
Iterative Learning from Positive Data and

Negative Counterexamples

Sanjay Jain a,1 and Efim Kinber b

a School of Computing, National University of Singapore, Singapore 117590.
Email: sanjay@comp.nus.edu.sg

b Department of Computer Science, Sacred Heart University, Fairfield, CT
06432-1000, U.S.A. Email: kinbere@sacredheart.edu

Abstract

A model for learning in the limit is defined where a (so-called iterative) learner
gets all positive examples from the target language, tests every new conjecture with
a teacher (oracle) if it is a subset of the target language (and if it is not, then
it receives a negative counterexample), and uses only limited long-term memory
(incorporated in conjectures). Three variants of this model are compared: when a
learner receives least negative counterexamples, the ones whose size is bounded by
the maximum size of input seen so far, and arbitrary ones. A surprising result is
that sometimes absence of bounded counterexamples can help an iterative learner
whereas arbitrary counterexamples are useless. We also compare our learnability
model with other relevant models of learnability in the limit, study how our model
works for indexed classes of recursive languages, and show that learners in our model
can work in non-U-shaped way — never abandoning the first right conjecture.

1 Introduction

In 1967 E. M. Gold [Gol67] suggested an algorithmic model for learning lan-
guages and other possibly infinite concepts. This model, TxtEx, where a
learner gets all positive examples and stabilizes on a right description (a gram-
mar) for the target concept, was adopted by computer and cognitive scientists
(see, for example, [Pin79]) as a basis for discussion on algorithmic modeling of
certain cognitive processes. Since then other different formal models of algo-
rithmic learning in the limit have been defined and discussed in the literature.

1 Supported in part by NUS grant numbers R252-000-127-112, R252-000-212-112
and R252-000-308-112.

Preprint submitted to Elsevier 29 October 2007

One of the major questions stimulating this discussion is what type of in-
put information can be considered reasonable in various potentially infinite
learning processes. Another important question is what amount of input data
a learner can store in its (long-term) memory. Yet another issue is the way
how input data is communicated to the learner. In Gold’s original model the
learner is able to store potentially all input (positive) examples in its long-term
memory (one can clearly make distinction between long-term memory, where
a learner stores necessary data permanently, and a short-term — temporary
— memory used by a learner for computation between a current and next
conjectures); still, the latter assumption may be unrealistic for certain learn-
ing processes. Gold also considered a variant of his model where the learner
receives all positive and all negative examples. However, while it is natural to
assume that some negative data may be available to the learner, this variant,
InfEx, though interesting from a theoretical standpoint (for example, it can
be used as a formal model for learning classes of functions, see [JORS99]),
can hardly be regarded as adequate for most of the learning processes — for
example, children learning languages, while getting some negative data (say,
when some of their utterances are corrected by parents), obviously will never
get the full set of negative data.

R. Wiehagen in [Wie76] (see also [LZ96]) suggested a variant of the Gold’s
original model, so-called iterative learners, whose long-term memory cannot
grow indefinitely (in fact, it is incorporated into the learner’s conjectures).
Some variants of iterative learning proved to be quite fruitful in the context of
applied machine learning (see, for example, [LZ06], where iterative learning,
being used in the context of training Support Vector Machines, gives an op-
portunity to replace a very large full training set with a much smaller initial
set of most important training points). This model has been considered for
learnability from all positive examples (denoted as TxtIt, [Wie76,LZ96]) and
from all positive and all negative examples (denoted as InfIt, [LZ92]).

In her paper [Ang88], D. Angluin suggested a model of learnability, where data
about the target concept are communicated to a learner in a way different
from the one used in Gold’s model — it is supplied to the learner by a teacher
(oracle) in response to queries from a learner. Angluin considered different
type of queries, in particular, membership queries, where the learner asks if a
particular word is in the target concept, and subset queries, where the learner
tests if the current conjecture is a subset of the target language — if not, then
the learner may get a negative counterexample from a teacher (subset queries
and corresponding counterexamples help a learner to refute overgeneralizing
wrong conjectures; K. Popper [Pop68] regarded refutation of overgeneralizing
conjectures as a vital part of learning and discovery processes).

In [JK04], the authors introduced the model NCEx (see Definition 10) which
combines the Gold’s model, TxtEx, and the Angluin’s model. An NCEx-

2

learner receives all positive examples of the target concept and makes a subset
query about each conjecture — receiving a negative counterexample if the
answer is negative. This model is along the line of research related to the Gold’s
model for learnability from positive data in presence of some negative data
(see also [Mot91,BCJ95]). Three variants of negative examples supplied by the
teacher were considered: negative counterexamples of arbitrary size, if any (the
main model NCEx), least counterexamples (LNCEx), and counterexamples
whose size would be bounded by the maximum size of positive input data seen
so far (BNCEx) — thus, reflecting complexity issues that the teacher might
have.

In this paper, we incorporate the limitation on the long-term memory reflected
in the It-approach into all three above variants of learning from positive data
and negative counterexamples: in our new model, NCIt (and its variations),
the learner gets full positive data and asks a subset query about every con-
jecture, however, the long-term memory is a part of its conjecture, and, thus,
cannot store indefinitely growing amount of input data (since, otherwise, the
learner cannot stabilize to a single conjecture). Thus, the learners in our model,
while still getting full positive data, get just as many negative examples as
necessary (a finite number, if the learner succeeds) and can use only a finite
amount of long-term memory. Our motivation for this model is based on the
observation that iterative learners having access to positive data only, while
being far more parsimonious (in terms of long-term memory) than the learn-
ers in the general Gold’s model, do not have any access to negative data,
whereas limited negative data is available in most human learning processes.
We explore different aspects of our model. In particular, we compare all three
variants to one another and with other relevant models of algorithmic learning
in the limit discussed above. We also study how our model works in the con-
text of learning indexed (that is, effectively enumerable) classes of recursive
languages (such popular classes as pattern languages (see [Ang80]) and regular
languages are among them). In the end, we show that learners in our model
can work in non-U-shaped way — not ever abandoning a right conjecture.

The paper is structured as follows. In Section 2 we introduce necessary no-
tation and formally introduce our and other relevant learnability models and
establish trivial relationships between them. Section 3 is devoted to relation-
ships between the three above mentioned variants of NCIt. First, we show
that least counterexamples do not have advantage over arbitrary ones — this
result is similar to the corresponding result for NCEx obtained in [JK04], how-
ever, the proof is more complex. Then we show that capabilities of iterative
learners getting counterexamples of arbitrary size and those getting bounded
counterexamples, if available, are incomparable. The fact that bounded coun-
terexamples, if available, can sometimes help more than arbitrary ones is quite
surprising: if a bounded counterexample is available, then an arbitrary one is
trivially available, but not vice versa — this circumstance can be easily used

3

by NCEx-learners to simulate BNCEx-learners, but not vice versa, as shown
in [JK04]. However, it turns out that iterative learners can sometimes use the
fact that a bounded counterexample is not available to learn concepts, for
which arbitrary counterexamples are of no help at all!

Section 4 compares our models with other popular models of learnability in the
limit. First, we show that TxtEx-learners, capable of storing potentially all
positive input data, can learn sometimes more than NCIt-learners, even if the
latter ones are allowed to make a finite number of errors in the final conjecture.
On the other hand, NCIt-learners can sometimes do more than the TxtEx-
learners (being able to store all positive data). In addition to exhibiting a class
of languages witnessing the latter difference, we establish this difference on yet
another level: it turns out that adding an arbitrary recursive language to an
NCIt-learnable class preserves its NCIt-learnability, while it is not true for
TxtEx-learners (see [Gol67], where it was shown that the class of all finite sets
is TxtEx-learnable, but any class consisting of one infinite language and all
of its finite subsets is not TxtEx-learnable). An interesting — and quite un-
expected — result is that NCIt-learners can simulate any InfIt-learner. Note
that InfIt gets access to full negative data, whereas an NCIt-learner gets only
a finite number of negative counterexamples (although both of them are not
capable of storing all input data)! Moreover, NCIt-learners can sometimes
learn more than any InfIt-learner. The fact that NCIt-learners receive nega-
tive counterexamples to wrong “overinclusive” conjectures (that is conjectures
which include elments outside the language) is exploited in the relevant proof.
Here note that for NCEx and InfEx-learning, where all data can be remem-
bered, NCEx ⊂ InfEx. So the relationship between negative counterexamples
and complete negative data differs quite a bit from the noniterative case.

In Section 5, we consider NCIt-learnability of indexed classes of recursive
languages. Our main result here is that all such classes are NCIt-learnable.
Note that it is typically not the case when just positive data is available — even
with unbounded long-term memory. On the other hand, interestingly, there
are indexed classes that are not NCIt-learnable if a learner uses the set of
programs computing just the languages from the given class as its hypotheses
space (so-called class-preserving type of learning, see [ZL95]). That is, full
learning power of NCIt-learners on indexed classes can only be reached if
subset queries can be posed for conjectures representing languages outside the
class. [ZL95] had shown the dependence of the capabilities of iterative learners
on the hypotheses spaces for learning from text. Dependability of learning via
queries in dependence of the hypotheses space has been studied, in particular,
in [LZ04].

In Section 6, we prove that NCIt-learning can be done so that a learner never
abandons a right conjecture (so-called non-U-shaped learning, see [BCM+05],
became a popular subject in developmental psychology, see [Bow82]. Recently

4

Journal of Cognition and Development dedicated its first issue in the year 2004
to U-shaped phenomenon).

2 Preliminaries

2.1 Notation

Any unexplained recursion theoretic notation is from [Rog67]. The symbol N
denotes the set of natural numbers, {0, 1, 2, 3, . . .}. Subsets of N are refered
to as languages. Symbols ∅, ⊆, ⊂, ⊇, and ⊃ denote empty set, subset, proper
subset, superset, and proper superset, respectively. Cardinality of a set S is
denoted by card(S). The maximum and minimum of a set are denoted by
max(·), min(·), respectively, where max(∅) = 0 and min(∅) = ∞. Suppose
A, B are subsets of N . A∆B denotes the symmetric difference of A and B,
that is A∆B = (A − B) ∪ (B − A). For a natural number a, we say that
A =a B, iff card(A∆B) ≤ a. We say that A =∗ B, iff card(A∆B) < ∞. Thus,
we take n < ∗ < ∞, for all n ∈ N . If A =a B, then we say that A is an
a-variant of B. ∀∞ and ∃∞ respectively denote ‘for all but finitely many’ and
‘there exist infinitely many’.

We let 〈·, ·〉 stand for an arbitrary, computable, bijective mapping from N×N
onto N [Rog67]. We assume without loss of generality that 〈·, ·〉 is mono-
tonically increasing in both of its arguments. We define π1(〈x, y〉) = x and
π2(〈x, y〉) = y. Pairing function can be extended to n-tuples in a natural way.
Let cyli = {〈i, x〉 | x ∈ N}. Intuitively, N can be partitioned into cylinders
{〈i, x〉 | x ∈ N}, i ∈ N . Then, cyli denotes the i-th cylinder in the above
partition of N .

By ϕ we denote a fixed acceptable programming system for the partial com-
putable functions mapping N to N [Rog67,MY78]. By ϕi we denote the partial
computable function computed by the program with number i in the ϕ-system.
Symbol R denotes the set of all recursive functions, that is total computable
functions. Symbol Rn

0,1 denotes the set of all recursive functions, with n input
parameters and range being {0, 1}. η(x)↓ denotes that η(x) is defined. η(x)↑
denotes that η(x) is undefined.

By Φ we denote an arbitrary fixed Blum complexity measure [Blu67,HU79]
for the ϕ-system. A partial recursive function Φ(·, ·) is said to be a Blum
complexity measure for ϕ, iff the following two conditions are satisfied:

(a) for all i and x, Φ(i, x)↓ iff ϕi(x)↓.

5

(b) the predicate: P (i, x, t) ≡ Φ(i, x) ≤ t is decidable.

By convention we use Φi to denote the partial recursive function λx.Φ(i, x).
Intuitively, Φi(x) may be thought as the number of steps it takes to compute
ϕi(x).

By Wi we denote domain(ϕi). Wi is, then, the recursively enumerable (r.e.)
set/language (⊆ N) accepted by the ϕ-program i. We also say that i is a
grammar for Wi. Symbol E will denote the set of all r.e. languages. Symbol L,
with or without decorations, ranges over E . By χL we denote the characteristic
function of L. By L, we denote the complement of L, that is N − L. Symbol
L, with or without decorations, ranges over subsets of E . By Wi,s we denote
the set {x < s | Φi(x) < s}.

L is said to be an indexed family of languages iff there exists an indexing
L0, L1, . . . of all and only the languages in L such that the question x ∈ Li is
uniformly decidable (i.e., there exists a recursive function f such that f(i, x) =
χLi

(x)).

We often need to use padding to be able to attach some relevant information
to a grammar. pad(j, ·, ·, . . .) denotes a 1–1 recursive function (of appropriate
number of arguments) such that Wpad(j,·,·,...) = Wj. Such recursive functions
can easily be shown to exist [Rog67].

2.2 Classical Models of Learning

We now present concepts from language learning theory. The next definition
introduces the concept of a sequence of data. Sets of form {x | x < n}, for
some n, are called initial segments of N .

Definition 1 (a) A (finite) sequence σ is a mapping from an initial segment
of N into (N ∪ {#}). The empty sequence is denoted by Λ.

(b) The content of a sequence σ, denoted content(σ), is the set of natural
numbers in the range of σ.

(c) The length of σ, denoted by |σ|, is the number of elements in σ. So, |Λ| = 0.

(d) For n ≤ |σ|, the initial sequence of σ of length n is denoted by σ[n]. So,
σ[0] is Λ.

Intuitively, #’s represent pauses in the presentation of data. We let σ, τ ,
and γ, with or without decorations, range over finite sequences. We denote
the sequence formed by the concatenation of τ at the end of σ by σ�τ . For

6

simplicity of notation, sometimes we omit �, when it is clear that concatenation
is meant. SEQ denotes the set of all finite sequences.

Definition 2 [Gol67] (a) A text T for a language L is a mapping from N
into (N ∪ {#}) such that L is the set of natural numbers in the range of T .
T (i) represents the (i + 1)-th element in the text.

(b) The content of a text T , denoted by content(T), is the set of natural
numbers in the range of T ; that is, the language which T is a text for.

(c) T [n] denotes the finite initial sequence of T with length n.

Definition 3 [Gol67] An inductive inference machine (IIM) learning from
texts is an algorithmic device which computes a (possibly partial) mapping
from SEQ into N .

We use the term learner or learning machine as synonyms for inductive infer-
ence machines.

Definition 4 [Gol67] (a) An informant I is a mapping from N to (N ×
{0, 1}) ∪# such that for no x ∈ N , both (x, 0) and (x, 1) are in the range of
I.

(b) content(I) = set of pairs in the range of I (that is range(I)− {#}).

(c) We say that a I is an informant for L iff content(I) = {(x, χL(x)) | x ∈ N}.

(d) The canonical informant for L is the informant (0, χL(0))(1, χL(1))

Intuitively, informants give both all positive and all negative data for the
language being learned. I[n] is the first n elements of the informant I. One
can similarly define language learning from informants.

We let M, with or without decorations, range over IIMs. M(T [n]) (or M(I[n]))
is interpreted as the grammar (index for an accepting program) conjectured
by the IIM M on the initial sequence T [n] (or I[n]). We say that M converges
on T to i, (written: M(T)↓ = i) iff (∀∞n)[M(T [n]) = i]. Convergence on
informants is similarly defined.

There are several criteria for an IIM to be successful on a language. Below we
define some of them. The criteria defined below are variants of the Ex-style
learning described in Introduction and its extension, behaviourally correct, or
Bc-style learning (where a learner produces conjectures, almost all of which
are correct, but not necessarily the same, see [CL82] for formal definition).
In the definitions, we additionally consider allowing a finite number of errors
(uniformly bounded number, or arbitrary) in the conjectures.

7

Definition 5 [Gol67,CL82] Suppose a ∈ N ∪ {∗}.

(a) M TxtExa-identifies a text T just in case M(T [n]) is defined for all n and
(∃i | Wi =a content(T)) (∀∞n)[M(T [n]) = i].

(b) M TxtExa-identifies an r.e. language L (written: L ∈ TxtExa(M)) just
in case M TxtExa-identifies each text for L.

(c) M TxtExa-identifies a class L of r.e. languages (written: L ⊆
TxtExa(M)) just in case M TxtExa-identifies each language from L.

(d) TxtExa = {L ⊆ E | (∃M)[L ⊆ TxtExa(M)]}.

If instead of convergence to a grammar on text T , we just require that all but
finitely many grammars output by M on T are for an a-variant of content(T),
(that is, (∀∞n)[WM(T [n]) =a content(T)]), then we get TxtBca-identification.
We refer the reader to [CL82] or [JORS99] for details.

Definition 6 [Gol67,CL82] Suppose a ∈ N ∪ {∗}.

(a) M InfExa-identifies L (written: L ∈ InfExa(L)), just in case for all infor-
mants I for L, M(I[n]) is defined for all n and (∃i | Wi =a L) (∀∞n)[M(I[n]) =
i].

(b) M InfExa-identifies a class L of r.e. languages (written: L ⊆ InfExa(M))
just in case M InfExa-identifies each language from L.

(c) InfExa = {L ⊆ E | (∃M)[L ⊆ InfExa(M)]}.

One can similarly define InfBca-identification [CL82]. Note that the definition
of learning from informant considered above is learning from arbitrary infor-
mants, rather than just canonical informants. This does not make a difference
for explanatory learning, but does make a difference for iterative learning
[JB81]).

Next we consider iterative learning. Below we formally define TxtIta. InfIta

can be defined similarly.

Definition 7 [Wie76,LZ96]

(a) M is iterative, iff there exists a partial recursive function F such that, for
all T and n, M(T [n+1]) = F (M(T [n]), T (n)). Here M(Λ) is some predefined
constant.

(b) M TxtIta-identifies L, iff M is iterative, and M TxtExa-identifies L.

(c) TxtIta = {L | (∃M)[M TxtIta-identifies L]}.

8

Intuitively, an iterative learner [Wie76,LZ96] is a learner whose hypothesis
depends only on its last conjecture and current input. That is, for n ≥ 0,
M(T [n + 1]) can be computed algorithmically from M(T [n]) and T (n). Here,
note that M(T [0]) is predefined to be some constant value. We will often
identify F above with M (that is use M(p, x) to describe M(T [n + 1]), where
p = M(T [n]) and x = T (n)). This is for ease of notation.

Note that for InfIt-learning, the learner has to succeed on all informants, and
not only on the canonical one.

For Exa and Bca models of learning (for learning from texts or informants or
their variants when learning from negative counterexamples, as defined below),
one may assume without loss of generality that the learners are total (see, for
example [OSW86]). However for iterative learning one cannot assume so. Thus,
we explicitly require in the definition that iterative learners are defined on all
inputs which are initial segments of texts (informants) for a language in the
class.

Note that, although it is not stated explicitly, an It-type learner might store
some input data in its conjecture (thus serving as a limited long-term memory).
However, the amount of stored data cannot grow indefinitely, as the learner
must stabilize to one (right) conjecture.

For a = 0, we often write TxtEx,TxtBc,TxtIt, InfEx, InfBc, InfIt instead
of TxtEx0,TxtBc0,TxtIt0, InfEx0, InfBc0, InfIt0, respectively.

We let M0,M1, . . . denote a recursive enumeration of all (iterative) IIMs from
texts/informants or negative counterexamples, based on context.

Definition 8 [Ful90] σ is said to be a TxtEx-stabilizing sequence for M
on L, iff (a) content(σ) ⊆ L, and (b) for all τ such that content(τ) ⊆ L,
M(στ) = M(σ).

Definition 9 [BB75,Ful90] σ is said to be a TxtEx-locking sequence for M
on L, iff (a) σ is a TxtEx-stabilizing sequence for M on L and (b) WM(σ) = L.

If M TxtEx-identifies L, then every TxtEx-stabilizing sequence for M on L
is a TxtEx-locking sequence for M on L. Furthermore, one can show that if
M TxtEx-identifies L, then for every σ such that content(σ) ⊆ L, there exists
a TxtEx-locking sequence, which extends σ, for M on L (see [BB75,Ful90]).

Similar results can be shown for InfEx, TxtBc, InfBc and other criteria of
learning discussed in this paper. We will often drop TxtEx (and other crite-
ria notation) from TxtEx-stabilizing sequence and TxtEx-locking sequence,
when the criterion is clear from context.

9

2.3 Learning with Negative Counterexamples

In this section we formally define our models of learning from full positive data
and negative counterexamples as given by [JK04]. Intuitively, for learning with
negative counterexamples, we may consider the learner being provided a text,
one element at a time, along with a negative counterexample to the latest
conjecture, if any. (One may view this negative counterexample as a response
of the teacher to the subset query when it is tested if the language generated
by the conjecture is a subset of the target language). One may model the list
of negative counterexamples as a second text for negative counterexamples
being provided to the learner. Thus the IIMs get as input two texts, one for
positive data, and other for negative counterexamples.

We say that M(T, T ′) converges to a grammar i, iff (∀∞n)[M(T [n], T ′[n]) = i].

First, we define the basic model of learning from positive data and negative
counterexamples. In this model, if a conjecture contains elements not in the
target language, then a negative counterexample is provided to the learner.
NC in the definition below stands for negative counterexample.

Definition 10 [JK04] Suppose a ∈ N ∪ {∗}.

(a) M NCExa-identifies a language L (written: L ∈ NCExa(M)) iff for all
texts T for L, and for all T ′ satisfying the condition:

(T ′(n) ∈ Sn, if Sn 6= ∅) and (T ′(n) = #, if Sn = ∅),
where Sn = L ∩WM(T [n],T ′[n])

M(T, T ′) converges to a grammar i such that Wi =a L.

(b) M NCExa-identifies a class L of languages (written: L ⊆ NCExa(M)),
iff M NCExa-identifies each language in the class.

(c) NCExa = {L | (∃M)[L ⊆ NCExa(M)]}.

For ease of notation, we sometimes define M(T [n], T ′[n]) also as M(T [n]),
where we separately describe how the counterexamples T ′(n) are presented to
the conjecture of M on input T [n].

One can similarly define NCIta-learning, where the learner’s output depends
only on the previous conjecture and the latest positive data and counterex-
ample provided.

Definition 11 (a) M is iterative (for learning from counterexamples), iff
there exists a partial recursive function F such that, for all T, T ′ and n,

10

M(T [n+1], T ′[n+1]) = F (M(T [n], T ′[n]), T (n), T ′(n)). Here M(Λ, Λ) is some
predefined constant.

(b) M NCIta-identifies L, iff M is iterative, and M NCExa-identifies L.

(c) NCIta = {L | (∃M)[M NCIta-identifies L]}.

Here, note that M(Λ, Λ) is predefined to be some constant value. We will often
identify F above with M (that is use M(p, x, y) to describe M(T [n+1], T ′[n+
1]), where p = M(T [n], T ′[n]) and x = T (n), y = T ′(n)). This is for ease of
notation.

As an example, consider the class {S | S is finite} ∪ {N}. This class is known
not to be in TxtEx (see [Gol67]). One can learn the above class in NCIt as
follows: Initially (on empty data) conjecture a grammar for N . If there is no
counterexample, then we are done. Otherwise, one can just follow the strategy
for learning finite sets, by storing all the input data.

One should also note that the NCIt model is equivalent to allowing finitely
many subset queries (with counterexamples for ‘no’ answer) in iterative learn-
ing (see [JK06] for similar result on NCEx learning; this paper also studies
various tradeoffs when the number of queries is bounded by a natural number).

Jain and Kinber [JK04] also considered the cases where

(i) negative counterexamples provided are the least ones (that is, in Defini-
tion 10(a), one uses T ′(n) = min(Sn), instead of T ′(n) ∈ Sn); the correspond-
ing learning criterion is referred to as LNCExa, and

(ii) negative counterexamples are provided iff they are bounded by the
largest element seen in T [n] (that is, in Definition 10(a), one uses Sn =
L∩WM(T [n],T ′[n]) ∩{x | x ≤ max(content(T [n]))}); the corresponding learning
criterion is referred to as BNCExa.

We refer the reader to [JK04] for details. One can similarly define LNCIta,
BNCIta, and BNCBca, LNCBca, BNCBca criteria of learning.

Note that {S | S is finite} ∪ {N} belongs to LNCIt but not to BNCEx∗.

Below, we state a number of relationships between the formal models of learn-
ing discussed above, which either follow from the definitions or are shown in
[JK04].

Proposition 12 Let a ∈ N ∪ {∗}.

(a) [JK04] TxtExa ⊆ BNCExa ⊆ NCExa ⊆ LNCExa.

11

(b) [JK04] TxtBca ⊆ BNCBca ⊆ NCBca ⊆ LNCBca.

(c) TxtIta ⊆ BNCIta.

(d) TxtIta ⊆ NCIta ⊆ LNCIta.

Note that BNCIta 6⊆ NCIta, as we will show below.

Proposition 13 Let a ∈ N ∪ {∗}.

(a) BNCIta ⊆ BNCExa ⊆ BNCBca.

(b) NCIta ⊆ NCExa ⊆ NCBca.

(c) LNCIta ⊆ LNCExa ⊆ LNCBca.

3 Relationship Among Different Variations of NCIt-Criteria

In this section we compare all three variants of iterative learning using negative
counterexamples. Obviously, the goal is to determine a) what extra help the
least negative counterexamples can provide for iterative learning over arbitrary
ones, and b) if (and how) providing counterexamples of bounded size, if any,
effects the capabilities of an iterative learner.

Our first result shows that, for learning capability of iterative learners, least
counterexamples do not give advantage over arbitrary counterexamples. This
result is similar to the corresponding result for NCEx-learners ([JK04]), how-
ever, the proof is more complex.

Following notation is used in Theorem 14 and Remark 29.

Notation: Mncex(p, a0a1 . . . an) denotes the result of the following computa-
tion. Define q0 = p. Let qi+1 = M(qi, ai, ncex(qi)) (that is, the output of
M when previous conjecture was qi, ai is the positive data and ncex(qi) is
the negative counterexample (or #) provided). Then, the grammar output by
Mncex(p, a0a1 . . . , an) = qn+1, if all ncex(qi), i ≤ n, in the above computa-
tion are defined (as well as M converges in all of the above computations —
this later part of M converging in all computations would always hold, when
inputs are defined, as the input data will be from the class, as long as coun-
terexamples provided by ncex are correct). Otherwise, Mncex(p, a0a1 . . . an)
is not defined.

Theorem 14 For all a ∈ N ∪ {∗}, LNCIta = NCIta.

12

Proof. The proof idea is similar to that of showing LNCEx ⊆ NCEx in
[JK04], except that we need to keep track of the backlog in the simulation when
we are trying to find the least counterexample. Intuitively, for simulating an
LNCIt learner, an NCIt learner, whenever it receives a counterexample to
conjecture Wp, tries to find a least counterexample by searching for least i
such that {i}∩Wp receives a counterexample. However, during this process of
searching for i, the iterative learner needs to store incoming data, as it may
lose it otherwise. This saving of backlog in the simulation is done in variable
τm below. Besides this backlog in the simulation, the learner also needs to
remember the known least counterexamples for grammars, if any, (see ncex
below) as well as the mode of operation (i.e., is it simulating the LNCEx
learner or is it trying to find a least counterexample for some grammar; rm

below keeps track of this). We now proceed formally.

We state the proof only for a = 0. The proof can easily be seen to work
for arbitrary a. Suppose M LNCIt-identifies L. We define M′ which NCIt-
identifies L. Suppose T is a text for L ∈ L. The conjectures of M′ on input
T [m] would be of form pad(pm, rm, ncexm, τm).

Invariants (A) to (D) would hold.

(A) τm is the backlog in simulation. That is, T [m] = τ ′mτm, where M′ has, as
yet, only simulated M on τ ′m, and simulation on τm is yet to be done. It will be
the case that τ ′m ⊆ τ ′m+1. Thus, τm+1 is a suffix of τmT (m + 1). Furthermore,
if rm+1 is 0, then τ ′m ⊂ τ ′m+1, and if rm+1 is not 0, then τ ′m = τ ′m+1.

(B) ncexm is a partial mapping from conjectures to the least counterexamples
(or #) as known to M′. Domain of ncexm is all conjectures made by M on
proper prefixes of τ ′m (here τ ′m is as in (A) above, and counterexamples provided
to M are the least counterexamples).

(C) rm is used to check the mode in which M′ is currently in. If rm = 0,
it means M′ is currently simulating M, and the last conjecture pm is the
conjecture of M on τ ′m (when the counterexamples in the simulation are given
using ncexm).

If rm = 1 + 〈p, s〉, it means that M′ is currently trying to find out the least
counterexample for the grammar p, which was output by M after seeing τ ′m
(where the counterexamples were given by ncexm). Here s denotes that until
now, we have verified that Wp∩{x < s} ⊆ L, and are currently testing whether
Wp ∩{s} ⊆ L (in this case pm is the grammar for Wp ∩{s}). Also, it is known
that Wp 6⊆ L (as M′ would have earlier received a negative counterexample to
its conjecture of form pad(p, ·, ·, ·)).

(D) If rm = 1 + 〈p, w〉 and rm+1 6= 0, then rm+1 = 1 + 〈p, w + 1〉.

13

Initially, output of M′ on empty input is pad(p0, 0, ∅, Λ), where p0 is the output
of M on empty input. Note that the invariants hold.

We now describe how to determine parameters in
pad(pm+1, rm+1, ncexm+1, τm+1), the output of M′ on input T (m), with
counterexample y to previous conjecture pad(pm, rm, ncexm, τm). The
invariants mentioned above are preserved for each case in the construction.

Note that in Case 1 below, the positive data used in γ in the simulation of
M is from the text T , and ncexm+1, where defined, is correct. Thus one can
determine whether Mncexm+1(pm, γ) is defined or not under the assumption
that the input text is for a language from the class L (since in this case the
only reason for Mncexm+1(pm, γ) to be undefined would be that ncexm+1 is
undefined for one of the intermediate conjectures). Similar reasoning applies
to Case 4.

Case 1: rm = 0 and (y = # or ncexm(pm) is defined).

If ncexm(pm) is not defined, then extend ncexm to ncexm+1 by additionally
defining ncexm+1(pm) = #. Otherwise let ncexm+1 = ncexm.

Let γ be the largest prefix of τmT (m) such that Mncexm+1(pm, γ) is de-
fined. Note that γ above is not empty. Let pm+1 = Mncexm+1(pm, γ). Let
τm+1 be such that τmT (m) = γτm+1. Let rm+1 = 0.

It is easy to verify that invariants (A), (B) and (C) are maintained. In-
variant (D) trivially holds.

Case 2: rm = 0 and (y 6= # and ncexm(pm) is not defined).

Let ncexm+1 = ncexm. Let rm+1 = 1 + 〈pm, 0〉. Let τm+1 = τmT (m). Let
pm+1 be such that Wpm+1 = {0} ∩Wpm .

It is easy to verify that invariants (A), (B) and (C) are maintained. In-
variant (D) trivially holds.

Case 3: rm = 1 + 〈p, w〉 and y = #.

Let ncexm+1 = ncexm. Let rm+1 = 1 + 〈p, w + 1〉. Let τm+1 = τmT (m). Let
pm+1 be such that Wpm+1 = {w + 1} ∩Wp.

It is easy to verify that invariants (A), (B), (C) and (D) are maintained.

Case 4: rm = 1 + 〈p, w〉 and y 6= #.

Let ncexm+1 be the extension of ncexm by defining ncexm+1(p) = w.

Let γ be the largest prefix of τmT (m) such that Mncexm+1(p, γ) is defined.
Let pm+1 = Mncexm+1(p, γ). Let τm+1 be such that τmT (m) = γτm+1. Let
rm+1 = 0.

It is easy to verify that invariants (A), (B), (C) and (D) are maintained.

14

Note that the invariants are maintained in all cases above. Also, using invari-
ants (C), (D), it follows that if rm 6= 0, then there exists a m′ > m, such that
rm′ = 0, and thus τ ′m ⊂ τ ′m′ .

Now suppose n is such that M (when receiving least counterexamples) con-
verges on T at n (that is, for all n′ ≥ n, M(T [n′]) = M(T [n])). Then, once
τ ′m ⊇ T [n + 1], we have, using invariant (B), that ncexm is defined on all con-
jectures of M on T . It follows that for all m′ > m, on the input T (m′) only
Case 1 will apply, and the value of τm′ would be Λ, and pm′ would be M(T)
and rm′ would be 0. Thus, M′ on T converges to a grammar for L.

One of the variants of teacher’s answers to subset queries in [Ang88] was
restricted subset queries, where the teacher gives just “yes” or “no” answer.
That is, the teacher just tells the learner that a counterexample exists, but does
not provide it. Note that the above proof works also under these conditions,
as the proof does not use the exact numerical value of the counterexample,
but just the fact that it exists.

Now we will compare NCIt-learning with its variant where the size of coun-
terexamples is limited by the maximum size of the input seen so far. Note
again that, in the latter model, if the shortest available counterexample to a
current conjecture is too long, the teacher is simply unable to provide it. Our
goal is to establish whether this bound on the size of possible counterexamples
effects capabilities of learners in our model.

First we show that, contrary to immediate intuition, bounded counterexamples
(or, rather interplay between positive data seen so far, part of it being memo-
rized and the fact that only bounded counterexample can be provided, if at all)
can sometimes help to iteratively learn classes of languages not learnable by
any NCIt-learner. The proof exploits the fact that sometimes actually absence
of bounded counterexamples can help in a situation when arbitrary counterex-
amples are useless! Note that if a bounded counterexample is available to a
learner, then an arbitrary counterexample is trivially available, and NCEx-
learners easily utilize this circumstance to simulate any BNCEx-learner, as
shown in [JK04].

Theorem 15 BNCIt−NCIt∗ 6= ∅.

The following lemma gives the diagonalizing class L. For ease of presentation,
the diagonalization proof is split into two parts.

Intuitively, L1 in the lemma is easy to learn (iteratively) as a learner can
eventually find the least e such that 〈0, e〉 is in the input language. L4 is also
easy to learn (iteratively), as it consists only of finite sets. However, L1∪L4 is
not NCIt-learnable. By the time the NCIt learner sees a data of form 〈1, ·〉,

15

it may have forgotten some inputs it has earlier seen. Furthermore, such data
cannot be recovered using finitely many counterexamples by NCIt learner
(as these data maybe arbitrary). This allows one to show that L1 ∪ L4 is not
learnable by NCIt-learner.

L1 ∪ L2 ∪ L3 uses a modification of this idea, to construct classes of infinite
languages which are not NCIt∗-learnable. Here note that the L− (cyl0∪ cyl1)
part of languages L in L2 are in some sense cylinderification of languages in
L1. L−(cyl0∪cyl1) part of languages L in L3 are cylinderification of finite sets.
Intuitively, L2 ∪ L3 cannot be learned (with a finite number of errors) from
informants, if the learner does not get the information about the elements
{〈0, 〈i, w〉〉 | w ∈ N}. This is essentially non-union theorem for learning from
informants [Smi82].

For being able to BNCIt-identify the class L1 ∪ L2 ∪ L3, for an appropriate
i, one uses elements of form 〈0, 〈i, w〉〉, to determine whether the input lan-
guage is from L2 or L3. Note here that L2 and L3 are individually iteratively
learnable. Thus, if one could somehow recover the finite part of cyl0 which
one loses when the learner thinks that the input is coming from L1, then the
class L1 ∪ L2 ∪ L3 would become iteratively learnable. BNCIt learners can
recover such data due to the following reason. When one conjectures a set
{a}, where a is not in the input language, then the BNCIt-learner does not
receive a counterexample iff a is larger than all the elements seen in the input
so far. This bounds the elements of cyl0 already seen and thus allows their
recovery using conjectures of the form {x}, for x ≤ a. This kind of recovery is
not possible for NCIt-learners as the counterexample for the conjecture {a}
above can be a itself. In fact, an NCIt learner is not able to recover these
forgotten data, as our analysis below shows.

We now proceed formally.

Lemma 16 Let L1 = {{〈0, x〉 | x ∈ We} | e = min(We), e ∈ N}.

L2 = {L | (∃i, j ∈ N)[
card(L ∩ cyl0) < ∞ and L ∩ cyl1 = {〈1, 〈i, j〉〉} and
(∀w)[〈0, 〈i, w〉〉 6∈ L] and (L− (cyl0 ∪ cyl1)) = {〈2, 〈x, k〉〉 | x ∈ Wj, k ∈ N}]}.

L3 = {L | (∃i, j ∈ N, finite set D)[
card(L ∩ cyl0) < ∞ and L ∩ cyl1 = {〈1, 〈i, j〉〉} and
(∃w)[〈0, 〈i, w〉〉 ∈ L] and (L− (cyl0 ∪ cyl1)) = {〈2, 〈x, k〉〉 | x ∈ D, k ∈ N}]}.

Let L4 = {L | card(L) < ∞, L ⊆ cyl0 ∪ cyl1 and L 6⊆ cyl0}.

Let L = L1 ∪ L2 ∪ L3.

(a) L1 ∪ L4 6∈ NCIt.

16

(b) L 6∈ NCIt∗.

Proof. (a) Suppose by way of contradiction that L1 ∪ L4 ∈ NCIt as wit-
nessed by a learner M. Then, by implicit use of Kleene’s Recursion Theorem
[Rog67], there exists an e such that We may be defined as follows. Initially
enumerate e in We, and let σ0 be such that content(σ0) = {〈0, e〉}. Intuitively
Cntrexmpls denotes the set of elements frozen to be outside the diagonaliz-
ing language being constructed. Initially, Cntrexmpls = {〈i, x〉 | i ≥ 2 and
i, x ∈ N}∪{〈0, x〉 | x < e}. Intuitively, NegSet is the set of conjectured gram-
mars for which we have found a negative counterexample (in Cntrexmpls).
Initially let NegSet = ∅. ncex(j) is a function which gives, for j ∈ NegSet,
a negative counterexample from Cntrexmpls. For the following, let γτ be a
sequence of length |τ | defined as follows. For i < |τ |,

γτ (i) =

ncex(M(τ [i], γτ [i])), if M(τ [i], γτ [i]) ∈ NegSet;

#, otherwise.

(where the value of NegSet is as at the time of above usage). Here note that we
will be using the above definition only for cases when M(τ [i], γτ [i]) is defined
for all i < |τ |.

Note that at the beginning of any stage s, NegSet will be finite, and Cntrexmpls
will be a finite set plus {〈i, x〉 | i ≥ 2 and i, x ∈ N}∪ {〈0, x〉 | x < e}. Also we
will have the invariant that at the start of stage s, content(σs) = {〈0, x〉 | x ∈
We enumerated before stage s}.

Go to stage 0.

Stage s
1. Dovetail steps 2 and 3 until step 2 or 3 succeed. If step 2 succeeds before

step 3, if ever, then go to step 4. If step 3 succeeds before step 2, if ever,
then go to step 5.

Here we assume that if step 3 can succeed by simulating M(τ, γτ) for s
steps, then step 3 succeeded first (and for the shortest such τ), otherwise
whichever of these steps succeeds first is taken. (So some priority is given
to step 3 in the dovetailing).

2. Search for a τ ⊇ σs such that
content(τ) ⊆ {〈0, x〉 | x ≥ e} − Cntrexmpls,
M(τ [i], γτ [i]), is defined for all i ≤ |τ |, and
M(τ, γτ) 6= M(σs, γσs).

3. Search for a τ ⊆ σs such that M(τ, γτ) 6∈ NegSet and WM(τ,γτ) enumerates
an element not in content(σs).

4. Let τ be as found in step 2. Let σs+1 = τ , and enumerate {x | 〈0, x〉 ∈
content(τ)} into We.

17

Go to stage s + 1.
5. Let τ be as found in step 3, and j = M(τ, γτ), and z be the element found

to be enumerated by Wj which is not in content(σs).
Let NegSet = NegSet ∪ {j}.
Let Cntrexmpls = Cntrexmpls ∪ {z}.
Let ncex(j) = z.
Let σs+1 = σs.
Go to stage s + 1.

End stage s

We now consider the following cases:

Case 1: Stage s starts but does not finish.

Note that M needs to converge on all inputs, where positive data is contained
in cyl0 and negative counterexamples are consistent (due to M being defined
on all inputs from L4). Thus, for any sequence σ extending σs, such that
content(σ) ⊆ {〈0, x〉 | x ∈ N} − Cntrexmpls, we have that M(σ, γσ)↓ =
M(σs, γσs), and the counterexamples given according to γσs are correct for
any language L such that content(σs) ⊆ L ⊆ N−Cntrexmpls (since otherwise
step 3 would have succeeded). In other words, all conjectures by M on prefixes
of (σs, γσs) are either contained in content(σs) or contain an element from
Cntrexmpls (as given by ncex(·)).

Now fix x such that 〈1, x〉 6∈ Cntrexmpls. Consider the behaviour of M on
T = σs#(〈1, x〉)∞, where the counterexamples beyond σs# are given based
on the input language being L = content(σs) ∪ {〈1, x〉} and choosing the
least counterexample (counterexamples on initial segments of σs# are pro-
vided based on γσs#). If M makes infinitely many mind changes, then we have
that M does not NCIt-identify content(σs) ∪ {〈1, x〉}. On the other hand, if
M makes only finitely many mind changes on T , then let S be the set of coun-
terexamples provided on the input text T . Let 〈0, w〉 be such that 〈0, w〉 is not
in S ∪ content(σ). Then, the behaviour of M on T ′ = σs�(〈0, w〉)�(〈1, x〉)∞ is
same as that on T (here the counterexamples on input σs�(〈0, w〉) are based
on γσs�(〈0,w〉); the counterexample provided is the least counterexample once
〈1, x〉 appears in the input). Thus, M does not NCIt-identify at least one of
content(σs)∪ {〈0, w〉, 〈1, x〉} and content(σs)∪ {〈1, x〉}, both of which belong
to L4.

Case 2: All stages finish.

Let L = {〈0, x〉 | x ∈ We}. Let T =
⋃

s∈N σs. Note that T is a text for L. Let
Cntrexmpls (NegSet) denote the set of all elements which are ever placed in

18

Cntrexmpls (NegSet) by the above construction. Let γT be defined as follows.

γT (i) =

ncex(M(T [i], γT [i])), if M(T [i], γT [i]) ∈ NegSet;

#, otherwise.

For τ ⊆ T , let γτ = γT [|τ |]. Note that eventually, any conjecture j by M
on (T, γT) which enumerates an element not in L, belongs to NegSet, with a
negative counterexample for it belonging to Cntrexmpls (given by ncex(j)).
This is due to eventual success of step 3, for all τ ⊆ T , for which M(τ, γτ) 6⊆ L
(due to priority assigned to step 3).

If M(T, γT) makes infinitely many mind changes, then, clearly, M does not
NCIt-identify L. On the other hand, if M makes only finitely many mind
changes on (T, γT), then eventually, any conjecture j by M on (T, γT) which
enumerates an element not in L, belongs to NegSet, with a negative coun-
terexample for it belonging to Cntrexmpls (given by ncex(j)). Thus, beyond
some large enough stage s, step 3 would never succeed, and, for any stage
s′ ≥ s, simulation of M(τ, γτ), as at stage s′ of step 2, is correct (i.e., negative
counterexamples are given, whenever the conjectured language is not a subset
of L), and step 2 succeeds in all but finitely many stages — a contradiction
to M making only finitely many mind changes.

From above cases it follows that M does not NCIt-identify L1 ∪L4. Part (a)
follows.

(b) Proof of part (b) is an extension of the proof of part (a).

Intuitively, L2∪L3 cannot be learned from informants, if the learner does not
get the information about the elements {〈0, 〈i, w〉〉 | w ∈ N}. This is what is
exploited in the following.

In the class used in the proof of part (a), we exploit the fact that in Case 1,
the iterative learner is not able to remember all the elements of form 〈0, x〉
that it has seen (and is also not able to find these elements by using its future
conjectures/counterexamples). In the definition of L, such crucial information
(whether the input language contains an element of form 〈0, 〈i, w〉〉 for some
w) has been used to hide information whether the input language is coming
from L2 or L3. An NCIt∗-learner is not able to detect this information, and
thus not able to learn L2 ∪ L3. We now informally present the details.

Suppose by way of contradiction that M NCIt∗-identifies L. One then pro-
ceeds with the staging construction for defining We as in the proof of part (a).
If the construction has infinitely many stages, then as in Case 2 of part (a),
one can argue that M does not NCIt∗-identify {〈0, x〉 | x ∈ We} which is in
L1.

19

On the other hand, if there are only finitely many stages (i.e. Case 1), then fix
σs as in Case 1. Then, by implicit use of Kleene’s Recursion Theorem [Rog67],
one can choose a large enough i and j such that 〈0, 〈i, w〉〉 does not appear
in σs, for any w, and Wj can be described as follows. Wj essentially repeats
the diagonalization against M using the construction similar to that of We in
proof of part (a). The only difference is that it uses cyl2 instead of cyl0, and
instead of just using 〈0, x〉, it uses 〈2, 〈x, k〉〉, for all k, (that is, for each x either
〈2, 〈x, k〉〉 would be placed in the diagonalizing language for all k, or none of
〈2, 〈x, k〉〉 would be placed in the diagonalizing language). The elements in σs

along with 〈1, 〈i, j〉〉 are used as predefined elements committed to be in the
diagonalizing language.

Again, if infinitely many stages are there, then we can argue as in Case 2 of
part (a) that content(σs)∪{〈1, 〈i, j〉〉}∪{〈2, 〈x, k〉〉 | x ∈ Wj, k ∈ N} (which is
in L2) is not NCIt∗-identified by M. Otherwise, the learner converges at some
σt. Then, one can find an element of form 〈0, 〈i, w〉〉 which has not appeared in
Cntrexmpls along with an appropriate set D such that the last conjecture of
M on σt is infinitely different from L = content(σs)∪ {〈1, 〈i, j〉〉, 〈0, 〈i, w〉〉} ∪
{〈2, 〈x, k〉〉 | x ∈ D, k ∈ N}, which is a member of L3. (Here D would con-
tain (i) all x such that 〈2, 〈x, k〉〉 in content(σt), for some k, and (ii) possibly
one more element x which ensures that the last conjecture of M is infinitely
different from L). We omit the details.

We are now ready to give the proof of Theorem 15.

Proof. (of Theorem 15) Without loss of generality assume that the pairing
function, 〈·, ·〉, is monotonically increasing in both the arguments.

It suffices to show that L as defined in Lemma 16(b) belongs to BNCIt. To
see this, consider the following strategy for a learner M.

Phase 1: Initially, M keeps outputting a grammar for {〈0, x〉 | x ∈ We}, where
e is the minimal value seen so far such that 〈0, e〉 belongs to the input language.
This process continues until M gets as input an element of form 〈1, 〈i, j〉〉. If
and when M receives 〈1, 〈i, j〉〉 in its input, it remembers it, and proceeds to
Phase 2.

Phase 2: In this phase M tries to determine an upper bound on the elements
of L ∩ cyl0 (at least the ones which have already been received by M). To do
this, on input positive data x, M outputs a grammar for {〈x + 3, 0〉}, until
it does not receive a negative counterexample. Note that this will eventually
happen as the first time M receives a positive data which is larger than all the
elements seen in Phase 1, grammar for {〈x+3, 0〉} would not receive a negative
counterexample, as 〈x + 3, 0〉 would then be larger than all the inputs seen so
far (here note that all languages in L, which contain 〈1, 〈i, j〉〉 are infinite).

20

Let m = 〈x + 3, 0〉 and go to Phase 3.

Phase 3: In this phase M tries to determine all the elements of form 〈0, x〉,
such that 〈0, x〉 ≤ m and 〈0, x〉 ∈ L. To do this, M first waits for an input
element which is at least as large as m (note that this will eventually happen,
if L ∈ L−L1). Then, M can determine whether 〈0, x〉 ∈ L, for 〈0, x〉 ≤ m, by
outputting a grammar for {〈0, x〉}. 〈0, x〉 ∈ L, iff the above conjecture does
not receive a negative counterexample. Let S1 denote L∩{〈0, x〉 | 〈0, x〉 ≤ m}.

Additionally M will also remember elements of form 〈0, x〉, which are ≥ m,
and are received in Phase 3 (or later). Let the set of such elements be S2.

Once all the elements of form 〈0, x〉 ≤ m, which belong to L are determined: If
S1 ∪ S2 contains an element of form 〈0, 〈i, w〉〉, then go to Phase 5. Otherwise
go to Phase 4.

Phase 4: In Phase 4, M will keep updating S2, in case it receives an element
of form 〈0, x〉 ≥ m. Additionally, it will output a (canonical) grammar for
S1 ∪ S2 ∪ {〈1, 〈i, j〉〉} ∪ {〈2, 〈x, k〉〉 | x ∈ Wj, k ∈ N}.

If in Phase 4, M ever receives an element of form 〈0, 〈i, w〉〉 then it will go to
Phase 5.

Phase 5: In Phase 5, M will keep updating S2, in case it receives an element
of the form 〈0, x〉 ≥ m. Additionally, it will keep track of the set D consisting
of elements x such that 〈2, 〈x, k〉〉 is seen in input in Phase 5.

It will then output a grammar for S1 ∪ S2 ∪ {〈1, 〈i, j〉〉} ∪ {〈2, 〈x, k〉〉 | x ∈
D, k ∈ N}.

This completes the description of M.

If L ∈ L1, then M will never leave Phase 1, and M will eventually determine
the least e such that 〈0, e〉 belongs to L, and thus correctly output a grammar
for L in the limit.

If L ∈ L2 ∪ L3, then eventually M will receive an element of form 〈1, 〈i, j〉〉,
and then M will proceed to Phase 2. In Phase 2, it will eventually get an input
x such that its conjecture of {〈x + 3, 0〉} does not get a counterexample, and
thus it will proceed to Phase 3. In Phase 3, it will successfully determine all
elements 〈0, x〉 ∈ L, which are ≤ m.

If L ∈ L2, then M will proceed to Phase 4 (as S1 ∪ S2 will not contain any
element of the form 〈0, 〈i, w〉〉) and then eventually output only a correct
(canonical) grammar for L, as it will eventually have S1 ∪ S2 = L ∩ cyl0.

If L ∈ L3, then either at the end of Phase 3, or in Phase 4, it will eventually

21

find an element in the input set which is of the form 〈0, 〈i, w〉〉, and thus
proceed to Phase 5. In Phase 5, it will eventually have S1∪S2 = L∩ cyl0, and
D = {x | (∃k)[〈2, 〈x, k〉〉 ∈ L]}, as L either contains 〈2, 〈x, k〉〉, for all k or no
such k. Thus, M will then output a correct (canonical) grammar for L and
not change its mind thereafter.

Our next goal is to find out if arbitrary counterexamples, within the frame-
work of our model, can still be more helpful to a learner than bounded ones.
The next theorem gives a positive answer: it shows that NCIt-learners can
sometimes do more than any BNCBc-learner, even if the latter one is allowed
to make a finite number of errors in almost all conjectures.

Theorem 17 (NCIt ∩ InfIt)−BNCBc∗ 6= ∅.

Proof. Let INIT = {L | (∃i)[L = {x | x ≤ i}]}.

INIT∪{N} can be easily seen to be in NCIt∩InfIt. INIT∪{N} 6∈ BNCBc∗

was shown in [JK07].

4 Comparison With Other Criteria of Learning

In this section we compare our model with other close relevant models of
learnability in the limit.

Our first aim is to establish a hierarchy of learnability in our model based on
the number of errors in the final conjecture. First, we need an auxiliary similar
result for regular iterative learners.

Theorem 18 (Based on [CS83])

(a) TxtItn+1 − InfExn 6= ∅.

(b) TxtIt∗ − ⋃
n∈N InfExn 6= ∅.

Proof. Let Lf = {〈x, f(x)〉 | x ∈ N}.

For a ∈ N ∪ {∗}, let Ca = {f | ϕf(0) ⊆ f ∧ ϕf(0) =a f}.

Let La = {Lf | f ∈ Ca}.

It is easy to verify that La ∈ TxtIta. [CS83] showed that Ln+1 6∈ InfExn and
L∗ 6∈

⋃
n∈N InfExn. Theorem follows.

22

As LNCIta ⊆ LNCExa ⊆ InfExa (the first inequality follows by definition;
see [JK04] for the second inequality), we have:

Corollary 19 (a) TxtItn+1 − (LNCItn ∪BNCItn) 6= ∅.

(b) TxtIt∗ − ⋃
n∈N(LNCItn ∪BNCItn) 6= ∅.

Our next two results show that learners that can store in their long-term
memory potentially all positive data can sometimes learn more than any
BNCIt/NCIt-learner. In other words, not surprisingly, absence of unlimited
long-term memory significantly restricts learners using negative data obtained
from subset queries.

Theorem 20 TxtEx−BNCIt∗ 6= ∅.

Proof. Let 〈x, y, z〉 = 〈x, 〈y, z〉〉. Thus, 〈·, ·, ·〉 denotes a computable bijective
mapping from N ×N ×N to N .

Let Le,e′ = {〈e, e′, x〉 | x ∈ We}. Xy
e,e′ = Le,e′ ∪ {〈e, e′, x〉 | x ≥ y, x ∈ We′}.

Let L1 = {Le,e′ , Xy
e,e′ | y ∈ N and We ∩We′ = ∅}.

Let L2 = {L | card(L) < ∞ and (∀e, e′)[L 6⊆ {〈e, e′, x〉 | x ∈ N}]}.

Let L = L1 ∪ L2.

It is easy to verify that L ∈ TxtEx. If the input language is not a subset of
{〈e, e′, x〉 | x ∈ N}, for any e, e′, then one can use the strategy for learning
finite sets. Otherwise, the learner outputs a grammar for Le,e′ until an element
of the form 〈e, e′, x〉 appears in the input, for some x ∈ We′ . In this case, the
learner outputs a grammar for Xy

e,e′ , for y being the minimum such x.

We now show that L 6∈ BNCIt∗. Suppose by way of contradiction that L ∈
BNCIt∗ as witnessed by learner M. Then, by implicit use of Double Recursion
Theorem [Rog67], there exist e and e′ such that We, We′ may be defined as
follows. We will have that each x belongs to at most one of We, We′ . In stage
s we wish to place s in one of We or We′ (if stage s completes, then s will be
placed in one of We or We′). We will also construct (an initial segment of) a
text T . We will have the invariant that T (s) = 〈e, e′, s〉, iff s ∈ We. T (s) = #
or undefined otherwise (where T (s) is defined if stage s completes). It thus
follows that T is a text for Le,e′ (assuming T (s) is defined for all s).

For the following, let cseqt
τ be a sequence of length |τ | defined as follows. For

i < |τ |,

23

cseqt
τ (i) =

min(WM(τ [i],cseqt

τ [i]),t − content(τ)), if WM(τ [i],cseqt
τ [i]),t∩

{x | x ≤ max(content(τ [i]))}
6⊆ content(τ);

#, otherwise.

Intuitively, cseq gives the sequence of counterexamples using t enumeration
steps for the conjectures. Here, if M(τ [i], cseqt

τ [i]) is not defined for some i,
then we assume that cseqt

τ (w) is not defined for w ≥ i. It is easy to verify that
for all σ, either M(σ, cseqt

σ) diverges for all but finitely many t, or M(σ, cseqt
σ)

converges for all but finitely many t (where we take M(σ, cseqt
σ) to be diverging

if cseqt
σ is not defined for some input < |σ|).

Go to stage 0.

Stage s
For t = s to ∞ do
1. If M(T [r], cseqt

T [r]), for r ≤ s, or M(T [s]�〈e, e′, s〉, cseqt
T [s]�〈e,e′,s〉) or

M(T [s]#, cseqt
T [s]#), do not converge within t steps, then go to the

next iteration of for loop. Otherwise, proceed to step 2.
2. If M(T [s], cseqt

T [s])↓ 6= M(T [s]�〈e, e′, s〉, cseqt
T [s]�〈e,e′,s〉)↓, then enu-

merate s in We, let T (s) = 〈e, e′, s〉, and go to stage s + 1.
Else, enumerate s in We′ , let T (s) = #, and go to stage s + 1.

EndFor
End stage s

If some stage s starts but does not finish, then M is not defined on some valid
positive data/counterexample sequence. To see this, let σ be some T [r], r ≤ s,
or T [s]#, or T [s]�〈e, e′, s〉, such that M(σ, cseqt

σ) diverges for all but finitely
many t. Let x be large enough such that 〈e+1, e′, x〉 > max(content(σ)). Now
we have that M is not defined on some prefix of σ〈e + 1, e′, x〉〈e + 2, e′, x〉#∞,
where counterexamples provided are the least (bounded) ones, if any. However,
as content(σ) ∪ {〈e + 1, e′, x〉, 〈e + 2, e′, x〉} ∈ L2, we have that M does not
BNCIt∗-identify L. So assume that all stages finish. Note that T is a text for
Le,e′ , and the non-# elements of T form an increasing sequence of elements of
Le,e′ . Let cseqT be defined as follows:

cseqT (i) =

min(WM(T [i],cseqT [i]) − content(T)), if WM(T [i],cseqT [i])∩

{x | x ≤ max(content(T [i]))}
6⊆ content(T);

#, otherwise.

24

If M(T, cseqT) makes infinitely many mind changes, then clearly M does not
BNCIt∗-identify Le,e′ ∈ L. So assume that n is such that for all m ≥ n,
M(T [m], cseqT [m])↓ = M(T [n], cseqT [n])↓, and cseqT (m) = cseqT (n). Also
note that if WM(T,cseqT) 6⊆ content(T), then cseqT (n) 6= #. Let tn be large
enough such that for all m ≤ n, M(T [m], cseqT [m])↓ in tn time steps, and
if cseqT (m) 6= #, then cseqT (m) ∈ WM(T [m],cseqT [m]),tn . Furthermore, assume
that all members of content(T) which are ≤ max(content(cseqT)) belong to
content(T [n]). It follows that

(A) for all t ≥ s > tn, cseqt
T [s] ⊆ cseqT , and thus M(T [s], cseqt

T [s]) =
M(T [n], cseqT [n]) = M(T, cseqT).

It follows that in stages s > tn, If statement in step 2 does not hold (since
otherwise, we will have M(T [s], cseqt

T [s]) 6= M(T [s + 1], cseqt
T [s+1]), for some

t ≥ s, in contradiction to (A)). Thus, T (s) = #, for all s > tn. Thus, (using
(A), and If statement of step 2, Stage s) we have

(B) for all s > tn, M(T [s]�〈e, e′, s〉, cseqt
T [s]�〈e,e′,s〉) = M(T [s], cseqt

T [s]) =
M(T, cseqT), for some appropriate t ≥ s.

Note that for large enough s, if WM(T [n],cseqT [n]) contains an element not
in content(T), then it contains such an element ≤ 〈e, e′, s〉 which be-
longs to WM(T [n],cseqT [n]),s. Using (A), (B) and iterative nature of M,
it follows that, for large enough s, M(T [s]�〈e, e′, s〉〈e, e′, s + 1〉〈e, e′, s +
2〉 . . . , cseqT [s]�〈e,e′,s〉〈e,e′,s+1〉〈e,e′,s+2〉...) = M(T, cseqT) = M(T [n], cseqT [n]).

Thus, M fails to BNCIt∗-identify at least one of Le,e′ and Xs
e,e′ .

Theorem 21 TxtEx−NCIt∗ 6= ∅.

Proof. Consider L as defined in Lemma 16(b). L ∈ TxtEx can be shown
as follows. The learner first checks if the input contains an element of form
〈1, 〈i, j〉〉. If not, then the language must be from L1, which can be easily
TxtEx-identified. On the other hand, suppose input contains an element
〈1, 〈i, j〉〉. Then, by checking whether the input contains an element of form
〈0, 〈i, w〉〉 or not, one can use the TxtEx-learning algorithm for L3 or L2

respectively, which are individually easily seen to be in TxtEx.

Our next goal is to demonstrate that, in some cases, even limited amount of
negative data obtained by iterative learners can provide more learning power
than possibility to store full positive data in the long-term memory (even if a
learner is allowed to make an unbounded finite number of errors in its correct
conjecture). In other words, in some cases, access to limited negative data can
more than compensate for the lack of long-term memory. More specifically,
we show that NCIt-learners (even BNCIt-learners) can sometimes be more

25

powerful than any TxtBc∗-learner.

Theorem 22 (BNCIt ∩NCIt)−TxtBc∗ 6= ∅.

Proof. {L | (∃D | card(D) < ∞)[L = {〈i, x〉 | x 6∈ D, i, x ∈ N}]}. It
is easy to verify that L ∈ BNCIt ∩ NCIt. Gold [Gol67] showed that {L |
card(N − L) < ∞} 6∈ TxtBc (even by non-effective learners), which implies
that L 6∈ TxtBc∗.

Our next goal is to explore how iterative learners in our model fair against
iterative learners having access to informant — that is, to full negative data,
in addition to full positive data. Does access to full negative data really help
iterative learners? First, we show that there are BNCIt-learnable (NCIt-
learnable) classes that cannot be learned from informants by any iterative
learner. Thus, sometimes even just a finite number of negative data (received
when necessary) can give iterative learners more power than full negative data
(most of it being forgotten by the learner at the time when it may be needed).

Theorem 23 (BNCIt ∩NCIt)− InfIt 6= ∅.

Proof. Let L = {{〈0, x〉 | x ∈ We} | e = min(We), e ∈ N} ∪ {L |
(∃x)[〈1, x〉 ∈ L and L− {〈1, x〉} ⊆ {〈0, y〉 | 〈0, y〉 ≤ 〈1, x〉}]}.

It is easy to verify that the above class is in BNCIt ∩NCIt. (Initially just
output a grammar for {〈0, x〉 | x ∈ We}, for the minimal e such that 〈0, e〉
is in the input, until it is found that the input language contains 〈1, x〉 for
some x. Then using the conjectures for {〈0, y〉}, for 〈0, y〉 ≤ 〈1, x〉, one can
determine the finitely many elements of L.)

L 6∈ InfIt can be shown as follows. Suppose by way of contradiction that
M InfIt-identifies L. Note that M must be defined on all information seg-
ments σ such that {x | (x, 1) ∈ content(σ)} ⊆ {〈0, y〉 | y ∈ N}, as M is
defined on the information segments for languages in L. Now, by implicit use
of Kleene’s Recursion Theorem [Rog67], there exists an e such that We may
be described as follows. Initially, e ∈ We. Let σ0 be an information segment
such that content(σ0) = {(〈0, x〉, 0) | x < e} ∪ {(〈0, e〉, 1)}. Let z0, z1, . . . be
an enumeration of elements of N − {〈0, x〉 | x ∈ N}. Suppose σs has been
defined. Define σs+1 as follows. If one of M(σs�(zs, 0)�(〈0, e + s + 1〉, 0)) and
M(σs�(zs, 0)�(〈0, e + s + 1〉, 1)) is different from M(σs), then (i) let σs+1 be
σs�(zs, 0)�(〈0, e + s + 1〉, w), where w ∈ {0, 1} and M(σs) 6= M(σs+1) and (ii)
enumerate e + s + 1 in We iff w chosen above is 1.

Now if σs is defined, for all s, then M diverges on
⋃

s∈N σs, an informant for
{〈0, x〉 | x ∈ We}. On the other hand, if σs+1 does not get defined (but σs does
get defined), then fix k such that 〈1, k〉 > max({〈0, x〉 | x ≤ e+s+1}∪{zr | r ≤

26

s}), and let I be such that content(I) = {(〈0, x〉, 0) | x > e+ s+1}∪{〈zr, 0〉 |
r ∈ N, zr 6= 〈1, k〉}. Let Iw = σs�(zs, 0)�(〈0, e+s+1〉, w)(〈1, k〉, 1)I. Note that
I1 is an informant for L1 = {〈0, x〉 | x ∈ We} ∪ {〈1, k〉} ∪ {〈0, e + s + 1〉} and
I0 is an informant for L0 = {〈0, x〉 | x ∈ We} ∪ {〈1, k〉}.

It is easy to verify that M behaves in the same way on both of the above
informants, and thus fails to InfIt-identify at least one of L0 and L1, both of
which are in L.

A similar generalization idea as in Lemma 16(b) can be used to show that

Theorem 24 (BNCIt ∩NCIt)− InfIt∗ 6= ∅.

Our next result, together with Theorem 23 above, shows that NCIt is a proper
superset of InfIt. Thus, just a finite number of negative counterexamples
received when the learner attempts to be “overinclusive” can do more than
all negative counterexamples! Note that this is not true for BNCIt-learners,
as InfIt−BNCIt 6= ∅ follows from Theorem 17 (as BNCIt ⊆ BNCBc, by
definition). First, we prove a useful technical lemma.

Definition 25 An initial information segment for L is an initial information
segment of the canonical informant for L.

Lemma 26 Suppose a ∈ N ∪ {∗} and M InfIta-identifies L. Then for any
initial information segment σ for L, if the following properties (a) to (c) are
satisfied, then WM(σ) =a L.

(a) For all x ∈ L such that (x, 1) 6∈ content(σ), for some τ ⊆ σ, M(τ�(x, 1)) =
M(τ).

(b) For all but finitely many x ∈ L, M(σ�(x, 1)) = M(σ).

(c) {x | (x, 0) 6∈ content(σ) and M(σ�(x, 0))↓ 6= M(σ)↓} ⊆ L.

Proof. Let S = {x ∈ L | M(σ�(x, 1)) = M(σ)}. Now L − S is finite (by
clause (b)). Let τ be a sequence formed by inserting each element x ∈ L− S
such that (x, 1) 6∈ content(σ), in σ at places so that it does not cause a mind
change (i.e., x ∈ L− S such that (x, 1) 6∈ content(σ) is inserted after σ′ ⊆ σ,
such that M(σ′�(x, 1)) = M(σ′)). Note that for all x ∈ L − S such that
(x, 1) 6∈ content(σ), there exists such a σ′ by clause (a). Now consider the
information sequence I = τI ′, where content(I ′) = {(x, 1) | x ∈ S} ∪ {(x, 0) |
(x, 0) 6∈ content(σ) and x 6∈ L}. Thus, I is an information sequence for L.
Using definition of S and (c), it is easy to verify that M(I) = M(σ). Thus,
WM(σ) = WM(I) =a L, as M InfIta-identifies L.

27

Now we show that any InfIt-learner can be simulated by a NCIt-learner.

Theorem 27 InfIt ⊆ NCIt.

Proof. Suppose M InfIt-identifies L. We construct M′ which NCIt-
identifies L. Given a text T for L ∈ L, the aim is to construct a σ satisfying
(a) to (c) of Lemma 26.

Output of M′ on T [m] will be of form pad(pm, qm, Rm, σm).

Intuitively, we want to search for a σ which satisfies Lemma 26. σm denotes
the candidate value for σ on input T [m]. For satisfying (a) in Lemma 26, we
need that the elements in T [m] satisfy the clause. Intuitively, Rm denotes the
set of the elements in T [m] which may not satisfy clause (a) in Lemma 26
(and thus need to be taken care of by extending σm). Note that we need to
remember this set, as an iterative learner could lose data. qm intuitively keeps
track of whether we are building up larger and larger σm or whether we are
checking clause (c) in Lemma 26, or if this checking has already been done.

The following invariants will be satisfied for all m.

(A) σm is an initial information segment for L. Moreover, σm ⊆ σm+1.

(B) Rm ⊆ content(T [m]), and for all x ∈ content(T [m])− Rm, either (x, 1) ∈
content(σm) or for some τ ⊆ σm, M(τ�(x, 1)) = M(τ).

(C) If qm = 0, then pm is a grammar for the set {|σm|}. Note that |σm| is the
least element x such that neither (x, 0) nor (x, 1) belongs to content(σm).

(D) If qm = 1, then pm is a grammar for {x | (x, 0) 6∈ content(σm) and
M(σm�(x, 0))↓ 6= M(σm)↓}. In this case, we will additionally have that Rm =
∅.

(E) If qm = 2, then we have already tested that {x | (x, 0) 6∈ content(σm)
and M(σm�(x, 0))↓ 6= M(σm)↓} ⊆ L. Additionally, Rm = ∅. Also in this case,
pm = M(σm).

Initially on input Λ, M′ outputs pad(p, 1, ∅, Λ), where p is a grammar for
{x | M((x, 0)) 6= M(Λ)}. Clearly, invariants (A) to (E) are satisfied.

Now M′ on the input x = T (m), counterexample y (on conjecture of
M′ on T [m]) with previous conjecture being pad(pm, qm, Rm, σm), outputs
pad(pm+1, qm+1, Rm+1, σm+1) where the parameters pm+1, qm+1, Rm+1, σm+1 are
defined as follows.

Below note that, for L ∈ L, and T being a text for L, M would always be
defined on input σm�(z, 1), where σm is an initial information segment for L,

28

z ∈ content(T). Thus, we will not explicitly check for convergence of M on
such inputs, but assume that it converges.

Case 1: qm = 0.

Let σm+1 = σm�(|σm|, w), where w is 1 or 0 based on whether the coun-
terexample is # or a numerical value. Note that pm was a grammar for
{|σm|}.

Let Rm+1 = (Rm ∪ {x}) − ({#} ∪ {x′ | (x′, 1) ∈ content(σm+1)} ∪ {x′ |
M(σm+1�(x′, 1)) = M(σm+1)}).

If Rm+1 is ∅, then let qm+1 = 1 and pm+1 be a grammar for {x′ | (x′, 0) 6∈
content(σm+1) and M(σm+1�(x′, 0))↓ 6= M(σm+1)↓}. Else, let qm+1 = 0 and
pm+1 be a grammar for {|σm+1|}.

Invariants (A), (C), (D) and (E) are easily seen to be satisfied. To see that
invariant (B) is satisfied, note that by induction all z ∈ content(T [m])−Rm

satisfied [(z, 1) ∈ content(σm) or, for some τ ⊆ σm, M(τ�(z, 1)) = M(τ)].
On the other hand, if (z = T (m) = x, z 6= #) or if z ∈ Rm, then z is missing
from Rm+1 iff (z, 1) ∈ content(σm+1) or M(σm+1�(z, 1)) = M(σm+1). Thus,
(B) is satisfied.

Case 2: qm = 1.

Let σm+1 = σm.
If there was a counterexample (i.e., y 6= #), or [x 6= # and (x, 1) 6∈

content(σm) and M(σm�(x, 1)) 6= M(σm)], then let Rm+1 = {x} − {#},
qm+1 = 0, and pm+1 be a grammar for {|σm+1|}.

Else (i.e, y = #, and [x = # or (x, 1) ∈ content(σm) or M(σm�(x, 1)) =
M(σm)]), then let Rm+1 = ∅, qm+1 = 2, and pm+1 = M(σm).

Invariants (A), (C), (D) and (E) are easily seen to be satisfied. To see
that invariant (B) is satisfied, note that by induction all z ∈ content(T [m]),
satisfied (z, 1) ∈ content(σm) or for some τ ⊆ σm, M(τ�(z, 1)) = M(τ).
Also, T (m) = x is placed in Rm+1 if (x 6= # and (x, 1) 6∈ content(σm) and
M(σm�(x, 1)) 6= M(σm)). Thus invariant (B) is also satisfied.

Case 3: qm = 2.

Let σm+1 = σm.
If x 6= # and (x, 1) 6∈ content(σm) and M(σm�(x, 1)) 6= M(σm), then let

Rm+1 = {x}, qm+1 = 0 and pm+1 be a grammar for {|σm+1|}.
Else, let Rm+1 = ∅, qm+1 = 2, and pm+1 = M(σm).
Invariants (A), (C), (D) are easily seen to be satisfied. If qm+1 = 2, then

(E) also remains satisfied since qm was also 2. To see that invariant (B)
is satisfied, note that by induction all z ∈ content(T [m]) satisfied (z, 1) ∈
content(σm) or for some τ ⊆ σm, M(τ�(z, 1)) = M(τ). Also, T (m) = x is
placed in Rm+1 if (x 6= # and (x, 1) 6∈ content(σm) and M(σm�(x, 1)) 6=
M(σm)). Thus invariant (B) is also satisfied.

29

Thus, invariants are satisfied in all cases. Moreover, limm→∞ σm converges, as
for a large enough initial information segment σm for L, M(σm�(x, χL(x))) =
M(σm), for (x, χL(x)) 6∈ content(σm).

Also, it is easy to verify that if qm = 0, then σm ⊂ σm+1. Thus, for all but
finitely many m, qm 6= 0. Also, if qm = 1 or 2, then either qm+1 = 2 or qm+1 = 0.
It follows that limm→∞ qm = 2. Thus, by property (E), limm→∞ Rm = ∅.
Hence, M′ stabilizes to a conjecture of the form pad(p, 2, ∅, σ), for some initial
information segment σ for L — this σ satisfies (a) — (c) in Lemma 26, as
otherwise Case 3 (along with properties (B) and (E)) would eventually ensure
change of qm, and the conjecture. Thus, M′ identifies L, as it converges to a
padded version of the grammar M(σ).

The proof of the above theorem also shows

Theorem 28 For all a ∈ N ∪ {∗}, InfIta ⊆ NCIta.

We already established that learners from full positive data with indefinitely
growing long-term memory (TxtEx) can sometimes learn more than any
NCIt-learner (Theorem 21). Now we will show this difference on yet an-
other level. It can be easily demonstrated that adding a recursive language
to a TxtEx-learnable class may not preserve its TxtEx-learnability (see, for
example, [Gol67]). Our next result shows that adding one recursive language
and, hence, finitely many recursive languages to a class in NCIt still leaves
it in NCIt. (Note that the same result was obtained in [JK04] for NCEx-
learners, however, the algorithm witnessing the simulation there was nearly
trivial — unlike our simulation in the proof below).

We begin with a useful remark describing a way how an NCIt learner, being
fed a text T , can simulate another NCIt learner working on an effectively
modified input text T ′. This simulation will be utilized in the proof of our
next theorem.

Remark 29 In the following Theorem 30, when we say that some learner
M′ simulates M on text T ′ — where T ′ is formed from the remain-
ing input text T ′′ (to be received by M′) in a nice way (that is T ′ =
βα(T ′′(0))α(T ′′(1))α(T ′′(2)) . . . for some effective mapping α) — the simu-
lation is done as follows.

Intuitively in the simulation, before seeing the input T ′′(s), the last conjecture
of M′ would have been pad(ps, ncexs, τs), where

(a) βα(T ′′(0))α(T ′′(1)) . . . α(T ′′(s−1)) = τ ′sτs, for some τ ′s. Intuitively, we have
already simulated M on τ ′s, and we have a backlog of τs.

30

(b) ncexs denotes a function mapping some conjectures to counterexamples
for them (here counterexamples are with respect to the input language L).
M′ would have obtained these counterexamples by conjecturing some padded
version of these conjectures. It will be the case that all conjectures of M on
proper prefixes of τ ′s (as defined in (a) above) are in the domain of ncexs.

(c) ps is the last conjecture of M on input τ ′s (as defined in (a) above), when
the counterexamples provided in the simulation are via the function ncexs.

(d) Furthermore, we will have the property that τ ′s ⊂ τ ′s+1 (and thus, τs+1 is a
proper suffix of τsα(T ′′(s))).

Intuitively, conjecture pad(ps, ncexs, τs) denoted that τs is the backlog in the
simulation, and ncexs is the mapping of conjectures to counterexamples (as
known to M′).

Initially, these conditions can be satisfied by having ncex0 = ∅, p0 being con-
jecture of M on empty sequence, and τ0 = β.

Suppose M′ had output pad(ps, ncexs, τs) after having read T ′′[s]. We now
describe what M′ outputs after reading T ′′(s) and a counterexample y (to its
conjecture pad(ps, ncexs, τs)). M′ will output pad(ps+1, ncexs+1, τs+1), where
ps+1, ncexs+1 and τs+1 are described as follows.

If ncexs is already defined on ps, then ncexs+1 = ncexs; otherwise ncexs+1

extends ncexs by defining ncexs+1(ps) = y.

Let γ be the largest initial segment of τsα(T ′′(s)) such that Mncexs+1(ps, γ) is
defined. Here note that, since M is defined on all inputs consistent with some
language in the class, as long as the input language is from the class, the only
reason for Mncexs+1(ps, γ

′) to be undefined is that for some intermediate con-
jecture p, ncexs+1(p) is undefined. Let ps+1 = M(ps, γ). Let τs+1 be such that
τsα(T ′′(s)) = γτs+1. (Note that γ is non-empty, thus τ ′s+1 = τ ′sγ is a proper
extension of τ ′s). Intuitively, γ above represents the largest initial segment of
τsα(T ′′(s)) such that M′ can simulate M on γ, as it knows the value of coun-
terexamples for each of the intermediate conjectures, if any. γ thus represents
the whole of τsα(T ′′(s)), if M′ knows (via ncex) the counterexamples (if any)
for all the intermediate conjectures (in this case τs+1 becomes Λ). On the
other hand, if M′ does not know the counterexample for some intermediate
conjecture, then γ represents this initial part, where we need to output the
conjecture of M to learn the counterexample value.

This completes the description of simulation.

We now argue that if M NCIt-identifies L, and T ′ is a text for L, and M′

gets the counterexamples based on input language being L, then M′ in the

31

above simulation will converge to a grammar of form pad(p, ·, ·), where p is a
grammar for L.

To see this, suppose T ′ is a text for L, and M NCIt-identifies L. Let ncex′

denote the function such that ncex′(p) is the counterexample (or #) which M′

receives in the above simulation when it first outputs (if ever) a conjecture
of the form pad(p, ·, ·). Then, it is easy to verify that the simulation of M in
the above construction uses the counterexamples based on ncex′. Furthermore,
the output of M′ after seeing T ′′[s] is of the form pad(M(τ ′s), ncexs, τs), where
ncexs is the restriction of ncex′ to the domain being the set of the conjectures
of M on proper prefixes of τ ′s. Suppose M on T ′ converges to a grammar p
(when the counterexamples are provided according to ncex′). Suppose n is
large enough such that, for all n′ ≥ n, M on T ′[n′] outputs p (when the coun-
terexamples are provided according to ncex′). Thus, once τ ′s extends T ′[n+1],
we will have that τs = Λ (as ncexs+1 will then contain all the counterexamples
needed for the simulation of M). This will happen at or before the time when
s = n, since τ ′s form a monotonically increasing sequence of initial segments
(see property (d) above). It follows that the sequence of conjectures of M′ on
T ′′ converges to pad(p, ncex, ∅), where ncex is the restriction of ncex′ to the
domain being the set of conjectures made by M on T ′ (when the counterex-
amples are provided according to ncex′).

Theorem 30 If L ∈ NCIt and X is recursive, then L ∪ {X} ∈ NCIt.

Proof. Suppose M NCIt-learns L. Then M′ first checks (on input Λ) if X
is a subset of the input — if not, then M′ simulates M on T ′ = aT ′′, where
a is the first element of the input text T , and T ′′ is the remaining text to be
seen. If X is a subset of the input language, then the behaviour of M′ depends
on the following cases.

Case 1: X is finite.

M′ conjectures a (standard) grammar for X until a non-element a of X is
seen. If such a non-element is never seen, then M′ keeps on outputting the
(standard) grammar for X. Otherwise M′ simulates M on T ′ = a0a1 . . . akaT ′′,
where a0, a1, . . . ak are elements of X, a is the first non-element of X observed
in the input data, and T ′′ is the remaining text beyond a. As T ′ is a text for
the input language, we get NCIt-identification of the input language by M′

based on Remark 29.

Case 2: X is infinite.

As in Case 1, except that in the case of seeing a non-element a of X, M′

simulates M on the text T ′ = aα(T ′′(0))α(T ′′(1)) . . . (here T ′′(x) are elements
of the remaining input text, as in Remark 29), where α(w) is an element w
followed by elements of X which are ≤ w (note that, since X is infinite, this

32

way the learner M′ provides growing segments of the language X, after getting
every new element T ′′(x) of the input, to the learner M — thus compensating
for possible loss of positive data from the intersection of the input language
with X in earlier stages of learning).

As T ′ is a text for the input language, we get NCIt-identification of the input
language by M′ based on Remark 29.

Note that the above result cannot be extended to r.e. X. For all r.e., but non-
recursive sets A, {A ∪ {x} | x 6∈ A} can be shown to be in NCIt. However
[JK04] showed that, for r.e. but non-recursive A, {A} ∪ {A ∪ {x} | x 6∈ A} is
not in LNCEx.

5 Results Related to Indexed Families

In this section we consider NCIt-learning for indexed classes of recursive lan-
guages — one of the popular learning tasks (as it was mentioned in the Intro-
duction, such popular subjects of learning as patterns and regular languages
are examples of indexed classes). Note that these classes are often not learn-
able if only (full) positive and no negative data is available even if a learner
can potentially hold all input in the long-term memory, as was established yet
by Gold ([Gol67]). Note also that there exist indexed families which are not
in BNCBc∗ (see [JK04]). Our main result in this section is that all indexed
classes are NCIt-learnable.

Note that even though all indexed families can be learnt iteratively from canon-
ical informant, some indexed families cannot be iteratively learnt from all
informants. Thus, the following result does not follow as corollary to Theo-
rem 27.

Theorem 31 Every indexed family L is in NCIt.

Proof. Suppose L0, L1, . . . is a recursive indexing of L such that one can
effectively decide from x and i whether x ∈ Li. Let P be a recursive function
such that WP (j,S,X) = Lj ∪X ∪⋃

i∈S Li, where j ∈ N , and S, X are finite sets.
We define a learner M which NCIt-identifies L. Conjectures of M will be of
the form P (j, S,X), for some finite sets S, X. On input (T, T ′), where L =
content(T), M is defined as follows. Suppose M(T [n], T ′[n]) = P (jn, Sn, Xn),
then by induction we will have the following properties: (i) jn ≤ jn+1, Sn ⊆
Sn+1, and Xn ⊆ Xn+1, (ii) Sn ⊆ {i | i ≤ jn}, (iii) Xn+1 6= Xn iff jn+1 6= jn, (iv)
for all i < jn, Li 6= L, (v) Xn∪

⋃
i∈Sn

Li ⊆ L, (vi) content(T [n]) ⊆ Xn∪
⋃

i∈Sn
Li,

and (vii) if jn 6∈ Sn, then (n = 0 or jn−1 = jn − 1).

33

Initially let M(Λ, Λ) = P (0, ∅, ∅). M(T [n+1], T ′[n+1]) = P (jn+1, Sn+1, Xn+1),
is defined as follows.

If T ′(n) 6= #, then let jn+1 = jn + 1, Sn+1 = Sn, Xn+1 = Xn ∪ {T (n)}.
Else if T ′(n) = # and T (n) 6∈ Ljn , then let jn+1 = jn + 1, Sn+1 = Sn ∪ {jn},
Xn+1 = Xn∪{T (n)}. Else (i.e., T ′(n) = # and T (n) ∈ Ljn), then let jn+1 = jn,
Sn+1 = Sn ∪ {jn}, Xn+1 = Xn.

It is easy to verify that induction hypotheses are satisfied. Now suppose L ∈
L. Suppose (T, T ′) are the input text/counterexample text, given to M (for
learning L), and jn, Sn, Xn are as defined above. Using (i) and (iv) we have that
limn→∞ jn converges, and thus by (i), (ii) and (iii), we have that limn→∞ Sn

and limn→∞ Xn also converge. Let (j, S,X) = limn→∞(jn, Sn, Xn). By (vii),
we have that j ∈ S. By (v) and (vi) we have that P (j, S,X) is a grammar for
L.

Here note that we needed to carry along the set Sn in the above construction, as
one may otherwise lose data which are included in Ljn , when T (n) ∈ Ljn ⊆ L
(carrying all inputs T (n) instead would require indefinitely growing long-term
memory).

Note that the hypotheses space used for the proof of Theorem 31 is the stan-
dard acceptable numbering. One could easily modify the proof so that the
output of the learner is a decision procedure, rather than a grammar (mem-
bership question for WP (j,S,X) used in the proof can be effectively decided
in j, S,X). Thus, the indexed families are NCIt-learnable by using a class-
comprising indexed family (see [ZL95]) as a hypotheses space.

The complexity of the algorithm witnessing the Theorem above is under-
scored by the following result, showing that NCIt-learning of some indexed
classes becomes impossible if a learner wants to use grammars describing just
the languages from the target class as its hypotheses space (so-called class-
preserving learnability, see [ZL95]). For class-preserving learnability, instead
of using W0, W1, . . . as the hypotheses space for interpreting the conjectures
of the learner (for example, see Definition 5), one uses a hypotheses space
H0, H1, . . . such that (a) {Hi | i ∈ N} = L, and (b) for all i, x, one can effec-
tively decide in i and x whether x ∈ Hi. Thus, one could consider H0, H1, . . .
to be represented by a numbering ϕi(·, ·), such that ϕi ∈ R2

0,1 and ϕi(j, x) = 1
iff x ∈ Hj.

Let M0,M1, . . . denote a recursive enumeration of all iterative learners.

Theorem 32 There exists an indexed family L such that L is not NCIt-
learnable using a class preserving hypotheses space.

34

Proof. Let 〈x, y, z〉 = 〈x, 〈y, z〉〉. Thus, 〈·, ·, ·〉 denotes a computable bijective
mapping from N ×N ×N to N .

To prove the theorem, we will construct L and show that for all e, i,

(a) ϕi 6∈ R2
0,1 or

(b) {{x | ϕi(j, x) = 1} | j ∈ N} 6= L or

(c) Me does not NCIt-identify L using the hypotheses space (λx.ϕi(j, x))j∈N .

By s-m-n theorem [Rog67], there exists a recursive p such that ϕp(e,i,s) may be
defined as follows. We will have the property that if ϕp(e,i,s) is non-empty, then
it will be total. We will take L to be {ϕ−1

p(e,i,s)(1) | ϕp(e,i,s) 6= ∅}. It follows that
L is an indexed family of recursive languages. The aim of functions ϕp(e,i,·)
is to diagonalize against Me being NCIt learner for L using the hypotheses
space (λx.ϕi(j, x))j∈N .

Below is the description of ϕp(e,i,·). Initially, let ϕp(e,i,0)(x) = 0, for x 6∈
{〈e, i, y〉 | y ∈ N}. Let σ0, σ

′
0 = Λ, and xs = 0.

The following invariants will be satisfied, for all s, at the beginning of stage s.

(A) ϕ−1
p(e,i,j)(1) ⊆ {〈e, i, x〉 | x ∈ N}.

(B) ϕp(e,i,0)(x) has been defined (at the start of stage s) for x ∈ {〈e′, i′, y〉 |
(e′, i′) 6= (e, i)} ∪ {〈e, i, y〉 | y < xs}.

(C) ϕp(e,i,j), 0 < j ≤ s, have been defined on all inputs, and for each of these
j, for some x, ϕp(e,i,j)(x) = 1, ϕp(e,i,0) = 0.

(D) ϕp(e,i,j), has not been defined on any input for j > s.

(E) content(σs) = {〈e, i, x〉 | ϕp(e,i,0)(〈e, i, x〉) = 1, x < xs}.

(F) For r < |σs|, if σ′s(r) 6= #, then there exists an x such that
ϕi(Me(σs[r], σ

′
s[r]), x)↓ = 1, and ϕp(e,i,0)(x) = 0.

(G) For r < |σs|, if σ′s(r) = #, then (i) for e′, i′, j′ such that (e′, i′) 6= (e, i),
ϕi(Me(σs[r], σ

′
s[r]), 〈e, i, 0〉)↓ 6= ϕp(e′,i′,j′)(〈e, i, 0〉), and (ii) for all j, 0 < j ≤ s,

there exists an x ≤ 〈e, i, xs−1〉 such that ϕi(Me(σs[r], σ
′
s[r]), x)↓ 6= ϕp(e,i,j)(x)

(Thus, the only possible language in L, as of now, that could be consistent
with ϕi(Me(σs[r], σ

′
s[r]), ·), is ϕ−1

p(e,i,0)(1)).

Intuition behind the stage s is as follows: Initially we place an element a
(〈e, i, xs〉 in our construction below) in a basic set A (ϕ−1

p(e,i,0)(1) in our con-
struction below) and b (〈e, i, ys〉 in our construction below) outside A, and

35

search for a segment σ containing (past data plus) a such that Me on σ and
σ# outputs the same conjecture, which is consistent with A (in particular it
has a but not b) (see steps 1–2). Furthermore, all conjectures output on pre-
fixes of σ, which contain a either do not contain b or contain another element
< b, which does not belong to A. At that point we add a set B (ϕ−1

p(e,i,s+1)(1)
in our construction below) to L, where B contains both a and b (along with
past data), and search for an extension τ of σ containing both a and b such
that Me on τ and τ# outputs the same conjecture containing both a and b
(see steps 3–4). Once τ is found, we place an element c (〈e, i, w + 1〉 in our
construction below) in A, and check if on σc, Me makes a mind change (see
step 5). If so, then we can continue to the next stage (as we have been able to
force one more mind change on the basic set A). If no mind change was found,
then, we check if any conjecture of Me on τ contains both b and c (see step
6), if so, then Me has produced a conjecture not in the class. Otherwise, we
add a set C containing a, b, c (along with past data), to the class L: now C is
not identified by Me due to it being an iterative learner (as we could take a
text for C, which is a modification of τ with c inserted right after σ). We now
proceed with the details.

Go to stage 0.

Stage s
1. Let ϕp(e,i,0)(〈e, i, xs〉) = 1.
2. For z = xs + 1 to ∞ do

2.1. Let ϕp(e,i,0)(〈e, i, z〉) = 0.
(* Below we try to search for a “seeming” stabilizing sequence (σ, σ′),

on ϕ−1
p(e,i,0)(1) which has some additional properties (see (d) and (g)

below). *)
2.2. For each ys satisfying (a), search for z steps for a σ extending σs and

a σ′ extending σ′s such that (b) — (g) are satisfied.
(a) xs < ys ≤ z,
(b) |σ| = |σ′|,
(c) content(σ) = content(σs) ∪ {〈e, i, xs〉},
(d) Me(σ[r], σ′[r])↓ and ϕi(Me(σ[r], σ′[r]), x)↓, for all x ≤
〈e, i, ys〉, for all r ≤ |σ|,

(e) Me(σ#, σ′#)↓ = Me(σ, σ′),
(f) for all x ≤ 〈e, i, ys〉, ϕi(Me(σ, σ′), x)↓ = ϕp(e,i,0)(x),
(g) for all r < |σ|, either:

(i) σ′(r) = # and for all x ≤ 〈e, i, ys〉,
ϕi(Me(σ[r], σ′[r]), x)↓ = ϕp((e,i,0)(x) or

(ii) # 6= σ′(r) ≤ 〈e, i, ys − 1〉, and
ϕi(Me(σ[r], σ′[r]), σ′(r)) = 1 and ϕp(e,i,0)(σ

′(r)) =
0.

2.3. If such σ, σ′ (with corresponding ys) are found, go to step 3.

36

EndFor
3. Let ϕp(e,i,s+1)(〈e, i, x〉) = ϕp(e,i,0)(〈e, i, x〉), for x ≤ z, x 6= ys.

Let ϕp(e,i,s+1)(x) = 0, for x 6∈ {〈e, i, y〉 | y ∈ N}.
Let ϕp(e,i,s+1)(〈e, i, ys〉) = 1.

4. For w = z + 1 to ∞ do
4.1. Let ϕp(e,i,0)(〈e, i, w〉) = ϕp(e,i,s+1)(〈e, i, w〉) = 0.

(* Below we try to search for a “seeming” stabilizing sequence (σ, σ′),
on ϕ−1

p(e,i,s+1)(1) which has some additional properties (see (d) and
(g) below). *)

4.2. For each ts satisfying (a), search for w steps for a τ extending σ and
τ ′ extending σ′ such that (b) — (g) are satisfied.

(a) z < ts ≤ w,
(b) |τ | = |τ ′|,
(c) content(τ) = content(σ) ∪ {〈e, i, ys〉}.
(d) Me(τ [r], τ ′[r])↓ and ϕi(Me(τ [r], τ ′[r]), x)↓, for all x ≤
〈e, i, ts〉, for all r ≤ |τ |,

(e) Me(τ#, τ ′#)↓ = Me(τ, τ
′),

(f) for all x ≤ 〈e, i, ts〉, ϕi(Me(τ, τ
′), x)↓ = ϕp(e,i,s+1)(x),

(g) for all r < |τ |, either:
(i) τ ′(r) = # and for all x ≤ 〈e, i, ts〉 such that x 6=
〈e, i, ys〉, ϕi(Me(σ[r], σ′[r]), x) = ϕp(e,i,0)(x) or

(ii) # 6= τ ′(r) ≤ 〈e, i, ts〉, ϕi(Me(τ [r], τ ′[r]), τ ′(r)) = 1
and ϕp(e,i,s+1)(τ

′(r)) = 0.
4.3. If such τ, τ ′ (with corresponding ts) are found, go to step 5.
EndFor

5. Define ϕp(e,i,0)(〈e, i, w + 1〉) = 1.
Define ϕp(e,i,s+1)(〈e, i, x〉) = 0, for all x > w.
For w′ = w + 2 to ∞ do

Let ϕp(e,i,0)(〈e, i, w′〉) = 0.
If Me(σ�〈e, i, w +1〉, σ′#) does not converge within w′ steps, then go

to next iteration of For loop.
Else if Me(σ�〈e, i, w + 1〉, σ′#)↓ 6= Me(σ, σ′), then go to stage s + 1,

with xs+1 = w′ + 1, σs+1 = σ�〈e, i, w + 1〉, σ′s+1 = σ′#.
(* We have found a mind change. *)
Else go to step 6.

EndFor
6.

Define ϕp(e,i,0)(〈e, i, x〉) = 0, for x > w′.
If, for all r ∈ {|τ |} ∪ {r′ | τ ′(r′) = #}, [ϕi(M(τ [r], τ ′[r]), 〈e, i, w + 1〉) = 1

implies ϕi(M(τ [r], τ ′[r]), 〈e, i, ys〉) = 0],
Then let ϕp(e,i,s+2)(ys) = 1, and ϕp(e,i,s+2)(x) = ϕp(e,i,0)(x), for x 6= ys.
Quit (we have done the diagonalization, and no need to go to stage s+1).

End stage s.

37

It is easy to verify that the invariants (A), (B), (C), (D), (E) are satisfied.
Invariant (F) is satisfied as σ′s+1 is then defined via step 5, and in step 2.2,
this property is explicitly ensured when defining σ′. Invariant (G) holds, using
the fact that whenever σ′(r) = # or r = |σ|, in step 2.2, we have verified that
ϕi(Me(σ[r], σ′[r]), x) = ϕp(e,i,0)(x), for x ≤ 〈e, i, ys〉, and ϕp(e,i,j), 0 < j ≤ s,
are inconsistent with ϕp(e,i,0)[〈e, i, ys〉+1] by induction (see invariant (C)), and
ϕp(e,i,s+1)(〈e, i, ys〉) 6= ϕp(e,i,0)(〈e, i, ys〉), by definition in step 3.

Thus, all invariants hold. Also, it is easy to verify that all ϕp(e,i,j) are either
total, or empty. (ϕp(e,i,0) is made total by having infinitely many stages, or at
step 2, 4, 5 or 6, if stage s does not end or finishes with a Quit. ϕp(e,i,s+1) is
made total in stage s itself (if stage s is executed, either at step 4 or at step
5). The only remaining case is, ϕp(e,i,s+2) being started in step 6 of stage s, but
then it is clearly made total in step 6.

Suppose ϕi ∈ R2
0,1, and {{x | ϕi(j, x) = 1} | j ∈ N} = L. We now consider

the following cases.

Case 1: There are infinitely many stages.

Consider T =
⋃

s∈N σs and T ′ =
⋃

s∈N σ′s. Thus, T is a text for ϕ−1
p(e,i,0)(1),

and T ′ is valid sequence of counterexamples for Me when provided with T
as input text (by invariant (F) and (G), since ϕ−1

p(e,i,0)(1) is the only lan-
guage in L which could be consistent with the hypothesis M(T [r], T ′[r]) (in
numbering (ϕi(j, ·))j∈N), whenever T ′(r) = #). However, Me(T, T ′) makes
infinitely many mind changes (see step 5, which is the only step which
changes stage).

Case 2: Stage s starts but does not end.

In case step 2 does not succeed, consider L = ϕ−1
p(e,i,0)(1). But then, we have

that there is no NCIt-locking sequence (extending (σs, σ
′
s)) for Me on L,

(here note that σ′s is a valid sequence of counterexamples using invariants
(F) and (G), and the fact that no ϕp(e,i,j), with j > s, is defined on any
input). Thus, Me does not NCIt-identify L.

Similarly, in case step 4 is started but does not finish then Me does not
have an NCIt-locking sequence for L = ϕ−1

p(e,i,s+1)(1).
If step 5 does not finish, then Me is not defined on (σ�〈e, i, w+1〉, σ′#), a

valid input for ϕ−1
p(e,i,0)(1) (as there are infinitely many iterations of For loop

at step 5, and answers given by σ′ are correct due to check at 2.2 (f), 2.2 (g)
— due to which only ϕ−1

p(e,i,0)(1) in L is consistent with ϕi(Me(σ[r], σ′[r]), ·),
for r ∈ {|σ|} ∪ {r′ | σ′(r′) = #}).

Now suppose the construction reaches step 6. Let γ, γ′ be such that σγ = τ
and σ′γ′ = τ ′. Now, we have that Me(σ�〈e, i, w+1〉, σ′�#) = Me(σ, σ′), and
Me(τ#, τ ′#) = Me(τ, τ

′). Thus, since Me is an iterative learner, we have
Me(σ�〈e, i, w+1〉�γ, σ′�#�γ′) = Me(τ, τ

′). If the If statement in step 6 does

38

not hold, then for the offending r, we have that {x | ϕi(M(τ [r], τ [r]), x) = 1}
is not in L, since no language in L contains both 〈e, i, ys〉 and 〈e, i, w + 1〉
(note that in this case ϕp(e,i,s+2) does not get defined). On the other hand, if
the If statement holds, then consider L = ϕ−1

p(e,i,s+2)(1). Let T = σ�〈e, i, w +
1〉�γ�#∞ and T ′ = σ′#γ′#∞. As shown above, Me(T, T ′) = Me(τ, τ

′), and
the answers as given by T ′ are correct, as whenever T ′(r) 6= #, by step
4.2 (g) (ii), we have verified that there is indeed a counterexample. When,
T ′(r) = #, by step 4 g (i), only hypotheses in L which could be consistent
with M(T [r], T ′[r]), are ϕ−1

p(e,i,j)(x), j ∈ {0, s + 1, s + 2}, all of which are
subsets of L. However, since If statement holds, we have that Me(T, T ′)
converges to a conjecture which is not for L (as L contains both 〈e, i, ys〉
and 〈e, i, w + 1〉).

From above cases we have that (a) or (b) or (c) holds for (e, i). Theorem
follows.

Note that if we only consider indexed families consisting of infinite languages,
then class preserving learning can be done. This can be shown along the lines
of Theorem 31, where instead of outputting conjectures P (j, S,X) we output
conjectures of form pad(j, S,X) (with initial conjecture being pad(0, ∅, ∅)).
Update of conjectures on input T (n), T ′(n) is done as follows: If T ′(n) 6= #,
then jn+1 = jn + 1, Sn+1 = Sn, Xn+1 = Xn ∪ {T (n)}. Else if T ′(n) = # and
(T (n) 6∈ Ljn or Xn 6⊆ Ljn or Li ∩{w | w ≤ T (n)} 6⊆ Lj, for some i ∈ Sn), then
let jn+1 = jn +1, Sn+1 = Sn∪{jn}, Xn+1 = Xn∪{T (n)}. Else (i.e., T ′(n) = #
and T (n) ∈ Ljn and Xn ⊆ Ljn and Li ∩ {w | w ≤ T (n)} ⊆ Lj, for all i ∈ Sn),
then let jn+1 = jn, Sn+1 = Sn ∪{jn}, Xn+1 = Xn. One can then verify that jn

would converge to the minimal L-grammar for L. We omit the details.

If we drop requirement of NCIt-learner being algorithmic, then the whole
class of recursively enumerable languages can be learned — since then this
class can be viewed as an indexed family.

Theorem 33 There exists a non-recursive learner which NCIt-identifies E.

Proof. For non-recursive learners, E can be considered as indexed family.
Thus, using the analogue of Theorem 31 for non-recursive learners, we have
the theorem.

The following shows that class preserving learning of indexed families is re-
strictive for BNCIt-learning too. This result was pointed out to us by an
anonymous referee.

Theorem 34 There exists an indexed family L ∈ BNCIt, such that L is not
BNCIt learnable using any class preserving hypothesis space.

39

Proof. Let Li = {x | x ≤ 3i} ∪ {3i + 3}. Let L′
i = Li ∪ {3i + 1}.

Let L = {N} ∪ {Li | i ∈ N} ∪ {L′
i | i ∈ K}.

Clearly L is an indexed family. It is easy to verify that L ∈ BNCIt, as the
learner could initially conjecture a grammar for N ; if the learner ever receives
a counterexample (say 3i + 1 or 3i + 2), then it conjectures a grammar for L′

i;
if this receives a counterexample, then the learner conjectures a grammar for
Li. It is easy to verify that such a learner would BNCIt-identify L.

However, L is not BNCIt-identifiable using class preserving hypothesis space.
To see this, suppose, by way of contradiction, that M BNCIt-identifies L us-
ing a class preserving hypothesis space H0, H1, Now suppose σ is a locking
sequence for M on N (where the counterexamples are always #). Let i be
such that 3i ≥ max(content(σ)). Let j be the conjecture of M on input σ
(where the counterexamples are always #). Without loss of generality as-
sume that content(σ) = {x | x ≤ 3i}. Note that M conjectures j on input
σ�(3i + 1)(3i + 3) as well as σ�(3i + 3), where the counterexamples are still
#.

Now consider the following process for deciding whether i ∈ K. In parallel do
the following two steps:

(a) If there exists an Hk such that Hk contains 3i + 1 but not 3i + 2, then
i ∈ K.

(b) If there exists a t such that M on input σ�(3i + 3)#t, σ�(3i + 3)#t+1 and
σ�(3i + 3)#t+2 outputs the same conjecture, then i 6∈ K (here the counterex-
amples given on input at and beyond σ�(3i+3) are (i) 3i+2, if the conjecture
of M contains 3i + 2 (ii) #, if the conjecture of M does not contain 3i + 1 or
3i + 2 — if the conjecture of M does not contain 3i + 2 but contains 3i + 1,
then the simulation does not proceed, and i ∈ K by (a)).

Clearly, if the above process halts via (a) above then i ∈ K. On the other
hand, if it halts via (b), then i 6∈ K, since otherwise M cannot distinguish
between input text being σ�(3i + 3)#∞ or σ�(3i + 1)(3i + 3)#∞. Also, the
above process does halt, as otherwise M would not be able to identify Li,
which is a member of the class L.

The above gives a contradiction to K not being recursive.

As it was shown in Theorem 24, in the general case, NCIt-learners can some-
times do more than InfIt∗-learners. However, as the next theorem shows, their
capabilities on indexed classes are the same. Still, InfItn-learners cannot learn
some indexed classes. The complexity of learning iteratively from informant

40

comes from the fact that one needs to learn from an arbitrary informant,
rather than just the canonical informant. Here, note that one can iteratively
learn the class of indexed families, if one gets canonical informant [Wie76].
This can also be shown using the identification by enumeration strategy of
Gold [Gol67]. Furthermore, Lange and Zeugmann [LZ92] showed that itera-
tive learning from informant is strictly contained in conservative learning from
informant, when one is using a class comprising indexed family as a hypotheses
space.

Theorem 35 (a) If L is an indexed family, then L ∈ InfIt∗.

(b) For all n ∈ N , L = {N} ∪ {D | card(D) < ∞} 6∈ InfItn.

Proof. (a) Suppose L = {L0, L1, . . .}, where one can effectively decide, given
x, i, whether x ∈ Li. Then one can show that L ∈ InfIt∗ (using the hy-
potheses space L0, L1, . . . itself), via learner M defined as follows. M(Λ) = 0.
If M(I[n]) = j and I(n) = (x, w), then M(I[n + 1]) = j, if Lj(x) = w;
M(I[n+1]) = j +1, otherwise. It is easy to verify that M is iterative. Clearly,
M converges on any informant I for L ∈ L (as it would converge once it
outputs the least index in L for L, if not earlier). If M(I) = j, then for all
but finitely many n, {I(t) | t ≥ n} is consistent with Lj. It follows that, Lj is
a finite variant of L.

(b) Suppose by way of contradiction that M InfItn-identifies L. Let σ be
an InfItn-locking information segment for M on N . Let D = {x | (x, 1) ∈
content(σ)}. Let τ be such that στ is a InfItn-locking information segment
for M on D. Let S be a subset of N such that card(S) = 2n + 1 and, for
all x ∈ S, (x, 1) and (x, 0) do not belong to content(στ). Let I be such that
content(I) = {(x, 0) | x 6∈ D ∪ S}. Let γ1, γ2 be an information segment such
that content(γ1) = {(x, 1) | x ∈ S}, and content(γ2) = {(x, 0) | x ∈ S}. Now,
M converges to the same grammar on I1 = σγ1τI and I2 = στγ2I (since
M is an iterative learner, and M(σγ1) = M(σ) and M(στ) = M(στγ2), by
InfItn-locking information segment property for σ and στ). Now, I1 and I2

are information sequences for D∪S and D respectively, which differ on 2n+1
elements. Thus, M fails to InfItn-identify at least one of them.

6 Non-U-shaped Learning

A learner is said to be non-U-shaped if it does not abandon a correct hypothesis
([BCM+05]). That is, its sequence of conjectures does not show a pattern of
. . ., correct conjecture, wrong conjecture, . . ., correct conjecture. A similar
phenomenon was discussed and explored for learning functions in the limit
under the name “semantically finite learning” (see, for example, [Wie91]).

41

[CCJS06] considered U-shaped learning in various memory limited models. It
was shown in [CCJS06] that, for class preserving iterative learning of indexed
families from texts, non-U-shaped learning is restrictive. [CM07] showed that,
in general, non-U-shaped learning is not restrictive for iterative learning from
just positive data.

In this section, we will show that requirement of being non-U-shaped does not
hurt NCIt-learning.

The main idea of the proof is that one searches for a type of locking sequence
(called pseudo-locking sequence) which is a prefix of canonical text for a lan-
guage in the class. The canonical texts should satisfy the properties that (i)
NCIt-learner should be able to obtain initial segments of canonical text using
arbitrary text for a language L, (ii) NCIt-learner should be able to check for
these initial segments, whether they are pseudo-locking sequences. (ii) above
is not easy to do, however, one can do this for certain “good” pseudo-locking
sequences, which suffices for our purposes. The canonical texts can be ob-
tained by considering the elements of L being provided in increasing order.
To handle checking pseudo-locking property for finite sets, we need to insert
at infinitely many positions in the canonical text (irrespective of whether
L is finite or not, as the checking mechanism developed below does not know
in advance whether L is finite or not). This leads to the following definition
of canonical texts (can-text for short).

We say that T is can-text for L iff for all x ∈ N , T (x) = x/2, if x is even and
x/2 ∈ L, and T (x) = # otherwise.

Let Canseq = {σ | |σ| is even and (∀x < |σ|)[σ(x) 6= # ⇒ x is even and
σ(x) = x/2]}. Intuitively, Canseq denotes even length initial sequences of
can-texts.

We now define pseudo-locking sequence. (This definition is specific to NCIt
(LNCIt)-identification).

Definition 36 A sequence (σ, σ′), where |σ| = |σ′| is said to be pseudo-locking
sequence for M on L iff the following four properties are satisfied:

(i) content(σ) ⊆ L;

(ii) for w < |σ|, σ′(w) = #, if WM(σ[w],σ′[w]) ⊆ L; σ′(w) = min(WM(σ[w],σ′[w]) −
L), otherwise;

(iii) for all w ∈ (L ∪ {#})− content(σ), M(σw, σ′#) = M(σ, σ′);

(iv) WM(σ,σ′) = L.

42

Below, we fix an NCIt-learner M, so as to avoid giving the parameter M
in various functions such as cseq etc. Assume M(Λ, Λ) can be computed in 0
time steps (this is just for ease of notation).

For a can-text T such that M NCIt-identifies content(T), let

cseqT (r) =

#, if WM(T [r],cseqT [r]) ⊆

content(T);

min(WM(T [r],cseqT [r]) − content(T)), otherwise.

For σ ∈ Canseq, denote by cseqσ the following sequence of counterexamples:
For r < |σ|, let

cseqσ(r) =

↑, if cseqσ(r′) is not defined for

some r′ < r, or M(σ[r], cseqσ[r])

is not defined within |σ| steps;

#, if cseqσ(r′) is defined for all

r′ < r and M(σ[r], cseqσ[r]) is

defined within |σ| steps, and

(WM(σ[r],cseqσ [r]),|σ|∩
{x | x < |σ|/2}) ⊆ content(σ);

min((WM(σ[r],cseqσ [r]),|σ|∩
{x | x < |σ|/2})− content(σ)), otherwise.

Intuitively, cseqσ gives the sequence of negative counterexamples, for a learner
M when receiving positive examples from σ, if there exist such counterexam-
ples < |σ|/2 that can be witnessed using |σ| simulation steps.

Note that cseqT is just the extension of the above definition for an infinite
sequence T such that M is defined on (T [n], cseqT [n]), for all n (which is the
case if M NCIt-identifies content(T)).

Also note that, for a can-text T for L which is NCIt-identified by M, cseqT [n]

can be considered as approximation to cseqT (it approximates it from above,
where we do lexicographic comparison and # is considered as being bigger
than any natural number).

Let mσ be the largest value of r such that cseqσ(r) is defined (and thus
M(σ[r′], cseqσ[r′]) is known to be defined for r′ ≤ mσ).

Let prog be a recursive function such that Wprog(M,σ), for σ ∈ Canseq
is defined as follows. Intuitively, prog(M, σ) checks certain properties of

43

(σ[mσ], cseqσ[mσ]) being a pseudo-locking sequence for M on some language
X. If so, then it enumerates X; otherwise it enumerates N .

Let X =
⋃

r≤mσ ,cseqσ(r)=# WM(σ[r],cseqσ [r]).

Wprog(M,σ) = X, if the following conditions (A) to (C) are satisfied; Otherwise,
Wprog(M,σ) = N .

(A) for all r ≤ mσ, min((WM(σ[r],cseqσ [r]),|σ|∩{x | x < |σ|/2})− content(σ)) =
min((WM(σ[r],cseqσ [r]) ∩ {x | x < |σ|/2})− content(σ))

(that is, the least counterexamples provided by cseqσ seem to be correct, unless
the minimal counterexamples are ≥ |σ|/2);

(B) cseqσ(mσ) = #

(that is, WM(σ[mσ],cseqσ [mσ]) seems to be a subset of the input language (po-
tentially correct));

(C) for all w ∈ (X ∪ {content(σ)} ∪ {#}) − content(σ[mσ]),
M(σ[mσ]w, cseqσ[mσ]#) = M(σ[mσ], cseqσ[mσ]) or M(σ[mσ]w, cseqσ[mσ]#)↑

(that is, (σ[mσ], cseqσ[mσ]) seems like a pseudo-stabilizing sequence for M on
X ∪ {content(σ)}.)

Proposition 37 Suppose σ is an initial segment of even length of the can-text
for L, and M LNCIt-identifies L, and L 6= N . If Wprog(M,σ) ⊆ L, then (A),
(B) and (C) as well as (D)–(F) hold.

(D) cseqσ ⊆ cseqT , where T is can-text for L.

(E) for mσ ≤ r ≤ |σ|, M(σ[r], cseqσ[mσ]#r−mσ)↓ = M(σ[mσ], cseqσ[mσ]),

(F) if Wprog(M,σ) = L, then (σ[mσ], cseqσ[mσ]) is a pseudo-locking sequence for
M on L. Thus (σ, cseqσ[mσ]#|σ|−mσ) is also a pseudo-locking sequence for M
on L.

Proof. If cseqσ(r) = #, then by definition of prog and the hypoth-
esis of the proposition, we have WM(σ[r],cseqσ [r]) ⊆ Wprog(M,σ) ⊆ L.
If cseqσ(r) 6= #, then by definition of cseqσ and (A), we have that
cseqσ(r) = min((WM(σ[r],cseqσ [r]),|σ| ∩ {x | x < |σ|/2}) − content(σ)) =
min((WM(σ[r],cseqσ [r]) ∩ {x | x < |σ|/2}) − content(σ)). Now as L ∩ {x | x <
|σ|/2} = content(σ), (by definition of can-text), (D) follows.

(E) follows using (C), as WM(σ[mσ],cseqσ [mσ]) ⊆ L (see (B), (D)).

(F) follows using (C), and the fact that M NCIt-identifies L.

44

Proposition 38 Let T be the can-text for L such that M LNCIt-identifies
L. Then, for all but finitely many s, prog(M, T [2s]) is a grammar for L, and
cseqT [2s] is an initial sequence of cseqT .

Proof. Let n be large enough such that

(i) (∀n′ ≥ n)[M(T [n′], cseqT [n′]) = M(T [n], cseqT [n])],

(ii) (∀n′ ≤ n), if cseqT (n′) 6= #, then cseqT (n′) ∈ WM(T [n′],cseqT [n′]),n.

Let s > n be large enough such that for all n′ ≤ n, M(T [n′], cseqT [n′]) can be
computed within s steps.

Then, it is easy to verify that for all even s′ > s, cseqT [s′], is an extension
of cseqT [n + 1], and cseqT [s′] ⊆ cseqT , and thus, L = WM(T [n],cseqT [n]) ⊆
Wprog(M,T [s′]) ⊆ L (last inequality holds as, for all r such that cseqT (r) = #,
we have WM(T [r],cseqT [r]) ⊆ L). Proposition follows.

In the following theorem our aim is to find a prefix T ′′[n] of can-text
T ′′ for L such that (i) prog(M, T ′′[n]) does not produce a counterex-
ample, and (ii) for all x ∈ L − content(T ′′[n]), for some n′ ≤ n,
M(T ′′[n′]x, cseqT ′′ [n′ +1]) = M(T ′′[n′], cseqT ′′ [n′]), and (iii) for all but finitely
many x ∈ L, M(T ′′[n]x, cseqT ′′ [n + 1]) = M(T ′′[n], cseqT ′′ [n]). The conditions
(ii) and (iii) along with NCIt-identification of L by M would ensure that
M(T ′′[n], cseqT ′′ [n]) is a grammar for L. Thus, using (i) and the definition of
prog(M, T ′′[n]) will ensure that prog(M, T ′′[n]) is a grammar for L.

Theorem 39 Suppose L ∈ LNCIt. Then there exists a non-U-shaped NCIt
learner for L.

Proof. Suppose M LNCIt-identifies L. Without loss of generality assume
that L does not contain N and every language in L consists of at least one
element (otherwise, we could just modify the following learner M′ to first
output a grammar for N , and in case of a counterexample, output the input
set until at least two elements are discovered in the input, in which case the
following technique can be applied to learn the input).

The output of M′ will be of the form:

pad(p, S, σ,mode),

where S denotes the backlog, σ denotes an even length initial segment of can-
text for the input language, and mode denotes the mode of output/operation.

mode=0, means that we are testing whether a particular element |σ|/2 belongs
to the input language or not. Thus, Wp = {|σ|/2}.

45

mode=1 means regular output, which would mean that p = prog(M, σ).

Suppose T is a text for L ∈ L. Suppose M′(T [n]) is pad(pn, Sn, σn, moden).
We will have the invariants that

(G) σn is an even length initial segment of can-text of L. Furthermore, σn ⊆
σn+1, and if moden = 0, then σn ⊂ σn+1.

(H) For all x ∈ content(T [n])−Sn, either x ∈ content(σn), or for some r ≤ |σn|,
M(σn[r]x, cseqT ′′ [r + 1]) = M(σn[r], cseqT ′′ [r]), where T ′′ is can-text for L.

Let M′(T [0]) = pad(p0, ∅, Λ, 0), where Wp0 = {0}.

We show how to compute M′(T [n + 1]), based on pn, Sn, σn, moden, the input
element T (n), and the counterexample cn.

Case 1: moden = 0

If cn = #, then let σn+1 = σn�(|σn|/2)#. Else, let σn+1 = σn##.

Let Sn+1 = Sn ∪ {T (n)} − {#}
Let moden+1 = 1.

Let pn+1 = prog(M, σn+1).

Case 2: moden = 1, cn 6= #.

Let σn+1 = σn.

Let Sn+1 = Sn ∪ {T (n)} − {#}
Let moden+1 = 0.

Let pn+1 be such that Wpn+1 = {|σn+1|/2}.

Case 3: moden = 1, cn = #.

Note that by Proposition 37 (D), in this case we have that cseqσn
⊆ cseqT ′′ ,

where T ′′ is can-text for L.

Let σn+1 = σn.

Let Sn+1 = (Sn ∪ {T (n)}) − (content(σn) ∪ {#} ∪ {w |
M(σn[mσn]w, cseqσn

[mσn]#) = M(σn[mσn], cseqσn
[mσn])}).

If Sn+1 6= ∅, then let moden+1 = 0, and pn+1 be such that Wpn+1 =
{|σn+1|/2}.

Else (i.e., if Sn+1 = ∅), let moden+1 = 1, and pn+1 = pn (which is =
M(σn[mσn], cseqσn

[mσn]) = M(σn, cseqT ′′ [|σn|]) where T ′′ is the can-text for
the input language, by properties (D) and (E) in Proposition 37.)

It is easy to verify that invariants are satisfied.

46

Now, if moden = 0, for infinitely many n, then for large enough n, using
invariant (G), we have that (i) σn is a pseudo-locking sequence for M on L
(since M NCIt-identifies L on can-text for L), and (ii) using, Proposition 38,
prog(M, σn) is a grammar for L. Fix large enough n, such that above properties
hold for all bigger n. Thus, for n′ > n, we will always be in case 3, with Sn′+1

as computed there being ∅, and thus moden′+1 = 1. A contradiction.

Thus, for all but finitely many n, moden = 1. It follows that eventually we are
always in case 3, with Sn+1 = ∅. Let σ = limn→∞ σn. By Proposition 37 we
have that, for T ′′ being can-text for L,

(i) cseqσ ⊆ cseqT ′′ ,

(ii) (∀∞n)[M(σT (n), cseqT ′′ [|σ|]#) = M(σ, cseqT ′′ [|σ|]) =
M(σ[mσ], cseqσ[mσ])] (by Case 3, and moden+1 being 1), and

(iii) for all x ∈ L − content(σn), there exists a w ≤ |σ| such that
M(σ[w]x, cseqT ′′ [w + 1]) = M(σ[w], cseqT ′′ [w]) (by invariant (H)).

Thus, M(σ, cseqT ′′ [|σ|]) = M(σ[mσ], cseqσ[mσ]) is a grammar for L (by
LNCIt-identification of L by M), and thus, Wprog(M,σ) ⊇ L, by the definition
of Wprog(M,σ). Thus prog(M, σ) is a grammar for L as M′ does not receive a
counterexample for conjecture prog(M, σ).

It follows from the above that M′ NCIt-identifies L. Now suppose n is the
least such that M′(T [n]) = pad(pn, Sn, σn, moden) is a grammar for L. Then,
we have that moden = 1, and pn = prog(M, σn). Thus, by Proposition 37,
(σn[mσn], cseqσn

[mσn]) is a pseudo-locking sequence for M on L. It follows
that for all n′ ≥ n, on input T [n′], M′ will be in Case 3, and Sn′+1 = ∅.
Thus, M′ does not change its conjecture on inputs T [n′], n′ ≥ n. Thus, M′ is
non-U-shaped on L.

7 Conclusion

We introduced and explored a variant of the traditional Gold’s model of learn-
ing in the limit, where learners, while lacking potentially infinite long-term
memory, can communicate with a teacher and get access to a limited num-
ber of negative counterexamples to their wrong conjectures attempting to be
“overinclusive”. Most of our results give a good — and, sometimes, unexpected
— insight on what learners with this type of access to data and long-term mem-
ory are or are not capable of. In particular, we showed that, sometimes, when a
teacher, because of complexity issues, can only provide bounded counterexam-
ples, the learners in our model can employ absence of such counterexamples to

47

learn languages, when arbitrary counterexamples cannot help. It would be in-
teresting to find out if a similar phenomenon can be found in human cognitive
processes. Another important result demonstrates that, within the framework
of our model, negative counterexamples — obtained at “right time” — give
more power to learners than access to full negative data. Again, this effect
of compensating lack of full negative data by getting limited negative data
at “right time” can be worth exploring in the context of human cognition.
One of our results demonstrated that, for NCIt learning, while learning in-
dexed classes may be possible in general, it might not be possible if the learner
attempts to use the given indexing for its conjectures.

We hope that these insights will be helpful for general understanding of inter-
play of different forms of input data and memory in computational learning
processes, for learnability studies in developmental and cognitive psychology,
as well as studies of learnability of some important practical classes of lan-
guages — specifically, regular expressions, where progress has been very lim-
ited so far.

8 Acknowledgements

We would like to thank Rolf Wiehagen for helpful comments and discussion.
We thank the anonymous referees for several helpful comments.

References

[Ang80] D. Angluin. Finding patterns common to a set of strings. Journal of
Computer and System Sciences, 21:46–62, 1980.

[Ang88] D. Angluin. Queries and concept learning. Machine Learning, 2:319–342,
1988.

[BB75] L. Blum and M. Blum. Toward a mathematical theory of inductive
inference. Information and Control, 28:125–155, 1975.

[BCJ95] G. Baliga, J. Case, and S. Jain. Language learning with some negative
information. Journal of Computer and System Sciences, 51:273–285,
1995.

[BCM+05] G. Baliga, J. Case, W. Merkle, F. Stephan, and R. Wiehagen. When
unlearning helps. Technical Report TRA5/06, School of Computing,
National University of Singapore, 2005.

[Blu67] M. Blum. A machine-independent theory of the complexity of recursive
functions. Journal of the ACM, 14:322–336, 1967.

48

[Bow82] M. Bowerman. Starting to talk worse: Clues to language acquisition
from children’s late speech errors. In S. Strauss and R. Stavy, editors, U-
Shaped Behavioral Growth. Developmental Psychology Series. Academic
Press, New York, 1982.

[CCJS06] L. Carlucci, J. Case, S. Jain, and F. Stephan. Memory-limited U-shaped
learning. In G. Lugosi and H. U. Simon, editors, Learning Theory:
19th Annual Conference on Learning Theory, COLT 2006, Proceedings,
volume 4005 of Lecture Notes in Artificial Intelligence, pages 244–258.
Springer-Verlag, 2006.

[CL82] J. Case and C. Lynes. Machine inductive inference and language
identification. In M. Nielsen and E. M. Schmidt, editors, Proceedings
of the 9th International Colloquium on Automata, Languages and
Programming, volume 140 of Lecture Notes in Computer Science, pages
107–115. Springer-Verlag, 1982.

[CM07] J. Case and S. Moelius. U-Shaped, Iterative, and Iterative-with-Counter
Learning In N. Bshouty and C. Gentile, editors, Learning Theory:
20th Annual Conference on Learning Theory, COLT’ 2007, Proceedings,
volume 4539 of Lecture Notes in Artificial Intelligence, pages 172–186.
Springer Verlag, 2007.

[CS83] J. Case and C. Smith. Comparison of identification criteria for machine
inductive inference. Theoretical Computer Science, 25:193–220, 1983.

[Ful90] M. Fulk. Prudence and other conditions on formal language learning.
Information and Computation, 85:1–11, 1990.

[Gol67] E. M. Gold. Language identification in the limit. Information and
Control, 10:447–474, 1967.

[HU79] J. Hopcroft and J. Ullman. Introduction to Automata Theory, Languages,
and Computation. Addison-Wesley, 1979.

[JK04] S. Jain and E. Kinber. Learning languages from positive data and
negative counterexamples. In Shai Ben-David, John Case, and Akira
Maruoka, editors, Algorithmic Learning Theory: 15th International
Conference, ALT 2004, volume 3244 of Lecture Notes in Artificial
Intelligence, pages 54–68. Springer-Verlag, 2004.

[JK07] S. Jain and E. Kinber. Learning languages from positive data and
negative counterexamples. Journal of Computer and System Sciences,
2007. To appear.

[JK06] S. Jain and E. Kinber. Learning Languages from Positive Data and a
Finite Number of Queries. Information and Computation, 204:123–175,
2006.

[JORS99] S. Jain, D. Osherson, J. S. Royer, and A. Sharma. Systems that Learn:
An Introduction to Learning Theory. MIT Press, Cambridge, Mass.,
second edition, 1999.

49

[JB81] K. P. Jantke and H-R. Beick. Combining postulates of naturalness
in inductive inference. Electronische Informationverarbeitung und
Kybernetik (Journal of Information Processing and Cybernetics (EIK)),
17:465–484, 1981.

[LZ92] S. Lange and T. Zeugmann. Types of monotonic language learning and
their characterization. In Proceedings of the Fifth Annual Workshop on
Computational Learning Theory, pages 377–390, ACM Press, 1992.

[LZ96] S. Lange and T. Zeugmann. Incremental learning from positive data.
Journal of Computer and System Sciences, 53:88–103, 1996.

[LZ04] S. Lange and S. Zilles. Comparison of query learning and Gold-style
learning in dependence of the hypotheses space. In Shai Ben-David,
John Case, and Akira Maruoka, editors, Algorithmic Learning Theory:
15th International Conference, ALT 2004, volume 3244 of Lecture Notes
in Artificial Intelligence, pages 99–113. Springer-Verlag, 2004.

[LZ06] Y. Li and W. Zhang. Simplify Support Vector Machines by Iterative
Learning. Neural Information Processing - Letters and Reviews, 10:11–
17, 2006.

[Mot91] T. Motoki. Inductive inference from all positive and some negative data.
Information Processing Letters, 39:177–182, 1991.

[MY78] M. Machtey and P. Young. An Introduction to the General Theory of
Algorithms. North Holland, New York, 1978.

[OSW86] D. Osherson, M. Stob and S. Weinstein. Systems that Learn: An
Introduction to Learning Theory for Cognitive and Computer Scientists.
MIT Press, 1986.

[Pin79] S. Pinker. Formal models of language learning. Cognition, 7:217–283,
1979.

[Pop68] K. Popper. The Logic of Scientific Discovery. Harper Torch Books, New
York, second edition, 1968.

[Rog67] H. Rogers. Theory of Recursive Functions and Effective Computability.
McGraw-Hill, 1967. Reprinted by MIT Press in 1987.

[Smi82] C. Smith. The Power of Pluralism for Automatic Program Synthesis.
Journal of the ACM, 29:1144–1165, 1982.

[Wie76] R. Wiehagen. Limes-Erkennung rekursiver Funktionen durch spezielle
Strategien. Electronische Informationverarbeitung und Kybernetik
(Journal of Information Processing and Cybernetics (EIK)), 12:93–99,
1976.

[Wie91] R. Wiehagen A thesis in inductive inference In J. Dix, K. Jantke and
P. Schmitt, editors, Nonmonotonic and Inductive Logic: 1st International
Workshop, volume 543 of Lecture Notes in Artificial Intelligence, pages
184–207. Springer-Verlag, 1991.

50

[ZL95] T. Zeugmann and S. Lange. A guided tour across the boundaries
of learning recursive languages. In K. Jantke and S. Lange, editors,
Algorithmic Learning for Knowledge-Based Systems, volume 961 of
Lecture Notes in Artificial Intelligence, pages 190–258. Springer-Verlag,
1995.

51

