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Abstract

As some cognitive research suggests, in the process of learning languages, in addition
to overt explicit negative evidence, a child often receives covert explicit evidence in
form of corrected or rephrased sentences. In this paper, we suggest one approach to
formalization of overt and covert evidence within the framework of one-shot learners
via subset and membership queries to a teacher (oracle). We compare and explore
general capabilities of our models, as well as complexity advantages of learnabil-
ity models of one type over models of other types, where complexity is measured in
terms of number of queries. In particular, we establish that “correcting” positive ex-
amples are sometimes more helpful to a learner than just negative (counter)examples
and access to full positive data.

1 Introduction

There are two major formal models that have been used over the years to
address various aspects of human learning: the Gold’s model [Gol67] of iden-
tification in the limit, that treats learning as a limiting process of creating
and modifying hypotheses about the target concept, and the Angluin’s model
[Ang88] of learning via queries that views learning as a finite (rather than an
infinite limiting) process, however, allowing interaction between a learner and
a teacher (formally, an oracle) in form of questions and answers. Unlike the
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Gold’s model, a learner in the latter model cannot change its mind: it can
ask a finite number of questions, but, ultimately, it must produce a sole right
conjecture. Such learners have been named one-shot in [LZ04]. There has been
a good deal of research on one shot-learners using primarily superset queries
(when a learner asks if a particular language is a superset of the target con-
cept) and disjointness queries (when a learner asks if a particular language
is disjoint with the target concept) ([LZ05,JLZ07]). In this paper, we study
and compare one-shot learners that receive different types of answers to subset
and membership queries. Learners making subset queries (testing if a particu-
lar language is a subset of the target concept) are concerned with a possibility
of overgeneralizing — that is, including into conjecture data not belonging to
the target concept. Membership queries test if a particular datum belongs to
the target concept — it is, perhaps, the most natural type of a question to
the teacher. We refer to these models as SubQ and, respectively, MemQ.

For this paper, we consider languages to be a subset of N , the set of natural
numbers. Thus, terms like least counterexample (used below) are well defined.
We define the nearest element in L to a number y as the x ∈ L which minimizes
|y − x|; in the case of two x’s in L minimizing |y − x|, we take the smaller
of the two x’s to be the nearest. Thus, the order of nearest elements to y is
y, y − 1, y + 1, y − 2, y + 2, . . . , 0, 2y, 2y + 1, 2y + 2, . . ..

When considering languages over other domains, such as strings over a finite
alphabet Σ, one can consider a recursive bijection between natural numbers
and Σ∗ to define least/nearest. Alternatively, some other possibilities are dis-
cussed in the conclusion.

While for a membership query, a natural answer would be just yes or no,
a learner making a subset query can also receive a negative counterexample
showing where the learner errs. In her original model [Ang88], D. Angluin
suggested that a learner could receive an arbitrary negative counterexample
for a subset query, when several negative counterexamples were possible. In
addition to this, traditional, type of answers to subset queries (considered in
several variants of models using subset queries, e.g., in [JK08,JK06]), we also
consider the following types of answers:

— a learner receives the least negative counterexample (this type of counterex-
amples was considered, in particular, in [JK08,JK06]); we refer to this model
as LSubQ.

— in addition to a negative counterexample, a learner receives a “correction”,
the positive example nearest to the negative one; this approach stems from
the following observation discussed, in particular, in [RP99]: while learning a
language, in addition to overt explicit negative evidence (when a parent points
out that a certain statement by a child is grammatically incorrect), a child
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often receives also covert explicit evidence in form of corrected or rephrased
utterances. As languages in our learning models are represented by subsets of
the set of natural numbers, our concept of the nearest positive example seems
to be appropriate in the given context. We apply the same idea to member-
ship queries: we consider a model where a learner receives the nearest positive
example if it gets the answer ‘no’ to a membership query. We refer to these
two models as NPSubQ and, respectively, NPMemQ. A similar approach
to “correction” queries was suggested in [BBBD05,BBDT06,TK07a,TK07b]:
a learner, in response to a membership query, receives the least (in the lexi-
cographic order) extension of the queried datum belonging to the target lan-
guage. One can argue, however, that a (rephrased) correcting sentence, while
obviously being close to the queried wrong one, is not necessarily an extension
of it. Thus, in our model, we require the “correction” to be just close to a
wrong datum.

— in the above approach, a teacher may have difficulties providing the near-
est (correcting) positive example, as it can still be too complex — far larger
than the negative example. Therefore, we consider also a variant of learn-
ing via queries, where the nearest positive example not exceeding the size of
the negative example is provided (if any). We refer to the variants of this
model for subset and, respectively, membership queries as BNPSubQ and
BNPMemQ (B here stands for bounded).

In our most general models, we assume that, in addition to the subset and/or
membership queries, a one-shot learner also has access to potentially all posi-
tive examples in the target concept. It can be easily seen that, when a learner
can make indefinite number of subset or membership queries, this positive
data presented to a one-shot learner becomes essentially irrelevant. However,
we will also study the cases when the number of queries will be uniformly
bounded, and in this context access to additional positive data may be im-
portant.

We restrict our attention to recursively enumerable classes of formal languages.
More specifically, we concentrate primarily on indexable classes of recursive
languages [Ang80,ZL95,LZZ08]; an example of an indexable class is the class
of all regular languages (for the sake of comparison, we also give an example
showing how our results can be extended if recursively enumerable classes of
recursively enumerable languages are considered). In this context, it is natural
to require a learner to output a conjecture that is an index of the target concept
in the given numbering. It is also natural to require that subset queries are
made about languages Li from the given indexed family L (as defined in
the original Angluin’s model) — these languages can be viewed as potential
conjectures. Additionally, we also require that membership queries are made
only for elements which belong to some language in the class being learnt
(the learner, having access to the numbering representing the target class of
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recursive languages, can be assumed to have certain “innate” knowledge about
the type of elements in the languages of the given class and about descriptions
of those languages).

Note that our criteria of learnability are not closed under a subset, in the sense
that L may be learnable but some subclass L′ ⊂ L may not be, due to the
requirement of asking queries only within the class.

Our primary goal is to compare variants of one-shot learners receiving variants
of answers to subset and membership queries discussed above. First, we com-
pare capabilities of these learners, establishing where learners in one model
can learn classes of languages not learnable within the framework of another
model. Secondly, we study when and how learners of one type can learn the
same classes of languages more efficiently than the learners of the other type,
where efficiency is measured in terms of the number of queries made during
the learning process.

The paper is structured as follows. In Sections 2 and 3 we provide necessary
notation and define our models of one-shot learners via subset and membership
queries. In Section 4 we compare learning powers of different models defined
in Section 3. First we show that if the number of queries is not uniformly
bounded, then access to a text for a language does not enhance capabilities of
a learner in any of our models. Thus, in cases where we compare the learning
power of different models, we can assume that the learner does not receive a
text of a language. Specifically, we establish that

(a) least counterexamples provided in response to subset queries can help to
learn classes of languages that cannot be learned even if the teacher, in addition
to arbitrary negative counterexample, provides the nearest positive example
to a negative counterexample too;

(b) learners receiving arbitrary nearest positive and bounded nearest positive
examples for subset or membership queries and corresponding counterexam-
ples or, respectively, answers ‘no’ are incomparable, and can sometimes learn
more than the respective learners receiving least counterexamples but no near-
est positive data.

(c) learners using membership queries can sometimes learn more than the ones
using subset queries getting least counterexamples and the nearest positive
examples; conversely, learners using subset queries and getting the weakest
type of feedback can sometimes learn more than the ones using membership
queries and getting the strongest type of feedback in the framework of our
models.

In Section 5, we give an example, showing how the results in Section 4 (which
considered indexable classes of recursive languages) can be translated to recur-
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sively enumerable classes of recursively enumerable languages; this example
(and other corresponding results) requires a somewhat more complex tech-
nique than those in Section 4.

In Section 6 we consider when a uniformly bounded number of queries of type
QA gives advantages (for learning) over queries of type QB. Our main results
can be summarized as follows:

(a) one subset query providing the least counterexample can sometimes help
a learner more than any number of subset queries returning arbitrary coun-
terexamples, even if the nearest positive examples and access to full positive
data are provided;

(b) one membership query and either the nearest positive example (for the
answer ‘no’), or access to full positive data can sometimes help a learner more
than any number of subset queries returning least counterexamples and the
bounded nearest positive examples, or returning arbitrary counterexamples and
the nearest positive examples — even in the presence of full positive data;
for showing advantage over least counterexamples and the nearest positive
examples, we need either one membership query and access to full text of the
target language or two membership queries and the nearest positive examples
in the case of ‘no’ answer.

(c) on the other hand, a finite number of subset queries returning least coun-
terexamples and the nearest positive examples can be used to learn any class of
languages learnable using only one membership query and the nearest positive
example; if no nearest positive examples to membership queries are provided,
then 2r − 1 subset queries are enough to learn any class learnable using r
membership queries; if the bounded nearest positive examples to membership
queries are provided, then a finite number of subset queries is enough to learn
any class learnable using a bounded number of membership queries;

(d) still, one membership query returning a bounded nearest positive example
can sometimes be more helpful to a learner than a prefixed bounded number
of subset queries returning least negative counterexamples and the nearest
positive examples — even in the presence of full positive data.

In this section, we also demonstrate that k + 1 membership or subset queries
can do more than k queries of the same type — even when the strongest
additional information (within the framework of our models) is provided. On
the other hand, for both membership and subset queries, it is shown that no
bounded number of membership or subset queries with the strongest additional
information can reach the power of learners using unlimited number of queries
of respective types.

In Section 7 we study the following problem: when a class L is learnable
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using query type QB, can one speed up the learning process (in terms of the
number of queries used) by using query type QA? We address questions such
as when classes which are learnable using small number of queries of a type
QA, require arbitrarily large number of queries of a type QB. For example,
we address questions about existence of classes which can be learned using 1
query of a type QA, or a finite number of queries of a type QB (k + 1 queries
of the type QB), but cannot be learned using a bounded number of queries of
the type QB (k queries of the type QB).

Overall, we hope that our results and multitude of different examples of classes
witnessing separations will give the reader a good insight on how one-shot
learners using membership and subset queries operate. Section 8, Conclusion,
is devoted to discussion of our results and possible directions for future re-
search.

2 Notation and Preliminaries

Any unexplained recursion theoretic notation is from [Rog67]. The symbol
N denotes the set of natural numbers, {0, 1, 2, 3, . . .}. Symbols ∅, ⊆ and ⊂,
denote empty set, subset and proper subset, respectively. Cardinality of a set
S is denoted by card(S). The maximum and minimum of a set are denoted
by max(·), min(·), respectively, where max(∅) = 0 and min(∅) = ∞.

We let 〈·, ·〉 stand for an arbitrary, computable, bijective mapping from N×N
onto N [Rog67]. We assume without loss of generality that 〈·, ·〉 is monotoni-
cally increasing in both of its arguments.

By ϕ we denote an acceptable numbering of all partial recursive functions
[Rog67] from N to N . ϕi denotes the partial recursive function computed
by program i in the ϕ-system. A language is a subset of N . Wi denotes
domain(ϕi). Wi is thus the i-th recursively enumerable set (language), in some
acceptable numbering of recursively enumerable (r.e.) sets. Symbol L, with or
without decorations, ranges over recursively enumerable languages. Symbol
L, with or without decorations, ranges over the sets of recursively enumerable
languages.

We let K = {i | i ∈ Wi}. Note that K is a recursively enumerable but not
recursive set [Rog67].

L is called an indexed family of recursive languages (abbreviated: indexed
family) iff there exists an indexing (Li)i∈N of languages such that:

(i) {Li | i ∈ N} = L.
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(ii) One can effectively determine, in i and x, whether x ∈ Li.

We now present some concepts from the language learning theory. A sequence
σ is a mapping from an initial segment of N into (N ∪ {#}). The content of
a sequence σ, denoted content(σ), is the set of natural numbers in the range
of σ. The length of σ, denoted by |σ|, is the number of elements in σ.

Intuitively, #’s represent pauses in the presentation of data. We let σ, with or
without decorations, range over the finite sequences. We denote the sequence
formed by the concatenation of σ′ at the end of σ by σσ′. Sometimes we abuse
the notation and use σx to denote the concatenation of the sequence σ and
the sequence of the length 1 which contains the element x.

Gold considered the following definition of presentation of data to a learner.
A text T for a language L is a mapping from N into (N ∪ {#}) such that L
is the set of natural numbers in the range of T . T (i) represents the (i + 1)-th
element in the text. The content of a text T , denoted by content(T ), is the set
of natural numbers in the range of T ; that is, the language which T is a text
for. T [n] denotes the finite initial sequence of T with length n.

There are several criteria for learning considered in the literature. We will be
mainly concerned with finite learning [Gol67]. In this model, the learner gets
a text for the language as input. After reading some initial portion of the
text, the learner outputs a conjecture, i.e., a description of a language, and
stops. If this conjecture is correct, i.e., if the description represents the target
language, then we say that the learner TxtFIN-identifies the language from
the given text. A learner TxtFIN-identifies a language if it TxtFIN-identifies
the language from all texts for the language. A learner TxtFIN-identifies L,
if it TxtFIN-identifies each L ∈ L. TxtFIN denotes the set of all classes L
such that some learner TxtFIN-identifies L.

An issue in the above model is the hypothesis space that the conjecture of the
learner comes from. For this paper, we are mainly concerned about learning
indexed families of recursive languages and assume a class preserving hypoth-
esis space. That is, we assume that the hypothesis space H0, H1, . . . , used for
learning the class L satisfies the following two properties:

(i) one can effectively, from i and x, determine whether x ∈ Hi;

(ii) L = {Hi | i ∈ N}.

7



3 Definitions for Query Learning

In addition to possible access to texts representing full positive data, the
learners in our model, following [Ang88], will also use two types of queries to
the teacher (formally, the oracle): subset queries and membership queries.

We only consider queries in the context of class preserving learning. That is, for
learning a class L, all the hypotheses are assumed to be from a hypothesis space
H0, H1, . . ., where H0, H1, . . . form an indexed family and {H0, H1, . . .} = L.

The subset queries are now restricted to the form “Hi ⊆ target language?”.
Correspondingly, the membership queries are also assumed to come from the
hypothesis space: the learner only asks membership queries of the form “x ∈
target language?”, for some x ∈ ⋃

i∈N Hi. Note that this approach is somewhat
different from traditional membership queries, where any member of N may be
queried. If a learner uses hypotheses from the indexed family, it is natural to
require that it only tests if elements belonging to candidate conjectures belong
to the target concept. Moreover, if one allows membership queries for any
member of N , then the learner can obtain all positive and negative data (so-
called informant) for the target language, and thus the model would collapse
to learning from informant (making the nearest positive examples irrelevant,
except for the case of learning the empty language ∅). For these reasons, for
learning L, we restrict our study to considering membership queries only for
the elements of

⋃
L∈L L.

The ‘yes’/‘no’ answer provided to the learner is based on whether the answer
to the query is true or false. For subset queries (about Hi), in case of ‘no’
answer (meaning that Hi is not a subset of the target language), the teacher
also provides a negative counterexample, which is a member of Hi, but not
a member of the target language. Here, we make distinction between two
different cases: when the least counterexample is provided (we refer to such
queries as LSubQ) and when an arbitrary counterexample is provided (we
refer to such queries as SubQ).

In related work, [GS91,MPS92] consider queries formulated using first order
logic. [FGJ+94,KS96] consider asking queries to an arbitrary oracle (such as
the oracle for halting problem), where the queries may not be directly related
to the target language. [GL08] consider answering queries in the limit (from
text), rather than trying to infer programs (with or without queries).

In addition, for ‘no’ answers to subset queries, we often also consider providing
the learner with the nearest positive example to the negative counterexample.
In the context of membership queries, if the answer is ‘no’, the learner is
then provided the positive example nearest to the queried element x. We will
denote it by using the prefix NP to the query type. We also consider the
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variant of providing the bounded nearest positive example, when the nearest
positive example not exceeding the negative counterexample (or the negative
element, in the context of membership queries) is provided (this is denoted by
using the prefix BNP to the query type). In the above cases, if the (bounded)
nearest positive example does not exist, then ‘none’ is given as the (bounded)
nearest positive example.

The above will provide us with the the following criteria for one-shot learn-
ability:

Query type

Correction type ⊆, ⊆, membership

any counterexample least counterexample

none SubQ LSubQ MemQ

nearest +ve NPSubQ NPLSubQ NPMemQ

bounded nearest +ve BNPSubQ BNPLSubQ BNPMemQ

In addition, text may or may not be provided to a learner: this is denoted by
using Txt in front of the criterion name (for example, TxtNPSubQ). Note
that the learner in this case outputs its hypothesis after asking finitely many
queries, and reading a finite portion of the text.

Below we formally give the definition of NPLSubQ. Other criteria can be
defined similarly.

Definition 1 (a) M NPLSubQ-identifies L iff for some class preserving hy-
pothesis space H0, H1, . . ., for all target L ∈ L, M asks a finite sequence of
subset queries, and, then outputs an index i such that Hi = L. The answer
provided by the teacher for each subset query ‘is Hi a subset of L’ is as follows:

(i) ‘yes’, if Hi ⊆ L;

(ii) ‘no’, if Hi 6⊆ L; in addition, the learner is provided with x = min(Hi−L)
as a negative counterexample and a y such that y is the earliest element
in the sequence x− 1, x + 1, x− 2, x + 2, . . . , 0, 2x, 2x + 1, 2x + 2, . . . which
belongs to L (if there is no such y, then the special answer ‘none’ is provided
to the learner).

(b) NPLSubQ = {L | some computable learner M NPLSubQ-identifies L}.

Note that later queries may depend on earlier answers (and, in the case of
text being provided, on the elements of the text already read by the learner).
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We sometimes consider limiting the number of queries made by the learner.
For example, TxtNPMemQk denotes the criterion TxtNPMemQ where
the number of queries made by the learner is limited to at most k.

Note that the power of teachers/oracles in our definitions is not limited. That
is, sometimes oracles may be non-algorithmic.

4 Relationships Among Various Query Learning Criteria

4.1 Providing Text

We first show that when there is no bound on the number of queries, texts do
not help: providing a text does not increase the learning capability of one-shot
learners.

Theorem 2 Suppose Q ∈ {SubQ,LSubQ,MemQ}. Then,

Q = TxtQ.

NPQ = TxtNPQ.

BNPQ = TxtBNPQ.

Proof. We only show SubQ = TxtSubQ. Other parts can be proved simi-
larly.

Suppose M TxtSubQ-identifies L. Then, define M ′ not having access to the
positive data as follows. M ′ searches for a finite segment σ and a conjecture
A made by M on σ such that content(σ) ⊆ A ⊆ target language, where the
answers to the queries made by M are answered in the same way as received by
M ′ for the same queries. If and when such σ and A are found, M ′ outputs the
conjecture A. On any input text for L which starts with σ, M would behave
as in the simulation, and thus output the conjecture A. Thus A must be the
correct conjecture.

4.2 Variants of SubQ

In this subsection, we explore relationships between different variants of SubQ.

First, we show that getting least counterexamples can sometimes be more help-
ful to learners than getting arbitrary counterexamples along with the nearest
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(bounded) positive examples to the counterexamples.

Theorem 3 LSubQ− (TxtNPSubQ ∪TxtBNPSubQ) 6= ∅.

Proof. Let L = {100i + x | i ∈ N, x ∈ {1, 2, 3}}.

Let Li = L− {100i + 1, 100i + 3}.

Let Xi = Li ∪ {100i + 1}.

Let L = {L} ∪ {Li | i ∈ N} ∪ {Xi | i ∈ K}.

It is easy to verify that L is an indexed family. To see this, let w0, w1, . . ., be
a recursive enumeration of K. Let Z0 = L, Z2i+2 = Li, Z2i+1 = Xwi

. Now,
Z0, Z1, Z2, . . . gives an indexing of L, where membership problem for Zi can
be decided effectively in i.

L is needed for the proof only in the positive part of the theorem (to get the
appropriate counterexample needed for distinguishing between Li and Xi).
Note that we require the queries to be class preserving — the negative part
of the proof relies on this.

To see that L ∈ LSubQ, first query whether L is a subset of the target
language. If L is a subset of the target language, then the target language
must be L. Otherwise, the least counterexample is either 100i + 1 or 100i + 3,
for some i. In the former case, the target language must be Li. In the latter
case, the target language must be Xi.

Now suppose by way of contradiction that L ∈ TxtNPSubQ
(TxtBNPSubQ) as witnessed by M . We then give the following algorithm
to solve K.

On the input i
1. Simulate M on a text for Li, where answers to the queries of M are as

follows.
For the queries which contain 100i + 3, answer ‘no’ along with the coun-

terexample 100i + 3, and the (bounded) nearest positive example being
100i + 2.

For the queries which do not contain 100i + 3, answer ‘yes’.
2. If in the simulation above M ever queries a language which contains 100i+1

but not 100i + 3, then output i ∈ K.
If the above simulation stops with a conjecture, without querying a lan-

guage which contains 100i + 1 but not 100i + 3, then output i 6∈ K.
End
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Now, as M TxtNPSubQ-identifies (TxtBNPSubQ-identifies) L, M , for the
target language Li, must eventually output a conjecture. During the process,
if M queries a language containing 100i + 1, but not 100i + 3, then we have
i ∈ K, as M is allowed only to query languages within the class L. On the
other hand, if M outputs a conjecture without querying about Xi, then, since
the answers given to the queries of M are consistent with the target language
being Li or Xi, we must have that Xi 6∈ L (otherwise, M cannot identify both
Li and Xi). Thus i 6∈ K.

Note that the negative part of the proof used the following idea:

Remark 4 Suppose L contains the languages Li, for all i, and Xi for i such
that i ∈ K. Suppose also that, for all i, Li ⊂ Xi, and one can effectively
determine when, during a one-shot learning process, the subset query made
is for Xi. Suppose, for a learner, one can effectively provide answers to the
subset queries of type Q, except for a query being about the language Xi itself,
in such a way that the answers are consistent with target language being either
Li or Xi. Then the class is not finitely learnable (based on the corresponding
query type Q).

The similar result holds when one considers membership queries instead of
subset queries, when Xi−Li = {xi}, where xi belongs only to Xi and no other
language in the class.

Based on the above remark, often for diagonalization, we will just indicate
how the queries can be answered to solve the halting problem as above, rather
than giving the full proof.

Our next result shows that learners getting arbitrary counterexamples and the
unbounded positive examples nearest to them can sometimes learn more than
the ones getting the bounded nearest positive example. This holds even if the
latter ones receive the least counterexamples and have access to full positive
data.

Theorem 5 NPSubQ−TxtBNPLSubQ 6= ∅.

Proof. Let L = {100i + x | i ∈ N, x ∈ {1, 3}}.

Let Li = L− {100i + 1}.

Let Xi = Li ∪ {100i + 2}.

Let L = {L} ∪ {Li | i ∈ N} ∪ {Xi | i ∈ K}.

It is easy to verify that L is an indexed family. Now, we show that L ∈
NPSubQ. First, a learner can query L. If L is contained in the target lan-
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guage, then the target language must be L. If there is a counterexample, it
must be 100i + 1, for some i. Now the target language is Xi if the nearest
positive example was 100i + 2. Otherwise, the target language must be Li.

We now show that L 6∈ TxtBNPLSubQ. We use Remark 4, as one can answer
queries (except for Xi) of a supposed learner M based on target language being
Li (these answers will be consistent with target language being Xi also): if the
queried language A contains 100i+1, then the answer is ‘no’, with the negative
counterexample being the least element in A− Li (which is ≤ 100i + 1), and
the bounded nearest positive example being the largest element in Li which
is ≤ min(A−Li), if any (this element would be ≤ 100(i− 1) + 3 or ‘none’); if
the queried language does not contain 100i+1, then the answer is ‘yes’. Thus,
by using Remark 4, we have that L 6∈ TxtBNPLSubQ.

From the above result, we can immediately derive the following corollary.

Corollary 6 SubQ ⊂ NPSubQ.
LSubQ ⊂ NPLSubQ.

Now we show that, in the above result, the learners getting the unbounded
nearest positive examples can be replaced by the ones getting the bounded
nearest positive examples, and vice versa.

Therefore, the learners via subset queries and getting counterexamples and
the nearest positive data of these two types are incomparable.

Theorem 7 BNPSubQ− TxtNPLSubQ 6= ∅.

Proof. Let L = {100i + x | i ∈ N, x ∈ {3, 4}}.

Let Li = L− {100i + 3}.

Let Xi = Li ∪ {100i + 1}.

Let L = {L} ∪ {Li | i ∈ N} ∪ {Xi | i ∈ K}.

It is easy to verify that L is an indexed family.

To see that L ∈ BNPSubQ, a learner can query L. If L is contained in
the target language, then the target language must be L. If there is a coun-
terexample, it must be 100i + 3, for some i ∈ N . Now the target language is
Xi, if the bounded nearest positive example is 100i + 1. Otherwise the target
language must be Li.

We now show that L 6∈ TxtNPLSubQ. We use Remark 4, as one can answer
queries (except for Xi) of a supposed learner M based on the target language
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being Li (these answers will be consistent with the target language being Xi

too): if the queried language A (6= Xi) contains 100i + 3, then the answer is
‘no’, with the negative counterexample being min(A − Li) (which would be
≤ 100i + 3), and the nearest positive example being the nearest element in
Li to min(A − Li) (note that this would also be the nearest element in Xi

to min(A − Li)); if the queried language does not contain 100i + 3, then the
answer is ‘yes’.

Thus, by using Remark 4, we have that L 6∈ TxtNPLSubQ.

As in the case of learners getting the unbounded nearest positive examples,
from the above theorem, we immediately derive the following corollary.

Corollary 8 SubQ ⊂ BNPSubQ.
LSubQ ⊂ BNPLSubQ.

Now we show that learners getting the nearest positive examples, in addition
to arbitrary counterexamples, can sometimes learn more than the ones get-
ting the least counterexamples and full positive data, but no nearest positive
examples.

Theorem 9 NPSubQ ∩BNPSubQ−TxtLSubQ 6= ∅.

Proof. Let L = {100i + x | i ∈ N, x ∈ {2, 4}}.

Let Li = L− {100i + 2}.

Let Xi = Li ∪ {100i + 1}.

Let L = {L} ∪ {Li | i ∈ N} ∪ {Xi | i ∈ K}.

It is easy to verify that L is an indexed family.

To see that L ∈ NPSubQ (BNPSubQ), a learner can query L. If L is
contained in the target language, then the target language must be L. If
there is a counterexample, it must be 100i + 2, for some i ∈ N . Now the
target language is Xi, if the (bounded) nearest positive example is 100i + 1.
Otherwise the target language must be Li.

We now show that L 6∈ TxtLSubQ. We use Remark 4, as one can answer
queries (except for Xi) of a supposed learner M based on the target lan-
guage being Li (the negative counterexample for query A 6∈ {Li, Xi} would
be min(A − Li) = min(A − Xi)). Thus, by using Remark 4, we have that
L 6∈ TxtLSubQ.
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4.3 MemQ vs SubQ

In this subsection, we compare learning capabilities of one-shot learners using
membership and subset queries. We establish that, within the framework of
our models, the weakest learners using one type of queries can sometimes do
more than the strongest learners using the other type of queries.

First, we show that learners using membership queries can sometimes be
stronger than the ones using subset queries.

Theorem 10 MemQ− (TxtNPLSubQ ∪TxtBNPLSubQ) 6= ∅.

Proof. Let L = {0} ∪ {100i + 2 | i ∈ N}.

Let Li = {100i + 1, 100i + 5}.

Let Xi = {100i + 1, 100i + 2, 100i + 5}.

Let L = {L} ∪ {Li | i ∈ N} ∪ {Xi | i ∈ K}.

We first show that L ∈ MemQ. First, a learner queries 0. If the answer is
‘yes’, then the target language must be L. Otherwise, the learner determines
an i such that 100i + 1 is in the target language. Then querying 100i + 2, the
learner determines whether the target language is Li or Xi.

We now show that L 6∈ TxtNPLSubQ (TxtBNPLSubQ). We use Re-
mark 4, as one can answer queries (except for Xi) of a supposed learner M as
follows:

If the query of M contains 100i+1, then answer ‘yes’. Otherwise, answer ‘no’
to the query, with the least element of the query being the least negative coun-
terexample. In the case of the queried language being L, there is no bounded
nearest positive example. In all other cases, the nearest (bounded) positive
example will be 100i + 1 or 100i + 5 or ‘none’.

Thus, by using Remark 4, we have that L 6∈ TxtNPLSubQ
(TxtBNPLSubQ).

Our next result demonstrates the advantage of subset queries over membership
queries.

Theorem 11 SubQ− (TxtNPMemQ ∪TxtBNPMemQ) 6= ∅.

Proof. Let L = {L | card(N − L) ≤ 1}. It is easy to verify that L ∈ SubQ
(a learner can query N — if the answer is ‘yes’, then target language must
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be N ; otherwise, the target language is N − {x}, where x is the negative
counterexample received).

On the other hand, suppose by way of contradiction that some learner
TxtNPMemQ (TxtBNPMemQ)-identifies L. Let σ be the initial segment
on which the learner conjectures N , when all the membership queries are an-
swered ‘yes’. Then, for any x such that x 6∈ content(σ) and x has not been
queried by the learner, we have that the learner does not identify the language
N − {x}.

4.4 Different variants of MemQ

In this subsection, we compare different variants of learners using membership
queries.

Our first two results show, as in the case of subset queries, the advantages
of learners getting the unbounded or bounded nearest positive examples (in
addition to answers ‘no’) compared to learners getting the nearest positive
example of the other type.

Theorem 12 NPMemQ−TxtBNPMemQ 6= ∅.

Proof. Let L = {0} ∪ {100i + 2 | i ∈ N}.

Let Li = {100j + 2 | j ≥ i}.

Let Xi = Li ∪ {100i + 1}.

Let L = {L} ∪ {Li | i ∈ N} ∪ {Xi | i ∈ K}.

Now we show L ∈ NPMemQ. First query 0. If 0 is in the target language,
then target language must be L. Otherwise, the nearest positive example is
either 100i + 2 or 100i + 1 for some i. In the former case, the target language
must be Li, and in the latter case, the target language must be Xi.

We now show that L 6∈ TxtBNPMemQ. We use Remark 4, as one can
answer queries x (except for 100i + 1) of a supposed learner M based on
whether x ∈ Li. For x 6∈ Li, if the queried element is 0 or 100j + b, for
b ∈ {1, 2} and some j < i, then the bounded nearest positive example is
‘none’. If the queried element is 100j + 1, for some j > i, then the bounded
nearest positive example is 100(j − 1) + 2.

Thus, by using Remark 4, we have that L 6∈ TxtBNPMemQ.
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Theorem 13 BNPMemQ−TxtNPMemQ 6= ∅.

Proof. Let Ai = {100i, 100i + 6, 100i + 7}. Li = {100i, 100i + 7}. Xi =
{100i, 100i + 4, 100i + 7}.

Let L = {Ai, Li | i ∈ N} ∪ {Xi | i ∈ K}.

It is easy to verify that L ∈ BNPMemQ. A learner first finds an i such that
100i belongs to the target language. Then it queries 100i+6; if 100i+6 belongs
to the target language, then the target language must be Ai. Otherwise, if the
bounded nearest positive example is 100i + 4, then the target language is Xi.
Otherwise the target language is Li. Note that the nearest unbounded positive
example is 100i+7 in both cases, which does not help to determine distinction
between Xi and Li.

We now show that L 6∈ TxtNPMemQ. We use Remark 4, as one can answer
queries x (except for x = 100i + 4) of a learner M based on membership
relation with Li. For queries x = 100j + w, for j < i, the nearest positive
example would be 100i. For queries x = 100j + w, for j > i, the nearest
positive example would be 100i + 7. For query x = 100i + 6, the nearest
positive example would be 100i + 7.

Thus, by using Remark 4, we have that L 6∈ TxtBNPMemQ.

Now we show that getting the nearest positive examples (to the counterex-
amples) of either type can sometimes be more helpful to learners than getting
access to the text (full positive data) for the target language.

Theorem 14 NPMemQ ∩BNPMemQ−TxtMemQ 6= ∅.

Proof. Consider L = {100i + x | i ∈ N, x ∈ {1, 3, 5}}.

Li = {0} ∪ {100i + 1, 100i + 5}.

Xi = Li ∪ {100i + 2}.

L = {L} ∪ {Li | i ∈ N} ∪ {Xi | i ∈ K}.

L ∈ NPMemQ∩BNPMemQ, as one can first query 0 — if it does not belong
to the target language, then the target language must be L. Otherwise, using
membership queries, one finds an i such that 100i + 1 belongs to the target
language. Now one can query 100i + 3 — then the (bounded) nearest positive
example being 100i + 1 or 100i + 2, will determine that the target language is
Li or Xi.

We now show that L 6∈ TxtMemQ. We use Remark 4, as one can answer

17



queries (except for 100i + 2) of a supposed learner M based on membership
relation with Li. Thus, by using Remark 4, we have that L 6∈ TxtMemQ.

5 Recursively Enumerable Classes of Recursively Enumerable Lan-
guages

In this section, we demonstrate that one can generalize Theorem 5 to the case
when the hypothesis space is a recursively enumerable numbering of recursively
enumerable languages, and, thus, queries may be about r.e. indices for the
language queried, rather than decision procedures as considered in the previous
section. Similar ideas can be used for the rest of our theorems in Section 4.
Note that the results for r.e. languages do not follow from the results in the
previous section, as the hypothesis space is now an r.e. class of r.e. languages,
rather than an indexed family. Thus, for example, Remark 4 does not hold —
one cannot algorithmically determine if the queried language Q is for Xi or not,
when Q is defined as follows: Q = Li, if i 6∈ K; Q = Xi otherwise. The proof of
the following theorem illustrates how this problem can be overcome. Similar
technique can be used for other diagonalizations in the previous section.

Below, in the name of learning criteria, we use the prefix Re to denote that
we are considering learnability of r.e. classes of r.e. languages.

Theorem 15 ReNPSubQ−ReTxtBNPLSubQ 6= ∅.

Proof. We will define a partial recursive function ϕe later. Recall that 〈·, ·〉
is increasing in both its arguments.

Let L = {100〈i, 0〉 | i ∈ N}.

Let Li,1,0 = (L− {100〈i, 0〉}) ∪ {100〈i, 0〉+ 5} ∪ {100〈j, 0〉+ 4 | j 6= i}.

Let Li,2,j = Li,1,0 ∪ {100〈i, k〉+ 5 | k ≤ j} ∪ {100〈i, 0〉+ 4}.

Let L = {L} ∪ {Li,1,0 | i ∈ N} ∪ {Li,2,j | ϕe(i)↓, i, j ∈ N}.

Given a fixed ϕe, the above is an indexed family of recursive languages. The
positive side of the theorem holds even if we consider queries using the indexing
of an indexed family.

L ∈ ReNPSubQ: One can first ask the question whether L ⊆ target lan-
guage. If so, the target language must be L. Otherwise, let 100〈i, 0〉 be the
(only possible) negative counterexample. If the nearest positive example is
100〈i, 0〉 + 4, then find a j such that Li,2,j is a subset of the target language,
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but Li,2,j+1 is not a subset of the target language — then the target lan-
guage must be Li,2,j. On the other hand, if the nearest positive example is
100〈i, 0〉+ 5, then the target language must be Li,1,0.

We now show that L 6∈ ReTxtBNPLSubQ. For this, we define the partial re-
cursive function ϕe as follows. Let M0, M1, . . . denote a recursive enumeration
of all ReTxtBNPLSubQ learners.

ϕe(i)↓ iff Mi, being fed a text for Li,1,0, eventually outputs a conjecture when
its questions “Is Wm a subset of the target language?” are answered as follows
(for the first case which applies, based on some standard interleaved search):

A. If Wm contains 100〈i, 0〉+ 5, then answer ‘yes’ to the subset query.

B. If Wm contains 100〈j, 0〉, for all j ≤ i, then answer ‘no’ to the subset query,
give the negative counterexample 100〈i, 0〉, along with the bounded nearest
positive example 100〈i− 1, 0〉 + 4 (if i = 0, then there is no bounded nearest
positive example).

C. If, for some k < i, Wm contains 100〈k, 0〉+5, and 100〈j, 0〉, for j < k, then
answer ‘no’ to the subset query, give the negative counterexample 100〈k, 0〉+5,
along with the bounded nearest positive example 100〈k, 0〉+ 4.

D. If none of the above cases hold, then Mi’s question is not answered, and
ϕe(i) will diverge.

We now consider the following cases.

Case 1: Mi does not eventually output a conjecture when its questions are
answered as above.

In this case, clearly, ϕe(i) does not converge. Thus, either Mi asks a query out-
side the class L, or the answers to Mi are consistent with the target language
being Li,1,0. However, Mi does not output any conjecture and, thus, does not
ReTxtBNPLSubQ-identify Li,1,0.

Case 2: Mi eventually outputs a conjecture when its questions are answered
as above. In this case, let r be maximal such that Mi queries Li,2,r before it
outputs its conjecture or makes a query for a language outside L. Then, Mi

ReTxtBNPLSubQ-identifies at most one of Li,2,s, for s ≥ r.

The theorem follows from the above cases.
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6 Complexity Hierarchy

This section gives the relationship between different criteria of query learn-
ing considered in the paper: MemQ, SubQ, LSubQ, with or without the
(bounded) nearest positive example, and with or without text, when the num-
ber of queries may be bounded.

Most of the following results hold only for indexed families (the r.e. class trick
considered in Section 5 often does not work when we are having only constant
number of queries).

We begin with the following useful propositions. Proposition 16 and Proposi-
tion 17 (a) were implicit in the work [Ang88]. Angluin considered these claims
for membership queries explicitly in [Ang01]. If one allows queries from out-
side the class, then better results (for SubQ) than in Proposition 16 can be
obtained.

Proposition 16 [Ang01] Suppose card(L) ≤ k + 1. Then L ∈ MemQk and
L ∈ SubQk.

Proof. We give the proof for completeness. Suppose L consists of only k +1
languages. To show that L ∈ SubQk, one proceeds as follows. Initially all lan-
guages in L are possible candidates for the target language. At any stage, one
can ask the subset query about a maximal (in terms of set inclusion) remain-
ing candidate A. Then one can either eliminate A as being the target language
(if the answer to the query is ‘no’), or determine that the target language is
A (if the subset answer is ‘yes’). After k questions, only one language remains
as a possible candidate.

For membership queries, one can ask a query about x ∈ A − B, to eliminate
either A or B as a possible candidate for the target language. Thus, k queries
can eliminate k of the k + 1 languages as potential candidates for the target
language.

Now we show that if the number of membership queries is uniformly bounded
and the nearest positive examples are bounded, then learnable classes are
finite.

Proposition 17 Suppose k ∈ N .

(a) [Ang01] If L ∈ MemQk, then card(L) ≤ 2k.

(b) If L ∈ BNPMemQk, then L must be finite.

Proof. (a) Immediate, as the answers to the k possible questions by MemQk
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learner determine the target language.

(b) As the answers to the k questions by BNPMemQk learner and the finite
number of possibilities for the bounded nearest positive examples determine
the target language, L must be finite.

Our next two results show how one-shot learners using a uniformly bounded
number of membership queries can simulate the ones using uniformly bounded
number of subset queries when the target class is finite. First we show that,
under the given conditions, one subset query can be simulated by one mem-
bership query, when a text for the target language is provided.

Theorem 18 Suppose L is finite and L ∈ SubQ1. Then, L ∈ TxtMemQ1.

Proof. Suppose L is in SubQ1. This means that for the first query A asked
by a learner, either the target language is A, or each element of A is missing
from at most one language in the class. Thus, for each language L in L, except
A, one can associate an element xL, such that xL is not in L, but in every
other language in L. Thus, since all such xL (a finite number) are known to the
learner, a text will eventually leave out at most one such xL, for L ∈ L−{A}.
Now membership query about this xL can determine if the target language is
L or A.

If the target class is finite, then a simulation of k subset queries can be done
using 2k − 1 membership queries, when a text for the target language is pro-
vided.

Theorem 19 Suppose L is finite and L ∈ SubQk. Then L ∈
TxtMemQ2k−1.

Proof. Note that any class which can be learned using k subset queries has
no subset chain of the size larger than 2k. Suppose M SubQk-identifies L.
Since the class is finite, there exists a finite subset of N , membership/non-
membership of which in the target language determines the target. Thus,
without loss of generality, we can assume that the rest of the elements of N
do not matter. Thus, we are working with a finite set of languages over a finite
domain, and thus non-effective learning is enough to show effective learning
too.

We show the theorem by induction. For the base case, if k = 1, then, by
Theorem 18, L ∈ TxtMemQ1. For a larger k, suppose A is the first question
that M asks. We divide the class L into two parts: one consisting of the
languages which contain A, and the other consisting of the languages which
do not contain A. We will take at most 2k−1 queries to determine whether A is
contained in the target language or not (along with a needed counterexample,

21



in the case of A not being a subset of the target language). Note that the
largest subset chain among the languages (in L) which are not a superset of A
is of the size at most 2k−1 (otherwise M would not be able to identify L using
k − 1 further queries, after getting ‘no’ answer to the query A, along with a
counterexample being an element which belongs to A but not to the largest
language in a subset chain of the size 2k−1 + 1).

Do the following until a counterexample to A is found, or all languages which
are not supersets of A are eliminated from being candidates for the target
language.

Possible = L.
Neg = ∅.
Loop
1. Read more and more of input text T until we reach an initial segment

σ of T such that for some B ∈ Possible, content(σ) ⊆ B, and for all
C ∈ Possible which contain content(σ), B ⊆ C. (That is, there exists a
unique minimal element in Possible which contains σ).

Eliminate from Possible all languages which do not contain content(σ).
2. If A ⊆ B, then one can proceed with the simulation of M with answer

‘yes’ to the subset query A made by M . Note that by induction, we can
simulate the rest of the queries of M by using at most 2k−1 − 1 queries.

3. Else, pick x ∈ A−B and do the membership query for x. If answer is ‘no’,
then one can proceed with the simulation of M with the answer ‘no’ to
the subset query A made by M (along with the negative counterexample
x). Note that by induction, we can simulate the rest of the queries of M
by using at most 2k−1 − 1 queries.

4. Else, (answer is ‘yes’ to the membership query x): Eliminate from Possible
all languages which do not contain x. Note that the size of the largest
subset chain among remaining languages in Possible which do not con-
tain A is reduced by at least 1 in the process (as B is eliminated
from Possible but is contained in all the languages in the remainder
of Possible).

End Loop

Since the set of all languages in L that do not contain A is in SubQk−1, it has
no subset chain of the size larger than 2k−1. By the comment at the end of step
4 above, note that each round of Loop uses one query and reduces the size of
the largest subset chain among languages in Possible which do not contain A,
by at least 1. Thus, there are at most 2k−1 queries, before the answer to the
subset query for A can be determined. We are now done by induction.

Now we turn our attention to arbitrary (possibly infinite) target classes. First,
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based on Theorem 11 from the previous section, we note that just one subset
query sometimes helps a learner more than the strongest type of membership
queries within the framework of our models — including access to a text of
the target language.

Theorem 20 SubQ1 − (TxtNPMemQ ∪TxtBNPMemQ) 6= ∅.

Proof. Proof of Theorem 11 witnesses this too.

The next result demonstrates what advantages of a bounded number of mem-
bership queries over subset queries are possible. The following picture is quite
complex. In particular, we show (Theorem 21(i)) that r membership queries
can be simulated by 2r − 1 subset queries (we also show that this estimate
is tight, Theorem 21(h)). However, if, in addition to membership queries, a
learner gets either access to a text of the target language (Theorem 21(a)),
or the nearest positive examples (Theorem 21 parts (b), (e), (f)), then, in
most cases, just one membership query gives advantage over a learner us-
ing subset queries (and getting strongest feedback and having access to text
of the target language). On the other hand, a learner using a finite number
of subset queries and getting least counterexamples and the nearest positive
examples can simulate any learner using just one membership query and get-
ting the nearest positive examples (Theorem 21(d)); still, such a simulation is
not always possible if a learner can use two such membership queries (Theo-
rem 21(c)). Also, learners using a uniformly bounded number of membership
queries and getting bounded positive examples can always be simulated by
learners using subset queries if the number of queries of the latter type is not
bounded (Theorem 21(g)).

Theorem 21 (a) TxtMemQ1− (TxtNPLSubQ∪TxtBNPLSubQ) 6= ∅.

(b) NPMemQ1 − (TxtNPSubQ ∪TxtBNPLSubQ) 6= ∅.

(c) NPMemQ2 − (TxtNPLSubQ ∪TxtBNPLSubQ) 6= ∅.

(d) NPMemQ1 ⊆ ⋃
r∈N NPLSubQr.

(e) For all k, NPMemQ1 − (TxtNPLSubQk ∪TxtBNPLSubQk) 6= ∅.

(f) For all k, BNPMemQ1 − (TxtNPLSubQk ∪TxtBNPLSubQk) 6= ∅.

(g) For all k, BNPMemQk ⊆ ⋃
r∈N SubQr.

(h) For r ≥ 1, MemQr − (TxtBNPLSubQ2r−2 ∪TxtNPLSubQ2r−2) 6= ∅.

(i) For r ≥ 1, MemQr ⊆ SubQ2r−1.
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Proof. (a) L in the proof of Theorem 10 can be shown to be in TxtMemQ1,
as one can first wait for either 0 or 100i+1, for some i, to appear in the input
text. If 0 is in the input text, then L must be the target language. Otherwise
querying 100i + 2 determines whether the target language is Li or Xi.

(b) Let L = {0} ∪ {100i + x | i ∈ N, x ∈ {0, 3}}.

Let Li = {100i + 2} ∪ {100j + 3 | j > i}.

Let Xi = Li ∪ {100i + 1}.

Let L = {L} ∪ {Li | i ∈ N} ∪ {Xi | i ∈ K}.

Now, L ∈ NPMemQ1 (Query 0; if the answer is ‘yes’, then the target lan-
guage must be L; otherwise, if the nearest positive example is 100i + 2 for
some i, then the target language must be Li; otherwise the nearest positive
example would be 100i + 1, for some i, and the target language is Xi).

We now show that L 6∈ TxtBNPLSubQ. Suppose by way of contradiction
that a learner TxtBNPLSubQ-identifies L. We proceed as in Remark 4. One
can solve the halting problem K as follows. On input i, give text for Li as
input to the learner.

For queried language containing an element < 100i + 1, one can give the
least element < 100i + 1 in the queried language as a counterexample (with
no bounded nearest positive example). The query for a language with the
least element 100i + 2 is answered ‘yes’. Queries for a language with the least
element being either 100j + 1 or 100j + 2, where j > i, are answered ‘no’,
with respectively 100j +1 or 100j +2 being the negative counterexample; the
bounded nearest positive example would be either 100(j−1)+3 (if j > i+1) or
100i+2 (if j = i+1). Queries for a language which contains 100i+1, if made,
determine that i ∈ K. If the conjecture is made before querying a language
which contains 100i + 1, then i 6∈ K (as otherwise the answers to queries are
consistent with both Li and Xi, contradicting TxtBNPLSubQ-learnability
of L by the learner).

Similarly, L 6∈ TxtNPSubQ. Here the counterexamples given are 100i+3 for
a language which contains 100i + 3 (with the nearest positive example being
100i + 2). If a query is made for a language which does not contain 100i + 3,
but contains 100i + 2, then the answer is ‘yes’. When a query is made for
a language with the minimal element being > 100i + 3, then the negative
counterexample is the least element present in the queried language (100j + 1
or 100j + 2 for some j > i), with the nearest positive example being 100j + 3.

(c) L in the proof of Theorem 10 can be shown to be in NPMemQ2, as one
can first query 0. If 0 is in the target language, then L must be the target
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language. Otherwise the nearest positive example is 100i + 1 for some i. Now
querying 100i + 2 determines whether the target language is Li or Xi.

(d) Suppose M is a NPMemQ1-learner for L. Suppose the element queried
by M is y. Let Ay be the language in L which contains y (note that there must
be unique such Ay, as M NPMemQ1-learns L). For i 6= y, let Ai denote the
language L in L, if any, such that y 6∈ L and i is the nearest element (to y)
in L. Note that there exists at most one such Ai in L (otherwise, M cannot
NPMemQ1-identify L). Furthermore, each member of L is equal to Ai for
some i. Also note that, for all i 6= y, for all j which are nearer to y than i, if
Ai and Aj are both defined then Aj 6⊆ Ai (as j ∈ Aj − Ai).

Note that, if Ai (for i 6= y) is defined, then M , when its membership query y
is answered ‘no’ with i given as the nearest positive example, outputs Ai as
its conjecture (otherwise, M does not NPMemQ1-identify L).

Now the NPLSubQ learning algorithm for L is given as follows:

1. For i = y, y − 1, y + 1, y − 2, y + 2, . . . , 0, 2y do:
If Ai is defined and Ai is a subset of the target language, then output

Ai as the conjecture.
End For

2. If none of the above Ai are subset of the target language, then let z be the
nearest positive example to the counterexample corresponding to the
query Ay made in step 1. Conjecture Az (if defined) (note that one can
find Az, if defined, using M).

Note that the number of queries made by the above NPLSubQ learner is
bounded by 2y + 1. Clearly, if Ay is the target language then step 1 correctly
identifies Ay. If Ai is the target language where i ≤ 2y and i 6= y, then Aj 6⊆ Ai

for any j which is nearer to y than i (see the discussion before the algorithm),
and thus step 1 correctly identifies Ai.

On the other hand if i > 2y, then none of Ai, i ≤ 2y, is a subset of Ai. Thus
step 2 would correctly identify Ai. This completes the proof for part (d).

(e), (f), (h) are shown in Theorem 30.

(g), (i) follow from Propositions 16 and 17.

Now we will compare learners using queries of the same type. Our next result
shows that one subset query providing the least counterexample can sometimes
help learners more than subset queries returning arbitrary counterexamples,
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even if the nearest positive examples are returned, and a text of the target
language is accessible.

Theorem 22 LSubQ1 − (TxtNPSubQ ∪TxtBNPSubQ) 6= ∅.

Proof. Proof of Theorem 3 witnesses this too.

The next result establishes hierarchies on the number of queries. We show
that, for both types of queries, k + 1 queries help learning more than k (even
if a learner using k queries gets additional feedback and has access to full
positive data).

Theorem 23 For all k ∈ N ,

(a) SubQk+1 − (TxtNPLSubQk ∪TxtBNPLSubQk) 6= ∅.

(b) MemQk+1 − (TxtNPMemQk ∪TxtBNPMemQk) 6= ∅.

Proof. Let L0 = {2x | x ∈ N}.

For i > 0, let Li = L0 ∪ {2i + 1}.

Let L = {Li | i ≤ k + 1}.

L ∈ SubQk+1 (MemQk+1) follows from Proposition 16.

Also, L 6∈ (TxtNPLSubQk ∪TxtBNPLSubQk), as one can give a text for
the target language L0, and answer all subset queries for Li, 1 ≤ i ≤ k + 1,
as ‘no’ (with the least negative counterexample as 2i + 1, and the (bounded)
nearest positive example as 2i). If the learner conjectures a grammar for L0

after asking at most k queries, then there exists an i, 1 ≤ i ≤ k + 1, such that
the learner did not query Li. But then the answers are all consistent with the
target language being Li or L0, and the portion of the input text read could
be extended to be a text for Li. Thus, the learner fails to identify Li. Similarly,
L 6∈ (TxtNPMemQk ∪TxtBNPMemQk).

For both types of queries, uniformly bounded number of queries is not enough
to achieve full learning capability.

Theorem 24 (a) SubQ−⋃
k∈N(TxtNPLSubQk∪TxtBNPLSubQk) 6= ∅.

(b) MemQ− ⋃
k∈N(TxtNPMemQk ∪TxtBNPMemQk) 6= ∅.

Proof. Let INIT = {L | (∃i)[L = {x | x ≤ i}]}. INIT ∈ SubQ, as one could
find the least i such that {x | x ≤ i + 1} 6⊆ target language by using subset
queries. Similarly, INIT ∈ MemQ, as one could find the least i such that
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i + 1 6∈ the target language.

However, INIT 6∈ (TxtNPLSubQk∪TxtBNPLSubQk). Suppose by way of
contradiction that some learner M TxtNPLSubQk or TxtBNPLSubQk-
identifies INIT.

Suppose we always answer the queries of M as ‘yes’. If M outputs a conjecture
on some text for some language in L, then let Q be the set of queries asked and
let σ be the initial segment of the text which has been read by M by the time
it outputs its conjecture. Otherwise, let T be a text for some language in L
on which M asks maximal number of questions, let Q be the set of questions
asked on this text, and let σ be the initial segment of the text which has
been read by M by the time it asks its last question. Suppose m is such that
m > content(σ), and m > the largest element contained in any of the queries.
Then, M would have the same behaviour for any of the target languages
{x | x ≤ i}, i ≥ m, where the input text provided starts with σ. Thus, M can
identify at most one language of the form {x | x ≤ i}, i ≥ m, even though L
contains infinitely many such languages.

Similarly, INIT 6∈ TxtNPMemQk ∪TxtBNPMemQk.

The next theorem compares the usefulness of the nearest and the bounded
nearest positive examples for learners using the same type of queries. First
we show that one subset query returning negative counterexample and the
nearest positive example of either type can sometimes help a learner more
than using subset queries, least counterexamples, nearest positive examples of
the other type, and full positive data.

Theorem 25 NPSubQ1 −TxtBNPLSubQ 6= ∅.

BNPSubQ1 −TxtNPLSubQ 6= ∅.

Proof. Proofs of Theorems 5 and 7 witness this too.

For membership queries, the picture is more complex. One unbounded near-
est positive example can sometimes help a learner more than any number
of bounded nearest positive examples — even in the presence of full posi-
tive data. However, the learners making membership queries and getting the
bounded nearest positive examples can be simulated by learners using a fi-
nite number of just simple membership queries; still, no uniform bound on
the number of queries in such a simulation is possible (even if the learner re-
ceives also the nearest positive examples and has access to full positive data)
— moreover, if the learner using just one bounded positive example has also
access to full positive data, then no above simulation is possible at all.
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Theorem 26 (a) NPMemQ1 −TxtBNPMemQ 6= ∅.

(b) For k ∈ N , BNPMemQk ⊆ ⋃
r∈N MemQr.

(c) For k ∈ N , BNPMemQ1 −TxtNPMemQk 6= ∅.

(d) TxtBNPMemQ1 −TxtNPMemQ 6= ∅.

Proof. (a) Proof of Theorem 12 also witnesses this.

(b) Follows from Propositions 16 and 17.

(c) Let d0 = 1, and di+1 = 2di + 1. (Thus, di = 2i+1 − 1, for all i ∈ N). Let
m = d2k+1 .

For i ≤ 2k+1, let Li = {m− dj | i ≤ j ≤ 2k+1} ∪ {m}.

Let L = {Li | i ≤ 2k+1}. Now, L ∈ BNPMemQ1, as one could query m−d0.
If m − d0 is in the target language, then the target language must be L0.
Otherwise, the bounded nearest positive example is m−di for some i, and the
target language must be Li.

To see that L 6∈ TxtNPMemQk, suppose by way of contradiction otherwise.
Then, we can maintain an interval [lj, uj], such that after the j-th query, for
lj ≤ i ≤ uj, Li is consistent with the answers given so far. Intuitively, m− dr

is closer to m than to m − dr+1 — thus one can answer a query for m − dr

‘yes’ (if r is closer to uj) and ‘no’ (if r is closer to lj, with the nearest positive
example being m); this allows one to maintain at least half of the previous
possibilities as consistent with the new answer.

Initially, let l0 = 0 and u0 = 2k+1. After the j-th query (where j < k), extend
the portion of the input text already read to contain all elements of Luj

. If
the (j + 1)-th query (if any) is

— for an element m−dr, where r < lj +(uj−lj)/2, then the answer is ‘no’ with
the nearest positive example being m; lj+1 = lj + (uj − lj)/2 and uj+1 = uj.

— for an element m− dr, where r ≥ lj + (uj − lj)/2, then the answer is ‘yes’;
lj+1 = lj and uj+1 = lj + (uj − lj)/2.

Each query halves the difference between lj and uj. Thus when the learner
makes its conjecture, after making (at most) k queries, the difference between
lj and uj is non-zero, and thus there are more than one possible target language
consistent with the answers given and the portion of the text read. Thus the
learner cannot TxtNPMemQk-identify L.

(d) The class L used in proof of Theorem 13 also belongs to TxtBNPMemQ1
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(as the input text allows one to get an i such that 100i is in the language; now
querying 100i + 6 allows one to determine if the target language is Ai, Li or
Xi).

Theorem 2 showed that TxtFIN ⊆ MemQ ∩ SubQ. Now we show that no
uniformly bounded number of queries of either type suffices for a simulation
of full positive data.

Theorem 27 TxtFIN−⋃
k∈N(NPLSubQk∪BNPLSubQk∪NPMemQk∪

BNPMemQk) 6= ∅.

Proof. Let L = {L | (∃i > 0)(∃D | card(D) = i)[L = {0} ∪ {〈i, x〉+ 1 | x ∈
D}]}.

Clearly, L ∈ TxtFIN, and L can be learned using finitely many queries of
MemQ or SubQ type. However, it cannot be learned using at most k-queries
of any type, when text is not provided to the learner. To see this, suppose by
way of contradiction that M NPMemQk-identifies L (proof for other cases is
similar). Then, answer all queries, except for 0, as ‘no’ with the nearest positive
example being 0. Let Q be the set of questions asked in the above situation
(before M makes a conjecture, if any). Let m be the maximal element in Q.
Then M identifies at most one language of the form, {0}∪{〈i, x〉+1 | x < i},
where 〈i, 0〉 > 2m, even though L contains infinitely many such languages.

7 Complexity Speedup Advantages of One Type of Query over
Another

In this section we consider when a class is learnable by using query type QB,
but needs a high number of queries, whereas if we had used query type QA,
then a small number of queries suffice.

Ideally, we would like theorems of the following types:

(a) QA1 ∩QB diagonalizes against
⋃

k∈N(TxtBNPQBk ∪TxtNPQBk).

(b) QA1 ∩QBk+1 diagonalizes against TxtBNPQBk ∪TxtNPQBk.

That would give us a perfect set of speedup effects. However, this is not always
possible, and we get as close to the above as possible (we do not have the best
possible results for QB being MemQ, and QA being SubQ).

Note also that the results of type (c): QA1 diagonalizes against TxtBNPQB∪
TxtNPQB — have been obtained in the previous section, where possible: see
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Theorems 20, 21, and 22.

7.1 Txt vs Others

In this subsection, we show that classes witnessing hierarchies on the number
of queries made can be learnable by one-shot learners just from a text without
any queries.

Theorem 28 Suppose k ∈ N .

(a) TxtFIN ∩MemQk+1 − (NPMemQk ∪BNPMemQk) 6= ∅.

(b) TxtFIN ∩ SubQk+1 − (NPLSubQk ∪BNPLSubQk) 6= ∅.

Proof. (a) Let Li = {2x | x ≤ k + 1} ∪ {2i + 1}. Let L = {Li | i ≤ k + 1}.
Then, clearly, L ∈ TxtFIN. L ∈ MemQk+1 follows from Proposition 16.
Also, it is easy to verify that L 6∈ (NPMemQk ∪ BNPMemQk), as the
membership queries for even numbers ≤ 2(k + 1) can be answered ‘yes’ and
for odd numbers can be answered ‘no’ (the nearest positive examples can be
given as 2x for the query 2x+1). After k queries, there are still two languages
which would be consistent with the answers.

(b) Proof similar to that in part (a) can be used to show that L ∈ (TxtFIN∩
SubQk+1)− (NPLSubQk ∪BNPLSubQk).

7.2 QA = LSubQ and QB = SubQ

In this subsection, we establish speedup advantages of least counterexamples
over arbitrary ones, for subset queries.

Theorem 29 (a) (LSubQ1 ∩ SubQk+1) − (TxtNPSubQk ∪
TxtBNPSubQk) 6= ∅.

(b) (LSubQ1 ∩ SubQ)− ⋃
k∈N(TxtNPSubQk ∪TxtBNPSubQk) 6= ∅.

Proof. (a)

Let INITAi = {2j | j ∈ N} ∪ {2j + 1 | j ≤ i}.

Let L = {N} ∪ {INITAi | i < 2k}.

Clearly, L ∈ LSubQ1 (by querying N ; if N is a subset of the target language,
then the target language must be N ; otherwise if the least counterexample is
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2i + 1, then the target language is INITAi−1).

L can be learned using k+1 SubQ queries (by doing binary search on INITAi,
i = 0 to 2k — where INITA2k is treated as N) to find the maximal i such
that 2i + 1 is in the target language.

To show that L cannot be learned using TxtNPSubQk or TxtBNPSubQk,
one can use a technique similar to that used in the proof of Theorem 26(c).

Suppose by way of contradiction that M TxtNPSubQk-identifies
(TxtBNPSubQk-identifies) L. Initially let l0 = 0, u0 = 2k (here we treat
N as INITA2k). Intuitively, after the j-th query of the learner, all languages
INITAi, lj ≤ i ≤ uj are consistent with the answers given so far.

Do the following, until the learner makes its conjecture.
Loop: for j = 0 to k − 1

Extend the initial portion of the text read by the learner so far, to make
it a text for INITAlj , and provide this text to the learner.

Suppose the (j + 1)-th query (if any) of the learner is for INITAi.
If i ≤ (lj+uj)/2, then answer ‘yes’, and let lj+1 = (lj+uj)/2, and uj+1 = uj.

Otherwise, answer ‘no’, with 2i+1 as the negative counterexample, give
2i as the (bounded) nearest positive example, and let lj+1 = lj and
uj+1 = (lj + uj)/2.

End Loop

Note that uj − lj ≥ 2k−j, as the difference gets halved after each query. Now,
at the time the learner makes its conjecture, if any, it has asked j ≤ k queries.
Thus, lj < uj. Hence, the answers given, and the initial portion of the input
text read by the learner are consistent with at least two possible target lan-
guages INITAlj and INITAuj

. Thus, the learner does not identify at least
one of them.

(b) Similar to part (a), except that we use L = {N}∪{INITAi | i ∈ N}.

7.3 QA = MemQ and QB = (L)SubQ

In this section we study speedup advantages of membership queries of various
types over subset queries. Our first result shows when a bounded number of
membership queries and k + 1 subset queries have advantage over k subset
queries. In particular, we show that if simple membership queries are used,
then r such membership queries, for 2r ≥ k + 2, are needed to get such
an advantage (and this bound cannot be lowered, see Theorem 21(i)). If, in
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addition to membership queries, a learner gets more feedback, or has access
to a text of the target language, then just one such query can sometimes show
speedup advantages over subset queries.

Theorem 30 Suppose r, k ≥ 0.

(a) Suppose 2r ≥ k + 2.

(MemQr ∩ SubQk+1)− (TxtNPLSubQk ∪TxtBNPLSubQk) 6= ∅.

(b) (BNPMemQ1∩SubQk+1)−(TxtNPLSubQk∪TxtBNPLSubQk) 6= ∅.

(c) (NPMemQ1∩SubQk+1)− (TxtNPLSubQk ∪TxtBNPLSubQk) 6= ∅.

(d) (TxtMemQ1∩SubQk+1)−(TxtNPLSubQk∪TxtBNPLSubQk) 6= ∅.

Proof. (a) Consider k + 2 languages L0, L1, ..., Lk+1, defined as follows.

Let xi = 2i + 1, for 1 ≤ i ≤ k + 1.

Let yj = 2(k + 2) + 2j + 1, for 1 ≤ j ≤ r.

Let X = {xi | 1 ≤ i ≤ k + 1}.

Let Y = {yi | 1 ≤ i ≤ r}.

Let L0 = {x | x < yr, x 6∈ X ∪ Y }.

For 1 ≤ i ≤ k+1, let Li = L0∪{xi}∪{yj | bj = 1, where b1 . . . br is the binary
representation of i}.

Let L = {Li | i ≤ k + 1}.

It is easy to verify that L ∈ MemQr (a learner can ask questions about
y1 . . . yr to determine the target language). L ∈ SubQk+1 follows from Propo-
sition 16.

However, k LSubQ queries, even in the presence of a text are not enough. To
see this, consider giving a learner a text for L0, and answering subset queries
based on the target language being L0 (where negative counterexample would
be xi, for subset queries about Li, i > 0, along with the (bounded) nearest
positive example being xi − 1). After at most k questions, the learner has
to conjecture a grammar for L0. Let i be such that the learner does not ask
query for Li, i > 0. Then, the portion of the input text read (before the learner
makes its conjecture) can be extended to a text for Li, and the answers given
are consistent with the target language being Li. Thus, the learner fails to
TxtNPLSubQk-identify (TxtBNPLSubQk-identify) Li.
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(b) Can be proved similarly to (a), except that in this case we use yj =
2(k + 2) + j, and let Li = L0 ∪ {xi, yi}, for 1 ≤ i ≤ k + 1.

BNPMemQ1-identification can be done by querying yk+1 (which would give
the nearest yi, if any, which is a member of the target language, and thus
allowing one to determine the target language). Proof of L ∈ SubQk+1 and
L 6∈ (TxtNPLSubQk ∪TxtBNPLSubQk), can be done as in part (a).

(c) The class considered in part(b) belongs to NPMemQ1 too.

(d) Let L = {2x | x ∈ N}.

For i ≤ k, let Li = L ∪ {2i + 1, 2(k + 1) + 1}.

Let L = {L} ∪ {Li | i ≤ k}.

L ∈ TxtMemQ1 as one can query 2(k+1)+1, to find out whether the target
language is L or one of Li. In the latter case, one can just TxtFIN identify
Li from text.

Also L ∈ SubQk+1, as L contains only k + 2 languages (Proposition 16).

L 6∈ (TxtNPLSubQk ∪ TxtBNPLSubQk), as the learner must conjecture
on an input text being for L, and answers being given based on the target
language being L. If Li is not queried before the conjecture is made (there
exists such an Li, where i ≤ k), then the answers are consistent with the
target language being Li, and the portion of the input text read by the learner
(before it makes its conjecture) can be extended to a text for Li.

The next result shows when, for classes learnable via subset queries, a finite
number of membership queries can do more than any uniformly bounded num-
ber of subset queries. While one simple membership query does not usually
give this sort of speedup advantage, adding access to text, or one extra query
and the nearest positive examples provides advantage over the learners using
subset queries and least counterexamples (if subset queries return arbitrary
counterexamples, rather than the least ones, then just one membership query
returning the nearest positive example suffices).

Theorem 31 (a) TxtMemQ1 ∩ SubQ − ⋃
k∈N(TxtNPLSubQk ∪

TxtBNPLSubQk) 6= ∅.

(b) NPMemQ1 ∩ SubQ− ⋃
k∈N(TxtNPSubQk ∪TxtBNPLSubQk) 6= ∅.

(c) NPMemQ2∩SubQ−⋃
k∈N(TxtNPLSubQk∪TxtBNPLSubQk) 6= ∅.

(d) MemQ ∩ SubQ− ⋃
k∈N(TxtNPLSubQk ∪TxtBNPLSubQk) 6= ∅.
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Proof. (a): P is a partial recursive function defined later. It will be the case
that 1 ≤ P (i) ≤ i.

Let F be a recursive function such that F (0) = 1, and F (i + 1) = F (i) +
100(i + 1) + 1.

Let L = {0} ∪ {F (i) + 2 | i ∈ N}.

For 1 ≤ j ≤ i, let Ai,j = {F (i) + 100j + 2}.

Let Li = {F (i) + 1} ∪ {F (i) + 100j | 1 ≤ j ≤ i + 1}.

Let Xi = Li ∪ {F (i) + 2, F (i) + 100P (i) + 2}, if P (i) is defined.

L = {L} ∪ {Ai,j | 1 ≤ j ≤ i} ∪ {Li | i ∈ N} ∪ {Xi | P (i)↓}.

It is easy to verify that L ∈ TxtMemQ1. First, wait for either 0 or F (i) + 1
or F (i) + 100j + 2 to appear in the text, for some 1 ≤ j ≤ i. If 0 appears in
the input text, then L is the target language; if F (i) + 1 appears in the input
text, then query F (i) + 2: if the answer is ‘no’, then the target language is Li,
otherwise the target language is Xi; if F (i) + 100j + 2 appears in the input
text, for some 1 ≤ j ≤ i, then query F (i) + 1 — if the answer is ‘yes’, then
the target language is Xi, otherwise the target language is Ai,j.

For seeing that L is in SubQ, note that one can first query L: if L is a subset
of the target language then the target language is L. Otherwise, query Li, and
Ai,j one by one until a subset (for parameter i) is found. Then one can query
Li, Ai,j, for 1 ≤ j ≤ i. If Li is not a subset of the target language, then the
target language is one of Ai,j (the parameter j can then be easily determined
by querying Ai,j for 1 ≤ j ≤ i). If Li is a subset of the target language, then
if some Ai,j is also a subset of the target language, where 1 ≤ j ≤ i, then the
target language is Xi; otherwise the target language is Li.

Let M0, M1, . . . denote a recursive enumeration of all TxtNPLSubQ (respec-
tively, TxtBNPLSubQ) learners. We now define P (i). Suppose i = 〈r, s〉.
Consider the learner Mr using hypothesis space given by ϕs (that is ϕs(k, x)
determines whether x belongs to the k-th language in the hypothesis space).
Consider Mr on a text for Li. Note that one can detect from a recursive pro-
cedure for the query from the class, which query in the class is being asked.
Answer ‘no’ to the query L or the query Lj, Xj, where j 6= i, or the query
Aj,r’s, with the nearest positive example given based on the target language
being Li. Answer ‘yes’ to the subset query for Li. If Xi is queried, then P (i)↑.
If Mr outputs a conjecture and there exists a j such that Ai,j has not been
queried, before making the conjecture, then let P (i) = j, for one such j. Oth-
erwise P (i) is not defined. It is easy to verify that Mr either makes at least i
queries (for each of Ai,j) or fails to identify at least one of Li or Xi.
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Thus, for all i = 〈r, s〉, Mr fails to TxtNPSubQi−1 (TxtBNPSubQi−1)-
identify L using hypothesis space given by ϕs. As every machine has infinitely
many copies, part (a) follows.

(b): Similar to part (a), except that we use

L = {0} ∪ {F (i) + x | i ∈ N, x ∈ {0, 4}},

Li = {F (i) + 3} ∪ {F (i) + 100j | 1 ≤ j ≤ i + 1}, and

Xi = Li ∪ {F (i) + 2, F (i) + 100P (i) + 2}, if P (i) is defined.

Now the class is in NPMemQ1, as one could do a membership query for 0.
Answer ‘yes’ would imply that the target language is L; answer ‘no’, with the
nearest positive example of the form F (i) + 2 would imply that the target
language is Xi; the nearest positive example of the form F (i)+3 would imply
that the target language is Li; the nearest positive example of the form F (i)+
100j + 2, for 1 ≤ j ≤ i, would imply that the target language is Ai,j.

L 6∈ TxtBNPLSubQk can be done as in part (a).

L 6∈ TxtNPSubQk holds as, except for the query being L, all answers can
be done as in part (a), by giving least negative counterexamples. For the
query being L: the negative counterexample given is F (i)+4, with the nearest
positive example being F (i) + 3. The rest of the proof can proceed as in part
(a).

(c) L as defined in part (a) above is in NPMemQ2, as one can first query 0.
If 0 is in the target language, then the target language must be L. If 0 is not
in the target language, then if the nearest positive example to 0 is F (i) + 1,
then query F (i) + 2 to determine if the target language is Li or Xi; on the
other hand, if the nearest positive example to 0 is F (i) + 100j + 2, then the
target language must be Ai,j.

(d) Note that INIT (as defined in the proof of Theorem 24 (a)) belongs to
MemQ. Thus, part (d) follows from proof of Theorem 24 (a).

The above theorem is optimal, as
⋃

r∈N BNPMemQr ⊆ ⋃
k∈N SubQk, (see

Theorem 21(g)) and NPMemQ1 ⊆ ⋃
k∈N NPLSubQk (see Theorem 21(d)).

7.4 QA = (L)SubQ and QB = MemQ

The results in this section do not give us the complete picture, and there are
some open problems.
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First, we show that one simple subset query gives advantage over any uni-
formly bounded number of membership queries of the strongest type.

Theorem 32 SubQ1 ∩ MemQ − ⋃
k∈N(TxtNPMemQk ∪

TxtBNPMemQk) 6= ∅.

Proof. Let L = {2x | x ∈ N}. Let Li = L∪ {1}− {2i}. Let L = {L} ∪ {Li |
i ∈ N}.

L ∈ SubQ1 ∩ MemQ: For the SubQ learner, the answer to the query for
L gives away the language. For MemQ learner, the query of 1 determines
whether the language is L or one of the Li’s; in the latter case, one can
sequentially query the even numbers to determine the unique i such that 2i 6∈
target language — which would give Li as the target language.

We now show that L 6∈ TxtNPMemQk ∪ TxtBNPMemQk. Suppose a
learner M is given. Suppose answers given to queries of M are ‘yes’ for all the
questions in L ∪ {1}.

If M outputs a conjecture on some text for some language in L, then let Q
be the set of questions asked by M on T , and let σ be the initial segment
of the text which has been read by M by the time it outputs its conjecture.
Otherwise, let T be a text (for some language in L) on which M asks maximal
number of questions, let Q be the set of questions asked by M on this text,
and let σ be the initial segment of the text which has been read by M by the
time it asks its last question. Suppose i is such that, 2i > max(content(σ))
and 2i > any of the queries in Q. Then, M would have the same behaviour
(in terms of whether it outputs a conjecture or not, and which conjecture it
outputs) for any target language Lj ∈ L, j > i, where the input text provided
starts with σ. Thus, M can identify at most one of the languages Lj, j > i,
even though L contains infinitely many such languages.

Unfortunately, the strongest possible speedup result for subset queries and
k + 1 membership queries over k —

SubQ1 ∩MemQk+1 − (TxtNPMemQk ∪TxtBNPMemQk) 6= ∅,

does not hold (this follows from Proposition 17 and Theorem 18). The fol-
lowing theorem tries to obtain some closest possible results: we must either
add some extra power to a subset query or learners using k + 1 membership
queries, or not allow access to full positive data to learners using at most k
membership queries.

Theorem 33 For all k ∈ N ,

(a) LSubQ1 ∩MemQk+1 − (TxtNPMemQk ∪TxtBNPMemQk) 6= ∅.
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(b) SubQ1 ∩TxtMemQk+1 − (TxtNPMemQk ∪TxtBNPMemQk) 6= ∅.

(c) SubQ1 ∩MemQk+1 − (NPMemQk ∪BNPMemQk) 6= ∅.

Proof. (a) L given in Theorem 29(a) is in MemQk+1 (this can be done by
finding the largest i ≤ 2k+1−1 such that 2i+1 belongs to the target language,
in a binary search manner). L can be shown not to be in (TxtNPMemQk ∪
TxtBNPMemQk), using essentially the idea of the diagonalization proof in
Theorem 29(a).

(b) Let L = {2x | x ∈ N} ∪ {4x + 1 | x ∈ N}.

Let Li = L∪ {4j + 3, 4(i + k + 1) + 3}− {4i + 1}, where j = (i mod (k + 1)).

Let L = {L} ∪ {Li | i ∈ N}.

It is easy to verify that L ∈ SubQ1 (query L; if a subset, then the target
language must be L; otherwise the counterexample is of the form 4i + 1, for
some i, which implies that the target language is Li).

Also L ∈ TxtMemQk+1, as one can query 4j + 3, for j ≤ k. If none of these
are present, then the target language must be L. Otherwise, using the text
provided, one can find an i such that 4(i+k +1)+3 is in the target language.
Then the target language must be Li.

On the other hand, L is not in TxtNPMemQk or TxtBNPMemQk. To see
this, note that one can give the text for L as input to the learner, and answer
all queries based on the target language being L. Let σ be the inital portion
of the input text that has been read by the learner at the time it makes its
conjecture. Now, at the time the learner makes its conjecture, it has asked
at most k queries. Thus, there is a j < k + 1, such that the learner has not
queried 4j + 3, and there exists an i such that j = (i mod (k + 1)) and the
learner has neither queried 4(i + k + 1) + 3 nor 4i + 1, and content(σ) does
not contain 4i+1. But then the learner cannot distinguish between the target
language being L or Li, as the data for 4j + 3 and 4(i + k + 1) + 3 may be
added later to the input text, and 4i + 1 may be omitted from the input text.

(c) Let Li = N − {2i + 1}.

Let L = {N} ∪ {Li | i ≤ k}. Then, L ∈ SubQ1 ∩MemQk+1: SubQ learner
can query N to determine the target language. If N is a subset of the tar-
get language, then the target language must be N . Otherwise, the negative
counterexample gives away the target language. L ∈ MemQ follows from
Proposition 16.

However, L 6∈ (NPMemQk ∪BNPMemQk). To see this, every membership
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question is answered ‘yes’. If the query for 2i+1 is not made, then the answers
are consistent with N as well as Li.

Questions about what happens when we consider (Txt)(NP/BNP)SubQr ∩
(NP/BNP)MemQk+1 − Txt(NP/BNP)MemQk have not been answered
optimally. The following gives some partial simulation results, which show why
this is not easy.

Here note that NPSubQ1∩NPMemQ1−TxtBNPMemQ 6= ∅, as the class
L of Theorem 12 also belongs to NPSubQ1 ∩NPMemQ1.

A number of further results employ the following remark.

Remark 34 Suppose L ∈ LSubQk ∩ NPMemQm. Then, L is finite. This
can be shown by induction. For k = 0, this is clearly true. Suppose it holds
for k = r. Then, for k = r + 1, suppose the first query asked by the LSubQk

learner is A.

Consider the answers to queries by the NPMemQm learner for L, when the
target language contains min(A). The nearest positive example to a negatively
answered membership query z is ≤ max({2z−min(A), min(A)}) (as the nearest
possible element to z is no further than min(A)). As the NPMemQm learner
asks at most m questions before making its conjecture, we immediately have
that the number of languages in L which contain min(A) is finite.

The set of languages in L − {∅} which do not contain min(A) is LSubQk−1-
learnable, and thus is finite, by induction.

Our last result shows that any k subset queries can be simulated by 2k − 1
simple membership queries and access to full positive data if it is known that
a class is learnable via uniformly bounded number of membership queries of
any type.

Corollary 35 Suppose k,m ∈ N .

(a) SubQk ∩MemQm ⊆ TxtMemQ2k−1.

(b) SubQk ∩BNPMemQm ⊆ TxtMemQ2k−1.

(c) SubQk ∩NPMemQm ⊆ TxtMemQ2k−1.

Proof. Using Proposition 17 and Remark 34, we have that if L ∈ MemQm

or L ∈ BNPMemQm or L ∈ SubQk ∩NPMemQm, then L is finite. Corol-
lary now follows using Theorem 19.
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It is open at present if the above results can be improved to give a complete
picture.

8 Conclusion

In this paper, we extended D. Angluin’s model of learning via subset and
membership queries, allowing teachers, in addition to just answers ‘no’ or ar-
bitrary counterexamples (as suggested by D. Angluin in her original query
model in [Ang88]) to return least counterexamples and/or the nearest (“cor-
recting”) positive examples together with answer ‘no’ or a counterexample. We
explored how different variants of corresponding learning models fair against
each other in terms of their general learning capabilities and in terms of their
complexity advantages, where the number of queries is used as the complexity
measure (in the latter case, possible access to a text for the target language
becomes a significant factor, contributing an interesting component to the
interplay of different learning tools). Though, in most cases, just one query
of one type can help more than any number of queries of another type with
the strongest possible feedback, typically even coupled with access to text
for the target language, the general picture is more complex — for example,
sometimes one query is not enough, while two queries suffice — or one query
is enough to achieve advantage (general, or complexity) if a learner has also
access to full positive data.

We also studied complexity speedup advantages of using one type of query,
when queries of both types are enough to learn a class of languages. Here we
do not have a complete picture for the advantages of SubQ over MemQ (see
Section 7.4). One may also consider similar questions regarding complexity
speed up advantages of using nearest positive examples over bounded nearest
positive examples and vice versa. We have some partial results on this topic,
however the general picture seems likely to be complex [JK07].

Our approach to representation of covert feedback from a teacher in form
of the nearest positive examples is, of course, only one of possible ways to
address this problem. Still, this model gives us an opportunity to explore and
compare the power of different types of data obtained from a teacher during
the finite learning process. Of course, since our model uses numeric codes
rather than strings, our results cannot be used for immediate practical advice.
[BBBD05,BBDT06,TK07a,TK07b] suggested a somewhat different approach,
using corrections as extensions of queried strings. In [BBdlHJT07], the authors
use corrections at the shortest edit distance from the queried strings. However,
as far as learning natural languages is concerned, whereas all such types of
corrections are more or less natural from syntactical standpoint, they might
be still semantically inadequate, as semantics of the correction would typically
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heavily depend on the context (for example, the incorrect English word “milb”
could be “mill” or “mild” or “mile”, depending on the context). In general,
however, it would be interesting to define and explore formalizations of one-
shot learnability via queries, where positive feedback would be semantically
close to the negative datum, rather than being close based on coding (of
course, it would not be an easy proposition to correct a wrong sentence in
this case, as such a grammatically incorrect sentence could suggest multiple
correct close semantics). Such models may also be interesting in the context of
learning some important specific indexed classes, for example, patterns, finite
automata, or regular expressions.

Acknowledgements: We thank the anonymous referees for several helpful
comments which improved the presentation of this paper.

References

[Ang80] D. Angluin. Inductive inference of formal languages from positive
data. Information and Control, 45:117–135, 1980.

[Ang88] D. Angluin. Queries and concept learning. Machine Learning, 2:319–
342, 1988.

[Ang01] D. Angluin. Queries revisited. In Algorithmic Learning Theory: 12th
International Conference (ALT’ 2001), volume 2225 of Lecture Notes
in Artificial Intelligence, pages 12–31. Springer-Verlag, 2001.

[BBBD05] L. Becerra-Bonache, C. Bibire, and A. H. Dediu. Learning DFA
from corrections. In Henning Fernau, editor, Theoretical Aspects of
Grammar Induction (TAGI), pages 1–12, 2005. WSI–2005–14.

[BBdlHJT07] L. Beccera-Bonache, C. de la Higuera, J. C. Janodet, and F. Tantini.
Learning balls of strings with correction queries. In J. N. Kok,
J. Koronacki, R. Lopez de Montara, S. Matwin, D. Mladenic, and
A. Skowron, editors, European Conference on Machine Learning,
2007, volume 4701 of Lecture Notes in Computer Science, pages 18–
29. Springer-Verlag, 2007.

[BBDT06] L. Becerra-Bonache, A. H. Dediu, and C. T̂ırnăucă. Learning DFA
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