
Language Learning With Some Negative Information 1

Ganesh Baliga
Department of Computer Science

Rowan College of New Jersey
Glassboro, NJ 08028

USA

John Case
Department of Computer and Information Sciences

University of Delaware
Newark, DE 19716

USA

Sanjay Jain
Institute of Systems Science

National University of Singapore
Singapore 0511

Republic of Singapore

1A preliminary version of this paper was presented at the 10th Symposium on Theoretical Aspects of
Computer Science (STACS’93), Würzburg, Germany, Feb. 1993.

Abstract

Gold–style language learning is a formal theory of learning from examples by algorithmic de-
vices called learning machines. Originally motivated by child language learning, it features
the algorithmic synthesis (in the limit) of grammars for formal languages from information
about those languages. In traditional Gold–style language learning, learning machines are not
provided with negative information, i.e., information about the complements of the input lan-
guages. We investigate two approaches to providing small amounts of negative information and
demonstrate in each case a strong resulting increase in learning power. Finally, we show that
small packets of negative information also lead to increased speed of learning. This result agrees
with a psycholinguistic hypothesis of McNeill correlating the availability of parental expansions
with the speed of child language development.

1

1 Introduction

Gold-style formal language learning [12] features the algorithmic synthesis of generating pro-
cedures for formal languages from enumerations of positive information about the languages.
Herein we consider Gold-style formal language learning augmented in various ways by some
amount of negative information about the languages.

Chapter 6 of [9] treats the case of augmentation with various powerful forms of nearly
complete grammatical information for the complement of the language. In [4] the report on
this chapter is motivated by treating negative information as a more mathematically tractable
substitute for semantic information. [18, 19] present evidence that semantics in addition to
positive information may be essential to human language learning. [14] examines language
learning with varying densities of negative information provided.

Fulk’s chapter, of necessity, is about learning recursive languages, but we would like to
consider the learning of r.e. not recursive languages too, where the positive information is
supplemented by some negative information. For example, some recursively axiomatizable
theories such as first order group theory are r.e. not recursive [17], yet we might want to study
the learning of recursive axiomatizations (i.e., generators) for them.

In the present paper we consider the effects on learning power obtained by augmenting the
positive information by apparently small, finite, core amounts of negative information. We
consider two cases, one (Section 3) where only the finite core is supplied and one (Section 4)
where negative information in addition to the finite core is allowed. This latter case was
motivated in part by [20] which itself, in part, was motivated by [1, 29]. We refer to the latter
style of negative information presentation as open.

In Section 3 we present results to the effect that tremendous gains in learning power are
obtained from adding apparently very small, suitable, finite sets of negative information.

In Section 4 we present results showing that, with respect to learning power, in some cases,
allowing more mistakes in final generators learned can more than compensate information the-
oretically for open negative information. In other cases, we show that small additions of open
negative information can more than compensate, also information theoretically, for mistakes
in final grammars. It is noted that, in almost all cases, additional open negative information
results in strictly more learning power. We discuss the relation of this to the hypothesis in [16]
that increasing certain forms of language correction leads to increased speed in language devel-
opment. In Section 4 it is also noted that, regarding learning power for languages, supplying
an unbounded amount of open negative information is equivalent to supplying all the negative
(as well as the positive) information to a learning machine.

Finally in Section 5 we present a surprising preliminary result supportive of the hypothesis of
[16] mentioned in the just previous paragraph. This result says that one does see a learning speed
increase (as measured by mind-change complexity [8]) from a minimal, non-vacuous amount of
open negative information.

Some open questions are presented in Section 6.

4

2 Preliminaries

2.1 Notation

Any unexplained recursion theoretic notation is from [28]. N denotes the set of natural
numbers, {0, 1, 2, 3, . . .}. Unless otherwise specified, e, i, j, k,m, n, p, s, w, x, y, z, with or with-
out decorations1, range over N . ∗ denotes a non-member of N and is assumed to satisfy
(∀n)[n < ∗ < ∞]. a, b and c, with or without decorations, range over N ∪ {∗}. ∅ denotes the
empty set. ⊆ denotes subset. ⊂ denotes proper subset. ⊇ denotes superset. ⊃ denotes proper
superset. P and S, with or without decorations, range over sets. P(S) denotes the power set

of S. card(S) denotes the cardinality of S. ith-min(S) denotes the element x of S, if any, such

that card({y ∈ S | y ≤ x}) = i. S1 ⊕S2
def
= {2x | x ∈ S1} ∪ {2x + 1 | x ∈ S2}. S1∆S2 denotes

the symmetric difference between S1 and S2. S1 =n S2 denotes card({x | x ∈ S1∆S2}) ≤ n;
S1 =∗ S2 means that card({x | x ∈ S1∆S2}) is finite. Dx denotes the finite set with canonical
index x [28]. We sometimes identify finite sets with their canonical indices. We do this when
we consider functions or machines which operate on complete knowledge of a finite set (equiv-
alently, an argument which is a canonical index of the finite set), but when we want to display
the argument simply as the set itself.

↑ denotes undefined. max(·),min(·) denote the maximum and minimum of a set, respec-
tively, where max(∅) = 0 and min(∅) =↑.

η ranges over partial functions with arguments and values from N . η(x)↓ denotes that η(x)
is defined; η(x)↑ denotes that η(x) is undefined.

f, g and F with or without decorations range over total functions with arguments and values
from N . domain(η) and range(η) denote the domain and range of the function η, respectively.

〈i, j〉 stands for an arbitrary, computable, one-to-one encoding of all pairs of natural numbers
onto N [28]. Similarly we can define 〈·, . . . , ·〉 for encoding multiple natural numbers onto N .

The quantifiers ‘
∞
∀ ’, and ‘

∞
∃ ’ essentially from [3], mean ‘for all but finitely many’ and ‘there

exist infinitely many’, respectively. The quantifier ‘∃!’ means ‘there exists a unique’.
ϕ denotes a fixed acceptable programming system for the partial computable functions:

N → N [27, 28, 15]. ϕi denotes the partial computable function computed by program i in the
ϕ-system. Φ denotes an arbitrary fixed Blum complexity measure [3, 13] for the ϕ-system. The
set of all total recursive functions of one variable is denoted by R.

Wi denotes domain(ϕi). Wi is, then, the r.e. set/language (⊆ N) accepted (or equivalently,
generated) by the ϕ-program i. E will denote the set of all r.e. languages. L, with or without
decorations, ranges over E . L denotes the complement of L. For language L, we use χL to
denote the characteristic function of L. L, with or without decorations, ranges over subsets

of E . W s
i

def
= {x ≤ s | Φi(x) ≤ s}. MinGram(L) denotes min({i | Wi = L}). FIN

def
= {L |

card(L) < ∞}. SVT
def
= {L | (∀x)(∃!y)[〈x, y〉 ∈ L]}.

We sometimes consider partial computable functions with multiple arguments in the ϕ
system. In such cases we implicitly assume that a 〈·, . . . , ·〉 is used to code the arguments, so,
for example, ϕi(x, y) stands for ϕi(〈x, y〉).

1Decorations are subscripts, superscripts and the like.

5

2.2 Learning Machines

We now consider language learning machines. Definition 1 below introduces a notion that
facilitates discussion about elements of a language being fed to a learning machine.

Definition 1 A sequence σ is a mapping from an initial segment of N into (N ∪ {#}). The
content of a sequence σ, denoted content(σ), is the set of natural numbers in the range of σ.
The length of σ, denoted by |σ|, is the number of elements in σ.

Intuitively, #’s represent pauses in the presentation of data. We let σ and τ , with or without
decorations, range over finite sequences. SEQ denotes the set of all finite sequences. The set of
all finite sequences of natural numbers and #’s, SEQ, can be coded onto N .

Definition 2 A language learning machine is an algorithmic device which computes a mapping
from SEQ into N .

Later in Definition 13 and, again in Definition 49, we present variants of the language learn-
ing machines from Definition 2 just above. For convenience of exposition we avoid introducing
these variants until we need them.

We let M, with or without decorations, range over learning machines.

2.3 Fundamental Language Identification Paradigms

Definition 3 A text T for a language L is a mapping from N into (N ∪ {#}) such that L is
the set of natural numbers in the range of T . The content of a text T , denoted content(T), is
the set of natural numbers in the range of T .

Intuitively, a text for a language is an enumeration or sequential presentation of all the
objects in the language with the #’s representing pauses in the listing or presentation of such
objects. For example, the only text for the empty language is just an infinite sequence of #’s.

We let T , with or without superscripts, range over texts. T [n] denotes the finite initial
sequence of T with length n. Hence, domain(T [n]) = {x | x < n}. For n ≤ |σ|, σ[n] denotes
the finite initial sequence of σ with length n.

2.3.1 Explanatory Language Identification

In Definition 4 below we spell out what it means for a learning machine on a text to converge
in the limit.

Definition 4 Suppose M is a learning machine and T is a text. M(T)↓ (read: M(T) converges)

⇔ (∃i)(
∞
∀ n) [M(T [n]) = i]. If M(T)↓, then M(T) is defined = the unique i such that (

∞
∀

n)[M(T [n]) = i]; otherwise, we say that M(T) diverges (written: M(T)↑).

We now introduce criteria for a learning machine to be considered successful on languages.

Definition 5 [12, 7, 24] Recall that a ranges over N ∪ {∗}.

(a) M TxtExa-identifies L (written: L ∈ TxtExa(M)) ⇔ (∀ texts T for L)(∃i | Wi =a

L)[M(T)↓ = i].

6

(b) TxtExa = {L | (∃M)[L ⊆ TxtExa(M)]}.

Gold [12] introduced the criteria we call TxtEx0. The generalization to the a > 0 case in
Definition 5 was motivated by the observation that humans rarely learn a language perfectly.
The a > 0 case is from [7], but [24], independently, introduced the a = ∗ case. The influence
of Gold’s paradigm [12] to human language learning is discussed by Pinker [26], Wexler and
Culicover [31], Wexler [30], and Osherson, Stob, and Weinstein [21, 22, 23].

We sometimes write TxtEx for TxtEx0 including in the names of those learning classes
introduced in later sections where ‘TxtEx0’ is a proper substring of those names.

Next we define order independence, but not in the same way as in [2].

Definition 6 [9, 10] A machine, M, is said to be order independent ⇔ (∀ texts T, T ′ |
content(T) = content(T ′))[M(T)↓ = i ⇔ M(T ′)↓ = i].

Theorem 7 [9, 10, 23] For all a,M, there exists an order independent machine M′ such that
TxtExa(M) ⊆ TxtExa(M′).

2.3.2 Behaviorally Correct Language Identification

Definition 8

(a) M TxtBca-identifies L (written: L ∈ TxtBca(M)) ⇔ (∀ texts T for L)(
∞
∀ n)[WM(T [n]) =a

L].

(b) TxtBca = {L | (∃M)[L ⊆ TxtBca(M)]}.

Definition 8 is from [7]. The a ∈ {0, ∗} cases were independently introduced in [24, 25].
We sometimes write TxtBc for TxtBc0 including in the names of those learning classes

introduced in later sections where ‘TxtBc0’ is a proper substring of those names.

2.3.3 Language Learning on Characteristic Function Input

Let f [n] denote the sequence (〈0, f(0)〉, 〈1, f(1)〉, . . . , 〈n−1, f(n−1)〉). We say that M(f)↓ = i

⇔ (
∞
∀ n)[M(f [n]) = i].

Definition 9 [7]

(a) M ExGena-identifies L (written: L ∈ ExGena(M)) ⇔ M(χL)↓ and WM(χL) =a L.

(b) ExGena = {L | (∃M)[L ⊆ ExGena(M)]}.

Definition 10 [7]

(a) M BcGena-identifies L (written: L ∈ BcGena(M)) ⇔ (
∞
∀ n)[WM(χL[n]) =a L].

(b) BcGena = {L | (∃M)[L ⊆ BcGena(M)]}.

7

2.3.4 Some Basic Results

Theorem 11 For all n, the following hold.

(a) (TxtExn+1 ∩ P(SVT)) −TxtExn 6= ∅.

(b) (TxtBcn+1 ∩ P(SVT)) −TxtBcn 6= ∅.

(c) TxtEx2n+1 −TxtBcn 6= ∅.

(d) (TxtEx∗ ∩ P(SVT)) −
⋃

n TxtExn 6= ∅.

(e) (TxtBc ∩ P(SVT)) − TxtEx∗ 6= ∅.

(f) (TxtBc∗ ∩ P(SVT)) − (
⋃

n TxtBcn ∪ TxtEx∗) 6= ∅.

(g) TxtEx2n ⊂ TxtBcn.

(h) E 6∈ TxtBc∗.

Parts (a), (b), (d), (e) and (f) of the above theorem can be derived from theorems proved
in [7] and [8]. Parts (c), (g) and (h) of the above theorem are directly from [7].

The following result from [7, 24], based on a result from [12], is used below.

Theorem 12 For each infinite language L, FIN ∪ {L} 6∈ TxtBc∗.

3 Identification with Finite Negative Information

In this section we consider the effects on learning if an apparently small finite set of negative
information is given in addition to text. For this purpose, we introduce a variant of learning
machine (called type 2).

Definition 13 A type 2 language learning machine is an algorithmic device which computes a
mapping from SEQ × N into N .

Intuitively the second argument is for a canonical index for a finite set of negative informa-
tion about the language to be learned.2 From now on we will drop the phrase type 2 . Context
will show which type of learning machine we have in mind. M, with or without decorations,
will range over both types of learning machine.

Definition 14 We say that M(T, i) converges to j (denoted M(T, i)↓ = j) ⇔ (
∞
∀

n)[M(T [n], i) = j]; we say that M(T, i)↑ ⇔ (
∞
∃ n)[M(T [n], i) 6= M(T [n + 1], i)].

2The canonical index is convenient but not essential; see Remark 17 in Section 3.1 below.

8

3.1 Definitions

Recall from Section 2.1 that we sometimes identify finite sets with their canonical indices. In
part (a) of both Definitions 15 and 16 just below, S is the core of negative information.

Definition 15

(a) M NegFbTxtExa-identifies L ∈ E (written: L ∈ NegFbTxtExa(M)) ⇔ (∃S ⊆ L |
card(S) ≤ b)(∀T | T is a text for L)[M(T, S)↓ and WM(T,S) =a L].

(b) NegFbTxtExa = {L ⊆ E | (∃M)[L ⊆ NegFbTxtExa(M)]}.

Definition 16

(a) M NegFbTxtBca-identifies L ∈ E (written: L ∈ NegFbTxtBca(M)) ⇔ (∃S ⊆ L |

card(S) ≤ b)(∀T | T is a text for L)(
∞
∀ n)[WM(T [n],S) =a L].

(b) NegFbTxtBca = {L ⊆ E | (∃M)[L ⊆ NegFbTxtBca(M)]}.

Remark 17 In part (b) of Definitions 15 and 16 above the learning classes defined are exten-
sionally equivalent to those we would obtain if, instead, we fed an r.e. index or a characteristic
index of S to the learning device instead of a canonical index. Actually the classes would be
extensionally invariant if we merely fed an enumeration of S marked as negative.

We have the following straightforward proposition.

Proposition 18 For all a,

(a) NegF0TxtExa = TxtExa and

(b) NegF0TxtBca = TxtBca.

3.2 Results

The next six theorems illustrate the tremendous learning power obtained already from sets of
negative information with cardinality less than or equal two.

Recall that ith-min(S) denotes the element x of S, if any, such that card({y ∈ S | y ≤ x}) =
i.

Theorem 19 {L ∈ E | L is infinite} ∈ NegF1TxtEx.

Proof. For each L ∈ E such that L is infinite, define SL = {ithL -min(L)}, where iL =
MinGram(L) + 1.

Define M as follows.

M(σ, S) =

{

i − 1, if (∃j)[[S = {j}] ∧ [card({x ≤ j | x 6∈ content(σ)}) = i]];
0, otherwise.

Fix L such that L is infinite. Consider any text T for L. It is easy to see that M(T, SL)↓
and WM(T,SL) = L.

9

Corollary 20 SVT ∩ E ∈ NegF1TxtEx.

Proof. Follows from Theorem 19 and the fact that SVT ⊂ {L | L is infinite}.

Theorem 21 NegF1TxtEx −TxtBc∗ 6= ∅.

Proof. Let L = {L | (card(L) > 0) and (∃x ∈ L)[Wx = L]}. It is easy to see that L ∈
NegF1TxtEx. Note that, by a suitably padded recursion theorem [28], FIN ⊂ L. Hence, it
follows (from Theorem 12) that L 6∈ TxtBc∗.

Theorem 22 TxtEx1 ⊂ NegF1TxtEx.

Proof. We prove that TxtEx1 ⊆ NegF1TxtEx. Proper containment then follows from
Theorem 21 above. The remainder of the present proof is nonconstructive.

Suppose M is given. Without loss of generality assume that M is order independent. For
each L ∈ TxtEx1(M), let GL be the grammar converged to on L by M. For L ∈ TxtEx1(M),
define SL as follows

SL =







{m}, if [[L 6= N] ∧ [WGL
6= L]],

where m = min(L);
∅, otherwise.

Intuitively, SL is the negative information that will be supplied to machine M′ in the two
cases below. The cardinality and contents of the set SL together code whether or not language
L = N , and, whether the final grammar output by M on any text for L is indeed a grammar
for L (Coding tricks of a similar nature will be used in the proofs of Theorems 23 through 25
below).

Let g be a function such that, for all i, x, Wg(i,x) = Wi−{x}. Let f be a function such that,
for all i, x, Wf(i,x) = Wi ∪ {x}.

Define M′ as follows.
Case 1: M TxtEx1-identifies N and WGN

6= N .

Let x ∈ N − WGN
. Note that there is a unique such x. Let iN be a grammar for

N . Define M′ as follows.

M′(σ, S) =











































































iN , if [[S = ∅] ∧ [M(σ) = GN] ∧ [x ∈ content(σ)]];
GN , if [[S = ∅] ∧ [M(σ) = GN] ∧ [x 6∈ content(σ)]];
M(σ), if [[S = ∅] ∧ [M(σ) 6= GN]];
g(M(σ), y), if [[S 6= ∅] ∧

[y = min({z | z ∈ content(σ)∆W
|σ|
M(σ)})]

∧ [y 6∈ content(σ)]];
f(M(σ), y), if [[S 6= ∅] ∧

[y = min({z | z ∈ content(σ)∆W
|σ|
M(σ)})]

∧ [y ∈ content(σ)]];
0, otherwise.

It is easy to see that M′ NegF1TxtEx-identifies TxtEx1(M).

10

Case 2: Not Case 1.

Define M′ as follows.

M′(σ, S) =























































M(σ), if S = ∅;
g(M(σ), y), if [[S 6= ∅] ∧

[y = min({z | z ∈ content(σ)∆W
|σ|
M(σ)})]

∧ [y 6∈ content(σ)]];
f(M(σ), y), if [[S 6= ∅] ∧

[y = min({z | z ∈ content(σ)∆W
|σ|
M(σ)})]

∧ [y ∈ content(σ)]];
0, otherwise.

It is easy to see that M′ NegF1TxtEx-identifies TxtEx1(M).

Theorem 23 E ∈ NegF2TxtEx.

Proof. For each L ∈ E , define SL as follows.

SL =











{min(L), ith-min(L)}, if [card(L) = ∞] ∧ [i = min({p > 1 | Wp = L})];
{max(L)}, if L is nonempty and finite;
∅, otherwise.

Intuitively, the cardinality of SL codes whether the language L equals N , is co-finite and
not equal to N , or, is co-infinite. In the last two cases, the content of SL as defined above
enables M below to compute an index for L.

Let g be a computable function such that for all finite sets S, Wg(S) = N − {x|x ∈ S}.
Define M as follows.

M(σ, S) =























g(∅), if S = ∅;
g({x|x ≤ m ∧ x 6∈ content(σ)}), if S = {m};
k, if [card(S) = 2]∧

[k = card({x ≤ max(S) | x 6∈ content(σ)})]
0, otherwise.

Fix L ∈ E . Consider any text T for L. It is easy to see that M(T, SL)↓ and also that
WM(T,SL) = L.

Theorem 24 E ∈ NegF1TxtEx1.

Proof. For each L ∈ E , define SL as follows.

SL =



















{2ith-min(L)}, if [card(L) = ∞] ∧ [i = min({p > 0 | Wp = L})];
∅, if L = N ;
{max(L)}, if card(L) is finite and odd;
{max(L − {max(L)})}, otherwise.

11

Intuitively, the cardinality of SL codes whether or not the language L equals N . The content
of SL codes, among other things, whether or not L is finite or infinite.

Let g be a computable function such that for all finite sets S, Wg(S) = N − {x|x ∈ S}.
Define M as follows.

M(σ, S) =



































g(∅), if S = ∅;
card({x|x ≤ m ∧ x 6∈ content(σ)})/2, if S = {m} ∧

card({x|x ≤ m ∧ x 6∈ content(σ)}) is even;
g({x|x ≤ m ∧ x 6∈ content(σ)}), if S = {m} ∧

card({x|x ≤ m ∧ x 6∈ content(σ)}) is odd;
0, otherwise.

Fix L ∈ E . Consider any text T for L. It is easy to see that M(T, SL)↓ and also that
WM(T,SL) =1 L.

Theorem 25 E ∈ NegF1TxtBc.

Proof.
3 For each L ∈ E define SL as follows.

SL =











{ith-min(L)}, if [card(L) = ∞]∧ [i = min({j > 0 | Wj = L})];
∅, if L = N ;
{max(L)}, otherwise.

Intuitively, the cardinality of SL codes whether or not the language L equals N . The content
of SL as defined above enables M below to compute an index for L.

Let match be a recursive function such that for each σ and i, match (σ, i) = max({s ≤

|σ| | W s
i ⊆ content(σ) ∧ σ[s] ⊆ W

|σ|
i }). Let g be a computable function such that for all finite

sets S, Wg(S) = N − {x|x ∈ S}. Define M as follows.

M(T [n], S) =



















































g(∅), if S = ∅;
e, if (∃m,P)[[S = {m}] ∧ [card({x ≤ m | x 6∈ content(T [n])}) = e]∧

[P = {x ≤ m | x 6∈ content(T [n])}]∧
[match (T [n], e) > match (T [n], g(P))]];

g(P), if (∃m,P)[[S = {m}] ∧ [card({x ≤ m | x 6∈ content(T [n])}) = e]∧
[P = {x ≤ m | x 6∈ content(T [n])}]∧
[match (T [n], e) ≤ match (T [n], g(P))]];

0, otherwise.

It is easy to see that M NegF1TxtBc-identifies E .

By contrast to Theorem 23 we have the following result.

Theorem 26 E 6∈ NegF1TxtEx.

3If we extend the definition of TxtFexa
b in [5, 6] in the obvious way to define NegFcTxtFexa

b , then our proof
actually shows that E ∈ NegF1TxtFex0

2.

12

Proof. Suppose by way of contradiction that E ⊆ NegF1TxtEx(M). We now describe a
construction which will give us some recursively enumerable languages at least one of which is
not in NegF1TxtEx(M). We especially concentrate our construction on one of the languages,
called L, below; the other languages are the Li’s also described below.

The construction maintains an infinite array, neg, with elements from {1, 2, 3, . . .}. negs
i is

the value stored in negi, the ith element of this array, just before the start of stage s. negs
i is

a non–decreasing function of s. We let neg∞i = lims→∞ negs
i . L is (N − {neg∞i | neg∞i < ∞}).

We also maintain another array S, where, for all s, Ss
0 = ∅ and, for all i > 0, Ss

i = {negs
i}.

Lastly we also maintain an array σ with elements from SEQ. σs
i is the value stored in σi, the

ith element of this array, just before the start of stage s.

If (
∞
∀ s)[Ss

i = Ss+1
i], then we let S∞

i = lims→∞ Ss
i ; otherwise S∞

i is undefined. Similarly,

if (
∞
∀ s)[σs

i = σs+1
i], then we let σ∞

i = lims→∞ σs
i ; otherwise σ∞

i is undefined. Intuitively,
the sets S∞

i are the possible finite cores of information regarding L that could be used by M.
Li = N −

⋃

j≤i S∞
j , and σ∞

i , when finite, functions as a locking sequence [23] for M on Li and
negative information {neg∞i }.

For each s and i, it will be the case that,

(a) σs
i ⊂ σs

i+1,

(b) negs
i+1 > max(content(σs

i)),

(c) ({x | x ≤ negs
i} − {negs

j | 1 ≤ j ≤ i}) ⊆ content(σs
i),

(d) {negs
j | 1 ≤ j ≤ i} ∩ content(σs

i) = ∅.

For each i > 0, let negi = 2i. Let σ0 = ∅. For i > 0, let σi be an extension of σi−1 such that
content(σi) = {x | x ≤ negi} − {negj | 1 ≤ j ≤ i}. Go to stage 0.

Begin stage s

(∗ The inequality ‘τ < s’ just below means that for some fixed canonical indexing, the
canonical index of τ is less than s. ∗)

1. Let P = {〈i, τ〉 | i < s∧τ < s∧σs
i ⊆ τ ∧content(τ) ⊆ N−

⋃

j≤i S
s
j ∧M(τ, Ss

i) 6= M(σs
i , S

s
i)}.

2. if P 6= ∅ then

2.1 Let i0 = min({i | (∃τ)[〈i, τ〉 ∈ P]}).
2.2 Let τ0 be such that 〈i0, τ0〉 ∈ P .
2.3 Let σi0 be an extension of τ0 such that content(σi0) = {x | x ≤ max(content(τ0)) +

1} − {negs
j | 1 ≤ j ≤ i0}.

2.4 For each j > i0, let negj = 2j + max(content(τ0)) + 1 and σj be an extension of σj−1

such that content(σj) = {x | x ≤ 2j + 1 + max(content(τ0))} − {negs
k | 1 ≤ k ≤ j}.

endif

3. Go to stage s + 1.

End stage s

13

Now we consider the following cases.
Case 1: (∀i)[σ∞

i is defined].

Since for all i, s, if Ss
i 6= Ss+1

i , then σs
i 6= σs+1

i , we have that for all i, S∞
i is

defined.
Let L = N −

⋃

i S∞
i . Note that T =

⋃

i σ∞
i is a text for L. For each i, define

Li = N −
⋃

j≤i S
∞
j . Note that, for all i, for all τ such that σ∞

i ⊆ τ and content(τ) ⊆
Li, M(τ, S∞

i) = M(σ∞
i , S∞

i).
Now for each i < j, the following three assertions hold.

(a) neg∞j > max(content(σ∞
i)),

(b) L ⊂ Lj ⊂ Li, and

(c) σ∞
i ⊂ σ∞

j ⊂ T .

For each i, let Ti be a text for Li such that σ∞
i ⊂ Ti. It is clear that M(Ti, S

∞
i) =

M(σ∞
i , S∞

i).
For each j, let S′

j be such that,

card(S′
j) ≤ 1, S′

j ⊆ Lj , M(Tj , S
′
j)↓, and WM(Tj ,S′

j
) = Lj . (1)

(if such an S′
j does not exist then M does not NegF1TxtEx-identify Lj).

Claim 27 For all j, S′
j = S∞

j .

Proof. Suppose by way of contradiction otherwise. Let j be the least num-
ber such that S′

j 6= S∞
j . Since S0 = S′

0 = ∅, we have that j > 0. Let
i < j be such that S∞

i = S∞
j (clearly, such an i exists). Now M(Ti, S

∞
i) =

M(σ∞
i , S∞

i) = M(Tj , S
∞
j) (since S∞

i = S∞
j , σ∞

i ⊆ Ti, σ∞
i ⊆ σ∞

j ⊆ Tj , and
for all τ such that σ∞

i ⊆ τ and content(τ) ⊆ Li, M(τ, S∞
i) = M(σ∞

i , S∞
i)).

It follows that {Li, Lj} 6⊆ NegF1TxtEx(M) contradicting the assumption that
E ⊆ NegF1TxtEx(M). (Claim 27)

Now suppose S′ is such that S′ ⊆ L ∧ M(T, S′)↓ ∧ WM(T,S′) = L. Let i be

such that S∞
i = S′ (clearly, such an i exists, since S∞

0 = ∅ and for each x ∈ L
there exists a j such that S∞

j = {x}). Now M(Ti, S
∞
i) = M(σ∞

i , S∞
i) = M(T, S′)

(since S∞
i = S′ and for all τ such that σ∞

i ⊆ τ ⊂ T and content(τ) ⊆ L ⊆ Li,
M(τ, S∞

i) = M(σ∞
i , S∞

i)). It follows that {L,Li} 6⊆ NegF1TxtEx(M).
Therefore E 6⊆ NegF1TxtEx(M).

Case 2: Not Case 1.

Let j0 denote the least j such that the value of σ∞
j is undefined.

Case 2.1: j0 = 0.

In this case, let T be such that for all s, σs
0 ⊆ T . It is easy to see that

M(T, ∅)↑.

Case 2.2: j0 > 0.

14

For j ≤ j0, let Lj = N −
⋃

k≤j S∞
k . For j < j0, let Tj be an arbitrary

text for Lj such that σ∞
j ⊂ Tj . Let s′ be such that for all s ≥ s′, for each

j < j0, σs
j = σs+1

j . Let Tj0 be such that for all s > s′, σs
j0

⊆ Tj0 .
As in Case 1, it can be argued that for all j ≤ j0, if S′

j ⊆ Lj , M(Tj , S
′
j)↓

and WM(Tj ,S′

j
) = Lj , then S′

j = S∞
j . But, M(Tj0 , S

∞
j0

)↑. Thus Lj0 6∈

NegF1TxtEx(M).

From the above cases it follows that E 6⊆ NegF1TxtEx(M). (Theorem 26)

4 Identification with Open Negative Information

In this section we introduce a different way of presenting some negative information to learning
machines. Here the negative information is supplied in a manner reminding one of the basic
open sets for the topology with respect to which enumeration operators are continuous. This
is the first topology described in [28, Exercise 11-35, page 217]. The basic definitions in this
section were suggested to us in part by those in [20] and those in Section 3 above. Basically, in
this section, we allow the possibility of more negative information being supplied in addition
to the finite cores of negative information; whereas, in Section 3 we considered supplying only
the finite cores.

4.1 Definitions

For a segment σ, let PosInfo(σ) = {x | 2x ∈ content(σ)}, and NegInfo(σ) = {x | 2x + 1 ∈
content(σ)}. The functions PosInfo() and NegInfo() are defined to enable the provision of
both positive and negative information, respectively, as part of a single text. For a text T , let
PosInfo(T) = {x | 2x ∈ content(T)}, and NegInfo(T) = {x | 2x + 1 ∈ content(T)}. Thus, T is
a text for PosInfo(T) ⊕ NegInfo(T).

Definition 28

(a) M NegObTxtExa-identifies L ∈ E (written: L ∈ NegObTxtExa(M)) ⇔ (∃S ⊆ L |
card(S) ≤ b)(∀L′ | S ⊆ L′ ⊆ L)(∀T | content(T) = L⊕L′)[M(T)↓ and WM(T) =a L].

(b) NegObTxtExa = {L ⊆ E | (∃M)[L ⊆ NegObTxtExa(M)]}.

Definition 28 just above contrasts interestingly with Definition 15 (from Section 3). For
each definition there need only exist a S, but for Definition 28 this S must satisfy the strong
constraint that it work for all L′ such that S ⊆ L′ ⊆ L. Similar remarks apply to the next
definition and Definition 16 in Section 3.

Definition 29

(a) M NegObTxtBca-identifies L ∈ E (written: L ∈ NegObTxtBca(M)) ⇔ (∃S ⊆ L |

card(S) ≤ b)(∀L′ | S ⊆ L′ ⊆ L)(∀T | content(T) = L⊕L′)(
∞
∀ n)[WM(T [n]) =a L].

(b) NegObTxtBca = {L ⊆ E | (∃M)[L ⊆ NegObTxtBca(M)]}.

15

A quantificational variant of our NegObTxtEx0-identification (from Definition 28 above) is
quite close to PPb-identification from Section 5.3 of [29]: for PPb-identification different finite
sets can be used for different texts for the same language (and the finite sets are required to be
of size at least b). We can show there are language classes NegObTxtEx0-identifiable but not
PPb-identifiable with PPb-identification generalized to the TxtBc∗ case (and even if the finite
sets are required to be of size less than or equal to b).

We have the following straightforward proposition.

Proposition 30 For all a,

(a) NegO0TxtExa = TxtExa and

(b) NegO0TxtBca = TxtBca.

4.2 Results

Proposition 31 For all a, NegO∗TxtExa ∩ P(SVT) = TxtExa ∩ P(SVT).

Proof. It is easy to see that for each L ∈ SVT , a text for L⊕L can be effectively obtained
from a text for L. The Proposition follows.

Similarly,

Proposition 32 For all a, NegO∗TxtBca ∩ P(SVT) = TxtBca ∩ P(SVT).

The following two theorems provide classes of languages which can be learned with n + 1
mistakes, but not with n, no matter how much open negative information is provided in the
n mistake case. The mechanism partly responsible is that the gap left by the possible extra
anomaly can be greater in information content than the information provided by open negative
information.

Theorem 33 For all n, TxtExn+1 − NegO∗TxtExn 6= ∅.

Proof. Follows using Proposition 31 and Theorem 11.

Theorems 34 and 35 can be shown similarly.

Theorem 34 For all n, TxtBcn+1 − NegO∗TxtBcn 6= ∅.

Our class witnessing Theorem 34 immediately above is also not in NegO∗TxtEx∗. Addi-
tionally, we have the following.

Theorem 35 TxtBc − NegO∗TxtEx∗ 6= ∅.

The separation results in Theorems 34 and 35 are witnessed by subclasses of SVT . Thus,
by Corollary 20, we have the following corollary.

Corollary 36 For all n,

(a) NegF1TxtEx − NegO∗TxtBcn 6= ∅ and

16

(b) NegF1TxtEx − NegO∗TxtEx∗ 6= ∅.

The following theorem presents another interesting connection between some NegF and
NegO learning criteria.

Theorem 37 NegO∗TxtEx ⊂ NegF1TxtEx.

Proof. We prove that NegO∗TxtEx ⊆ NegF1TxtEx. Proper containment follows from part
(b) of Corollary 36 above. Suppose M NegO∗TxtEx–identifies L. Fix an arbitrary L ∈ L.
Let SL ⊆ L be the finite set with smallest canonical index such that (∀L′ | SL ⊆ L′ ⊆ L)(∀T |
content(T) = L⊕L′)[M(T)↓ and WM(T) = L]. Such a SL clearly exists. Let S′

L = {max(SL)},
if SL 6= ∅; S′

L = ∅ otherwise.
Let F be a computable mapping from SEQ ×FIN to SEQ such that, for all S ∈ FIN and

for all σ ⊂ τ [[F (σ, S) ⊆ F (τ, S)] ∧ [content(σ) = PosInfo(F (σ, S))] ∧ [S = NegInfo(F (σ, S))]].
Now define M′ as follows.

M′(σ, S) =

{

M(F (σ, S)), if [S = ∅];
M(F (σ,X)), if [[S = {m}] ∧ [X = {x ≤ m | x 6∈ content(σ)}]].

Consider any text T for L. It is easy to see that M′(T, S′
L)↓ and WM′(T,S′

L
) = L.

Theorem 38 E ∈ NegO∗TxtBc∗.

Proof. For each L ∈ E , let SL = {x | (∃i < MinGram(L))[x = min(Wi ∩ L)]}. Define M as
follows. M(T [n]) = i such that, Wi =

⋃

s W s

min({n}∪{j|PosInfo(T [n])⊆W s
j
∧NegInfo(T [n])⊆W s

j
})

.

For all L ∈ E , for all L′ such that SL ⊆ L′ ⊆ L, let T be a text such that content(T) = L⊕L′.
Let n0 be so large that,

(i) MinGram(L) < n0,
(ii) SL ⊆ NegInfo(content(T [n0])).
(iii) (∀i < MinGram(L) | Wi ⊆ L)[PosInfo(T [n0]) 6⊆ Wi].
(iv) (∀i < MinGram(L) | Wi 6⊆ L)[SL ∩ Wn0

i 6= ∅].

Now for all n > n0, min({n}∪{j | PosInfo(T [n]) ⊆ Wj∧NegInfo(T [n]) ⊆ Wj}) ≥ MinGram(L).
Thus, for all n > n0, for all but finitely many s, min({n} ∪ {j | PosInfo(T [n]) ⊆ W s

j ∧

NegInfo(T [n]) ⊆ W s
j }) = MinGram(L) (since PosInfo(T) = L and SL ⊆ NegInfo(T) ⊆ L).

It follows that, for all n > n0, WM(T [n]) =∗ L.

The next three theorems contrast nicely with Theorems 33 and 34 above. They provide
classes of languages which can be learned with n + 1 pieces of open negative information, but
not with n, no matter how many anomalies are permitted in the n piece case. The mechanism
partly responsible is that the extra possible negative information can be greater in information
content than the information that may be omitted by the anomalies.

Theorem 39 NegO1TxtEx − NegO0TxtBc∗ 6= ∅.

17

Proof. Let L0 = FIN ∪ {N}. It is easy to see L0 ∈ NegO1TxtEx. By Theorem 12 and
Proposition 30, L0 6∈ NegO0TxtBc∗.

Theorem 40 For all n, NegOn+1TxtEx − NegOnTxtEx∗ 6= ∅.

Proof. The n = 0 case follows from Theorem 39 above.
Suppose n > 0.

We say that L is n-nice iff the following four conditions hold.

a. (∀x > n)(∀y)[〈x, y〉 ∈ L].

b. (∃y)[〈0, y〉 6∈ L].

c. [(∃y)(∀x ≤ n)[〈x, y〉 6∈ L]] ⇒ Wmin({y|(∀x≤n)[〈x,y〉6∈L]}) = L.

d. [¬(∃y)(∀x ≤ n)[〈x, y〉 6∈ L]] ⇒ Wmin({y|〈0,y〉6∈L}) = L.

Let Ln = {L | L is n-nice}.

Claim 41 For each n, Ln ∈ NegOn+1TxtEx.

Proof. Fix n. For each L ∈ Ln, define SL as follows.

SL =

{

{〈0, x〉 | x = min({z | 〈0, z〉 6∈ L})}, if [¬(∃y)(∀x ≤ n)[〈x, y〉 6∈ L]];
{〈x,w〉 | x ≤ n ∧ w = min({y | (∀z ≤ n)[〈z, y〉 6∈ L]})}, otherwise.

Consider learning machine M defined as follows.

M(σ) =

{

min({y | (∀x ≤ n)[〈x, y〉 ∈ NegInfo(σ)]}), if (∃y)(∀x ≤ n)[〈x, y〉 ∈ NegInfo(σ)];
min({y | 〈0, y〉 ∈ NegInfo(σ)}), otherwise.

It is easy to see that Ln ∈ NegOn+1TxtEx(M). (Claim 41)

We show that L1 6∈ NegO1TxtEx∗. This proof can be generalized to show that Ln 6∈
NegOnTxtEx∗.

Suppose by way of contradiction that M NegO1TxtEx∗-identifies L1. Then, by the Kleene
recursion theorem [28, Page 214], there exists an e such that We can be defined in stages as
follows.

Enumerate {〈0, x〉, 〈1, x〉 | x < e} ∪ {1, e} into We and let σ0 be the lexicographically least
segment such that PosInfo(σ0) = {〈0, x〉, 〈1, x〉 | x < e} ∪ {1, e} and NegInfo(σ0) = {〈0, e〉}.

Go to stage 0.

Begin stage s

1. Search for σ extending σs such that the following four conditions are satisfied. If and when
such a σ is found, go to step 2.

(a) ¬(∃x)[{〈0, x〉, 〈1, x〉} ⊆ NegInfo(σ)],
(b) PosInfo(σ) ∩ NegInfo(σ) = ∅,
(c) NegInfo(σ) ⊆ {〈0, x〉, 〈1, x〉 | x ∈ N}, and
(d) M(σ) 6= M(σs).

18

2. Let σ be as found in step 1.

Let m = 1+max({x | [〈1, x〉 ∈ PosInfo(σ)∪NegInfo(σ)]∨[〈0, x〉 ∈ PosInfo(σ)∪NegInfo(σ)]}).

Let S be

({〈x, y〉 | 2 ≤ x ≤ s ∧ y ≤ s} ∪ PosInfo(σ) ∪
{〈0, x〉 | x ≤ m ∧ 〈0, x〉 6∈ NegInfo(σ)} ∪ {〈1, x〉 | x ≤ m ∧ 〈1, x〉 6∈ NegInfo(σ)}).

Enumerate S in We.

Let σs+1 be an extension of σ such that

(a) PosInfo(σs+1) = S, and,
(b) NegInfo(σs+1) = {〈0, x〉, 〈1, x〉 | x ≤ m} − S.

Go to stage s + 1.

End stage s.

This completes the definition of We. Now we consider the following cases.
Case 1: Infinitely many stages are executed.

In this case, let L = We ∈ L1. Let T =
⋃

s∈N σs. Clearly, PosInfo(T) = L and
NegInfo(T) = L. However, M(T)↑.

Case 2: Stage s starts but does not terminate.

Let m = max({x | 〈1, x〉 ∈ PosInfo(σs) ∪ NegInfo(σs) ∨ 〈0, x〉 ∈ PosInfo(σs) ∪
NegInfo(σs)}). Let

L′ = {L | PosInfo(σs) ⊆ L ∧ NegInfo(σs) ⊆ L ∧ {〈x, y〉 | x ≥ 2} ⊆ L}. (2)

Claim 42 For each L ∈ L′, and for each w ∈ L, there exists a text T satisfying
σs ⊆ T , L = PosInfo(T), w ∈ NegInfo(T) and PosInfo(T) ∩ NegInfo(T) = ∅, for
which M(T) = M(σs).

Proof. Otherwise step 1, in stage s, would succeed. (Claim 42)

By suitably padded applications of the Kleene recursion theorem, there exist e1

and e2 (each greater than m) such that,

We1
= PosInfo(σs) ∪ {〈x, y〉 | x ≥ 2} ∪ {〈0, x〉 | x > m ∧ x 6= e1} (3)

and
We2

= PosInfo(σs) ∪ {〈x, y〉 | x ≥ 2} ∪ {〈1, x〉 | x > m ∧ x 6= e2}. (4)

It is easy to see that {We1
,We2

} ⊆ L1 ∩ L′, and We1
6=∗ We2

.
We claim that {We1

,We2
} 6⊆ NegO1TxtEx∗(M). Suppose by way of contra-

diction that S1 ⊆ We1
and S2 ⊆ We2

are sets of cardinality at most one, such
that,
(∀T | [We1

= PosInfo(T)] ∧ [S1 ⊆ NegInfo(T)] ∧ [PosInfo(T) ∩ NegInfo(T) = ∅])

[WM(T) =∗ We1
] (5)

and
(∀T | [We2

= PosInfo(T)] ∧ [S2 ⊆ NegInfo(T)] ∧ [PosInfo(T) ∩ NegInfo(T) = ∅])

19

[WM(T) =∗ We2
]. (6)

Without loss of generality assume card(S1) = card(S2) = 1. Let w1, w2 be such that
S1 = {w1} and S2 = {w2}. Let T1 and T2 be the texts, as claimed in Claim 42, for
L = We1

, w = w1 and L = We2
, w = w2 respectively.

Now We1
=∗ WM(T1) = WM(σs) = WM(T2) =∗ We2

. But this is not possible,

since We1
6=∗ We2

. It follows that {We1
,We2

} 6⊆ NegO1TxtEx∗(M).

From the above cases, it follows that L1 6⊆ NegO1TxtEx∗(M). (Theorem 40)

The language classes which witness the previous theorem also witness the following theorem.

Theorem 43 For all n, NegOn+1TxtEx −
⋃

j NegOnTxtBcj 6= ∅.

Proof. The n = 0 case follows from Theorem 39 above.
Suppose n > 0. Fix j. Let Ln be as defined in the proof of Theorem 40. We show that

L1 6∈ NegO1TxtBcj . This proof can be generalized to show that Ln 6∈ NegOnTxtBcj . This
proof is similar to the proof of Theorem 40.

Suppose by way of contradiction that M NegO1TxtBcj-identifies L1. Then, by the Kleene
recursion theorem, there exists an e such that We can be defined in stages as follows.

Enumerate {〈0, x〉, 〈1, x〉 | x < e} ∪ {1, e} in We and let σ0 be the lexicographically least
segment such that PosInfo(σ0) = {〈0, x〉, 〈1, x〉 | x < e} ∪ {1, e} and NegInfo(σ0) = {〈0, e〉}.

Go to stage 0.

Begin stage s

1. Search for σ extending σs and P such that the following seven conditions are satisfied. If
and when such a σ is found go to step 2.

(a) ¬(∃x)[{〈0, x〉, 〈1, x〉} ⊆ NegInfo(σ)],
(b) PosInfo(σ) ∩ NegInfo(σ) = ∅,
(c) NegInfo(σ) ⊆ {〈0, x〉, 〈1, x〉 | x ∈ N},
(d) P ⊆ {〈0, x〉 | x ∈ N},
(e) card(P) = j + 1,
(f) (P ∪ {〈1, x〉 | 〈0, x〉 ∈ P}) ∩ (PosInfo(σ) ∪ NegInfo(σ)) = ∅, and
(g) P ⊆ WM(σ).

2. Let σ, P be as found in step 1.

Let P ′ = {〈1, x〉 | 〈0, x〉 ∈ P}.

Let m = 1+max({x | [〈1, x〉 ∈ PosInfo(σ)∪NegInfo(σ)]∨[〈0, x〉 ∈ PosInfo(σ)∪NegInfo(σ)∪
P]}).

Let S be

({〈x, y〉 | 2 ≤ x ≤ s ∧ y ≤ s} ∪ PosInfo(σ) ∪
{〈0, x〉 | x ≤ m∧〈0, x〉 6∈ NegInfo(σ) ∪ P} ∪ {〈1, x〉 | x ≤ m∧〈1, x〉 6∈ NegInfo(σ)}).

Enumerate S in We.

Let σs+1 be an extension of σ such that

(a) PosInfo(σs+1) = S, and,
(b) NegInfo(σs+1) = {〈0, x〉, 〈1, x〉 | x ≤ m} − S.

20

(∗ Note that WM(σ) ⊇ P and P ⊆ NegInfo(σs+1). ∗)

Go to stage s + 1.

End stage s.

This completes the definition of We. Now we consider the following cases.
Case 1: Infinitely many stages are executed.

In this case, let L = We ∈ L1. Let T =
⋃

s σs. Clearly, T is a text for L⊕L.
However, for infinitely many n, WM(T [n]) 6=

j L (due to the success of step 1 at each
stage).

Case 2: Stage s starts but does not terminate.

Let m = max({x | 〈1, x〉 ∈ PosInfo(σs) ∪ NegInfo(σs) ∨ 〈0, x〉 ∈ PosInfo(σs) ∪
NegInfo(σs)}). By a suitably padded version of the Kleene recursion theorem, there
exists an e1 > m such that

We1
= {PosInfo(σs)} ∪ {〈x, y〉 | x ≥ 2} ∪ {〈0, x〉 | x > m ∧ x 6= e1} (7)

It is easy to see that We1
∈ L1.

However, for each S1 ⊆ We1
of cardinality at most one, (∀T ⊇ σs | We1

=
PosInfo(T) ∧ S1 ⊆ NegInfo(T) ∧ PosInfo(T) ∩ NegInfo(T) = ∅),

(
∞
∀ n)[(WM(T [n]) ∩ 〈0, x〉 | x ∈ N) is finite]

(otherwise step 1 in stage s will succeed). It follows that We1
6∈ NegO1TxtBcj(M).

From the above cases, it follows that L1 6⊆ NegO1TxtBcj(M).

The previous three theorems have the following straightforward corollary.

Corollary 44 For all a, j and n,

(a) NegOn+1TxtExa − NegOnTxtExa 6= ∅ and

(b) NegOn+1TxtBcj − NegOnTxtBcj 6= ∅.

McNeill [16] posits that there is faster learning of language for children in homes in which
more corrections (usually in the form of possibly exemplary expansions) are given. These cor-
rections are, in part, a form of negative information. The previous corollary says with more
core open negative information (bigger S), there is more learning power . It doesn’t, however,
directly inform us about more speed of learning, but is, nonetheless, quite interesting. In Sec-
tion 5 below we present a preliminary result (Theorem 51) showing that an improvement in
speed (measured by mind-changes) can result from the presence of minimal, non-vacuous, open
negative information.

Theorem 45 TxtEx∗ ⊂ NegO1TxtBc.

21

Proof. We will prove that TxtEx∗ ⊆ NegO1TxtBc. Proper containment follows from The-
orem 35.

Suppose M is given. We will construct a machine M′ which satisfies TxtEx∗(M) ⊆
NegO1TxtBc(M′). Without loss of generality we assume that M is order independent (The-
orem 7). For each L ∈ TxtEx∗(M), let iL be such that M on any text for L converges to iL,
and then, let SL = {max({x | x ∈ WiL − L})}, if WiL − L is not empty; otherwise, let SL = ∅.

Let F be a recursive function mapping SEQ to SEQ such that

(a) for all σ and τ , σ ⊂ τ ⇒ F (σ) ⊂ F (τ) and

(b) For all σ, content(F (σ)) = PosInfo(σ).

Define M′ as follows.
Let M′(σ) = i, such that Wi = (WM(F (σ)) ∪ PosInfo(σ)) − {x 6∈ PosInfo(σ) | x ≤ max({y |

y ∈ NegInfo(σ) ∧ y ∈ W
|σ|
M(F (σ))})}.

It is easy to see that, for each L ∈ TxtEx∗(M), for each L′ such that SL ⊆ L′ ⊆ L, for

each text T for L⊕L′, (
∞
∀ n)[WM′(T [n]) = L]. The theorem follows.

Theorem 46 For all a and j, [NegOaTxtEx2j ⊂ NegOaTxtBcj].

Proof. Fix a, j. We will prove that [NegOaTxtEx2j ⊆ NegOaTxtBcj]. Proper containment
follows from Theorem 35.

This proof is similar to the proof used by Case and Lynes [7] (see also [6]) to show
that TxtEx2j ⊆ TxtBcj . Suppose M is given. We give a machine M′ such that
NegOaTxtEx2j(M) ⊆ NegOaTxtBcj(M′).

M′(σ) = i, such that Wi = (WM(σ)∪PosInfo(σ))−{x ∈ WM(σ)−PosInfo(σ) | card({y ≤ x |
y ∈ WM(σ) −PosInfo(σ)}) ≤ j}. Now fix L and T such that PosInfo(T) = L and WM(T) =2j L.

Let S1 = {x | x ∈ WM(T) − L}. Let S2 = {x | x ∈ L − WM(T)}.
We now consider the following two cases:

Case 1: card(S1) ≥ j.

Let S′
1 = {x ∈ S1 | card({y ≤ x | y ∈ S1}) ≤ j}. It is easy to see that for all

but finitely many n, WM′(T [n]) = (WM(T) ∪ S2) − S′
1. Thus for all but finitely n,

WM′(T [n]) =j L.

Case 2: card(S1) < j.

It is easy to see that for all but finitely many n, WM′(T [n]) ⊆ (WM(T) ∪ S2) − S1.
Moreover, for all but finitely n, card(((WM(T) ∪ S2) − S1) − WM′(T [n])) ≤ j. Thus
for all but finitely n, WM′(T [n]) =j L.

It follows that NegOaTxtEx2j(M) ⊂ NegOaTxtBcj(M′).

We refer the reader to Section 2.3.3 for the definitions of ExGena and BcGena.

Theorem 47 For all a,

22

(a) NegO∗TxtExa = ExGena and

(b) NegO∗TxtBca = BcGena.

Proof. We prove part (a). The proof of part (b) is similar.
It is easy to convert M which NegO∗TxtExa–identifies L into a machine M′ which

ExGena–identifies L.
Suppose M ExGena–identifies L. Fix an arbitrary L ∈ L. Let iL be the least value such

that for all i ≥ iL, M(χL[i]) = M(χL[iL]). Since L ∈ ExGena(M), such an iL clearly exists.
Let SL = {x ∈ L | x ≤ iL}.

Let FullInfoPt(σ) = max({x | (∀x′ < x)[(x′ ∈ PosInfo(σ)) ∨ (x′ ∈ NegInfo(σ))]}).
Define M′ as follows.

M′(σ) =

{

M(χL[FullInfoPt(σ)]), if FullInfoPt(σ)↓;
0, otherwise;

It can now be observed that for all L′ such that SL ⊆ L′ ⊆ L and for each text T for L⊕L′,
M′(T)↓ = M(χL)↓. The theorem follows.

Corollary 48 For all i,

(a) NegO∗TxtEx∗ ⊂ NegO∗TxtBc,

(b) NegO∗TxtExi ⊂ NegO∗TxtExi+1 and

(c) NegO∗TxtBci ⊂ NegO∗TxtBci+1.

Proof. This corollary follows from Theorem 47 above and the results from [7] that ExGen∗ ⊂
BcGen, (∀i)[ExGeni ⊂ ExGeni+1] and (∀i)[BcGeni ⊂ BcGeni+1].

Theorem 47 just above shows us that the NegO∗ criteria are equivalent to supplying all
the negative (as well as the positive) information to a learning machine.

5 Complexity Advantages of Open Negative Information

For this section it is convenient to change slightly the meaning of the first kind of learning
machine (introduced in Definition 2) to the following.

Definition 49 A language learning machine is an algorithmic device which computes a map-
ping from SEQ into N ∪ {?}.

Intuitively the outputted ?s represent the machine not yet committing to an output. The
reason we want the ?s is so we can avoid biasing the number of mind changes before a learning
machine converges: if we allow initial outputs ?s before, if ever, the first program is output,
then we can learn more things within n mind changes than if we had to begin with a program
(numerical) output.

In the next definition, the subscript b represents a bound on the number of mind changes
allowed before convergence.

23

Definition 50 We say that M TxtExa
b -identifies L ⇔ [[L ∈ TxtExa(M)]∧

(∀ texts T for L)[card({x | [? 6= M(T [x])] ∧ [M(T [x]) 6= M(T [x + 1])]}) ≤ b]].

In a similar fashion, we can expand the definition of NegOcTxtExa into the obvious defi-
nition of NegOcTxtExa

b .
Just below is the theorem we promised showing a speed advantage from minimal, non-

vacuous open negative information.

Theorem 51 There exists a class of languages L such that,

(a) L ∈ TxtEx,
(b) L ∈ NegO1TxtEx0, and
(c) L 6∈

⋃

n TxtEx∗
n.

Proof. For each m, let Lm = {〈i, x〉 | i, x ∈ N ∧ i 6= m}. Let L = {Lm | m ∈ N}.
It is easy to see that L ∈ TxtEx ∩ NegO1TxtEx0. Suppose by way of contradiction that

n,M are such that L ∈ TxtEx∗
n(M). Without loss of generality, assume that for all texts T ,

card({m |? 6= M(T [m]) 6= M(T [m + 1]}) ≤ n. Let σ0 = ().
For i ≤ n, let

σi+1 =







τ ′, if (∃τ ⊇ σi)[M(σi) 6= M(τ) ∧M(τ) 6= ?]∧
τ ′ = min({τ ⊇ σi | M(σi) 6= M(τ) ∧ M(τ) 6= ?});

σi, otherwise.

Clearly, (∀τ ⊇ σn+1)[M(τ) = M(σn+1) ∨ M(τ) = ?]. However, for all x > max({i |
(∃y)[〈i, y〉 ∈ content(σn+1)]}), there exists a text T such that σn+1 ⊆ T and content(T) = Lx.
Since, for all x 6= x′, Lx 6=∗ Lx′ , the theorem follows.

6 Open Problems

We list some of the open problems.

(a) For i ≥ 2, is TxtExi ⊂ NegF1TxtEx?

(b) For i ≥ 1, E ∈ NegOiTxtBc∗? We draw the attention of the reader to Theorem 38.

(c) In [7], it was shown that TxtEx2j+1 − TxtBcj 6= ∅. Similarly, can it be shown that, for
i ≥ 1, NegOiTxtEx2j+1 − NegOiTxtBcj 6= ∅?

(d) For i ≥ 1, is NegOiTxtEx∗ ⊂ NegOi+1TxtBc? So far we know that NegO∗TxtEx∗ ⊂
NegO∗TxtBc.

Many of the results in the present paper are proved by self–referential and other direct
coding techniques. It would be interesting to see if these results can be robustly extended in
the important sense of [11].

24

References

[1] D. Angluin. Inductive inference of formal languages from positive data. Information and
Control, 45:117–135, 1980.

[2] L. Blum and M. Blum. Toward a mathematical theory of inductive inference. Information
and Control, 28:125–155, 1975.

[3] M. Blum. A machine-independent theory of the complexity of recursive functions. Journal
of the ACM, 14:322–336, 1967.

[4] J. Case. Learning machines. In W. Demopoulos and A. Marras, editors, Language Learning
and Concept Acquisition, pages 83–102. Ablex Publishing Company, 1986.

[5] J. Case. The power of vacillation. In D. Haussler and L. Pitt, editors, Proceedings of the
Workshop on Computational Learning Theory, pages 133–142. Morgan Kaufmann, 1988.

[6] J. Case. The power of vacillation in language learning. SIAM Journal on Computing,
28(6):1941–1969, 1999.

[7] J. Case and C. Lynes. Machine inductive inference and language identification. In
M. Nielsen and E. M. Schmidt, editors, Proceedings of the 9th International Colloquium
on Automata, Languages and Programming, volume 140 of Lecture Notes in Computer
Science, pages 107–115. Springer-Verlag, 1982.

[8] J. Case and C. Smith. Comparison of identification criteria for machine inductive inference.
Theoretical Computer Science, 25:193–220, 1983.

[9] M. Fulk. A Study of Inductive Inference Machines. PhD thesis, SUNY/Buffalo, 1985.

[10] M. Fulk. Prudence and other conditions on formal language learning. Information and
Computation, 85:1–11, 1990.

[11] M. Fulk. Robust separations in inductive inference. In 31st Annual IEEE Symposium on
Foundations of Computer Science, pages 405–410. IEEE Computer Society Press, 1990.

[12] E. M. Gold. Language identification in the limit. Information and Control, 10:447–474,
1967.

[13] J. Hopcroft and J. Ullman. Introduction to Automata Theory, Languages, and Computa-
tion. Addison-Wesley, 1979.

[14] S. Jain and A. Sharma. Learning in the presence of partial explanations. Information and
Computation, 95:162–191, 1991.

[15] M. Machtey and P. Young. An Introduction to the General Theory of Algorithms. North
Holland, New York, 1978.

[16] D. McNeill. Developmental psycholinguistics. In F. Smith and G. Miller, editors, The
Genesis of Language, pages 15–84. MIT Press, 1966.

25

[17] E. Mendelson. Introduction to Mathematical Logic. Brooks-Cole, San Francisco, 1986. 3rd
Edition.

[18] D. Moeser and A. Bregman. The role of reference in the acquisition of a miniature artificial
language. Journal of Verbal Learning and Verbal Behavior, 11:759–769, 1972.

[19] D. Moeser and A. Bregman. Imagery and language acquisition. Journal of Verbal Learning
and Verbal Behavior, 12:91–98, 1973.

[20] T. Motoki. Inductive inference from all positive and some negative data. Information
Processing Letters, 39(4):177–182, 1991.

[21] D. Osherson, M. Stob, and S. Weinstein. Ideal learning machines. Cognitive Science,
6:277–290, 1982.

[22] D. Osherson, M. Stob, and S. Weinstein. Learning theory and natural language. Cognition,
17:1–28, 1984.

[23] D. Osherson, M. Stob, and S. Weinstein. Systems that Learn: An Introduction to Learning
Theory for Cognitive and Computer Scientists. MIT Press, 1986.

[24] D. Osherson and S. Weinstein. Criteria of language learning. Information and Control,
52:123–138, 1982.

[25] D. Osherson and S. Weinstein. A note on formal learning theory. Cognition, 11:77–88,
1982.

[26] S. Pinker. Formal models of language learning. Cognition, 7:217–283, 1979.

[27] H. Rogers. Gödel numberings of partial recursive functions. Journal of Symbolic Logic,
23:331–341, 1958.

[28] H. Rogers. Theory of Recursive Functions and Effective Computability. McGraw-Hill, 1967.
Reprinted, MIT Press 1987.

[29] T. Shinohara. Studies on Inductive Inference from Positive Data. PhD thesis, Kyushu
University, Kyushu, Japan, 1986.

[30] K. Wexler. On extensional learnability. Cognition, 11:89–95, 1982.

[31] K. Wexler and P. Culicover. Formal Principles of Language Acquisition. MIT Press, 1980.

26

