i) (∀i ∈ {1, 2, 3})(∀y ∈ N)(∀x ∈ {0, 1, . . . , n′})[(x, y) ∈ content(Ti) ⇒ (x, y) ∈
content(Ti[n

′′])].
(ii) (∀x ∈ X)(∀y ∈ N)[card({i | (x, y) ∈ content(Ti)}) ≤ 1].
(iii)
(A) [(∃j ∈ {1, 2, 3})[card({x | (x ∈ X) ∧ (∀y ∈ N)[(x, y) 6∈ content(Tj)]}) > c]]

OR
(B) [[[content(σ) ⊆ [content(TUNION ) ∩ {(x, y) | (y ∈ N) ∧ (x ≤ n′)}] −
[{(x, y) | (x ∈ X) ∧ (y ∈ N)}]] and σ is a stabilizing sequence for M on
L = [content(TUNION ) − {(x, y) | (x ∈ X) ∧ (y ∈ N)}]] AND [(∀x ≤ n′)[x 6∈
X ⇒ (∃y)[card({i | (x, y) ∈ content(Ti)}) = 3]]]].

It is easy to see that if such n′, n′′, X, σ exist then M′ can find them in the
limit. If in (iii) (A) holds then clearly M′ can know the two texts which are c-
incomplete for f , and thus output in the limit a b error program for f . If in (iii)
(B) holds then we claim that M(σ) is a b-error program for f . This would be so
if card({(x, y) | f(x) = y} − L) ≤ c + b c

2c. To prove this, let δi = card({x ∈ X |
(∃y)[(x, y) ∈ content(Ti)]}). Let δ be the median of δ1, δ2, δ3. Now, card({(x, y) |
f(x) = y} − L) ≤ c − (card(X) − δ) + card(X) ≤ c + δ and δ ≤ c

2 .

To complete the proof we have to show that such n′, n′′, X, σ indeed exist.

Case 1: There exists an i ∈ {1, 2, 3} such that card({x | (∀y)[(x, y) 6∈ content(Ti)]}) >

c.

Let n′ be such that there exists an i, card({x ≤ n′ | (∀y)[(x, y) 6∈ content(Ti)]}) =
c + 1. Let n′′ be such that (i) above is satisfied. Let X = {x ≤ n′ | card({i |
(∃y)[(x, y) ∈ content(Ti)]}) ≤ 1}. Then it is easy to see that (i), (ii) and (iii)
above are satisfied.

Case 2: There does not exist an i ∈ {1, 2, 3} such that card({x | (∀y)[(x, y) 6∈
content(Ti)]}) > c.

Let X = {x | card({i | (∃y)[(x, y) ∈ content(Ti)]}) ≤ 1}. Now, let L = {(x, y) |
f(x) = y ∧ x 6∈ X}, let δi = card({x ∈ X | (∃y)[(x, y) ∈ content(Ti)]}). Let δ be
the median of δ1, δ2, δ3. Now, card({(x, y) | f(x) = y}−L) ≤ c− (card(X)− δ)+
card(X) ≤ c + δ and δ ≤ c

2 . Thus, there exists a stabilizing sequence σ for M on
L. Let n′ = 1 + max(X ∪{x | (∃y)[(x, y) ∈ content(σ)]}). Let n′′ be chosen so as
to satisfy (i) above. Clearly, n′, n′′, X and σ satisfy (i), (ii) and (iii).

The above cases prove the existence of σ, X, n′, n′′ satisfying (i),(ii) and (iii).

We now present two results that compensate for the restrictive effects of multiple
incomplete texts by allowing a larger bound on the number of errors allowed in the
final program.

Theorem 5.19. Let b, c ∈ N . Then, IncExb ⊆ Mul23In
cEx2b. The above

result, which is a counterpart of Theorem 5.9, says that the collections of functions
for which a b-error program can be identified from a c-incomplete text can also be
identified from 3 texts, at least 2 of which are c-incomplete, provided we are prepared
to tolerate twice, 2b, the number of errors in the final program. This theorem can be
proved using a technique similar to the one used in the proof of Theorem 5.9. We
omit the details.

The next result gives a different bound on the number of errors allowed in the
final program.

Theorem 5.20. Let b, c ∈ N, b ≥ c be given. Then, IncExb ⊆ Mul23In
cExb+d c

2
e.
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Proof. Suppose hypothesis. Suppose machine M IncExb-identifies C. We con-
struct M′ such that M′ Mul23In

cExb+d c
2
e-identifies C.

Let T1, T2, T3 be three texts given for a function f ∈ C, such that at least two of
the three texts are c-incomplete for f . Without loss of generality we can assume that
(∀x)[card({y | (x, y) ∈ content(T1) ∪ content(T2) ∪ content(T3)}) ≤ 1] (for if there is
such an x, then let y, z, i, j be such that (x, y) ∈ content(Ti), (x, z) ∈ content(Tj) and
y 6= z, then at least one of Ti, Tj is not a c-incomplete text for f . Thus, the third text
is a c-incomplete text for f).

Let TUNION be a text such that content(TUNION ) = {(x, y) | (x, y) ∈
content(T1) ∨ (x, y) ∈ content(T2) ∨ (x, y) ∈ content(T3)}. Let i, j be dis-
tinct and such that: M(Ti)↓ and M(Tj)↓, Pi = M(Ti) and Pj = M(Tj), and
card(CLASH = {x | [ϕPi

(x)↓ 6= ϕPj
(x)↓] ∨ (∃y)[[(x, y) ∈ content(TUNION )] ∧

[[ϕPi
(x)↓ 6= y] ∨ [ϕPj

(x)↓ 6= y]]]}) ≤ 3b.
Let V IS IN = CLASH ∩ {x | card({i | (∃y)(x, y) ∈ content(Ti)}) ≤ 1}.

For i ∈ {1, 2, 3}, let INi = V IS IN ∩ {x | (∃y)[(x, y) ∈ content(Ti)]}. Let
m = min(card(IN1), card(IN2), card(IN3)). Let S ⊆ V IS IN be a set of cardinality
3m such that card(S∩ IN1) = card(S∩ IN2) = card(S∩ IN3). Let X ⊆ V IS IN −S

be a set of cardinality d card(V IS IN−S)
2 e.

Machine M′ outputs (in the limit) program p as follows :

ϕp(x) =



































ϕPi
(x), if x 6∈ CLASH ∧ x ∈ domain(ϕPi

);
ϕPj

(x), if x 6∈ CLASH ∧ x ∈ domain(ϕPj
);

y, if x ∈ ((CLASH − V IS IN) ∪ S) and
(x, y) ∈ content(TUNION ) ;

ϕPi
(x), if x ∈ X;

ϕPj
(x), if x ∈ V IS IN − (S ∪ X);

↑, otherwise.

Now the number of errors committed by M′ on f is bounded by m +

d card(V IS IN−S)
2 e + b. Observing that c ≥ card(V IS IN) − m, it follows that

M′ Mul23In
cExb+d c

2
e-identifies C.

We end this section by presenting a somewhat surprising result which says that
for a ∈ N the collections of functions for which a 1-error program can be identified
from a single a-incomplete text is exactly the same as the collections of functions
for which a 1-error program can be identified from 3 texts, at least 2 of which are
a-incomplete for the function being learned.

Theorem 5.21. Let a ∈ N . Then, InaEx1 = Mul23In
aEx1.

Proof. a = 1 case follows from Theorem 5.16. Suppose a > 1. Suppose M
InaEx1-identifies C. We give an M′ such that M′ Mul23In

aEx1-identifies C. Let
T1, T2, and T3 be the three given texts out of which at least two are a-incomplete
for f ∈ C. Let TUNION denote a text such that content(TUNION ) = content(T1) ∪
content(T2)∪ content(T3). Without loss of generality assume that, for all x, card({y |
(x, y) ∈ content(TUNION )}) ≤ 1 (otherwise let y, z, y 6= z be such that (x, y) ∈
content(Ti) and (x, z) ∈ content(Tj) (for i, j ∈ {1, 2, 3}). Clearly, at least one of Ti, Tj

is not an a-incomplete text for f . Thus, the remaining text is an a-incomplete text
for f ; in this case, M′ can simply input the a-incomplete text for f to M to obtain a
program (in the limit) which is 1-variant of f). Also, assume that (∀x, y)[card({i ∈
{1, 2, 3} | (x, y) ∈ content(Ti)}) 6= 2] (since otherwise f(x) = y and we can assume
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that (x, y) is in all the texts). Let i, j be distinct and such that M(Ti)↓ and M(Tj)↓
(clearly, for f ∈ C such i, j exists and M′ can determine i, j in the limit). Without loss
of generality let i = 1 and j = 2 (otherwise simply rename the texts). Let M(T1) = P1

and M(T2) = P2.
Let CLASH12 = {x | [ϕP1

(x)↓ 6= ϕP2
(x)↓] ∨ [ϕP1

(x)↓ ∧ (∃y)[(x, y) ∈
content(T2) ∧ y 6= ϕP1

(x)]] ∨ [ϕP2
(x)↓ ∧ (∃y)[(x, y) ∈ content(T1) ∧ y 6= ϕP2

(x)]]}.
Let CLASH1T3 = {x | [ϕP1

(x)↓ ∧ (∃y)[(x, y) ∈ content(T3) ∧ y 6= ϕP1
(x)]]}. Let

CLASH2T3 = {x | [ϕP2
(x)↓ ∧ (∃y)[(x, y) ∈ content(T3) ∧ y 6= ϕP2

(x)]]}.
Now, consider the following cases (note that M′ can also determine in the limit

which of the following cases holds). In each of the following cases, we either give a
correct text for f or a program for an 1-variant of f . For each of the case numbers
i > 1, we assume without stating that all cases < i do not hold.
Case 1: card(CLASH12) > 2.

In this case T3 is an a-incomplete text for f .
Case 2: card(CLASH1T3) > 1.

In this case T2 is an a-incomplete text for f .
Case 3: card(CLASH2T3) > 1.

In this case T1 is an a-incomplete text for f .
Case 4: card(CLASH12) = 0.

In this case, let p be such that ϕp = ϕP1
∪ ϕP2

. Then, ϕp is a program for an
1-variant of f .

For cases 5 to 7 assume without loss of generality that, for all x ∈ CLASH12 ∪
CLASH1T3∪CLASH2T3, ϕP1

(x)↓ and ϕP2
(x)↓. (since CLASH12∪CLASH1T3∪

CLASH2T3 is finite, we can check in the limit if ϕP1
(x), ϕP2

(x) is defined or not. If
it is undefined then we can assume that it converges to an arbitrary value). Also, for
all x ∈ CLASH12 ∪ CLASH1T3 ∪ CLASH2T3 we can assume that (∀y)[[(x, y) ∈
content(T1) ⇒ y = ϕP1

(x)] ∧ [(x, y) ∈ content(T2) ⇒ y = ϕP2
(x)]] (otherwise we

can assume that y is the value the program converges to). Note that this assumption
may cause the values of CLASH12, CLASH1T3 and CLASH2T3, as defined above,
to change. It may also cause one of cases 1,2, 3 or 4 to hold; however, in this case the
above analysis also holds.

Case 5: card(CLASH1T3) = card(CLASH2T3) = 1.
Then, for all x ∈ N − CLASH12 ∪ CLASH1T3 ∪ CLASH2T3 (∃i ∈
{1, 2})[ϕPi

(x)↓ = f(x)]. A simple calculation shows that card(CLASH12 ∪
CLASH1T3 ∪ CLASH2T3) ≤ 3. If a ≥ card(CLASH12 ∪ CLASH1T3 ∪
CLASH2T3), then text T such that content(T ) = {(x, y) | x ∈ N−(CLASH12 ∪
CLASH1T3 ∪ CLASH2T3) ∧ (∃i ∈ {1, 2, 3})[ϕPi

(x) = y]} is an a-
incomplete text for f . Otherwise a = 2 and card(CLASH12 ∪ CLASH1T3 ∪
CLASH2T3) = 3. In this case, if there exists i ∈ {1, 2, 3} such that (∀x ∈
CLASH12 ∪ CLASH1T3 ∪ CLASH2T3)(∀y)[(x, y) 6∈ content(Ti)], then each
of the remaining texts are a-incomplete for f . Otherwise let p be a program such
that

ϕp(x) =







U(x), if x ∈ N − (CLASH12 ∪ CLASH13 ∪ CLASH23);
y, if x ∈ CLASH12 ∪ CLASH13 ∪ CLASH23

∧ (x, y) ∈ content(TUNION ).

where U(x) denotes (ϕP1
∪ ϕP2

)(x). Then, p is program for an 1-variant of f .
Case 6: card(CLASH1T3) = 1 and card(CLASH2T3) = 0 (case of
card(CLASH2T3) = 1 and card(CLASH1T3) = 0 is similar).
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Let p be a program such that:

ϕp(x) =

{

U(x), if x ∈ N − CLASH12;
ϕP2

(x), otherwise.

where U(x) denotes (ϕP1
∪ ϕP2

)(x). Then, p is program for an 1-variant of f .
Since if T2 is an a-incomplete text for f , then this is so. Otherwise number of
errors committed by p is ≤ card(CLASH12 − CLASH1T3) ≤ 1.

Case 7: card(CLASH1T3) = card(CLASH2T3) = 0.
In this case, for all (x, y) ∈ content(T3), f(x) = y. This is so since, if T3 is
the correct text then it is certainly so; otherwise, for all x ∈ N − CLASH12,
ϕP1

(x) = f(x) ∨ ϕP2
(x) = f(x). Thus, if (x, y) ∈ content(T3), then f(x) = y.

Thus, [M(T3)↓] or [card({x | (∀y)(x, y) 6∈ content(T3)}) > a]. Note that we can
determine in the limit one of the clauses above which holds.
Case 7a: card({x | (∀y)(x, y) 6∈ content(T3)}) > a.

In this case, both T1 and T2 are a-incomplete texts for f .
Case 7b: M(T3)↓ = P3.

Let CLASH13 = {x | [ϕP1
(x)↓ 6= ϕP3

(x)↓]}. Let CLASH23 = {x |
[ϕP2

(x)↓ 6= ϕP3
(x)↓]}.

Case 7b.1: card(CLASH13) > 2.
In this case T2 is an a-incomplete text for f .

Case 7b.2: card(CLASH23) > 2.
In this case T1 is an a-incomplete text for f .

For case 7b.3 to 7b.5, assume without loss of generality that, for all
x ∈ CLASH12 ∪ CLASH13 ∪ CLASH23, ϕP1(x)↓, ϕP2

(x)↓ and ϕP3
(x)↓.

(since CLASH12 ∪ CLASH13 ∪ CLASH23 is finite, we can check in
the limit if ϕP1

(x), ϕP2
(x), ϕP3

(x) is defined or not. If it is not defined,
then we can assume that it converges to an arbitrary value). Also, for
all x ∈ CLASH12 ∪ CLASH13 ∪ CLASH23 we can assume that
(∀y)[[(x, y) ∈ content(T1) ⇒ y = ϕP1

(x)] ∧ [(x, y) ∈ content(T2) ⇒
y = ϕP2

(x)]] (otherwise we can assume that y is the value the pro-
gram converges to). Note that this assumption may cause the values of
CLASH12, CLASH13, CLASH23, CLASH1T3 and CLASH2T3, as de-
fined above, to change. It may also cause one of cases 1,2, 3, 4 , 5, 6,
7b.1 or 7b.2 to hold; however, in this case the above analysis also holds.

Case 7b.3: card(CLASH13) = 0.
In this case, let p be such that ϕp = ϕP1

∪ ϕP3
. Then, ϕp is a program

for an 1-variant of f .
Case 7b.4: card(CLASH23) = 0.

In this case, let p be such that ϕp = ϕP2
∪ ϕP3

. Then, ϕp is a program
for an 1-variant of f .

Case 7b.5: 0 < card(CLASH13) < 3 and 0 < card(CLASH23) < 3.
Then, (∀x ∈ N − CLASH12 ∪ CLASH13 ∪ CLASH23) (∃i ∈
{1, 2, 3})[ϕPi

(x)↓ = f(x)]. A simple calculation shows that
card(CLASH12 ∪ CLASH13 ∪ CLASH23) ≤ 3. If a ≥
card(CLASH12 ∪ CLASH13 ∪ CLASH23), then text T such
that content(T ) = {(x, y) | x ∈ N − (CLASH12 ∪ CLASH13 ∪
CLASH23) ∧ (∃i ∈ {1, 2, 3})[ϕPi

(x) = y]} is an a-incomplete text for f .
Otherwise a = 2 and card(CLASH12 ∪ CLASH13 ∪ CLASH23) = 3.
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In this case, if there exists i ∈ {1, 2, 3} such that (∀x ∈ CLASH12 ∪
CLASH13 ∪ CLASH23)(∀y)[(x, y) 6∈ content(Ti)], then each of the
remaining texts are a-incomplete texts for f . Otherwise let p be a pro-
gram such that

ϕp(x) =







U(x), if x ∈ N − (CLASH12 ∪ CLASH13 ∪ CLASH23);
y, if x ∈ CLASH12 ∪ CLASH13 ∪ CLASH23

∧ (x, y) ∈ content(TUNION ).

where U(x) denotes (ϕP1
∪ ϕP2

∪ ϕP3
)(x). Then, p is program for an

1-variant of f .

5.2.3. Imperfect Texts. The study of imperfect texts turns out to be very
complex. We only present a simulation result which says that for b, c ∈ N , the
collections of functions for which a b-error program can be identified from a single c-
imperfect text, can also be learned from 3 texts, at least 2 of which are c-incomplete,
provided we are prepared to tolerate up to twice the number of errors in the final
program. A proof of this result can be worked out on similar lines to our proof of
Theorem 5.9; we omit the details.

Theorem 5.22. Let b, c ∈ N . ImcExb ⊆ Mul23Im
cEx2b.

5.3. Hierarchy Results. We now turn our attention to hierarchy results for
each of the inaccuracy types. In particular we show, for each inaccuracy type, larger
collections of functions become identifiable if we

• increase the bound on the number of errors allowed in the final program
(keeping other parameters the same), or

• decrease the bound on the number of inaccuracies allowed in the input texts
(keeping other parameters the same).

The following two theorems, that follow from results about identification from
single inaccurate texts [11], yield as corollaries the above hierarchies.

Theorem 5.23. Let b, j, k ∈ N , k ≥ j > b k
2 c.

(a) MuljkIm
∗Exb+1 − Exb 6= ∅.

(b) MuljkIm
∗Ex∗ −

⋃

b∈N Exb 6= ∅.
Proof. Follows from Theorem 1 in [11] and Theorem 5.1.
Theorem 5.24. (∀b, j, k ∈ N | k ≥ j > b k

2 c) [MuljkIm
bEx − [Nb+1Ex∗ ∪

Inb+1Ex∗] 6= ∅].
Proof. Follows from Theorem 6 in [11] and Theorem 5.2.
It can be shown that the above two results yield the following two corollaries.
Corollary 5.25. Let a ∈ N ∪ {∗}. Let j, k ∈ N such that k ≥ j > b k

2 c. Then,

1. MuljkN
aEx0 ⊂ MuljkN

aEx1 ⊂ · · · ⊂ MuljkN
aEx∗.

2. MuljkIn
aEx0 ⊂ MuljkIn

aEx1 ⊂ · · · ⊂ MuljkIn
aEx∗.

3. MuljkIm
aEx0 ⊂ MuljkIm

aEx1 ⊂ · · · ⊂ MuljkIm
aEx∗.

Corollary 5.26. Let a ∈ N ∪ {∗}. Let j, k ∈ N such that k ≥ j > b k
2 c. Then,

1. MuljkN
0Exa ⊃ MuljkN

1Exa ⊃ · · · ⊃ MuljkN
∗Exa.

2. MuljkIn
0Exa ⊃ MuljkIn

1Exa ⊃ · · · ⊃ MuljkIn
∗Exa.

3. MuljkIm
0Exa ⊃ MuljkIm

1Exa ⊃ · · · ⊃ MuljkIm
∗Exa.

5.4. Comparison of Different Types of Inaccuracies. Finally, we present
results which shed light on how learning from one kind of inaccuracy compares with
learning from another kind of inaccuracy.
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First, we show a very interesting result which implies that in the context of iden-
tification from multiple inaccurate texts, noisy texts are better than incomplete texts.
This parallels previous findings about identification from single inaccurate texts. The
result below shows that the collections of functions that can be identified from mul-
tiple incomplete texts can also be identified from multiple noisy texts, provided the
bound on the number of errors allowed in the final program and the bound on the
number of inaccuracies is the same in both cases (and also provided the cardinality
of multiple texts and of acceptable texts is the same in both cases).

Theorem 5.27. Let a, b ∈ N ∪ {∗}, and j, k ∈ N , k ≥ j > b k
2 c. Then,

MuljkIn
aExb ⊆ MuljkN

aExb.
Proof. Let T1, T2, . . . , Tk be the k input texts for f , such that at least j of the texts

are a-noisy for f . Note that if f(x) = y, then at least j of the k texts contain (x, y).
Let T ′

i be the text formed from Ti such that content(T ′
i ) = {(x, y) | card({l | (x, y) ∈

content(Tl)}) ≥ j ∧ card({z | (x, z) ∈ content(Ti)}) ≤ 1 ∧ (x, y) ∈ content(Ti)}.
Thus, we can easily obtain T ′

i s from Tis in the limit. Also, if Ti was an a-noisy text
for f , then T ′

i is an a-incomplete text for f . The theorem follows.
As a contrast to the above result, the next result implies that the collections of

functions which can be identified from multiple noisy texts cannot always be identified
from a single incomplete text (and, hence from multiple incomplete texts). The result
shows that there are collections of functions for which a 0-error program can be
identified from any k texts, at least j(> b k

2 c) of which are only ∗-noisy, but for which
even a ∗-error program cannot be identified from single 1-incomplete text.

Theorem 5.28. Let j, k ∈ N , k ≥ j > b k
2 c. Then, MuljkN

∗Ex − In1Ex∗ 6= ∅.
Proof. Follows from Theorem 10 in [11] and Theorem 5.1.
The next two results compare identification from multiple incomplete texts and

multiple imperfect texts. As expected, imperfect texts turn out to be worse for iden-
tification than incomplete texts.

The next theorem shows that for i ∈ N , there are collections of functions for
which a 0-error program (best program) can be identified from any k texts, at least
j(> bk

2 c) of which are (3i − 1)-incomplete, but for which even a ∗-error program
(worst acceptable program) cannot be identified from any single text which is only
2i-imperfect (a smaller bound on inaccuracies).

Theorem 5.29. Let j, k ∈ N, k ≥ j > b k
2 c. Then, (∀i ∈ N)[MuljkIn

3i−1Ex −

Im2iEx∗ 6= ∅].
Proof. Follows from Theorem 58 in [14] and Theorem 5.2.
Our final theorem is on similar lines to the previous theorem and shows the

detrimental effects of imperfect text over incomplete texts. The result says that there
are collections of functions for which a 0-error program (best possible) can be identified
from any k texts, at least j(> b k

2 c) of which are ∗-incomplete (worst kind of missing
data), but for which even a ∗-error program (worst acceptable program) cannot be
identified from any single text which is only ∗-imperfect (least harmless imperfection).

Theorem 5.30. Let j, k ∈ N, k ≥ j > b k
2 c. Then, MuljkIn

∗Ex− Im∗Ex∗ 6= ∅.
Proof. Follows from Theorem 60 in [14] and Theorem 5.2.

6. Conclusion. We presented arguments against the idealized assumption in
Gold’s paradigm that a learning agent receives data from a single and accurate source.
Gold’s paradigm was suitably extended to account for the possibility that a learning
agent may receive data from multiple sources, some of which may be inaccurate. Re-
sults were presented for the learning task of scientific inquiry modeled as identification
in the limit of computer programs for computable functions from their graphs.
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For each kind of inaccuracy, we established sufficient conditions when, for the
same bound on the number of inaccuracies in both the multiple inaccurate texts
and the single inaccurate text, and for the same bound on the number of errors
allowed in the final hypothesis for the multiple and single cases, identification from
multiple sources is not a restriction. We provided significant partial results for the
difficult problem of determining when identification from multiple inaccurate texts is
a restriction over identification from a single inaccurate text. We also demonstrated
cases under which the detrimental effects of multiple inaccurate texts can be overcome
by either allowing more errors in the final program or by decreasing the bound on
the number of inaccuracies. We also established the usual hierarchies for each kind of
inaccuracy in which

• keeping all the other parameters fixed and increasing the bound on the num-
ber of errors allowed in the final program improves learnability;

• keeping all the other parameters fixed and increasing the bound on the num-
ber of inaccuracies in the acceptable texts restricts learnability.

Finally we were able to demonstrate that learning from noisy texts is preferable to
learning from incomplete texts which in turn is preferable to learning from imperfect
texts.

It should be noted that several of the results presented in Section 5.2 can easily
be generalized to the case in which a machine is fed k texts and for at least j of
these texts the inaccuracies are acceptable. Also, results in the present manuscript
are about a simple criterion of success, viz., Ex-identification. We can also prove
corresponding results for a more general criterion of learning, viz., Bc-identification
(see [8] for definition; also known as GN∞ [2] in the Russian literature). Additionally,
we would like to note that similar results can also be shown to hold for another
learning task, viz., first language acquisition modeled as identification in the limit of
grammars for recursively enumerable languages from a text of these languages. The
criterion of success for language acquisition is known as TxtEx-identification (see [7]
for definition).

Finally, we end this paper on a speculatory note pointing to future research di-
rections. Scientific success is often not limited to the success of a single scientist
receiving data from multiple, possibly inaccurate, sources. In actual practice, a num-
ber of scientists are simultaneously investigating a phenomenon, each receiving data
from multiple, possibly inaccurate, sources. Scientific success is achieved if any one of
these scientists is successful. This scenario could be modeled as a ‘team’ of learning
machines, each member of the team receiving multiple inaccurate texts. The team is
successful just in case at least one member of the team converges to a correct program
for the function being learned (see Smith [24] for discussion of team identification from
a single and accurate text). However, given our experience with the combinatorial
difficulty of the subject matter of this paper, it is quite likely that a study incorpo-
rating teams and multiple inaccurate environments may turn out to be very complex,
and it is not clear, at this stage, what additional insights such an investigation may
provide.
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