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Abstract

We consider a variant of Gold’s learning paradigm where a learner receives as input
n different languages (in form of one text where all input languages are interleaved).
Our goal is to explore the situation when a more “coarse” classification of input lan-
guages is possible, whereas more refined classification is not. More specifically, we
answer the following question: under which conditions, a learner, being fed n differ-
ent languages, can produce m grammars covering all input languages, but cannot
produce k grammars covering input languages for any k > m. We also consider
a variant of this task, where each of the output grammars may not cover more
than r input languages. Our main results indicate that the major factor affecting
classification capabilities is the difference n − m between the number n of input
languages and the number m of output grammars. We also explore relationship be-
tween classification capabilities for smaller and larger groups of input languages. For
the variant of our model with the upper bound on the number of languages allowed
to be represented by one output grammar, for classes consisting of disjoint lan-
guages, we found complete picture of relationship between classification capabilities
for different parameters n (the number of input languages), m (number of output
grammars), and r (bound on the number of languages represented by each output
grammar). This picture includes a combinatorial characterization of classification
capabilities for the parameters n, m, r of certain types.

1 Introduction

In this paper, we continue a line of research where the learner is required to
learn unions of different concepts [JNT06]. This situation occurs, for example,
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when children living in a multilingual environment learn several languages si-
multaneously. In this case, in ideal, children are able to learn each individual
language. A more complex case is the problem of multilayered classification,
where descriptions of families of objects on a higher level are rather “coarse”,
while descriptions on a lower level are much more specific/refined. An example
of this type of classification is the theory of species: as a result of learning pro-
cess (inductive synthesis of concepts from examples), life can be classified as
just animals and plants, or, more specifically, as families - fishes, birds, mam-
mals, etc., or, even more specifically as different species, etc. An important
issue here is that a more coarse classification is typically easier to achieve than
a more refined one. For example, an alien civilization, learning life on Earth
(from examples), most likely, will have much more difficulty describing differ-
ent birds, than making distinction between birds and fishes. A child, learning
classical music, has much easier time determining if a piece uses 3/4 or 4/4
time signature, than telling apart waltz, mazurka, or polonaise (each of them
uses time signature 3/4).

Our goal in this paper is to determine if, and under which circumstances, a
more coarse classification, as a result of learning process, is possible, whereas
a more refined classification is not. More specifically, we explore the following
general situation: under which circumstances, a learner, facing a union of n
languages on the input, is able to learn descriptions of m (larger) groups of
languages from the union, but is not able to learn descriptions of k (smaller)
groups of input languages for k > m. For example, we would like to find
out when a learner, facing a union of 6 languages on the input, can learn
descriptions of 3 groups of languages, but cannot learn descriptions for each
individual language. We are also interested in situations when learning larger
groups of languages can be easier than smaller ones.

To model the process of learning, we employ the well-known Gold’s learn-
ing paradigm [Gol67]: the learner receives all members of the union of lan-
guages in arbitrary order and produces a sequence of descriptions (grammars)
that stabilizes to a correct description. This model is known in literature
as TxtEx (where Ex stands for “explanatory learning”). Exploration of this
model provided a robust advice to cognition theory (see, for example, [WC80]).
We consider also a popular variant of this model, TxtBc, (introduced in
[CL82,OW82]) where a learner produces a sequence of conjectures, almost all
of which are correct descriptions of the target language (but not necessarily
the same - BC here stands for “behaviourally correct learning”).

Among several papers in this line of research, the closest to our inquiry is the
paper [JNT06], where the authors primarily explore the issues of learnability
of larger unions of languages versus smaller unions of languages from the same
families. In particular, they define the concept of discerning learnability, when
a learner is required to learn each of the members of the union, and compare
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this notion with the situation when the learner may provide one description
for the whole union. Relevant results from [JNT06] can be viewed as the first
step in our line of research.

Our main results can be summarized as follows. On one hand, if n−m > n′−m′

then there exists a class of languages such that it is possible to learn unions
of n languages from this class in m groups, but it is not possible to learn
unions of n′ languages from this class in m′ groups (Theorem 7). That is,
the difference between the number of input languages in the union and the
number of conjectures ultimately produced by the learner is the major factor
affecting learning capabilities. On the other hand, if a family consists of only
disjoint languages, then, if it is possible to learn unions of n languages in m
groups, then it is possible to learn unions of n− 1 languages in m− 1 groups.
For example, learnability of unions of any 6 disjoint languages in 3 groups
implies learnability of any union of 5 languages in 2 groups (Theorem 11). We
also extend our results to the case when the number of languages in learned
groups is bounded (in the general case, the learner, when required to produce
at least 3 groups for the union of 6 input languages, can include 4 languages
into one group and only one language into each of the remaining two groups);
the corresponding results are presented in Corollaries 16 and 17, and Theo-
rem 18. The last result of this paper, Theorem 20, presents a combinatorial
characterization (when the language classes consist of disjoint languages) for
the remaining cases not solved by Corollaries 16 and 17, and Theorem 18
(i.e., the circumstances under which learnability of unions of n languages in
m groups describing at most r languages in each of the groups implies learn-
ability for other corresponding parameters n′, m′, r′, where n′ ≤ n, r ≤ r′ and
n′ −m′ < n−m).

2 Notation and Preliminaries

Any unexplained recursion theoretic notation is from [Rog67]. N denotes the
set of natural numbers, {0, 1, 2, 3, . . .}. ∅ denotes the empty set. ⊆, ⊂, ⊇, ⊃
respectively denote subset, proper subset, superset and proper superset. Dx

denotes the finite set with (canonical) index x [Rog67]. We sometimes identify
finite sets with their canonical indices. The quantifier ‘∀∞’ essentially from
[Blu67], means ‘for all but finitely many’.

↑ denotes undefined. max(·), min(·) denotes the maximum and minimum of
a set, respectively, where max(∅) = 0 and min(∅) =↑. card(S) denotes the
cardinality of set S. 〈·, ·〉 stands for an arbitrary, computable, one-to-one en-
coding of all pairs of natural numbers onto N [Rog67]. Similarly we can define
〈·, . . . , ·〉 for encoding tuples of natural numbers onto N .
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ϕ denotes a fixed acceptable programming system for the partial computable
functions: N → N [Rog58,Rog67,MY78]. ϕi denotes the partial computable
function computed by program i in the ϕ-system. Wi denotes domain(ϕi). Note
that all acceptable numberings are isomorphic and thus one could also define
Wi to be the set generated by the i-th type-0 grammar. E denotes the set of
all recursively enumerable (r.e.) languages. L, with or without subscripts and
superscripts, ranges over E . L, with or without subscripts and superscripts,
ranges over subsets of E . DisjClass = {L | (∀L, L′ ∈ L)[L = L′ or L∩L′ = ∅]},
i.e, DisjClass is the collection of language classes which consist of disjoint
languages.

We now consider some basic notions in language learning. We first introduce
the concept of data that is presented to a learner. A text T is a mapping from
N into (N∪{#}) (see [Gol67]). The content of a text T , denoted content(T ), is
the set of natural numbers in the range of T . T is a text for L iff content(T ) =
L. T [n] denotes the initial segment of T of length n. We let T , with or without
superscripts, range over texts. Intuitively, #’s in the texts denote pauses in
the presentation of data. For example, the only text for the empty language
is just an infinite sequence of #’s.

A finite sequence σ is an initial segment of a text. content(σ), is the set of
natural numbers in the range of σ. |σ| denotes the length of σ, and if n ≤ |σ|,
then σ[n] denotes the initial segment of σ of length n.

A language learning machine is an algorithmic device which computes a map-
ping from finite initial segments of texts into N . We let M, with or with-
out subscripts and superscripts, range over learning machines. We say that
M(T )↓ = i ⇔ (∀∞n)[M(T [n]) = i].

We now introduce criteria for a learning machine to be considered successful on
languages. Our first criteria is based on learner, given a text for the language,
converging to a grammar for the language.

Definition 1 [Gol67] (a) M TxtEx-identifies L (written: L ∈ TxtEx(M)) ⇔
(∀ texts T for L)(∃i | Wi = L)[M(T )↓ = i].

(b) TxtEx = {L | (∃M)[L ⊆ TxtEx(M)]}.

The influence of Gold’s paradigm [Gol67] to human language learning is dis-
cussed by various authors, for example [Pin79,WC80,OSW86].

The following definition is based on learner semantically rather than syntac-
tically converging to the grammar(s) for the language. Here note that equiva-
lence of grammars is non-computable. The corresponding notion for learning
functions was introduced by [Bār74,CS83].
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Definition 2 [CL82,OW82].

(a) M TxtBc-identifies L (written: L ∈ TxtBc(M)) ⇔ (∀ texts T for
L)(∀∞n)[WM(T [n]) = L].

(b) TxtBc = {L | (∃M)[L ⊆ TxtBc(M)]}.

It can be shown that TxtEx ⊂ TxtBc (for example, see [CL82,OW82]).

3 Learning Languages in Groups

Now we give formal definition of our main learning model - under which a
learner, being fed the union of n different languages, outputs in the limit at
least m grammars, each representing a number of input languages, so that the
union of all m grammars covers the union of all input languages.

Definition 3 (a) We say that M [m, n]MultEx-identifies L, iff for all distinct
languages L1, . . . , Ln in L, for all texts T for L1∪ . . .∪Ln, there exist i1, . . . , ik,
(where k ≥ m) such that M(T ) converges on T to the canonical index for the
set {i1, . . . , ik} and there exists a partition G1, . . . , Gk of {1, 2, . . . , n} such
that

(i) each Gi is non-empty,

(ii) for 1 ≤ j ≤ k, ij is a grammar for
⋃

r∈Gj
Lr.

(b) [m, n]MultEx = {L | (∃M)[M [m, n]MultEx-identifies L]}.

Note that requiring k = m in the above does not change the class of languages
which can be [m, n]MultEx-identified, as one can just combine k −m + 1 of
the language groups into one. However, this may make a difference in some
modifications we consider later. Our next definition is a modification of our
model for behaviorally correct type of learning.

Definition 4 (a) We say that M [m, n]MultBc-identifies L, iff for all distinct
languages L1, . . . , Ln in L, for all texts T for L1 ∪ . . . ∪ Ln, for all but finitely
many t, there exist i1, . . . , ik, (where k ≥ m) such that M(T [t]) = the index
for {i1, . . . , ik} and there exists a partition G1, . . . , Gk of {1, 2, . . . , n} such
that

(i) each Gi is non-empty,

(ii) for 1 ≤ j ≤ k, ij is a grammar for
⋃

r∈Gj
Lr.

(b) [m, n]MultBc = {L | (∃M)[M [m, n]MultBc-identifies L]}.
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Our first result demonstrates that, for some families of languages, one can Bc-
learn each individual language from the input union of n languages, while no
Ex-learner can converge to a correct single grammar representing the whole
union.

Theorem 5 For 1 ≤ m and 1 ≤ n, [n, n]MultBc− [1, m]MultEx 6= ∅.

Moreover, this separation can be witnessed by a class in DisjClass.

Proof. Let L be a class of languages in TxtBc − TxtEx (such a class
exists by results from [CS83,CL82]). Let cyliL = {〈i, x〉 | x ∈ L}. It is easy to
verify that for all i, one can find an Li ∈ C such that Mi does not TxtEx
identify

⋃
i∗m≤j<(i+1)∗m cyljLi

(otherwise, one can easily show that L ∈ TxtEx).

Let L = {cyljLi
| i ∈ N, i ∗ m ≤ j < (i + 1) ∗ m}. It now follows that

L 6∈ [1, m]MultEx. On the other hand, L ∈ [n, n]MultBc easily follows as
for any S1, . . . , Sn in the class L, from a text for S1 ∪ . . . ∪ Sn, one can easily
obtain texts for S1, . . . , Sn and then use TxtBc learning procedure for each
of them.

Now we show that, if the number of the languages in the union given to an
Ex-learner is smaller than the number of languages given to a Bc-leaner,
then the reverse of above result also holds: for some family of languages, an
Ex-learner can correctly infer grammars for each individual language from a
smaller input union, while Bc-learnability of even one grammar covering the
whole larger union of languages is impossible.

Theorem 6 Suppose 1 ≤ n. [n, n]MultEx− [1, n + 1]MultBc 6= ∅.

Moreover, this separation can be witnessed by a class in DisjClass.

Proof. The proof is a slight modification of the construction in [JNT06]
to show that there exists a L ∈ DisjClass separating DUnTxtEx and
Un+1TxtEx.

Let n > 0 be given. For each e ∈ N , we will construct a finite set Se, and
languages L0

e, . . . , Ln
e where

L0
e = {〈e, 0, 0〉} ∪ {〈e, i, j〉 | 1 ≤ i ≤ n, j ∈ Se}

and for 1 ≤ i ≤ n, Li
e satisfies the following two properties:

(1) {z | (∃x, y)[〈x, y, z〉 ∈ Li
e]} 6= ∅, and min({z | (∃x, y)[〈x, y, z〉 ∈ Li

e]}) >
max(Se).

(2) Li
e = {〈e, i, j〉 | j ∈ Wmin({z|(∃x,y)[〈x,y,z〉∈Li

e]})}.
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Let L = {L0
e, L

1
e, . . . , L

n
e | e ∈ N}. Clearly, for all L, L′ ∈ L, L ∩ L′ = ∅.

We shall first show that L ∈ [n, n]MultEx (for any choice of Se, L0
e, . . . , L

n
e

satisfying the above properties).

By s-m-n theorem there exists a recursive function g such that, for 1 ≤ i ≤ n,
and e, j ∈ N ,

Wg(e,0,j) = {〈e, 0, 0〉} ∪ {〈e, i, k〉 | 1 ≤ i ≤ n ∧ k ∈ Dj}

Wg(e,i,j) = {〈e, i, k〉 | k ∈ Wj}.
Now L ∈ [n, n]MultEx is witnessed by following M. For each text T and each
m ∈ N ,

M(T [m])
Let S = ∅.
Let A = {e | (∃y, z)[〈e, y, z〉 ∈ content(T [m])]}.
For each e ∈ A do

Let B = content(T [m]).
If 〈e, 0, 0〉 ∈ content(T [m]) then

(* This takes care of L0
e being part of input. *)

Let C = {j | (∀i | 1 ≤ i ≤ n)[〈e, i, j〉 ∈ content(T [m])]}.
Let j be such that Dj = C.
Let S = S ∪ {g(e, 0, j)}.
Let B = B −Wg(e,0,j).

Endif
For i = 1 to n do

(* This takes care of Li
e being part of input. *)

If there exists j such that 〈e, i, j〉 ∈ B, then
For minimum such j, let S = S ∪ {g(e, i, j)}.

EndFor
EndFor
Output (index for) S.

End

It is easy to verify that M [n, n]MultEx-identifies L. We now show that
L 6∈ [1, n + 1]MultBc, for some appropriate choice of Li

e, for each e, i. For
each e here is the construction to show that Me does not [1, n + 1]MultBc-
identify {L0

e, . . . , L
n
e}. By Kleene’s Recursion Theorem [Rog67] there exists an

index e′ > 0 such that We′ may be defined in stages as follows. For each s,
W s

e′ denotes the finite portion of We′ enumerated just before stage s. Initially,
enumerate e′ in We′ (thus W 0

e′ = {e′}). Let σ0 be such that content(σ0) =
{〈e, 0, 0〉} ∪ {〈e, j, e′〉 | 1 ≤ j ≤ n}. Go to stage 0.
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Stage s:
Search for a τ ⊇ σs and x ∈ N , such that
(i) content(τ) ⊆ content(σs) ∪ {〈e, i, j〉 | 1 ≤ i ≤ n ∧ j > max(W s

e′)},
(ii) x > max({y | (∃i : 1 ≤ i ≤ n)[〈e, i, y〉 ∈ content(τ)]}), and
(iii) WMe(τ) contains 〈e, i, x〉, for some i, 1 ≤ i ≤ n.
If and when such τ, x is found, enumerate {j | (∃i′ : 1 ≤ i′ ≤ n)[〈e, i′, j〉 ∈

content(τ)]} ∪ {x + 1} into We′ .
Let σs+1 be an extension of τ such that content(σs+1) = {〈e, 0, 0〉} ∪
{〈e, i, j〉 | 1 ≤ i ≤ n ∧ j ∈ We′ enumerated up to now}.

Go to stage s + 1.
End Stage s.

If the search for τ failed at any stage s, then let L0
e = content(σs) and let

e′′ > max(W s
e′) be such that We′′ = {x | x ≥ e′′} (by Kleene’s Recursion

Theorem [Rog67], such an e′′ exists). For each i ∈ N , 1 ≤ i ≤ n, let Li
e =

{〈e, i, j〉 | j ∈ We′′}. Since stage s does not succeed, Me does not TxtBc-
identify (L0

e ∪
⋃n

i=1 Li
e) (since search in stage s did not succeed, on any finite

sequence τ extending σs such that content(τ) ⊆ L0
e∪

⋃n
i=1 Li

e, WM(τ) has finite
intersection with {〈e, i, x〉 | 1 ≤ i ≤ n, x ∈ N}).

If the search is successful at all stages, then let L0
e = {〈e, 0, 0〉} and, for 1 ≤

i ≤ n, let Li
e = {〈e, i, x〉 | x ∈ We′}. Now, Me fails to TxtBc-identify

⋃
s∈N σs,

a text for L0
e∪

⋃n
i=1 Li

e (as in each stage a τ is found, with σs ⊆ τ ⊆ σs+1, such
that M(τ) enumerates an element 〈e, i, x〉 (for some i, 1 ≤ i ≤ n, see clause
(iii) above) which is not in L0

e ∪
⋃n

i=1 Li
e).

Theorem follows from above analysis.

Yet another type of situation when Ex-learnability of unions in groups may
be possible but Bc-learnability might be not is presented in the following
result: for some class of languages, if the difference n−m between the size n
of the union of languages and the number of learned groups m is greater than
n′ −m′ (where m′ ≥ 2), then an Ex-learner can infer grammars for m groups
representing an input union of n languages, while Bc-learning of any union of
n′ input languages in m′ groups is not possible.

Theorem 7 Suppose 1 ≤ m ≤ n, 2 ≤ m′ ≤ n′, and n−m > n′ −m′. Then,
[m, n]MultEx− [m′, n′]MultBc 6= ∅.

Moreover, this separation can be witnessed by a class in DisjClass.

Proof. For i ∈ N , define

(i) for x ≤ n−m, let
Xx

i,s0,s1,...,si−1
= {〈i, 〈s0, s1, . . . , si−1〉, 2x〉, 〈i, 〈s0, s1, . . . , si−1〉, 2x + 1〉}.
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(ii) for x < n−m, i ∈ N , let
Y x

i,s0,s1,...,si−1
= {〈i, 〈s0, s1, . . . , si−1〉, 2x + 1〉, 〈i, 〈s0, s1, . . . , si−1〉, 2x + 2〉};

Y n−m
i,s0,s1,...,si−1

= {〈i, 〈s0, s1, . . . , si−1〉, 2(n−m) + 1〉, 〈i, 〈s0, s1, . . . , si−1〉, 0〉}.

(iii) for x < n′− (n−m+1), let Zx
i,s0,s1,...,si−1

= {〈i, 〈s0, s1, . . . , si−1〉, 2n+x〉}.

Note that
⋃

x≤n−m Xx
i,s0,s1,...,si−1

=
⋃

x≤n−m Y x
i,s0,s1,...,si−1

(this will be utilized for
diagonalization against Mi).

For any binary sequence of si’s, let Ls0,s1,..., = {Xx
i,s0,s1,...,si−1

| i ∈ N, x ≤
n−m, si = 0} ∪ {Y x

i,s0,s1,...,si−1
| i ∈ N, x ≤ n−m, si = 1} ∪ {Zx

i,s0,s1,...,si−1
| i ∈

N, x < n′ − (n−m + 1)}.

Claim 8 Ls0,s1,... ∈ [m, n]MultEx, for any fixed binary values of si’s.

Proof. Fix s0, s1, . . .. Consider any text T for L1 ∪ . . . ∪ Ln being given as
input. Let i = max({i′ | (∃x, y)〈i′, x, y〉 ∈ content(T )}). Let s′0, . . . , s

′
i−1 be

such that, for some y, 〈i, 〈s′0, s′1, . . . , s′i−1〉, y〉 ∈ content(T ). Note that it must
be the case s′w = sw, for w < i. Thus, i and s0, . . . , si−1 can be determined in
the limit.

Now the learner (in the limit) outputs the index for set S defined as follows:

(A) For j < i, x ≤ n − m, if sj = 0 and Xx
j,s0,...,sj−1

⊆ content(T ), then S
contains a grammar for Xx

j,s0,...,sj−1
.

(B) For j < i, x ≤ n − m, if sj = 1 and Y x
j,s0,...,sj−1

⊆ content(T ), then S
contains a grammar for Y x

j,s0,...,sj−1
.

(C) For j ≤ i, x < n′−(n−m+1), if Zx
j,s0,...,sj−1

⊆ content(T ), then S contains
a grammar for Zx

j,s0,...,sj−1
.

(D) S contains a grammar for
⋃

x≤n−m Xx
i,s0,s1,...,si−1

∩ content(T ) (assuming
this set is non-empty).

It is easy to verify that above method outputs a set of at least m grammars
which partition the input languages (the only case of more than one language
in the input being combined to form a single grammar is via case (D) above).
Claim follows. 2

Claim 9 There exist values of s0, s1, . . . such that Ls0,s1,... 6∈ [m′, n′]TxtBc.

Proof. For each i ∈ N , define si inductively as follows.

Let T be a text for
⋃

x≤n−m Xx
i,s0,...,si−1

∪ ⋃
x<n′−(n−m+1) Zx

i,s0,...,si−1
.
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Note that if Mi, on text T , infinitely often outputs an index for a set which
contains a grammar enumerating all of

⋃
x≤n−m Xx

i,s0,...,si−1
, then Mi does not

[m′, n′]MultBc-identifies the input (since it combines n−m + 1 languages in
the same group). In this case one can choose si arbitrarily.

On the other hand, suppose for all but finitely many t, Mi(T [t]) is an in-
dex for a set which contains at least two grammars which enumerate part
of

⋃
x≤n−m Xx

i,s0,...,si−1
. Then, there must exists a w ≤ 2(n − m), such that

〈i, 〈s0, s1, . . . , si−1〉, w〉 and 〈i, 〈s0, s1, . . . , si−1〉, w + 1〉 end up being enumer-
ated by different grammars in the index set output by Mi(T [t]), for infinitely
many t. Now consider the following cases.

Case 1: w is even. Let si = 0. In this case one can easily verify that Mi does
not [m′, n′]MultBc-identify {Xx

i,s0,...,si−1
| x ≤ m − n} ∪ {Zx

i,s0,...,si−1
| x <

n′ − (n−m + 1)}.

Case 2: w is odd. Let si = 1. In this case one can easily verify that Mi does
not [m′, n′]MultBc-identify {Y x

i,s0,...,si−1
| x ≤ m − n} ∪ {Zx

i,s0,...,si−1
| x <

n′ − (n−m + 1)}. 2

Theorem follows from above claims.

Following technical proposition is helpful for our results.

Proposition 10 Fix 1 ≤ n. Suppose L is an infinite class in DisjClass such
that L ∈ [1, n]MultEx. Let 1 ≤ m ≤ n.

Then, from any distinct L1, . . . , Lm ∈ L, from a text T for L1 ∪ . . .∪Lm, one
can effectively find in the limit

(a) g1, . . . , gn−m such that Wgi
are distinct languages in L− {L1, . . . , Lm},

(b) a grammar g for L1 ∪ . . . ∪ Lm.

Note that part (b) above implies L ∈ [1, m]MultEx.

Proof. Let e1, . . . , e2n−m be such that We1 , . . . ,We2n−m are distinct languages
in L. Let M be [1, n]MultEx learner for L.

Now given any text T as in the hypothesis, one can effectively search for
distinct g1, . . . , gn−m, g′1, . . . , g

′
n−m ∈ {e1, . . . , e2n−m} such that

[
⋃

1≤r≤n−m(Wgr ∪Wg′r)] ∩ content(T ) = ∅.

Let i be the grammar to which M converges on a text for content(T ) ∪⋃
1≤r≤n−m Wgr and i′ be the grammar to which M converges on a text for
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content(T ) ∪ ⋃
1≤r≤n−m Wg′r .

It is now easy to verify that, g1, . . . , gn−m satisfy part (a) of the Proposition,
and L1 ∪ . . . ∪ Lm = Wi ∩Wi′ (which allows us to find g as required for part
(b)).

Our next result shows that, for classes in DisjClass, reducing the number of
languages in the input union and the number of learned groups by the same
parameter does not affect MultEx and MultBc-learnability.

Theorem 11 Suppose L ∈ DisjClass. Assume 1 ≤ m ≤ n, 1 ≤ s ≤ n. Then
(a) to (d) hold.

(a) For m ≥ 2, L ∈ [m, n]MultEx implies L ∈ [m− 1, n− 1]MultEx.

(b) For m ≥ 2, L ∈ [m, n]MultBc implies L ∈ [m− 1, n− 1]MultBc.

(c) L ∈ [m, n]MultEx implies L ∈ [1, s]MultEx.

(d) L ∈ [m, n]MultBc implies L ∈ [1, s]MultBc.

Proof. We show part (a). Part (b) can be shown similarly. Part (c) follows
from Proposition 10(b), and part (d) can be proved similarly.

(a) Without loss of generality assume L is infinite. Suppose M [m, n]MultEx-
identifies L. Define M′ as follows.

Suppose a text T for L1∪ . . . Ln−1 is given as input. Let g1 be a grammar such
that Wg1 ∩ content(T ) = ∅ and Wg1 ∈ L. Let g be a grammar for content(T )
(Note that by Proposition 10, one can find such a g, g1 in the limit).

Let T ′ be a text for content(T )∪Wg1 . Suppose M(T ′) converges to the index
for {i1, . . . , im}. For 1 ≤ r ≤ m, let i′r be a grammar for Wir ∩ Wg. Then,
M′(T ) converges to the index for {i′r | 1 ≤ r ≤ m and Wi′r 6= ∅}. It is easy
to verify that M′ [m− 1, n− 1]MultEx-identifies L (as at most one of Wi′r is
empty).

Corollary 12 Suppose L ∈ DisjClass. Suppose 1 ≤ m ≤ n, 1 ≤ m′ ≤ n′,
n′ ≤ n and n−m ≤ n′ −m′. Then,

(a) L ∈ [m, n]MultEx implies L ∈ [m′, n′]MultEx.

(b) L ∈ [m, n]MultBc implies L ∈ [m′, n′]MultBc.

Now we will demonstrate complexity advantages of [1, m]MultEx-learnability
over [m, m]MultEx-learnability (for classes of languages which are learnable
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under both criteria). First we need a technical proposition.

Proposition 13 Let S = {e | card(We) ≤ e, and card(We) is odd}. Then,
there does not exist an n ∈ N and a recursive function h such that:

(a) for all e, card({t | h(e, t) 6= h(e, t + 1)}) ≤ n, and

(b) limt→∞ h(e, t) = 1, if e ∈ S; limt→∞ h(e, t) = 0, otherwise.

Proof. Suppose n ∈ N and recursive h are given such that (a) holds. Then,
by Kleene Recursion Theorem [Rog67] there exists an e > n such that We may
be described as follows. m ∈ We iff [card({t | h(e, t) 6= h(e, t + 1)}) ≥ m + 1]
or [card({t | h(e, t) 6= h(e, t + 1)}) = m and limt→∞ h(e, t) = 0 and m is even]
or [card({t | h(e, t) 6= h(e, t + 1)}) = m and limt→∞ h(e, t) = 1 and m is odd].

As card({t | h(e, t) 6= h(e, t + 1)}) ≤ n, it is easy to verify that We does not
contain any x > n. Thus card(We) ≤ n + 1 ≤ e. Furthermore, if card({t |
h(e, t) 6= h(e, t + 1)}) = r, then We contains all x < r, We contains no x > r,
and

(i) if limt→∞ h(e, t) = 0, then M contains r iff r is even (thus, We contains
odd number of elements).

(ii) if limt→∞ h(e, t) = 1, then M contains r iff r is odd (thus, We contains
even number of elements).

It follows that (b) does not hold.

If M(T [r]) 6= M(T [r+1]), then we say that M made a mind change at T [r+1].

Theorem 14 Suppose 2 ≤ m. There exists a class L in [m, m]MultEx, such
that

(a) For any n ∈ N , for any M which [m, m]MultEx-identifies L, M makes
≥ n mind changes on a text for L1 ∪ . . . ∪ Lm, for some L1, . . . , Lm in the
class.

(b) Some M [1, m]MultEx-identifies L using no mind changes.

Proof. Let L1
e = {{〈e, 2x〉, 〈e, 2x + 1〉} | x < m}.

Let L2
e = {{〈e, 2x + 1〉, 〈e, 2x + 2〉} | x < m− 1} ∪ {{〈e, 2m− 1〉, 〈e, 0〉}}.

Note that, for all e,
⋃

L∈L1
e
L =

⋃
L∈L2

e
L.

Let S = {e | card(We) ≤ e, and card(We) is odd }.
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Let L =
⋃

e∈S L1
e ∪

⋃
e6∈S L2

e.

It is easy to verify that L ∈ [m, m]MultEx (one determines in the limit the
2m elements that constitute the m input languages, and whether e ∈ S or
not, for each e such that, for some y, 〈e, y〉 belongs to the input text. This
information is enough to determine the individual languages which constitute
the input).

Furthermore, L ∈ [1, m]MultEx via a learner which makes no mind changes
(one just needs to wait until at least 2m elements appear in the input. At
which point the learner can output the grammar which enumerates these 2m
elements).

However, a learner which [m, m]MultEx-identifies L using at most n mind
changes, also gives us a method to decide S limit effectively using at most n
mind changes. An impossible task by Proposition 13.

4 Some Extensions

In this section we consider learnability of unions in groups under additional
constraint: the number of languages in learned groups may be limited.

Definition 15 (a) We say that M [m, s, n]MultEx-identifies L, iff for all
distinct languages L1, . . . , Ln in L, for all texts T for L1∪ . . .∪Ln, there exist
i1, . . . , ik, (k ≥ m) such that M(T ) converges on T to the index for the set
{i1, . . . , ik} and there exists a partition G1, . . . , Gk of {1, 2, . . . , n} such that

(i) each Gi is non-empty and of size at most s,

(ii) for 1 ≤ j ≤ k, ij is a grammar for
⋃

r∈Gj
Lr.

(b) [m, s, n]MultEx = {L | (∃M)[M [m, s, n]MultEx-identifies L]}.

One can similarly define [m, s, n]MultBc. Note that [m, n]MultEx is same
as [m, s, n]MultEx, for any s ≥ n−m+1. Thus, often when s ≥ n−m+1, we
just use [m,∞, n]MultEx to show that there is no restriction on individual
groups except the one forced by values of m, n.

We first consider some results which follow from the results/proofs of Theo-
rems in the previous section. As a corollary to Theorem 6, we get

Corollary 16 Suppose 1 ≤ n < n′ and 1 ≤ m′ ≤ n′. Then [n, 1, n]MultEx−
[m′,∞, n′]MultBc 6= ∅.
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Corollary 17 Suppose 1 ≤ r′ < r, 1 ≤ m ≤ n− r + 1, 1 ≤ m′ ≤ n′ − r′ + 1.
Then, [m, r, n]MultEx− [m′, r′, n′]MultBc 6= ∅.

Proof. By Proof of Theorem 7, we have that [n − r + 1, r, n]MultEx −
[m′, r′, n′]MultBc 6= ∅. Corollary follows.

Proof of Theorem 11 essentially shows the following theorem also.

Theorem 18 Suppose n − m ≤ n′ − m′, r ≤ r′ and n′ ≤ n. Suppose L ∈
DisjClass. Then,

(a) [m, r, n]MultEx ⊆ [m′, r′, n′]MultEx.

(b) For n′ ≤ n, [m, r, n]MultEx ⊆ [1, n′, n′]MultEx.

We now give a result which solves the remaining cases for the relationship be-
tween different [m, r, n]MultEx-learnability for classes in DisjClass. Suppose
n′ ≤ n, r ≤ r′ and n′−m′ < n−m: since the other cases have been handled in
corollaries and theorem above. For classes in DisjClass, the next result, Theo-
rem 20, shows when [m, r, n]MultEx can be simulated by [m′, r′, n′]MultEx.
This depends on a complex relationship between m, r, n and m′, r′, n′, which
we express as the following property.

Intuitively, the property says that if we distribute n balls in at least k ≥ m
non-empty boxes, such that each box has at most r balls, and then take out
n− n′ balls, then at least m′ boxes will remain non-empty.

Definition 19 Suppose 1 ≤ m′ ≤ n′, 1 ≤ m ≤ n, 1 ≤ n′ ≤ n, 1 ≤ r ≤ r′ and
n′ −m′ < n−m.

We say that Prop(m, r, n, m′, r′, n′) holds iff for any k ≥ m, a1, . . . , ak, b1, . . . , bk,
if (A) to (D) hold, then (E) also holds.

(A)
∑

1≤i≤k bi = n− n′

(B)
∑

1≤i≤k ai = n,

(C) for 1 ≤ i ≤ k, 0 ≤ bi ≤ ai ≤ r,

(D) for 1 ≤ i ≤ k, 1 ≤ ai ≤ r,

(E) card({i | 1 ≤ i ≤ k, ai > bi}) ≥ m′.

Theorem 20 Suppose n′ ≤ n, r ≤ r′ and n′ −m′ < n−m.

(a) If Prop(m, r, n, m′, r′, n′) holds then for any class L ∈ DisjClass,
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L ∈ [m, r, n]MultEx implies L ∈ [m′, r′, n′]MultEx.

(b) If Prop(m, r, n, m′, r′, n′) does not hold then

[m, r, n]MultEx− [m′, r′, n′]MultEx 6= ∅.

Moreover, this separation can be witnessed by a class in DisjClass.

Proof. (a) Suppose Prop(m, r, n, m′, r′, n′) holds. Let M be [m, r, n]MultEx
learner for L ∈ DisjClass.

If L is finite, then the simulation is trivial. So assume L is infinite. M′ behaves
as follows.

Given any text T , M′ finds (i) g1, . . . , gn−n′ such that Wg1 , Wg2 , . . . ,Wgn−n′
∈ L

and input text T does not contain any element of
⋃

1≤i≤n−n′ Wgi
, and (ii) a

grammar g for content(T ) (note that by Proposition 10 this can be done in
the limit). M′ runs M on a text T ′ for content(T ) ∪ ⋃

1≤i≤n−n′ Wgi
.

Suppose M converges on T ′ to the index for set {i1, . . . , ik}. Then, M′ forms
grammars {i′1, . . . , i′k}, such that for 1 ≤ w ≤ k, Wi′w = Wiw ∩ Wg. Then, M′

outputs the index for the set {i′w | 1 ≤ w ≤ k,Wi′w 6= ∅}.

Using definition of Prop, it is easy to verify that M′ [m′, r′, n′]MultEx-
identifies L.

(b) Suppose Prop(m, r, n, m′, r′, n′) does not hold. Let a1, . . . , ak, b1, . . . , bk,
be such that (A) to (D) are satisfied but (E) does not hold in Definition 19.

The diagonalizing class L will consist of Lj,i,w, for w < ai, j ∈ N , 1 ≤ i ≤ k.

Lj,i,w will satisfy the following properties. For the following, let codej be the
index for a set of grammars for the languages in {Lj′,i,w | j′ < j, 1 ≤ i ≤
k, w < ai}.

(P1) Lj,i,w ⊆ {〈j, codej, i, x〉 | x < 2r}.

(P2) card(Lj,i,w) ≥ 2.

(P3) Lj,i,w are disjoint for different values of w.

We first claim that L is in [m, r, n]MultEx, irrespective of what the exact
chosen Lj,i,w are as long as the above properties are satisfied.
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On any input text, a learner can first determine the largest j and corresponding
codej such that, 〈j, codej, i, x〉 belongs to the input text, for some i, x. Now
the learner can determine (in the limit) grammars for:

(i) any language from L which is of form Lj′,i′,w′ , for some j′ < j, and Lj′,i′,w′ ⊆
content(T ) (this can be done using codej).

(ii) content(T )∩{〈j, codej, i, x〉 | x < 2r}, for each i ∈ N , such that content(T )∩
{〈j, codej, i, x〉 | x < 2r} 6= ∅.

The learner can then, in the limit, converge to the index for set of grammars ob-
tained in (i) and (ii). It immediately follows that the learner [m, r, n]MultEx-
identifies L.

We now show that for appropriate choice of Lj,i,w, L 6∈ [m′, r′, n′]MultEx.

Suppose by way of contradiction that, for some j, one cannot choose appropri-
ate Lj,i,w, 1 ≤ i ≤ k, w < ai such that Mj fails to [m′, r′, n′]MultEx-identify
{Lj,i,w | 1 ≤ i ≤ k, w < ai}. Let j be least such number.

Define Lj,i,w for 1 ≤ i ≤ k, w < bi, as {〈j, codej, i, 2w〉, 〈j, codej, i, 2w + 1〉}.
Give as input a text T to Mj, where content(T ) = {〈j, codej, i, x〉 | ai > bi

and 2bi ≤ x < 2r}. (Note that codej is determined by languages chosen for
Lj′,i,w for j′ < j.)

Suppose Mj on T converges to the index set {s1, . . . , sk′}. Now Wsw , 1 ≤
w ≤ k′ must be non-empty, and k′ ≥ m′ (otherwise clearly, one can choose
appropriate Lj,i,w such that Mj fails to [m′, r′, n′]MultEx-identify {Lj,i,w |
1 ≤ i ≤ k, w < ai}). Furthermore note that there cannot be an i, 1 ≤ i ≤
k, ai > bi, such that for two distinct w and w′, Wsw , Wsw′ intersect with
{〈j, codej, i, x〉 | 2bi ≤ x < 2r} (since otherwise, one may take Lj,i,bi

to contain
one element from both Wsw , Wsw′ , and other Lj,i,w appropriately, to contradict
Mj [m′, r′, n′]MultEx-identifying L). Now for i, 1 ≤ i ≤ k, such that ai > bi,
for bi ≤ w < ai, define Lj,i,w such that each Lj,i,w contains at least 2 elements
and

⋃
bi≤w<ai

Lj,i,w = {〈j, codej, i, x〉 | 2bi ≤ x < 2r}.

Now each i in {i | ai > bi} can be mapped to a w, 1 ≤ w ≤ k′ such that Wsw

contains {〈j, codej, i, x〉 | 2bi ≤ x < 2r}. Thus, {i | ai > bi} ≥ k′ ≥ m′. A
contradiction.

This completes the proof of the theorem.

Corollary 21 Suppose n − m > n′ − m′, and n′ ≥ n − m + dn−m
r−1

e. Then,
[m, r, n]MultEx− [m′,∞, n′]MultEx 6= ∅.

Proof. Let a1, a2, . . . , am, b1, . . . , bm, be defined as follows.
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ai = r, bi = 0, for 1 ≤ i ≤ bn−m
r−1

c.

If n−m
r−1

is not an integer, then let adn−m
r−1

e = 1 + (n − m) − (bn−m
r−1

c ∗ (r − 1)),

bdn−m
r−1

e = 0.

ai = 1, bi = 0, for dn−m
r−1

e < i ≤ m− (n− n′).

ai = 1, bi = 1, for m− (n− n′) < i ≤ m.

Now, as m − (n − n′) < m′, and n′ ≥ n − m + dn−m
r−1

e, we immediately have
that Prop(m, r, n, m′, r′, n′) cannot hold (as there are < m′ w’s in {1, . . . ,m}
such that aw − bw > 0). Corollary follows.

5 Conclusions

In this paper we explored relationships between a more coarsed and a more
refined classification from the standpoint of computability. Some of our main
results (for example, Theorems 11, 18, and 20(a)) worked on the assumption
that underlying targets of classification were pairwise distinct. While it is true
for many cognitive classification tasks, there are classification problems where
such an assumption cannot be made. For example, when one wants to clas-
sify all classical music pieces as being in major or minor, this can probably
be done, relatively easily, for everything written within Western musical tra-
dition before the 20th century. However, this has changed by impressionism,
introduction of the atonal scale, etc. in the 20th century. Many pieces written
by contemporary composers often alternate between major and minor several
times, which makes the task of classifying such pieces much harder. To model
a situation of this kind, one has to lift the requirement of classification targets
being pairwise distinct, or, at least, replace it by a much weaker requirement
allowing intersections of classification targets being finite. It would be inter-
esting to explore the issues discussed in the paper in such a setting. We leave
it for a future research.
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