
Learning Languages from Positive Data and

Negative Counterexamples

Sanjay Jain a,1 Efim Kinber b

a School of Computing, National University of Singapore, Singapore 117543.
Email: sanjay@comp.nus.edu.sg

b Department of Computer Science, Sacred Heart University, Fairfield, CT
06432-1000, U.S.A. Email: kinbere@sacredheart.edu

Abstract

In this paper we introduce a paradigm for learning in the limit of potentially infinite
languages from all positive data and negative counterexamples provided in response
to the conjectures made by the learner. Several variants of this paradigm are con-
sidered that reflect different conditions/constraints on the type and size of negative
counterexamples and on the time for obtaining them. In particular, we consider the
models where 1) a learner gets the least negative counterexample; 2) the size of
a negative counterexample must be bounded by the size of the positive data seen
so far; 3) a counterexample can be delayed. Learning power, limitations of these
models, relationships between them, as well as their relationships with classical
paradigms for learning languages in the limit (without negative counterexamples)
are explored. Several surprising results are obtained. In particular, for Gold’s model
of learning requiring a learner to syntactically stabilize on correct conjectures, learn-
ers getting negative counterexamples immediately turn out to be as powerful as the
ones that do not get them for indefinitely (but finitely) long time (or are only told
that their latest conjecture is not a subset of the target language, without any
specific negative counterexample). Another result shows that for behaviourally cor-
rect learning (where semantic convergence is required from a learner) with negative
counterexamples, a learner making just one error in almost all its conjectures has
the “ultimate power”: it can learn the class of all recursively enumerable languages.
Yet another result demonstrates that sometimes positive data and negative coun-
terexamples provided by a teacher are not enough to compensate for full positive
and negative data.

1 Supported in part by NUS grant number R252-000-127-112.

Preprint submitted to Elsevier Science 11 March 2007

1 Introduction

Defining a computational model adequately describing learning languages is
an important long-standing problem. In his classical paper [Gol67], M. Gold
introduced two major computational models for learning languages. One of
them, learning from texts, assumes that the learner receives all positive lan-
guage data, i.e., all correct statements of the language. The other model, learn-
ing from informants, assumes that the learner receives all correct statements
of the languages, as well as all other (incorrect) statements, appropriately la-
beled as incorrect, that can be potentially formed within the given alphabet.
In both cases, a successful learner stabilizes on a correct description of the
target language, i.e., a grammar for the target language. J. Barzdin [Bār74]
and J. Case and C. Smith [CS83] introduced a different, more powerful model
called behaviorally correct learning. A behaviorally correct learner almost al-
ways outputs conjectures (not necessarily the same) correctly describing the
target language. An important feature of all these models is that they de-
scribe a process of learning in the limit: the learner stabilizes on the correct
conjecture (or conjectures), but does not know when it happens. The above
seminal models, doubtless, represent certain important aspects of the process
of learning potentially infinite targets. On the other hand, when we consider
how a child learns a language communicating with a teacher, it becomes clear
that these models reflect two extremes of this process: positive data only is
certainly less than what a child actually gets in the learning process, while in-
formant (the characteristic function of the language) is much more than what
a learner can expect (see for example, [BH70,HPTS84,DPS86]).

D. Angluin, in another seminal paper [Ang88], introduced a different impor-
tant learning paradigm, i.e., learning from queries to a teacher (oracle). This
model, explored in different contexts, including learning languages (see, for
example, [LNZ02,LZ04b,LZ04a]), addresses a very important tool available to
a child (or any other reasonable learner), i.e., queries to a teacher. However,
in the context of learning languages, this model does not adequately reflect
the fact that a learner, in the long process of acquisition of a new language,
potentially gets access to all correct statements. (Exploration of computabil-
ity via queries to oracles has a long tradition in the theory of computation
in general [Rog67,GM98], as well as in the context of learning in the limit
[GP89,FGJ+94,LNZ02]. Whereas in most cases answers to queries are some-
times not algorithmically answerable - which is the case in our model, or
computationally NP or even harder - as in [Ang88], exploring computability
or learnability via oracles often provides a deeper insight on the nature and
capabilities of both).

In this paper, we combine learning from positive data and learning from queries
into a computational model, where a learner gets all positive data and can ask

2

a teacher if a current conjecture (a grammar) does not generate wrong state-
ments (questions of this kind can be formalized as subset queries, cf. [Ang88]).
If the conjecture does generate a wrong statement, then the teacher gives an
example of such a statement (a negative counterexample) to the learner. In
our main model, we assume that the teacher immediately provides a nega-
tive counterexample if it exists. However, in many situations, a teacher may
obviously need a lot of time to determine if the current conjecture generates
incorrect statements. 2 Therefore, we consider two more variants of our main
model that reflect this problem. In the first variant, the teacher is not able
to provide a negative counterexample unless there is one whose size does not
exceed the size of the longest statement seen so far by the learner. In the sec-
ond variant, the teacher may delay providing a negative counterexample (and,
eventually, may even simply answer that the conjecture is excessive, i.e., with-
out providing any negative counterexamples!). Interestingly, while the former
model is shown to be weaker than the main model, the latter one turns out to
be as powerful as the main model (in terms of capabilities of a learner; we do
not discuss related complexity issues – such as how providing counterexamples
quickly may speed up convergence to a right conjecture)!

Our goal in this paper is to explore the new models of learning languages, their
relationships, and how they fair in comparison with other popular learning
paradigms. In particular, we explore how quality and availability of the nega-
tive counterexamples to the conjectures affects learnability. Note that learning
from positive data and a finite amount of negative information was explored
in [BCJ95]. However, unlike arbitrary negative counterexamples in our model,
negative data in [BCJ95] is preselected to ensure that just a small number of
negative examples (or, just one example) can greatly enhance capabilities of
a learner. Shinohara [Shi86] considered a model of negative data, where any n

negative examples might be given to the learner. Motoki [Mot91] considered
supplying negative data to the learner, which contains a preselected subset of
the complement of the input (this is similar to one of the models considered
in [BCJ95]).

The paper is structured as follows. In Section 2 we introduce necessary no-
tation and basic definitions needed for the rest of the paper. In particular,
we define some variants of the classical Gold’s model of learning from texts

2 Note that an oracle-teacher in our model must possess knowledge of the complete
characteristic function of the target language. It is hard to imagine that an individual
real-world teacher can fully possess such knowledge. Therefore, by “teacher” in our
discussion one should imagine a sort of a “linguistic community” with the knowledge
of the characteristic function in question distributed between its members, rather
than just an individual teacher. However, from the standpoint of mathematical
feasibility, immediate implementation of this understanding of a “teacher” would
most likely be rather awkward, therefore we have given our preference to the classical
model of an oracle.

3

(positive data) and informants (both positive and negative data), TxtEx and
InfEx, as well as its behaviorally correct counterpart TxtBc and InfBc.

In Section 3 we define our four models for learning languages from texts and
negative counterexamples. In the first, basic, model, a learner is provided a
negative counterexample every time it outputs a hypothesis containing ele-
ments not belonging to the target language. The second model is a variant
of the basic model when a learner receives the least negative counterexample.
The third model takes into account some complexity constraints. Namely, the
learner receives a negative counterexample only if there exists one whose size
is bounded by the size of the longest positive example seen in the input so
far. The fourth model slightly relaxes the constraint of the model three: the
size of the negative counterexample must be bounded by the value of some
function applied to the size of the longest positive example in the input. We
also introduce non-recursive variants of all four models - when the learner is
not necessarily computable.

Section 4 is devoted to Ex-style learning from positive data and negative
counterexamples: the learner eventually stabilizes on a correct grammar for
the target language. First, in order to demonstrate the power of our basic
model, we show that any indexed class of recursively enumerable languages
can be learned by a suitable learner in this model. Then we show that the
second model is equivalent to the basic model: providing the least negative
counterexample does not enhance the power of a learner. In our next major
result (Theorem 19) we show that there is a class of languages learnable from
informants and not learnable in our basic model. This means that sometimes
negative counterexamples are not enough - the learner must have access to all
statements not belonging to the language! (This result follows from a more
general result for Bc-style learning proved in Section 6). In particular, this
result establishes certain constraints on the learning power of our basic model.
The proof of this result employs a new diagonalization technique working
against machines learning via negative counterexamples. We also establish a
hierarchy of learning capabilities in our basic model based on the number of
errors that learner is allowed to have in the final hypothesis. Then we consider
the two models with restricted size of negative counterexamples (described
above). We show that these models are different from and weaker than our
basic model. Still we show that these models are quite powerful: firstly, if
restricted to the classes of infinite languages, they are equivalent to the basic
model, and, secondly there are learnable classes in these models that cannot be
learned in classical Bc-model (without negative counterexamples) - even if an
arbitrary finite number of errors is allowed in the final conjectures. In the end of
the section we demonstrate that a non-recursive learner in our basic model can
learn the class of all recursively enumerable languages. In fact, non-recursive
learning with negative counterexamples turns out to be equivalent to non-
recursive learning from informants (in contrast to Theorem 19 for computable

4

learners mentioned above).

In Section 5 we introduce the concept of a locking sequence similar to the one
defined in [BB75] for the classical Ex-style learning. As in the case of the
classical Ex-model, locking sequences turn out to be useful in characterizing
learnability within our model. In particular, locking sequences are employed
in our next result presented in this section. This result (Theorem 43) demon-
strates that models of learning from positive data and negative counterexample
where the teacher may delay providing a negative counterexample (we define
four natural versions of them) are still equivalent to the basic model with no
delays!

Section 6 is devoted to our Bc-style models. As in the case of Ex-style learning,
we show that providing the least negative counterexample does not enhance
the power of a learner. We also show that learning with restricted size of
negative counterexamples is weaker than the basic model in this setting. In
particular, we show that there exists an indexed class of recursively enumerable
languages that cannot be learned with negative counterexamples of restricted
size (note that all such classes are learnable in our basic Ex-style model as
stated in Theorem 14). Then we show that languages learnable in our basic
Bc-style model (without errors) are Bc-learnable from informants. In the end
we establish one of our most surprising results. First, we demonstrate that the
power of our basic Bc-style model is limited: there are classes of recursively
enumerable languages not learnable in this model if no errors in almost all
(final) conjectures are allowed. On the other hand, there exists a learner that
can learn all recursively enumerable languages in this model with at most one
error in almost all correct conjectures! (The learner here needs to find answers
to undecidable questions concerning comparison of target and hypothesis lan-
guages; the teacher cannot always provide negative counterexamples to the
languages different from the target (for example when the conjecture is a
subset of the target language), however, by possibly making just one deliber-
ate error, the learner finds a way to encode its questions into conjectures so
that the teacher is forced to provide negative counterexamples giving out the
necessary information). Based on similar ideas, we obtain some other related
results - in particular, that, with one error allowed in almost all correct conjec-
tures, the class of all infinite recursively enumerable languages is learnable in
the model with restricted size of negative counterexamples. In contrast to the
case with no errors, we also show that when errors are allowed, Bc-learning
from informants is a proper subset of our basic model of Bc-learning with
errors and negative counterexamples (Corollary 54).

5

2 Notation and Preliminaries

Any unexplained recursion theoretic notation is from [Rog67]. The symbol
N denotes the set of natural numbers, {0, 1, 2, 3, . . .}. Symbols ∅, ⊆, (, ⊇,
and) denote empty set, subset, proper subset, superset, and proper superset,
respectively. Cardinality of a set S is denoted by card(S). The maximum and
minimum of a set are denoted by max(·), min(·), respectively, where max(∅) =
0 and min(∅) = ∞. L1∆L2 denotes the symmetric difference of L1 and L2,
that is L1∆L2 = (L1 − L2) ∪ (L2 − L1). For a natural number a, we say that
L1 =a L2, iff card(L1∆L2) ≤ a. We say that L1 =∗ L2, iff card(L1∆L2) < ∞.
Thus, we take n < ∗ < ∞, for all n ∈ N . If L1 =a L2, then we say that L1 is
an a-variant of L2.

We let 〈·, ·〉 stand for an arbitrary, computable, bijective mapping from N ×N

onto N [Rog67]. We assume without loss of generality that 〈·, ·〉 is mono-
tonically increasing in both of its arguments. We define π1(〈x, y〉) = x and
π2(〈x, y〉) = y.

By ϕ we denote a fixed acceptable programming system for the partial com-
putable functions mapping N to N [Rog67,MY78]. By ϕi we denote the par-
tial computable function computed by the program with number i in the
ϕ-system. Symbol R denotes the set of all recursive functions, that is total
computable functions. By Φ we denote an arbitrary fixed Blum complexity
measure [Blu67,HU79] for the ϕ-system. A partial recursive function Φ(·, ·) is
said to be a Blum complexity measure for ϕ, iff the following two conditions
are satisfied:

(a) for all i and x, Φ(i, x)↓ iff ϕi(x)↓.

(b) the predicate: P (i, x, t) ≡ Φ(i, x) ≤ t is decidable.

By convention we use Φi to denote the partial recursive function λx.Φ(i, x).
Intuitively, Φi(x) may be thought as the number of steps it takes to compute
ϕi(x).

By Wi we denote domain(ϕi). Wi is, then, the recursively enumerable (r.e.)
set/language (⊆ N) accepted (or equivalently, generated) by the ϕ-program
i. We also say that i is a grammar for Wi. Symbol E will denote the set of all
r.e. languages. Symbol L, with or without decorations, ranges over E . By χL

we denote the characteristic function of L. By L, we denote the complement of
L, that is N −L. Symbol L, with or without decorations, ranges over subsets
of E . By Wi,s we denote the set {x < s | Φi(x) < s}.

We now present concepts from language learning theory. The next definition
introduces the concept of a sequence of data.

6

Definition 1 (a) A sequence σ is a mapping from an initial segment of N

into (N ∪ {#}). The empty sequence is denoted by Λ.

(b) The content of a sequence σ, denoted content(σ), is the set of natural
numbers in the range of σ.

(c) The length of σ, denoted by |σ|, is the number of elements in σ. So, |Λ| = 0.

(d) For n ≤ |σ|, the initial sequence of σ of length n is denoted by σ[n]. So,
σ[0] is Λ.

Intuitively, #’s represent pauses in the presentation of data. We let σ, τ , and
γ, with or without decorations, range over finite sequences. We denote the
sequence formed by the concatenation of τ at the end of σ by στ . Sometimes
we abuse the notation and use σx to denote the concatenation of sequence σ

and the sequence of length 1 which contains the element x. SEQ denotes the
set of all finite sequences.

Definition 2 [Gol67] (a) A text T for a language L is a mapping from N

into (N ∪ {#}) such that L is the set of natural numbers in the range of T .
T (i) represents the (i + 1)-th element in the text.

(b) The content of a text T , denoted by content(T), is the set of natural
numbers in the range of T ; that is, the language which T is a text for.

(c) T [n] denotes the finite initial sequence of T with length n.

Definition 3 A language learning machine from texts [Gol67] is an algorith-
mic device which computes a mapping from SEQ into N .

Definition 4 We say that a recursive function I is an informant for L iff for
all x, I(x) = χL(x).

Intuitively, informants give both all positive and all negative data for the
language being learned. I[n] is the first n elements of the informant I. One
can similarly define language learning machines from informants.

We let M, with or without decorations, range over learning machines. M(T [n])
(or M(I[n])) is interpreted as the grammar (index for an accepting program)
conjectured by the learning machine M on the initial sequence T [n] (or I[n]).
We say that M converges on T to i, (written: M(T)↓ = i) iff (∀∞n)[M(T [n]) =
i]. Convergence on informants is similarly defined.

There are several criteria for a learning machine to be successful on a language.
Below we define some of them. All of the criteria defined below are variants
of the Ex-style and Bc-style learning described in the Introduction; in addi-
tion, they allow a finite number of errors in almost all conjectures (uniformly

7

bounded, or arbitrary).

Definition 5 [Gol67,CL82] Suppose a ∈ N ∪ {∗}.

(a) M TxtExa-identifies a text T just in case (∃i | Wi =a content(T))
(∀∞n)[M(T [n]) = i].

(b) M TxtExa-identifies an r.e. language L (written: L ∈ TxtExa(M)) just
in case M TxtExa-identifies each text for L.

(c) M TxtExa-identifies a class L of r.e. languages (written: L ⊆
TxtExa(M)) just in case M TxtExa-identifies each language from L.

(d) TxtExa = {L ⊆ E | (∃M)[L ⊆ TxtExa(M)]}.

Definition 6 [CL82] Suppose a ∈ N ∪ {∗}.

(a) M TxtBca-identifies a text T just in case (∀∞n)[WM(T [n]) =a L].

(b) M TxtBca-identifies an r.e. language L (written: L ∈ TxtBca(M)) just
in case M TxtBca-identifies each text for L.

(c) M TxtBca-identifies a class L of r.e. languages (written: L ⊆
TxtBca(M)) just in case M TxtBca-identifies each language from L.

(d) TxtBca = {L ⊆ E | (∃M)[L ⊆ TxtBca(M)]}.

Definition 7 [Gol67,CL82] Suppose a ∈ N ∪ {∗}.

(a) M InfExa-identifies L (written: L ∈ InfExa(L)), just in case for informant
I for L, (∃i | Wi =a L) (∀∞n)[M(I[n]) = i].

(b) M InfExa-identifies a class L of r.e. languages (written: L ⊆ InfExa(M))
just in case M InfExa-identifies each language from L.

(c) InfExa = {L ⊆ E | (∃M)[L ⊆ InfExa(M)]}.

Definition 8 [CL82] Suppose a ∈ N ∪ {∗}.

(a) M InfBca-identifies L (written: L ∈ InfBca(L)), just in case for informant
I for L, (∀∞n)[WM(I[n]) =a L].

(b) M InfBca-identifies a class L of r.e. languages (written: L ⊆ InfBca(M))
just in case M InfBca-identifies each language from L.

(c) InfBca = {L ⊆ E | (∃M)[L ⊆ InfBca(M)]}.

For a = 0, we often write TxtEx,TxtBc, InfEx, InfBc instead of

8

TxtEx0,TxtBc0, InfEx0, InfBc0, respectively.

L is said to be an indexed family of languages iff there exists an indexing
L0, L1, . . . of languages in L such that the question x ∈ Li is uniformly decid-
able (i.e., there exists a recursive function f such that f(i, x) = χLi

(x)).

We let INIT = {L | (∃i)[L = {x | x ≤ i}]}.

3 Learning with Negative Counterexamples

In this section we define four models of learning languages from positive data
and negative counterexamples. Intuitively, for learning with negative coun-
terexamples, we may consider the learner being provided a text, one element
at a time, along with a negative counterexample to the latest conjecture, if any.
(One may view this negative counterexample as a response of the teacher to
the subset query when it is tested if the language generated by the conjecture
is a subset of the target language). One may model the list of negative coun-
terexamples as a second text for negative counterexamples being provided to
the learner. Thus the learning machines get as input two texts, one for positive
data, and other for negative counterexamples.

We say that M(T, T ′) converges to a grammar i, iff for all but finitely many
n, M(T [n], T ′[n]) = i.

First, we define the basic model of learning from positive data and negative
counterexamples. In this model, if a conjecture contains elements not in the
target language, then a negative counterexample is provided to the learner.
NC in the definition below stands for negative counterexample.

Definition 9 Suppose a ∈ N ∪ {∗}.

(a) M NCExa-identifies a language L (written: L ∈ NCExa(M)) iff for all
texts T for L, and for all T ′ satisfying the condition:

T ′(n) ∈ Sn, if Sn 6= ∅ and T ′(n) = #, if Sn = ∅,

where Sn = L ∩ WM(T [n],T ′[n])

M(T, T ′) converges to a grammar i such that Wi =a L.

(b) M NCExa-identifies a class L of languages (written: L ⊆ NCExa(M)),
iff M NCExa-identifies each language in the class.

(c) NCExa = {L | (∃M)[L ⊆ NCExa(M)]}.

9

We next consider the case when the learner gets the least negative counterex-
ample, rather than any negative counterexample. LNC in the definition below
stands for least negative counterexample.

Definition 10 Suppose a ∈ N ∪ {∗}.

(a) M LNCExa-identifies a language L (written: L ∈ LNCExa(M)) iff for
all texts T for L, and for all T ′ satisfying the condition:

T ′(n) = min(Sn), if Sn 6= ∅ and T ′(n) = #, if Sn = ∅,
where Sn = L ∩ WM(T [n],T ′[n])

M(T, T ′) converges to a grammar i such that Wi =a L.

(b) M LNCExa-identifies a class L of r.e. languages (written: L ⊆
LNCExa(M)), iff M LNCExa-identifies each language in the class.

(c) LNCExa = {L | (∃M)[L ⊆ LNCExa(M)]}.

We next consider complexity constraints on the negative counterexample. The
negative counterexample is provided only if there exists one such counterexam-
ple ≤ the maximum positive element seen in the input so far. This addresses
some complexity constraints the teacher may have. BNC below stands for
bounded negative counterexample.

Definition 11 Suppose a ∈ N ∪ {∗}.

(a) M BNCExa-identifies a language L (written: L ∈ BNCExa(M)) iff for
all texts T for L, and for all T ′ satisfying the condition:

T ′(n) ∈ Sn, if Sn 6= ∅ and T ′(n) = #, if Sn = ∅,
where Sn = L ∩ WM(T [n],T ′[n]) ∩ {x | x ≤ max(content(T [n]))}

M(T, T ′) converges to a grammar i such that Wi =a L.

(b) M BNCExa-identifies a class L of r.e. languages (written: L ⊆
BNCExa(M)), iff M BNCExa-identifies each language in the class.

(c) BNCExa = {L | (∃M)[L ⊆ BNCExa(M)]}.

The following is a generalization of Definition 11 where the negative coun-
terexample is within some recursive factor of maximum positive element seen
so far.

Let INCFUNC = {h ∈ R | (∀x)[h(x) ≥ x] ∧ (∀x)[h(x) ≤ h(x + 1)]}).
INCFUNC is class of non-decreasing functions which are greater than the
identity function.

10

BFNC below stands for bounded by a function negative counterexample.

Definition 12 Suppose a ∈ N ∪ {∗}. Suppose h ∈ INCFUNC.

(a) M BFhNCExa-identifies a language L (written: L ∈ BFhNCExa(M))
iff for all texts T for L, and for all T ′ satisfying the condition:

T ′(n) ∈ Sn, if Sn 6= ∅ and T ′(n) = #, if Sn = ∅,

where Sn = L ∩ WM(T [n],T ′[n]) ∩ {x | x ≤ h(max(content(T [n])))}

M(T, T ′) converges to a grammar i such that Wi =a L.

(b) M BFhNCExa-identifies a class L of r.e. languages (written: L ⊆
BFhNCExa(M)), iff M BFhNCExa-identifies each language in the class.

(c) BFhNCExa = {L | (∃M)[L ⊆ BFhNCExa(M)]}.

(d) BFNCExa =
⋃

h∈INCFUNC BFhNCExa.

Similarly one can define NCBca, LNCBca, BNCBca and BFNCBca crite-
ria of inference.

We may also similarly define variants NRNCExa, NRLNCExa,
NRBNCExa, NRBFNCExa where the learner is allowed to be non-
recursive. (Prefix NR to a criteria denotes that learner is allowed to be non-
recursive).

Proposition 13 Suppose a ∈ N ∪ {∗}.

(i) TxtExa ⊆ BNCExa ⊆ BFhNCExa ⊆ NCExa ⊆ LNCExa.

(ii) TxtBca ⊆ BNCBca ⊆ BFhNCBca ⊆ NCBca ⊆ LNCBca.

4 Ex-type Learning With Negative Counterexamples

We first show an example of what can be achieved by using positive data
and negative counterexamples in the context of indexed families of languages.
Our theorem improves a classical folklore result that every indexed family is
learnable from informants. (see for example, [LZ94]). Note that there exists
an indexed family which does not belong to TxtEx (see [Gol67]), thus Ex-
learning without negative counterexample is weaker than NCEx.

Theorem 14 Suppose L is an indexed family. Then L ∈ NCEx.

11

Proof. Suppose L0, L1, . . . is an indexed family. On input (σ, τ), M outputs a
grammar for Li, for the least i such that content(σ) ⊆ Li and Li∩content(τ) =
∅.

Suppose T is a text for L, and j is the least number such that Lj = L. Then,
for all k < j, either

(i) L 6⊆ Lk, thus for large enough n, content(T [n]) 6⊆ Lk, and thus M would
not output Lk as its conjecture, or

(ii) Lk − L 6= ∅, thus the first time Lk is output there will be a negative
counterexample, and thus Lk would not be conjectured by M thereafter.

Moreover, Lj always passes both the tests (content(T [n]) ⊆ Lj and none of
the negative counterexamples are in Lj). Thus, eventually M, on text T and
any sequence of valid negative counterexamples, will converge to a grammar
for Lj.

We now illustrate another difference between NCEx learning and TxtEx

learning.

Theorem 15 Suppose L ∈ NCEx and L is a recursive language. Then L ∪
{L} ∈ NCEx.

Proof. Suppose L and L are as in the hypothesis. An NCEx-learner can
learn L ∪ {L} as follows. It first outputs a grammar for L and waits until it
receives:

(i) a negative counterexample or

(ii) an element in the text not belonging to L (note that this can be recursively
checked as L is recursive).

If none of above happens, then clearly input language must be L and the
learner identifies it. If one of (i) or (ii) succeeds, then the learner continues
with the strategy to NCEx-identify L. It follows that L∪ {L} ∈ NCEx.

Note that the above does not hold for TxtEx-identification as {F | F is
finite} ∪ {L} 6∈ TxtEx for any infinite language L [Gol67].

Also note that Theorem 15 does not generalize to taking r. e. language (instead
of recursive language) L, as witnessed by following proposition.

Proposition 16 Let A be any recursively enumerable, but not recursive set.
Let L = {{A ∪ {x}} | x 6∈ A}. Then, L ∈ TxtEx, but L ∪ {A} 6∈ LNCEx.

12

Proof. It is easy to verify that L ∈ TxtEx, as one can search for an element
x in the input language which does not belong to A.

We now show that L∪{A} 6∈ LNCEx. Suppose by way of contradiction that
M LNCEx-identifies L∪{A}. Then, as M LNCEx-identifies A, there exists a
σ, σ′ such that (i) content(σ) ⊆ A, (ii) content(σ′) ⊆ A, (iii) |σ| = |σ′|, (iv) for
s < |σ|, σ′(s) = min(WM(σ[s],σ′[s]) − A), if WM(σ[s],σ′[s]) 6⊆ A, and # otherwise,
(v) M(σ, σ′) is a grammar for A, and (vi) M(στ, σ′#|τ |) = M(σ, σ′), for all
τ , with content(τ) ⊆ A. (Otherwise, one can construct a text T for A such
that M does not LNCEx-identify A from text T (and corresponding least
negative counterexamples for non-subset conjectures)).

On the other hand, for every x 6∈ A∪content(σ′), there exists a τ , content(τ) ⊆
A∪{x}, such that M(στ, σ′#|τ |) 6= M(σ, σ′) (otherwise, M does not LNCEx-
identify A ∪ {x}).

Thus, for any x 6∈ content(σ′), x 6∈ A iff there exists a τ , content(τ) ⊆ A∪{x},
such that M(στ, σ′#|τ |) 6= M(σ, σ′). However this contradicts the fact that A

is not recursive.

Proposition 17 Suppose a ∈ N ∪ {∗}. Suppose h ∈ INCFUNC.

(a) LNCExa ⊆ NCExa.

(b) NCExa ⊆ InfExa.

(c) NCExa ⊆ LNCExa.

(d) BFhNCExa ⊆ NCExa.

(e) BNCExa ⊆ BFhNCExa.

(f) TxtExa ⊆ BNCExa.

Proof. (a) Note that, for any grammar g, one can get the least negative
counterexample from an arbitrary negative counterexample y by conjecturing
grammars for the following languages: Wg∩{x | x ≤ z}, for all different values
of z ≤ y. Note that this search introduces finitely many extra mind changes;
however this is ok, since in Ex-type learning, the successful learner is allowed
to make finitely many mind changes.

(b) Note that from an informant one can determine in the limit a negative
counterexample, if any, for any grammar i. Since for Ex-type learning the
learner only makes finitely many conjectures, part (b) follows.

(c), (d), (e) and (f) easily follow from relevant definitions.

13

The following corollary shows that using least negative counterexamples, rather
than arbitrary negative counterexamples, does not enhance power of a learner
- this is applicable also in case when a learner can make a finite bounded
number of mistakes in the final conjecture.

Corollary 18 Suppose a ∈ N ∪ {∗}. Then, NCExa = LNCExa.

The next result shows that sometimes negative counterexamples are not enough:
to learn a language, the learner must have access to all negative examples. (In
particular, it demonstrates a limitation on the learning power of our basic
model).

Theorem 19 InfEx − NCEx∗ 6= ∅.

The above result follows from Theorem 45 and Theorem 46.

We now show the error hierarchy for NCEx-learning. That is, learning with
at most n + 1 errors in almost all conjectures in our basic model is stronger
than learning with at most n errors. The hierarchy easily follows from the
following theorem.

Theorem 20 Suppose n ∈ N .

(a) TxtExn+1 − NCExn 6= ∅.

(b) TxtEx∗ −
⋃

n∈N NCExn 6= ∅.

Proof. (a) Follows from TxtExn+1 − InfExn 6= ∅ [CL82] and Proposi-
tion 17(b).

(b) Follows from TxtEx∗−
⋃

n∈N InfExn 6= ∅ [CL82] and Proposition 17(b).

As, by Proposition 17, TxtExn+1 ⊆ BNCExn+1 ⊆ BFhNCExn+1 ⊆
NCExn+1 ⊆ LNCExn+1, the following corollary follows from Theorem 20.

Corollary 21 Suppose n ∈ N and h ∈ INCFUNC.

(a) NCExn (NCExn+1.

(b) LNCExn (LNCExn+1.

(c) BNCExn (BNCExn+1.

(d) BFhNCExn (BFhNCExn+1.

Now we demonstrate yet another limitation on the learning power of our
basic model when an arbitrary finite number of errors is allowed in the final

14

conjecture: there are languages learnable within the classical Bc-style model
(without negative counterexamples) and not learnable in the above variant of
our basic model.

Theorem 22 TxtBc − NCEx∗ 6= ∅.

Proof. Follows from TxtBc−InfEx∗ 6= ∅ [CL82] and Proposition 17(b).

We will use the following proposition in some of our theorems.

Proposition 23 [Gol67] Suppose L0, L1, . . . and L are such that (i) for all i,
Li (Li+1, and (ii)

⋃

i∈N Li = L. Then, L = {L} ∪ {Li | i ∈ N} 6∈ TxtBc∗

(even if one allows non-recursive learners).

Now we turn to models where size of negative counterexamples is restricted:
BNCEx and BFhNCEx.

We first show that there are classes of languages learnable in our basic model
that cannot be learned in any of the models that use negative counterexamples
of limited size - even if the learners in the latter models are non-computable.

Theorem 24 NCEx −
⋃

h∈INCFUNC NRBFhNCEx∗ 6= ∅.

Proof. We assume without loss of generality that pairing function is in-
creasing in both its arguments. For ϕi ∈ INCFUNC, let x0

i = 〈i, 0〉. Let
x

j+1
i = 〈i, ϕi(x

j
i) + 1〉. Now let Lk

i = {〈i, xj
i 〉 | j ≤ k}, and LN

i = {〈i, xj
i 〉 |

j ∈ N}. For ϕi ∈ INCFUNC, let Li = {Lk
i | k ∈ N} ∪ {LN

i }. Let
L =

⋃

i∈{z|ϕz∈INCFUNC} Li.

Now we show that L ∈ NCEx. A learner can first determine i such that input
is a language from class Li. Then the learner can output a grammar for LN

i .
If there is no negative counterexample to this conjecture, then we are done;
otherwise the learner can follow the strategy of learning finite languages from
text to learn the input language.

We now claim that Li 6∈ NRBFϕiNCEx∗, for any ϕi ∈ INCFUNC.
To see this, note that for learning languages in Li, according to criterion
NRBFϕiNCEx∗, the negative information is not useful as every Lk

i ⊆ LN
i

and min(LN
i −Lk

i) > ϕi(max(Lk
i)). Thus, Li 6∈ NRBFϕiNCEx∗, follows from

Li 6∈ TxtEx∗, even for non-recursive learner (this follows by Proposition 23,
as for all k, Lk

i (Lk+1
i and

⋃

k∈N Lk
i = LN

i).

However, the following theorem shows that if attention is restricted to only
infinite languages, then NCEx and BNCEx behave similarly.

15

Theorem 25 Suppose L consists of only infinite languages. Then L ∈ NCExa

iff L ∈ BNCExa.

Proof. As BNCExa ⊆ NCExa, it suffices to show that if L ∈ NCExa then
L ∈ BNCExa. Suppose M NCExa-identifies L. Define M′ as follows. M′ on
the input text T of positive data for an infinite language L behaves as fol-
lows. Initially let Cntrexmpls = ∅. Intuitively, Cntrexmpls denotes the set of
negative counterexamples received so far. Initially let NegSet = ∅. Intuitively,
NegSet denotes the set of grammars for which we know a negative counterex-
ample. For j ∈ NegSet, ncex(j) would denote a negative counterexample for
j. For ease of presentation, we will let M′ output more than one conjecture
(one after another) at some input point and get negative counterexamples for
each of them. This is for ease of presentation and one can always spread out
the conjectures.

Stage s of M′ (after seeing T [s])
1. Simulate M on T [s], by giving negative counterexamples to any conjectures

j ∈ NegSet by ncex(j). Other grammars get # as counterexample.
2. Let S be the set of conjectures output by M, in the above simulation, on

initial segments of T [s], and let k be the final conjecture.
3. If k 6∈ NegSet, output a grammar for

⋃

i∈S−NegSet Wi,

Otherwise (i.e., if k ∈ NegSet), output a grammar for [(Wk−Cntrexmpls)∪
⋃

i∈S−NegSet Wi].

4. If there is no negative counterexample, then go to stage s + 1.
5. Else (i.e., there is a negative counterexample) output one by one, for each

i ∈ S − NegSet, grammar i. If a negative counterexample is obtained,
then place i in NegSet and define ncex(i) to be this negative counterex-
ample.

(Note that since M′ is for BNCEx-type learning, negative examples re-
ceived would be ≤ max(content(T [s])), if any).

Update Cntrexmpls based on new negative counterexamples obtained.
6. Go to stage s + 1.
End Stage s.

Now let T be a text for an infinite language L ∈ L. Let NegSetf denote the set
of all elements which are ever placed in NegSet in the above construction. For
the text T , let NegT denote the text for negative counterexamples generated
as follows:

NegT (i) =

ncex(M(T [i], NegT [i])), if M(T [i], NegT [i]) ∈ NegSetf ;

#, otherwise.

We claim that NegT denotes a correct text for negative counterexamples (for
NCExa-model of learning) when M is fed T as the positive data text. Clearly,

16

if a negative counterexample is provided above then it is correct. So we only
need to consider if there exists an i such that M(T [i], NegT [i]) 6∈ NegSetf , but
WM(T [i],NegT [i]) 6⊆ L. We claim that this is not possible. To see this suppose, by
way of contradiction, that i is the least number for which this happens. Then,
beyond some stage (by which stage all M(T [j], NegT [j]) j < i, such that
WM(T [j],NegT [j]) 6⊆ L, have been placed in NegSet), we have that the above
construction will output a grammar which enumerates at least WM(T [i],NegT [i])

(see step 3). Thus, eventually a negative counterexample to WM(T [i],NegT [i])

would appear due to steps 3 and 5 (as the data in the input text is unbounded,
due to L being infinite set). A contradiction. Thus, NegT denotes a correct
sequence of negative counterexamples to M on text T .

Thus, since M converges on (T,NegT), we have that for all but finitely many
stages, the simulation of M in step 1 is correct (i.e., M′ provides the correct
negative counterexamples, if any, in the simulation). Thus, for all but finitely
many stages, as M NCExa-identifies L, the grammar output in step 3 by M′

would be correct (except for possibly a errors of omission, as done by the final
grammar of M) and M′ BNCExa-identifies L.

Our next result shows that the model BNCEx, while being weaker than our
basic model, is still quite powerful: there are classes of languages learnable in
this model that cannot be learned in the classical Bc-style model even when
an arbitrary finite number of errors is allowed in almost all conjectures.

Theorem 26 BNCEx − TxtBc∗ 6= ∅.

Proof. Let E = {2x | x ∈ N}, the set of even numbers. Let Ln = E ∪
{x | x ≤ n}. Consider the class L = {N} ∪ {Ln | n ∈ N}. Clearly, L ∈
BNCEx as one can output a grammar for N until, if ever, there is a negative
counterexample. If and when a negative counterexample is received for N , one
can then follow the strategy to learn {Ln | n ∈ N} (which is learnable from
text alone). However, as L1 (L3 (L5 . . . and

⋃

i∈N L2i+1 = N , we have from
Proposition 23 that L 6∈ TxtBc∗ (even by non-computable learners).

The next result shows that BFhNCEx allows one to learn a class which is
not learnable in the BNCEx model, even by a non-computable learner.

Theorem 27 Suppose h is such that for all x, h(x) > x. Then BFhNCEx−
NRBNCEx∗ 6= ∅.

Proof. Consider L = INIT ∪ {N}. We first show that L ∈ BFhNCEx. A
learner can output a grammar for N until, if ever, there is a negative coun-
terexample. (Note that if the input language is {x | x ≤ n}, for some n, then
elements in {x | n < x ≤ h(n)} 6= ∅, are valid negative counterexamples for
the language N , once element n appears in the input). If and when a negative

17

counterexample is received for N , one can then follow the strategy to learn
INIT, which is learnable from text alone.

On the other hand, for NRBNCEx∗ learnability, there is never a negative
counterexample, as none of the languages in the class have a negative coun-
terexample ≤ maximum element present in the input. Thus, using Proposi-
tion 23, we have that L 6∈ NRBNCEx∗.

Now we show a hierarchy for BFhNCEx-style learning. If h′ is greater than
h in just infinitely many points, then BFh′

NCEx contains languages not
learnable in BFhNCEx, even if a BFhNCEx-learner is non-computable.

Theorem 28 Suppose h, h′ ∈ INCFUNC. Suppose further that x0, x1, . . . is
a recursive sequence of increasing numbers such that

(i) x0 = 0

(ii) for all i, h(x2i+1) < x2i+2 ≤ h′(x2i+1).

Let LN = {x | (∃i)[x2i ≤ x ≤ x2i+1]}.

Let Lj = {x | (∃i ≤ j)[x2i ≤ x ≤ x2i+1]}.

Then, L = {Lj | j ∈ N} ∪ {LN} ∈ BFh′

NCEx − NRBFhNCEx∗.

Proof. Clearly L ∈ BFh′

NCEx, as one can output a grammar for LN until,
if ever, a negative counterexample is received. (Note that if input language
is Lj, then eventually there exists such a negative counterexample as x2j+2 ∈
LN − Lj and x2j+2 ≤ h′(x2j+1).) If and when a negative counterexample is
received, the learner can then follow the learning strategy (similar to that for
INIT) for {Lj | j ∈ N} (which can be learned from text alone).

On the other hand, for NRBFhNCEx∗ learnability there is never a nega-
tive counterexample from the set LN due to the fact that min(LN − Lj) >

h(max(Lj)) for any j ∈ N . This essentially renders the negative informa-
tion useless. Thus L ∈ NRBFhNCEx∗ would mean L ∈ TxtEx∗ (by non-
computable learner), which is not true by Proposition 23 (as Lj (Lj+1 and
⋃

j∈N Lj = LN).

Corollary 29 Suppose h, h′ ∈ INCFUNC such that h′(x) > h(x) for in-
finitely many x. Then BFh′

NCEx − NRBFhNCEx∗ 6= ∅.

Proof. Note that, for any pair of recursive functions h and h′ such that
h′(x) > h(x) for infinitely many x, one can define a recursive sequence of xi

such that hypotheses (i) and (ii) in Theorem 28 hold. This can be done by

18

taking x0 = 0 and inductively defining x2i+1, x2i+2 such that x2i+1 > x2i and
h(x2i+1) < h′(x2i+1) = x2i+2. Now corollary follows from Theorem 28.

On the other hand, if h′(x) ≤ h(x) for all but finitely many x, then clearly
BFh′

NCExa ⊆ BFhNCExa.

We now turn our attention to the power of non-computable learners. The
following proposition follows from definitions.

Proposition 30 Suppose a ∈ N .

(a) NRNCExa ⊆ NRLNCExa.

(b) NRBFNCExa ⊆ NRNCExa.

(c) NRBNCExa ⊆ NRBFNCExa.

As the next result shows, a non-computable learner in our basic model has
the “ultimate power”: it can learn all recursively enumerable languages.

Theorem 31 E ∈ NRNCEx.

Proof. A non-effective learner can search for the least grammar i such that
content(T) ⊆ Wi and i does not generate a negative counterexample. Thus,
E ∈ NRNCEx.

As E ∈ NRInfEx, we have

Corollary 32 NRNCEx = NRInfEx.

Theorem 33 Suppose L is such that:

for any infinite L ∈ L, there exist only finitely many n such that L∩ {x | x <

n} ∈ L.

Then, L ∈ NRBNCEx.

Proof. Define (possibly nonrecursive) M as follows. On input (T [n], T ′[n]),
output the least i such that Wi ∈ L, and

(i) content(T [n]) ⊆ Wi, and

(ii) content(T ′[n]) ∩ Wi = ∅, and

(iii) Wi = content(T [n]) or content(T [n]) 6∈ L or for all t, [content(T [n]) 6=
Wi ∩ {x | x < t}].

19

We claim that above M would NRBNCEx-identify L. To see this suppose T

is a text for L ∈ L. Let i be the least grammar for L. If L is finite, then let n be
such that content(T [n]) = L. If L is infinite, then let t be such that for all t′ ≥ t,
Wi∩{x | x < t′} 6∈ L; then let n be such that Wi∩{x | x < t} ⊆ content(T [n]).
Now, for n′ ≥ n, i satisfies conditions (i)—(iii) above. Thus, M(T [n′]) ≤ i.

Now, for any j < i, let n′ > n be so large that:

(iv) if L 6⊆ Wj , then T [n′] 6⊆ Wj,

and

(v) if min(Wj − L) ≤ max(L), then min(Wj − L) ≤ max(T [n′]).

Note that there exists such an n′.

We claim that, any j < i appears at most once as a conjecture beyond T [n′].
Clearly, if L 6⊆ Wj, then j cannot appear as M’s conjecture beyond T [n′] due
to (i) and (iv) above. Furthermore, if min(Wj −L) ≤ max(L), then j appears
at most once beyond T [n′] (as then we will get a negative counterexample
for conjecture j). Thus, for j to appear more than once beyond T [n′], we
must have L ⊆ Wj and min(Wj − L) > max(L). But then L is finite, and
Wj ∩ {x | x < max(L)} = L. Thus, (iii) above implies that j would not be
output by M beyond T [n′].

Also, since i satisfies (i)—(iii) above, for almost all n′′ ≥ n′, we would have
that M outputs i on T [n′′].

Theorem 34 Suppose L is such that:

there exists an infinite L ∈ L, there exist infinitely many n such that L ∩ {x |
x < n} ∈ L.

Then, L 6∈ NRBNCBc∗.

Proof. Suppose by way of contradiction that M NRBNCBc∗-identifies L,
when least eligible negative counterexample (≤ maximum positive element in
the input data), if any, is given to M. Suppose σ is such that (i) content(σ) ⊆
L, and (ii) for all τ such that content(τ) ⊆ L, M outputs a grammar for a finite
variant of L on input positive data στ (where the negative counterexamples
provided are the least eligible counterexample as described above). Note that
there exists such a σ, since otherwise we can inductively build a text T for L

on which M fails to NRBNCBc∗-identify L.

Let t be such that content(σ) ⊆ L∩{x | x < t} and L∩{x | x < t} ∈ L. Now,
M does not NRBNCBc∗-identify L ∩ {x | x < t}, on any text T , extending

20

σ, for L ∩ {x | x < t} (since all its conjectures beyond σ on T are for finite
variants of L).

Note that Theorems 33 and 34 give a characterization for NRNCEx-
identification and also show that NRBNCEx = NRBNCBc∗.

One can similarly show:

Theorem 35 Fix h ∈ INCFUNC. Suppose L is such that:

for any infinite L ∈ L, there exist only finitely many n ∈ L such that L∩ {x |
x ≤ n} ∈ L, but min(L − {x | x ≤ n}) > h(n).

Then, L ∈ NRBFhNCEx.

Theorem 36 Fix h ∈ INCFUNC. Suppose L is such that:

there exists an infinite L ∈ L, for infinitely many n ∈ L, L∩{x | x ≤ n} ∈ L,
and min(L − {x | x ≤ n}) > h(n).

Then, L 6∈ NRBFhNCEx.

5 Locking Sequence and Delayed Counterexamples

In this section we introduce the concept of a locking sequence for our Ex-style
learning model. Locking sequence (see [BB75]) is an important tool in un-
derstanding and characterizing learning languages in the limit. Informally, a
locking sequence is an initial fragment of the input text that is sufficient for
a learner to identify the target language. Once the locking sequence has been
inputted, the learner never changes its mind. Using the concept of locking
sequence, we obtain a characterization of NCEx-type learning. Our concept
of locking sequence turns out to be very useful in our following discussion of
learning from positive data and negative counterexamples when counterexam-
ples can be delayed.

For the following, we will often consider giving machine M least valid negative
information, if any. To this end define neginputM,L,σ as follows. For n < |σ|,

neginputM,L,σ(n) =

#, if WM(σ[n],neginputM,L,σ [n]) ⊆ L;

x, otherwise,

where x = min(WM(σ[n],neginputM,L,σ [n]) − L).

21

(for BNCEx, BFhNCEx-identification the first clause above is appropri-
ately modified to check containment only for elements ≤ max(content(σ)) or
h(max(content(σ))) respectively).

When the input language L is implicit, we also define LNM(σ) =
M(σ, neginputM,L,σ[|σ|]).

Intuitively, LN above stands for least negative relevant counterexample given.

Definition 37 (σ, j)-is said to be a NCEx-stabilizing sequence for M on L

iff

(i) content(σ) ⊆ L,

(ii) WLNM(σ) ⊆ L,

(iii) For all τ such that content(τ) ⊆ L, LNM(σ) = LNM(στ).

(iv) For all n ≤ |σ|, min(WLNM(σ[n]) ∩ L) = min(WLNM(σ[n]),j ∩ L).

(For BNCEx-stabilizing sequence above definition is appropriately modified
by changing (ii) and (iv) to

(ii’) WLNM(σ) ∩ {x | x ≤ max(L)} ⊆ L,

(iv’) For all n ≤ |σ|, min(WLNM(σ[n]) ∩ L ∩ {x | x ≤ max(content(σ[n]))}) =
min(WLNM(σ[n]),j ∩ L ∩ {x | x ≤ max(content(σ[n]))}).)

Remark: Recall that Wi,j = {x | x < j ∧ Φi(x) < j}. Thus Wi,j ⊆ {x | x <

j}.

Note that if (τ, j) is a stabilizing sequence for M on L, then so is (τ ′, j′), for
any j ′ ≥ j, and τ ′ ⊇ τ with content(τ ′) ⊆ L.

Definition 38 (σ, j)-is said to be a NCEx-locking sequence for M on L iff

(i) (σ, j) is a stabilizing sequence for M on L, and

(ii) LNM(σ) is a grammar for L.

Proposition 39 Suppose M NCEx-identifies L. Then

(a) there exists a NCEx-stabilizing sequence for M on L, and

(b) every NCEx-stabilizing sequence for M on L is also a NCEx-locking
sequence for M on L.

Proof. (a) Consider the process in which M is always given the least neg-

22

ative counterexample, if any. We first claim that there exists a τ such that
(i) content(τ) ⊆ L, (ii) WLNM(τ) ⊆ L, and (iii) for any τ ′ ⊇ τ such that
content(τ ′) ⊆ L, LNM(τ) = LNM(τ ′). This follows immediately from the
fact that M NCEx-identifies L. (Otherwise, one can construct a text T such
that (I) M does not converge on T or (II) M makes infinitely many wrong
conjectures on T . To see this, let T ′ be a text for L. Define τi as follows. τ0 is a
sequence consisting of just T ′(0). Inductively define τi+1 as follows. If τi does
not satisfy the requirements (i)–(iii), then either (I’) for some σ extending
τi with content(σ) ⊆ L, LNM(τi) 6= LNM(σ), or (II’) WLNM(τi) contains an
element outside L — in this case let σ = τi. Now let τi+1 = σT ′(i + 1). It
immediately follows that

⋃

i∈N τi is a text for L, and LNM(T) makes infinitely
many mind changes on T or makes infinitely many wrong conjectures on T .)

Now define j to be the least value such that, for all n ≤ |τ |, min(WLNM(τ [n]) ∩
L) = min(WLNM(τ [n]),j ∩ L).

Now, (τ, j) satisfies the definition of being NCEx-stabilizing sequence for M

on L.

(b) Follows from definition of NCEx-identification.

The following proposition demonstrates how learning in our basic model can
be characterized using locking sequences.

Proposition 40 L ∈ NCEx iff there exists an M such that for each L ∈ L,

(a) there exists a NCEx-stabilizing sequence for M on L, and

(b) every stabilizing sequence for M on L is a NCEx-locking sequence for M

on L.

Proof. Left to Right direction follows from Proposition 39.

For right to left part note that a NCEx-learner M′ can search for a (σ, j)
such that the following four properties are satisfied:

(i) content(σ) ⊆ L;

(ii) WLNM(σ) ⊆ L;

(iii) For all τ such that content(τ) ⊆ L, LNM(σ) = LNM(στ);

(iv) For all n ≤ |σ|, min(WLNM(σ[n]) ∩ L) = min(WLNM(σ[n]),j ∩ L).

Note that a NCEx learner can determine χL[j] (by conjecturing grammars for
{i}, i ≤ j). Thus, second part of the equality in (iv) above can be effectively

23

determined, and thus any violation of (iv) can be determined in r.e. sense (by
outputting LNM(σ[n]) and, if there is a negative counterexample, enumerating
WLNM(σ[n]) and checking the elements in L∩{x | x < j}). Assuming (iv) holds,
negative information needed for calculating WLNM

(τ), for τ ⊆ σ, can also be
effectively found using χL[j]. Violation of (ii) can be determined by checking
if conjecturing LNM(σ) leads to a negative example. Violation of (iii) is easy
to check. Thus, in the limit, we can find a stabilizing sequence for M on L, if
any. Hence, a learner can output LNM(σ), in the limit, for one such stabilizing
sequence (which gives a grammar for L by clause (b)).

For BNCEx-identification we have the following characterization. The proof
is similar to the above proposition, except that we need a slight modification
as one may not be able to determine χL[j] from the input (due to extra con-
straints on negative examples). Similar characterization results can be proved
for BFhNCEx-identification also.

Proposition 41 L ∈ BNCEx iff there exists an M such that for each L ∈ L,

(a) there exists a BNCEx-stabilizing sequence for M on L, and

(b) every stabilizing sequence for M on L is a BNCEx-locking sequence for
M on L.

Proof. Left to Right direction follows by using an analogue of Proposition 39.

For Right to Left direction we proceed similar to Proposition 40, except that
we need to be careful in the sense that one may not be able to obtain χL[j] from
the input, if the input language is finite (due to constraints on the negative
information provided).

Thus, on input T , a BNCEx learner M′ searches for a (σ, j) such that:

(I) content(T) ⊆ {x | x ≤ j}, or

(II) The following four conditions hold:

(II.i) content(σ) ⊆ L;

(II.ii) WLNM(σ) ∩ {x | x ≤ max(L)} ⊆ L;

(II.iii) For all τ such that content(τ) ⊆ L, LNM(σ) = LNM(στ);

(II.iv) For all n ≤ |σ|, min(WLNM(σ[n]) ∩ L ∩ {x | x ≤ max(content(σ[n]))}) =
min(WLNM(σ[n]),j ∩ L ∩ {x | x ≤ max(content(σ[n]))}).

Note that one can do the above search by dovetailing over all pairs (σ, j), such

24

that each pair gets infinitely many chances, and first we check if (I) above
holds, and if not, check if (II) holds. One can find in the limit a (σ, j) such
that (I) or (II) holds, if such a (σ, j) exists. (Note that, if (I) does not hold
for a particular (σ, j), then one can determine χL[j], as L contains an element
> j. Thus, one can determine violation of (II) in a way similar to that done
in the proof of Proposition 40).

For any candidate (σ, j), if (I) seems to hold, M′ outputs a grammar for
content(T)∩{x | x ≤ j}, and if case (II) seems to hold, M′ outputs LNM(σ).
If none of (I) and (II) hold, we move on to the next candidate.

Now, due to checking of the conditions (I) and (II), M′ can only converge to
a conjecture of M on a stabilizing sequence (for M on L), due to success of
(II) or to a conjecture for finite language due to success of (I). For L ∈ L,
in the former case, by condition (b) in the proposition, we have BNCEx-
identification, and for the latter case we clearly have BNCEx-identification
due to explicitly outputting grammar for the input language, which is finite.

Furthermore, every finite language L would eventually lead to convergence
due to success of (I) or earlier due to some stabilizing sequence for M on L.
Also, every infinite language L ∈ L, would eventually lead to convergence due
to presence of some stabilizing sequence for M on L.

From above, BNCEx identification of L by M′ follows.

We now consider several variants of NCEx model where the negative exam-
ples may not appear immediately, nor may they appear for all conjectures
enumerating a non-subset of L. These variants reflect complexity constraints
on the teacher – yet differently from the models with limited size of nega-
tive counterexamples. As formal definitions of the models to be presented are
technically rather complex, we proceed below somewhat informally.

Definition 42 Consider the following models for delayed negative counterex-
amples.

D1: The learner eventually receives a negative counterexample for every hy-
pothesis which enumerates a non-subset of L. We do not constrain when this
negative counterexample appears, nor is the negative counterexample tagged
with the hypothesis to which it is a counterexample.

D2: If the learner converges to a hypothesis, and this hypothesis enumerates a
non-subset of L, then the learner will eventually receive a negative counterex-
ample for it (idea here is that abandoned hypothesis may not get negative
counterexample).

25

D3: Let T be a text for language L, and let jm denote the conjecture of the
learner on input T [m]. For all m, if Wjm

6⊆ L, then there exists a negative
counterexample x presented to the learner such that for some m′ ≥ m, x ∈
Wjm′

−L (here the idea is that once a grammar gets a negative counterexample,
one may consider all previously output non-subset grammars addressed).

D4: If a grammar is output infinitely often by the learner, and this grammar
enumerates a nonsubset of L, then the learner eventually receives a negative
counterexample for the grammar. We do not constrain when this negative
counterexample appears, nor is the counterexample tagged with the hypothesis
to which it is a counterexample.

Clearly, D2 is contained in each of D1, D3 and D4. Thus showing that
NCEx = D2 means the collapsing of all these variants to NCEx. This in
some sense would show that the model we have chosen is reasonably robust.
The following, quite surprising result demonstrates that all the above models
do collapse to NCEx: delays do not constrain learners if positive data and
negative counterexamples are eventually available!

Theorem 43 NCEx = D2.

Proof. Clearly, D2 ⊆ NCEx. We show that NCEx ⊆ D2. Suppose M

NCEx-identifies L. We define a D2 learner M′ as follows:

M′ tries to search for a stabilizing sequence for M on L.

M′ on the input text T does the following:

M′ on text T for a language L.
For each pair (σ, j):
1. First determine χL[j]. (Note that M′ can determine if a particular

element x is in L or not, by repeatedly outputting a grammar for
{x} until it either receives x in text or x as negative example (one
of these must happen, otherwise M′ converges to grammar for {x}
on T , but does not receive the required positive/negative example).
Thus it can determine χL[j].)

2. If content(σ) 6⊆ content(T), then go to next iteration of the loop
(note that, whether content(σ) ⊆ content(T), can be determined
similarly to step 1 above).

3. Else, assume the following property:
(P1) for all τ ⊆ σ, min(WLNM(τ)∩L) = min(WLNM(τ),j∩L) (This
is property (iv) in definition of stabilizing sequence).

and calculate LNM(τ), for τ ⊆ σ, and
S = {LNM(τ) | WLNM(τ) ⊆ L} (i.e., the grammars output by LNM

on prefixes of σ, for which # was given as negative example).

26

4. Output a grammar for
⋃

i∈S Wi.
5. Idle until at least one of the following is satisfied:

(a) there exists a negative counterexample for
⋃

i∈S Wi. (This
verifies property (ii) in the definition of stabilizing sequence
and part of property (P1) above (the part where WLNM(τ) ∩
L = ∅)).

(b) assuming (a) does not hold, check if property (P1) above
is violated. (Note that this can be verified, assuming (a)
above does not hold, by enumerating the elements output
by LNM(σ[n])).

(c) assuming, (a) and (b) do not hold, check if there exists
a τ such that content(τ) ⊆ L, and LNM(σ) 6= LNM(στ).
(This verifies property (iii) in the definition of stabilizing
sequence).

6. If one of (a) to (c) succeed, then go to the next iteration of the For
loop.

EndFor

Now note that, if in any iteration of the For loop, (a)–(c) do not succeed, then
we have that (σ, j) is a stabilizing sequence for M on L, and L ⊇

⋃

i∈S Wi ⊇
WLNM(σ) = L. Thus, M′ converges to correct grammar. On the other hand, if
one of (a) to (c) succeed, then (σ, j) is not a stabilizing sequence for M on L.

It is now easy to verify that, if there exists a stabilizing sequence for M on L,
then for some such stabilizing sequence (σ, j) the conditions (a)–(c) are not
satisfied, and M′ above converges to a grammar for

⋃

i∈S Wi (where S is as in
the iteration for (σ, j)).

Thus, M′ D2-identifies any language NCEx-identified by M.

Note that the proof for the above theorem did not use the exact negative coun-
terexample, but just the fact that a negative counterexample existed for the
latest conjecture. In other words, our basic (and the most powerful) learning
model is equivalent to the one where a learner gets only answers “yes”or “no”
to the subset queries (when it is tested if the current conjecture generates a
subset of the target language)!

As D4 ⊇ D2 and D3 ⊇ D2 and D1 ⊇ D2, we have that all of these are same
as NCEx.

27

6 Bc-type Learning With Negative Counterexamples

In this section we explore Bc-style learning from positive data and negative
counterexamples. First we show that, for Bc-style learning, similarly to Ex-
style learning, our basic model is equivalent to learning with the least negative
counterexamples.

Proposition 44 (a) NCBc = LNCBc.

(b) LNCBc ⊆ InfBc.

Proof. (a) Clearly, NCBc ⊆ LNCBc. For LNCBc ⊆ NCBc, note that,
for any grammar g, one can get the least negative counterexample from arbi-
trary negative counterexample y by conjecturing grammars for the following
languages: Wg ∩ {x | x ≤ z}, for all different values of z ≤ y. Note that
this search introduces finitely many extra wrong conjectures, for each wrong
conjecture of the NCBc-learner. However, since in Bc-type learning all but
finitely many grammars output are for the input language, this does not hurt
the simulation.

(b) Suppose M LNCBc-identifies L. Define machine M′ as follows.

For an informant I for L, define text T for L as follows:

T (i) =

x, if I(x) = 1;

#, otherwise.

On input I[n], output M(T [n], τ), where τ is of length n, where for i < n,

τ(i) =

#, if WM(T [i],τ [i]),n∩

{x < n | I(x) = 0} = ∅;

min(WM(T [i],τ [i]),n ∩ {x < n | I(x) = 0}), otherwise.

Now if M LNCBc-identifies L, then for all but finitely many n, the negative
answers given for conjectures of M on T are correct and hence M′ reproduces
the output of M on all except for finitely many initial segments of T . Thus,
M′ InfBc-identifies L.

Our next result shows that, to learn a language, sometimes even for Bc-style
learning, positive data and negative counterexamples are not enough - the
learner must have access to all negative data. In particular, limitations on the
learning power of our basic Bc-style model are established.

28

Theorem 45 InfEx − NCBc 6= ∅.

Proof. Let L = {L | (∃e)[min(L) = 2e] ∧

(i) [L = We and (∀x ≥ e)[L ∩ {2x, 2x + 1} 6= ∅]].

OR

(ii) (∃x > e)[L ∩ {2x, 2x + 1} = ∅, ∧ (∀y > 2x + 1)[y ∈ L]]

}

It is easy to verify that L ∈ InfEx. A learner can easily find e as above, and
whether there exists x > e such that both 2x, 2x + 1 are not in the input
language. This information is sufficient to identify the input language.

We now show that L 6∈ NCBc. Intuitively, the idea is that for a learner
which learns languages satisfying clause (ii) above, for every σ (satisfying
content(σ) ⊆ {x | x ≥ 2e}), and any finite set S of negative counterexamples
provided to the learner (where S does not contain both 2x and 2x + 1, for
any x), there must exist an extension τ of σ (satisfying content(τ) ⊆ {x | x ≥
2e} − S) such that the learner, on input τ , outputs a grammar for a proper
extension of content(τ). This allows us to choose an appropriate element of the
conjecture as negative counterexample (along with rendering the conjecture
false). Iteratively, above method allows us to define σ0 ⊂ σ1 ⊂ σ2 . . . which
form larger and larger initial segments of the language We (satisfying clause
(i)) diagonalizing against NCBc. Note that we needed a pair {2x, 2x + 1},
to separate (i) from (ii) in the definition of L, as one of the elements may be
needed for giving the negative counterexamples as mentioned above. The diag-
onalization below is slightly more complicated, as one may not always be able
to effectively find whether a conjecture on σs properly extends content(σs).

We now proceed formally.

Suppose by way of contradiction that machine M NCBc-identifies L. Then
by the Kleene Recursion Theorem [Rog67] there exists a recursive function e

such that We may be defined as follows.

Initially, let We = {2e, 2e+1} and σ0 be such that content(σ0) = {2e, 2e+1}.
Intuitively Cntrexmpls denotes the set of elements frozen to be outside the
diagonalizing language being constructed. Initially, Cntrexmpls = {x | x <

2e}. Intuitively, NegSet is the set of conjectured grammars for which we have
found a negative counterexample (in Cntrexmpls). Initially let NegSet = ∅.
ncex(j) is a function which gives, for j ∈ NegSet, a negative counterexample
from Cntrexmpls. For the following, let γτ be a sequence of length |τ | defined
as follows. For i < |τ |,

29

γτ (i) =

ncex(M(τ [i], γτ [i])), if M(τ [i], γτ [i]) ∈ NegSet;

#, otherwise.

(where the value of NegSet is as at the time of above usage).

Let x0 = 2e + 2. Intuitively, xs is the least even element greater than
max(content(σs) ∪ Cntrexmpls). Also we will have the invariant that at start
of stage s,

(i) every element < xs is either in content(σs) or Cntrexmpls and

(ii) content(σs) consists of elements enumerated in We before stage s.

Go to stage 0.

Stage s

1. Dovetail steps 2 and 3 until step 2 or 3 succeed. If step 2 succeeds before
step 3, if ever, then go to step 4. If step 3 succeeds before step 2, if ever,
then go to step 5.

Here we assume that if step 3 can succeed by simulating M(τ, γτ) for s

steps, then step 3 succeeded first (and for the shortest such τ), otherwise
whichever of these steps succeeds first is taken. (So some priority is given
to step 3 in the dovetailing).

2. Search for a τ ⊇ σs such that
content(τ) ⊆ content(σs) ∪ {x | x ≥ xs + 2},
M(τ, γτ) 6∈ NegSet and
WM(τ,γτ) enumerates an element not in content(τ).

3. Search for a τ ⊆ σs such that M(τ, γτ) 6∈ NegSet and WM(τ,γτ) enumerates
an element not in content(σs).

4. Let τ be as found in step 2, and j = M(τ, γτ), and z be the element found
to be enumerated by Wj which is not in content(τ).

Let NegSet = NegSet ∪ {j}.
Let Cntrexmpls = Cntrexmpls ∪ {z}.
Let ncex(j) = z.
Let xs+1 be the least even number > max(content(τ) ∪ {xs, z}).
Enumerate {x | xs ≤ x < xs+1} − {z} in We.
Let σs+1 be an extension of τ such that content(σs+1) = We enumerated

until now.
Go to stage s + 1.

5. Let τ be as found in step 3, and j = M(τ, γτ), and z be the element found
to be enumerated by Wj which is not in content(σs).

Let NegSet = NegSet ∪ {j}.
Let Cntrexmpls = Cntrexmpls ∪ {z}.
Let ncex(j) = z.

30

Let xs+1 be the least even number > max({xs, z}).
Enumerate {x | xs ≤ x < xs+1} − {z} in We.
Let σs+1 be an extension of σs such that content(σs+1) = We enumerated

until now.
Go to stage s + 1.

End stage s

We now consider the following cases:

Case 1: Stage s starts but does not finish.

In this case let L = We ∪ {x | x ≥ xs + 2}. Note that, due to non-success
of steps 2 and 3, the negative information given in computation of γτ based
on NegSet is correct. Thus, for any text T for L extending σs, for n > |σs|,
M(T [n], γT [n]) ∈ NegSet or it enumerates only a finite set (otherwise step 2
would succeed). Thus, M does not NCBc-identify L.

Case 2: All stages finish.

Let L = We. Let T =
⋃

s∈N σs. Note that T is a text for L. Let Cntrexmpls
(NegSet) denote the set of all elements which are ever placed in Cntrexmpls
(NegSet) by the above construction. Let γT be defined as follows.

γT (i) =

ncex(M(T [i], γT [i])), if M(T [i], γT [i]) ∈ NegSet;

#, otherwise.

For τ ⊆ T , let γτ = γT [|τ |]. Note that eventually, any conjecture j by M

on (T, γT) which enumerates an element not in L, belongs to NegSet, with a
negative counterexample for it belonging to Cntrexmpls (given by ncex(j)).
This is due to eventual success of step 3, for all τ ⊆ T , for which M(τ, γτ) 6⊆ L

(due to priority assigned to step 3).

If there are infinitely many τ ⊆ T such that M(τ, γτ) 6⊆ L, then clearly, M does
not NCBc-identify L. On the other hand, if there are only finitely many such
τ , then clearly all such τ would have been handled by some stage s, and beyond
stage s, step 3 would never succeed. Thus, for any stage s′ ≥ s, simulation
of M(τ, γτ), as at stage s′ step 2, is correct (i.e., negative counterexamples
are given, whenever the conjectured language is not a subset of L), and step 2
succeeds in all but finitely many stages. Thus again infinitely many conjectures
of M on (T, γT) are incorrect (and enumerate an element of L), contradicting
the hypothesis.

From above cases it follows that M does not NCBc-identify L. Theorem
follows.

31

Our next result shows that all classes of languages learnable in our basic Ex-
style model with arbitrary finite number of errors in almost all conjectures
can be learned without errors in the basic Bc-style model. Note the contrast
with learning from texts where TxtEx2j+1 − TxtBcj 6= ∅ [CL82].

Theorem 46 NCEx∗ ⊆ NCBc.

Proof. Suppose M NCEx∗-identifies L. Define M′ as follows. M′ on (pos-
itive) input σ is obtained by simulating M on input σ. Suppose M outputs
grammar i. If this is the first time M has output i, then M′ also outputs i, and
passes to M any negative counterexample obtained. If i has been previously
output by M, then in the simulation M is given the negative counterexample
received by M′ the last time i was output by M′ — and then M′ outputs
a grammar for Wi ∪ content(σ) − {x | x has been received by M′ as nega-
tive counterexample upto now}. Now, if the final grammar of M on the input
text makes only finitely many errors, then all these errors are patched by M′

(positive errors are patched due to addition of content(σ); negative errors are
patched due to fixing of all negative errors, one by one, as received by M′).
Thus, M′ NCBc-identifies L.

Next theorem establishes yet another limitation on the learning power of our
basic Bc-style learning: some languages not learnable in this model can be
Bc-learned without negative counterexamples if only one error in almost all
conjectures is allowed.

Theorem 47 TxtBc1 − NCBc 6= ∅.

Proof. Follows from TxtBc1 − InfBc 6= ∅ [CL82] and Proposition 44.

Now we turn to Bc-style learning with limited size of negative counterexam-
ples. First, note that Theorem 26 gives us: BNCEx − TxtBc∗ 6= ∅. In other
words, some languages Ex-learnable with negative counterexamples of limited
size cannot be Bc-learned without counterexamples even with an arbitrary fi-
nite number of errors in almost all conjectures. On the other hand, as the
next theorem shows, some languages learnable in our basic Ex-style learning
with negative counterexamples cannot be learned in Bc-model with limited
size of negative counterexamples even if an arbitrary finite number of errors
is allowed in almost all conjectures.

Theorem 48 NCEx − BNCBc∗ 6= ∅.

Proof. The class used for separating BFhNCEx−BNCEx in Theorem 27,
INIT ∪ {N}, is not in BNCBc∗, as negative examples are not relevant and
the class itself is not in TxtBc∗ by Proposition 23.

32

Similarly, from the proof of Theorem 28 and Corollary 29 we have,

Theorem 49 Suppose h, h′ ∈ INCFUNC such that h′(x) > h(x) for in-
finitely many x. Then BFh′

NCEx − NRBFhNCBc∗ 6= ∅.

Thus, similarly to the Ex-style model, we have a hierarchy on the Bc-style
models depending on the recursive factor limiting the size of negative coun-
terexamples.

Our next result establishes a limitation on the learning power of Bc-style
learning with negative counterexamples of limited size allowing arbitrary finite
number of errors in almost all conjectures: there are some indexed classes of
languages not learnable in this model (as Theorem 14 showed, all such classes
are Ex-style learnable in the basic model).

Theorem 50 There exists an indexed family not in BNCBc∗.

Proof. The class used in the proof of Theorem 27, INIT∪{N}, is an indexed
family not in BNCBc∗.

Corollary 51 InfEx − BNCBc∗ 6= ∅.

Now we establish one of our most surprising results: there exists a Bc-style
learner with negative counterexamples, allowing just one error in almost all
conjectures, with the “ultimate power” - it can learn the class of all recursively
enumerable languages!

Theorem 52 E ∈ NCBc1.

Proof. First we give an informal idea of the proof. Our learner can clearly
test if a particular Ws ⊆ L. Given an arbitrary initial segment of the input
T [n], we will want to test if content(T [n]) 6⊆ Ws for any r.e. set Ws ⊆ L,
where L is a target language. Of course, the teacher cannot directly answer
such questions, since Ws might not be the target language (note also that
the problem is undecidable). However, the learner finds a way to encode this
problem into a current conjecture and test if the current conjecture generates
a subset of the target language. In order to do this, the learner potentially
makes one deliberate error in its conjecture! We now proceed formally.

Define M on the input text T as follows. Initially, it outputs a grammar
for N . If it does not generate a negative counterexample, then we are done.
Otherwise, let c be the negative counterexample. Go to stage 0.

Stage s

33

1. Output grammar s. If it generates a negative counterexample, then go to
stage s + 1.

2. Else,
For n = 0 to ∞ do:

Output a grammar for the language X where:

X =

∅, if content(T [n]) 6⊆ Ws;

Ws ∪ {c}, otherwise.

If it does not generate a negative counterexample, then go to stage
s + 1,

Otherwise continue with the next iteration of For loop.
EndFor

End stage s

We now claim that above M NCBc1-identifies E . Clearly, if L = N , then M

NCBc1-identifies L. Now suppose L 6= N . Let c be the negative counterex-
ample received by M for N . Let j be the least grammar for L, and T be a text
for L. We claim that all stages s < j will finish, and stage j will not finish. To
see this consider any s < j.

Case 1: Ws 6⊆ L.

In this case note that step 1 would generate a negative counterexample, and
thus we will go to stage s + 1.

Case 2: Not Case 1 (i.e., Ws ⊆ L but L 6⊆ Ws).

In this case, let m be least such that content(T [m]) 6⊆ Ws. Then, in the
iteration of For loop in step 2, with n = m, the grammar output is for ∅.
Thus, there is no negative counterexample, and algorithm proceeds to stage
s + 1.

Also, note that in stage s = j, step 1 would not get a negative counterexample,
and since c 6∈ L, every iteration of For loop will get a negative counterexample.
Thus, M keeps outputting grammar for Wj ∪{c}. Hence M NCBc1-identifies
L. Thus, we have that M NCBc1-identifies E .

Since E ∈ InfBc∗, we have

Corollary 53 (a) NCBc1 = InfBc∗.

(b) For all a ∈ N ∪ {∗}, NCBca = LNCBca.

34

The following corollary shows a contrast with respect to the case when there
are no errors in conjectures (Proposition 44 and Theorem 45). What a dif-
ference just one error can make! Using the fact that InfBcn (InfBc∗ (see
[CS83]), we get

Corollary 54 For all n > 0, InfBcn (NCBcn = NCBc1.

The ideas of the above theorem are now employed to show that all infinite
recursively enumerable languages can be learned in our basic Bc-style model
with negative counterexamples of limited size allowing just one error in almost
all conjectures. Note that, as we demonstrated in Theorem 50, contrary to the
case when there are no limits on the size of negative counterexamples, such
learners cannot learn the class of all recursively enumerable languages.

Theorem 55 Let L = {L ∈ E | L is infinite }. Then L ∈ BNCBc1.

Proof. The idea is essentially the same as showing E ∈ NCBc1, (Theo-
rem 52) except that now

(i) we need to keep conjecturing N until we get negative counterexample, if
any, and

(ii) we need to do step 1 check in every iteration of the For loop in step 2
(to make sure that every negative counterexample gets a chance, since BNC

model only allows negative counterexample below the maximum element in
the input).

We omit the details.

As there exists a class of infinite languages which does not belong to InfBcn

(see [CS83]), we have

Corollary 56 For all n ∈ N , BNCBc1 − InfBcn 6= ∅.

Thus, BNCBcm and InfBcn are incomparable for m > 0. The above result
does not generalize to InfBc∗, as InfBc∗ contains the class E .

Now, based on the ideas similar to the ones used in Theorem 52, we show that
all classes of languages Bcn-learnable without negative counterexamples can
be Bc-learned with negative counterexamples of limited size when one error
in almost all conjectures is allowed.

Theorem 57 For all n ∈ N , TxtBcn ⊆ BNCBc1.

Proof. Suppose M TxtBcn-identifies L. Define M′ as follows.

35

Initially, on input T [m], for m = 0, 1, 2, . . ., M′ outputs grammar for the
language:

content(T [m]), if card(WM(T [m])) ≤ card(content(T [m])) + n;

N, otherwise.

This continues until and unless a negative counterexample is received. Note
that if a negative counterexample is never received then either

(i) input is a finite set, and eventually only first case above applies, and thus
M′ is outputting only correct grammars from some point onwards,

or

(ii) input is an infinite member of L, and eventually only second case above ap-
plies, and thus input must be N , and M′ is outputting only correct grammars
from some point onwards,

or

(iii) input is not in L.

So, if above process does not generate a negative counterexample, then we are
done. Otherwise, let c be the negative counterexample. Go to stage 0.

Stage s

For m = s to ∞ do:
(Note that we start with m = s).
1. Output a grammar for:

content(T [m]), if card(WM(T [m])) ≤ card(content(T [m])) + n;

Ws, otherwise.

If it generates a negative counterexample, then go to stage s + 1.
(note that negative counterexample can be generated only if the
second case above applied).

2. Output a grammar for:

L =

content(T [m]), if card(WM(T [m]))

≤ card(content(T [m])) + n

or content(T [m]) 6⊆ Ws;

content(T [m]) ∪ Ws ∪ {c}, otherwise.

If it does not generate a negative counterexample, then go to stage
s + 1,

36

Otherwise continue with the next iteration of For loop.
EndFor

End stage s

We now claim that above M NCBc1-identifies L. Let L ∈ L and T be a text
for L. Based on the discussion before the staging construction, assume that
we reach stage 0 (otherwise we are already done).

Now, suppose L is finite and T is a text for L. Then, for some t, for all m ≥ t,
content(T [m]) = L and M(T [m]) outputs a grammar for an n-variant of L.
Thus, irrespective of whether we converge to a stage or have infinitely many
stages, eventually only grammar for L would be output by M′, as first clause
applies for grammars output in steps 1 and 2, for all stages m ≥ t in the
staging construction.

So suppose L is infinite and T is a text for L. Then for some t, for all
m ≥ t, M(T [m]) is a grammar for infinite set. Now note that, any stage j

for which Wj 6= L would be exited (same argument as done in the proof of
Theorem 52 for E ∈ NCBc1 applies here). Furthermore, for any j ≥ t, such
that j is a grammar for L, stage j would not be exited. (We may exit some
stages j < t, for which Wj is a grammar for L, due to “card(WM(T [m])) ≤
card(content(T [m])) + n” part in clause 1 of step 2). Thus, eventually we
reach a stage s = j such that Wj is a grammar for L, and the construction
does not leave stage s. From this point onwards, M only outputs a grammar
for Ws or for Ws ∪ {c}. Theorem follows.

Similarly, one can show

Theorem 58 TxtEx∗ ⊆ BNCBc1.

Similarly to the case of Ex-style learning, BNCBc and NCBc models turn
out to be equivalent for the classes of infinite languages.

Theorem 59 Suppose L consists of only infinite languages. Then L ∈ NCBc

iff L ∈ BNCBc.

Proof. The idea of the proof is similar to the proof of Theorem 25. The
main difference being that we do not patch errors, and the argument about
eventually being able to give right answers in the simulation being based
on “finitely many wrong conjectures done by NCBc-learner”, rather than
“finitely many conjectures by NCEx-learner.” We now proceed formally.

Clearly, if L ∈ BNCBc, then L ∈ NCBc. So we only need to show that if
L ∈ NCBc then L ∈ BNCBc. Suppose M NCBc-identifies L. Define M′

as follows. M′ on the input text T of positive data for an infinite language L

37

behaves as follows. Initially let NegSet = ∅. Intuitively, NegSet denotes the set
of grammars for which we know a negative counterexample. For j ∈ NegSet,
ncex(j) would denote a negative counterexample for j. For ease of presenta-
tion, we will let M′ output more than one conjecture (one after another) at
some input point and get negative counterexamples for each of them. This is
for ease of presentation and one can always spread out the conjectures.

Stage s of M′ (after seeing input T [s])
1. Simulate M on T [s], by giving negative counterexamples to any conjectures

j ∈ NegSet by ncex(j). Other grammars get # as counterexample.
2. Let S be the set of conjectures output by M on initial segments of T [s].
3. Output a grammar for

⋃

i∈S−NegSet Wi.

4. If there is no negative counterexample, then go to stage s + 1.
5. Else (i.e., there is a negative counterexample), output one by one, elements

of S −NegSet. For each i ∈ S −NegSet, if a negative counterexample is
obtained, then place i in NegSet and define ncex(i) to be this negative
counterexample.

6. Go to stage s + 1.
End Stage s.

Now suppose T is a text for L ∈ L and consider the above construction for
M′. Due to output at step 3, eventually any grammar output by M on text
T (when negative counterexamples are based on NegSet and ncex), which
enumerates a non-subset of L would receive a negative counterexample. Thus,
as M NCBc-identifies L, for all but finitely many stages s, all the answers
given to M in step 1 would be correct. Thus, the grammar output in step 3
would be correct for all but finitely many stages, and M′ BNCBc-identifies
L.

We now mention some of the open questions regarding behaviourally correct
learning when the size of the negative counterexamples is bounded.

Open Question: Is the BNCBcn hierarchy strict?

Open Question: Is TxtBc∗ ⊆ BNCBc1?

7 Conclusions

In this paper we introduced three different models of learning with counterex-
amples, and studied their relationship with other known criteria. Among the
interesting results we showed, there are the result that E can be learned in

38

NCBc1, and the result that InfEx − NCEx 6= ∅, despite the fact that a
NCEx-learner can determine the membership for any particular element.

The model of (Ex-) learning with counterexamples was shown to be quite
robust as various modifications of the model which allow delays in the coun-
terexample, or even the model in which the learner is informed about the
existence of the counterexample but not given any specific counterexample,
turn out to be of same learning power.

We now remark on some of the complexity advantages of having negative
counterexamples. Note that the class L1 = {L | card(N−L) = 1} is in TxtEx,
but requires unbounded number of mind changes to learn. On the other hand,
L1 can be easily learned using one mind change if negative counterexamples are
available (learner can first output a grammar for N ; the counterexample then
gives away the language being learned (assuming it is from the class)). Thus,
not only does NCEx model give learnability advantages over TxtEx, it also
gives complexity advantages over TxtEx for some classes in TxtEx. Note here
that if one does not allow any mind changes, then NCEx and TxtEx are both
the same; thus the above result is the best mind change complexity advantage
possible. Simlarly, if we consider the class L2 = INIT∪{N}, then it is learnable
in NCEx model, but the number of mind changes is unbounded. However, L2

can be learned by using at most one mind change in the model LNCEx (by
a learner which outputs a grammar for N initially; least counterexample, if
any, would then determine the input language) 3 . Thus, even though LNCEx

does not give learnability advantages over NCEx, it does give complexity
advantages.

Let a .− b = a − b, if a ≥ b; a .− b = 0 otherwise; Consider the class:
L3 = {L | (∃!e)[〈0, e〉 ∈ L & L − {〈0, e〉} ⊆ {〈x, y〉 | x > 1} & card(L −
{〈0, e〉}) = e .− min(We)]}

L3 is in LNCEx with at most one mind change (an LNCEx-learner first looks
for 〈0, e〉 in the input, and then outputs a grammar for {〈0, x〉 | x ≤ e, x ∈
We}; now the least counterexample allows the learner to calculate the minimal
element in We and hence the cardinality of the input language — which is
enough to identify the input language using one mind change). However L3

cannot be learned in InfEx using bounded number of mind changes. Note
that LNCEx ⊂ InfEx. So getting negative counterexamples gives complexity
advantages over informants, despite informant being more advantageous for
learning as a whole.

3 If we want to consider a language class within TxtEx to show the complexity
advantage of LNCEx over NCEx, then one can choose the class as follows. Let
Li = {〈i, x〉 | x ∈ N}. Let Ln

i = {〈i, x〉 | x ≤ n}. Let Li = {Li}∪{Ln
i | n ≤ i}. Then

L =
⋃

i Li is in TxtEx, cannot be learned with bounded number of mind changes
in NCEx, however can be learned with one mind change in LNCEx.

39

The situation is more complex in considering the complexity advantages of
NCEx-model compared to InfEx model. Consider the following classes. Let

Li = {〈i, x〉 | x ∈ N}

L4 = {L0} ∪ {L | (∃x > 0)[L = L0 ∪ Lx]}

L5 = {L | (∃x > 0)(∃y)[L = (L0 − 〈0, 〈x, y〉〉) ∪ Lx]}

It is easy to verify that one can identify L4 ∪L5 using one mind change in the
NCEx model (learner can first output a grammar for L0; then presence or
absence of counterexample determines whether the input language is from L4

or L5, which can then be identified using (possibly) one more mind change).
On the other hand it can be shown that L4 ∪ L5 cannot be InfEx-identified
with at most one mind change (it needs 2 mind changes). A generalization
of the above class can be used to show that there exist classes which can be
NCEx-identifies using n − 1 mind changes, but cannot be InfEx-identified
using (2n − 1) − 2 mind changes. This is optimal as it can be shown that
any class which can be NCEx-identified using n − 1 mind changes can also
be identified using (2n − 1) − 1 mind changes in InfEx-model. We omit the
details.

8 Acknowledgements

We would like to thank anonymous referees for helpful suggestions. We dedi-
cate this paper to the memory of our dear friend and colleague Carl Smith.

References

[Ang88] D. Angluin. Queries and concept learning. Machine Learning, 2:319–342,
1988.

[Bār74] J. Bārzdiņš. Two theorems on the limiting synthesis of functions. In
Theory of Algorithms and Programs, vol. 1, pages 82–88. Latvian State
University, 1974. In Russian.

[BB75] L. Blum and M. Blum. Toward a mathematical theory of inductive
inference. Information and Control, 28:125–155, 1975.

40

[BCJ95] G. Baliga, J. Case, and S. Jain. Language learning with some negative
information. Journal of Computer and System Sciences, 51(5):273–285,
1995.

[BH70] R. Brown and C. Hanlon. Derivational complexity and the order of
acquisition in child speech. In J. R. Hayes, editor, Cognition and the
Development of Language. Wiley, 1970.

[Blu67] M. Blum. A machine-independent theory of the complexity of recursive
functions. Journal of the ACM, 14:322–336, 1967.

[CL82] J. Case and C. Lynes. Machine inductive inference and language
identification. In M. Nielsen and E. M. Schmidt, editors, Proceedings of the
9th International Colloquium on Automata, Languages and Programming,
volume 140 of Lecture Notes in Computer Science, pages 107–115.
Springer-Verlag, 1982.

[CS83] J. Case and C. Smith. Comparison of identification criteria for machine
inductive inference. Theoretical Computer Science, 25:193–220, 1983.

[DPS86] M. Demetras, K. Post, and C. Snow. Feedback to first language learners:
The role of repetitions and clarification questions. Journal of Child
Language, 13:275–292, 1986.

[FGJ+94] L. Fortnow, W. Gasarch, S. Jain, E. Kinber, M. Kummer, S. Kurtz,
M. Pleszkoch, T. Slaman, R. Solovay, and F. Stephan. Extremes in the
degrees of inferability. Annals of Pure and Applied Logic, 66:231–276,
1994.

[GM98] W. Gasarch and G. Martin. Bounded Queries in Recursion Theory.
Birkhauser, 1998.

[Gol67] E. M. Gold. Language identification in the limit. Information and Control,
10:447–474, 1967.

[GP89] W. Gasarch and M. Pleszkoch. Learning via queries to an oracle. In
R. Rivest, D. Haussler, and M. Warmuth, editors, Proceedings of the
Second Annual Workshop on Computational Learning Theory, pages 214–
229. Morgan Kaufmann, 1989.

[HPTS84] K. Hirsh-Pasek, R. Treiman, and M. Schneiderman. Brown and Hanlon
revisited: Mothers’ sensitivity to ungrammatical forms. Journal of Child
Language, 11:81–88, 1984.

[HU79] J. Hopcroft and J. Ullman. Introduction to Automata Theory, Languages,
and Computation. Addison-Wesley, 1979.

[LNZ02] S. Lange, J. Nessel, and S. Zilles. Learning languages with queries. In
Proceedings of Treffen der GI-Fachgruppe Maschinelles Lernen (FGML),
Learning Lab Lower Saxony, Hannover, Germany, pages 92–99, 2002.

[LZ94] S. Lange and T. Zeugmann. Characterization of language learning
from informant under various monotonicity constraints. Journal of
Experimental and Theoretical Artificial Intelligence, 6:73–94, 1994.

41

[LZ04a] S. Lange and S. Zilles. Comparison of query learning and gold-style
learning in dependence of the hypothesis space. In John Case Shai
Ben-David and Akira Maruoka, editors, Algorithmic Learning Theory:
Fifteenth International Conference (ALT’ 2004), volume 3244 of Lecture
Notes in Artificial Intelligence, pages 99–113. Springer-Verlag, 2004.

[LZ04b] S. Lange and S. Zilles. Replacing limit learners with equally powerful one-
shot query learners. In John Shawe-Taylor and Yoram Singer, editors,
Proceedings of the Seventeenth Annual Conference on Computational
Learning Theory, volume 3120 of Lecture Notes in Artificial Intelligence,
pages 155–169. Springer-Verlag, 2004.

[Mot91] T. Motoki. Inductive inference from all positive and some negative data.
Information Processing Letters, 39(4):177–182, 1991.

[MY78] M. Machtey and P. Young. An Introduction to the General Theory of
Algorithms. North Holland, New York, 1978.

[Rog67] H. Rogers. Theory of Recursive Functions and Effective Computability.
McGraw-Hill, 1967. Reprinted by MIT Press in 1987.

[Shi86] T. Shinohara. Studies on Inductive Inference from Positive Data. PhD
thesis, Kyushu University, Kyushu, Japan, 1986.

42

